

Effect of film thickness on the optical behavior of silver nanoparticles/polymer nanocomposite films

Lamia Abdessemed and Michel Voué

University of Mons - Materials Physics and Optics Group - Belgium

Introduction

- Optical properties of metal nanoparticles (NPs) determined by a collective oscillation of the conduction electrons : surface plasmon polariton resonance (SPPR).
- Influence of the matrix on the SPPR : $\epsilon_{Ag}(\omega) = -2\epsilon_{PVA}(\omega)$ In situ synthesis of the NPs in a poly(vinyl alcohol) (PVA) matrix by chemical
- reduction of the metal salt during thermal annealing of the film
- Preparation of Ag-PVA films with high (25% w:w) and low doping levels (2.5% w:w) by spin-coating of the doped polymer solution on silicon wafers

- Study of the film topography by AFM in true non-contact mode
- Study of the optical properties by spectroscopic ellipsometry to simultaneously access to the thickness of the film and to the frequency-dependent dielectric function $\epsilon(\omega) = N^2(\omega)$

Spectroscopic ellipsometry : Non-destructive optical analysis technique based on the relative change of polarization of the *p*- and *s*- components of the light at the interface between two media characterized by different optical properties

 $\beta = \sin(2\Psi)\cos(\Delta)$

Figure 2 : Ellipsometric spectra of Ag -PVA films (Ag/PVA ratio: 25% w: w): A.thin films (thickness: 25.4 nm); B, thick film (thickness: 293.9 nm). Experimental data: α (filled circles) and β (open circles). Dashed lines: optimized results from the optical model.

Table 1: Parameters of the plasmon absorption peak (A_0 : amplitude of the absorption peak; λ_0 : position of the resonance: Γ_0 : width of the resonance) as a function of the film thickness for highly doped PVA films (Ag/PVA ratio: 25% w: w). Data correspond to the optical properties presented in Fig. 3.

Sample	Thickness (nm)	A_0	λ_0 (nm)	$\Gamma_0(nm)$
Thin films	23.4 ± 0.2	0.145 ± 0.6	414.2 ± 0.7	67.6 ± 2.9
	25.4 ± 0.3	0.133 ± 0.5	415.6 ± 0.6	69.0 ± 2.6
Thick films	305.9 ± 1.7	0.117 ± 0.2	405.4 ± 0.7	47.3 ± 1.6
	293.4 ± 1.7	0.118 ± 0.2	409.5 ± 0.6	49.2 ± 1.5

Figure 1: AFM images of the polymer films topography (1 μm x 1 μm): A, pure PVA film; B, 25 nm thick doped film (Ag/PVA ratio: 2.5%); C, 25 nm thick doped film (Ag/PVA ratio: 25%); D, 290 nm thick doped film (Ag/PVA ratio: 25% w: w).

Figure 4: Resonance width versus resonance wavelength for PVA films with high (open symbols) and low Ag doping levels (plain symbols)

Conclusion and acknowledgements

In situ synthesis of silver NPs by thermal annealing of a polymer film containing metal salt

- Simultaneous determination of thickness and optical properties : SPPR localized at ~ 3 eV
- At high doping level (25% Ag) : different behavior between thin and thick films (2D \rightarrow 3D)

This work is financially supported by the National Fund for Scientific Research of Belgium (FRFC project n°1926111).

