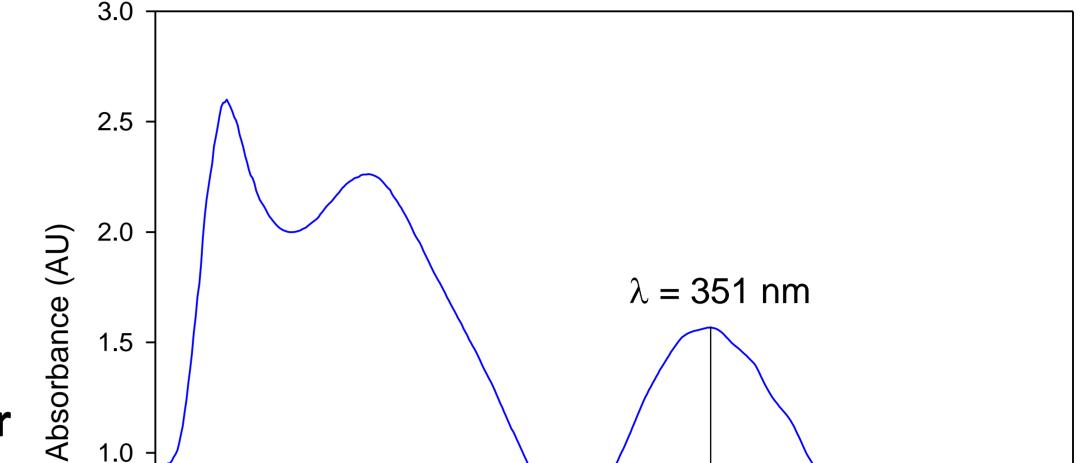
Following chromium (IV) reduction by low resolution nuclear magnetic resonance relaxometry **BI** *PHYS* UMONS


Gossuin Yves^{1*}, Laurent Sophie², Duez Pierre³, Masson Céline¹, Blankert Bertrand⁴

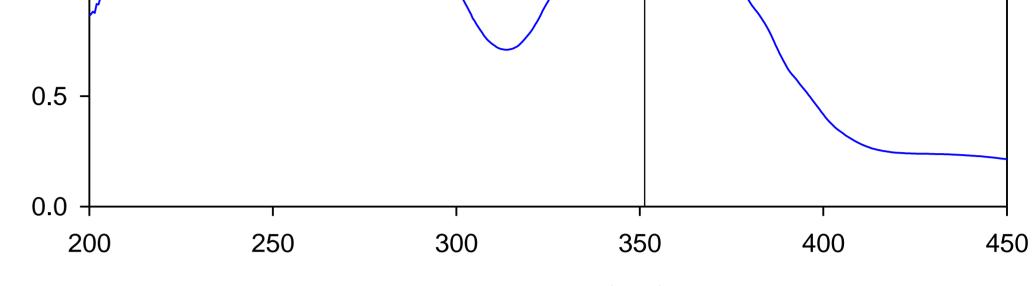
*Presenting author, yves.gossuin@umons.ac.be, ¹UMONS, Biomedical Physics Unit; ²UMONS, General, Organic and Biomedical Chemistry Unit; ³UMONS, Therapeutic Chemistry and Pharmacognosy Unit; ⁴UMONS, Laboratory of Pharmaceutical Analysis

The measurement of the longitudinal and transverse relaxation rates is used to monitor the reduction, with hydrogen peroxide, of diamagnetic Cr⁶⁺ ions into paramagnetic Cr³⁺ ions in aqueous solution

1. Chromium in water – properties of chromium (VI) and (III)

The presence of chromium in water is a major environmental and health concern¹, Chromium is released by stainless steel production, tannery and electroplating industries, Chromium (VI) is highly toxic when compared to chromium (III) => remediation by reduction²⁻⁵ ■Chromium (VI) has full electronic orbitals → non magnetic → no influence on water

relaxation


•Chromium (III) has three 3d electrons \rightarrow paramagnetic \rightarrow shorten water protons T_1 and T_2^6 The reduction of chromium (VI) to (III) in aqueous solution = decrease of T_1 and T_2

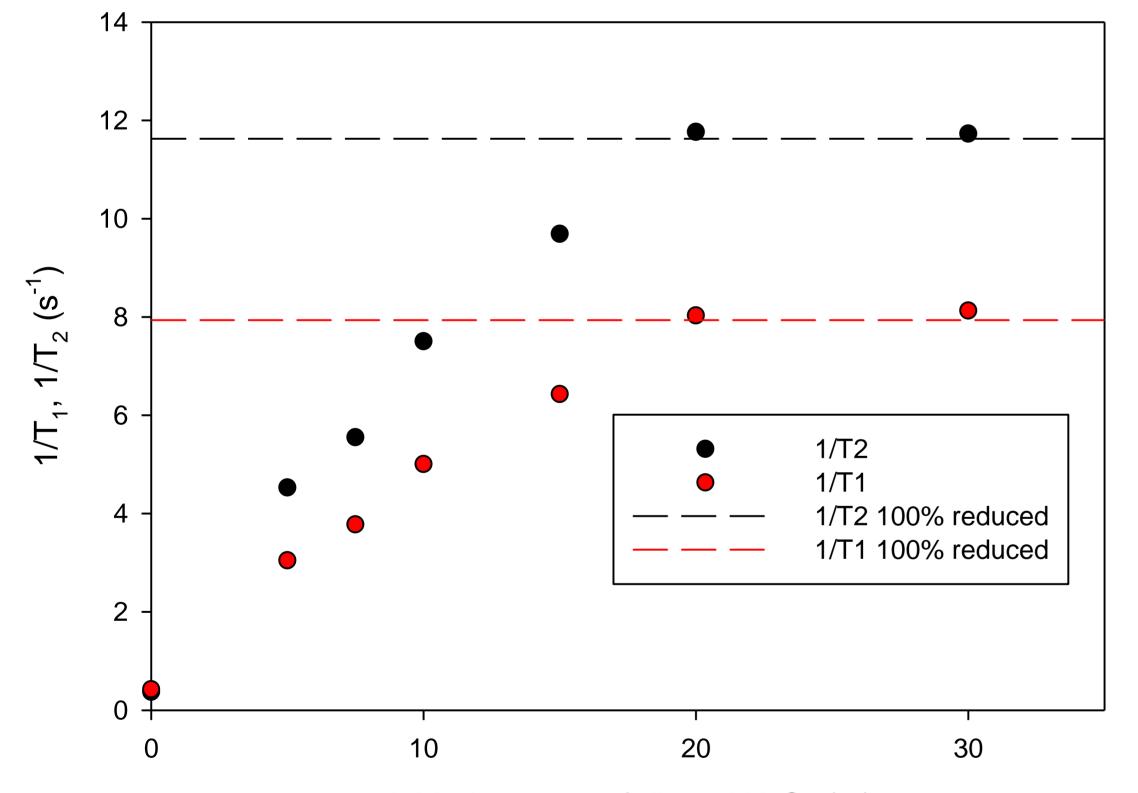
2. Conventional method to study the reduction of chromium (VI)

Cr⁶⁺ concentration [Cr⁶⁺] is often measured by the so-called "carbazide test", •UV-Visible spectroscopy after addition of diphenylcarbazide to the solution⁷, Really sensitive: limit of detection of 0.002 mg/ml, and linearity up to 2 mg/ml, Not suited for higher concentrations and restricted to clear solutions, \Rightarrow not always possible with wastewater or complex matrixes like muds, \Rightarrow Filtration needed, also when performing reduction with solid powders.

4. Monitoring of chromium reduction with relaxometry

•As expected, $1/T_1$ and $1/T_2$ increase because of the reduction (Fig.2), Linear decrease of $1/T_1$ and $1/T_2$ with the actual [Cr⁶⁺] measured by direct spectroscopy (Fig. 3) \rightarrow proportionality of 1/T₁ and 1/T₂ with [Cr³⁺]

Wavelength (nm)


Figure 1: typical direct absorption spectrum of a partially reduced 1.5 mM Cr⁶⁺ solution at pH 3. The absorbance at 351 nm was used for the determination of [Cr⁶⁺]

3. Material and Methods

•Reduction of 3 ml of 1.5 mM $K_2Cr_2O_7$ solution with diluted H_2O_2 , •After 72 h, measurement of T_1 and T_2 at 20 MHz,

Independent measurement of remaining Cr⁶⁺ by direct UV-Visible spectroscopy (Fig. 1) without carbazide, as described previously⁸,

Study of the influence of pH, T and magnetic field on the relaxation of completely reduced Cr⁶⁺ solutions.

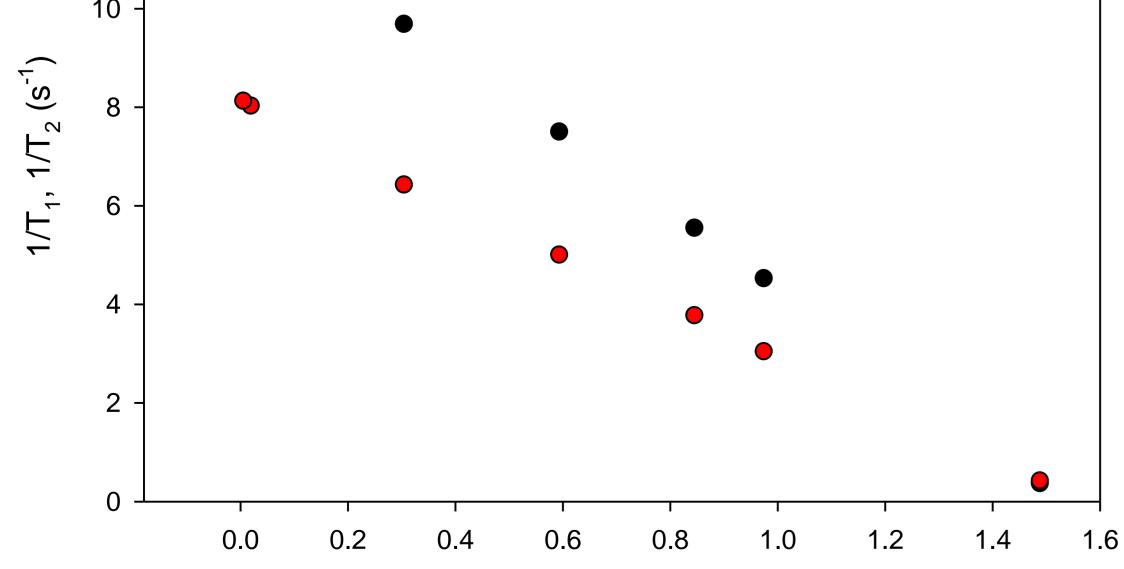
Added amount of diluted H_2O_2 (µI)

Figure 2: evolution of T_1 and T_2 of a 1.5 mM Cr⁶⁺ solution after the addition of different amounts of 18 x diluted H₂O₂ at pH 1.7, 20°C and 0.47 T

5. Relaxation properties of fully reduced Cr⁶⁺ solution

Complete reduction of a 1.5 mM [Cr6+] solution,

•obtained using a higher concentration of H_2O_2 and confirmed by direct spectroscopy, •Helps to find the best experimental conditions for the follow up of the reduction.


Figure 4 shows:

 $\bullet T_2$ more sensitive than T_1 , •High fields are better as $1/T_2$ increases,

Important effect of temperature on the relaxation,

Effect of pH on relaxation (not shown)

[Cr⁶⁺] in solution from direct spectroscopy (mg/ml)

Figure 3: correlation between the relaxation rates and the [Cr⁶⁺] concentration measured by direct spectroscopy, at pH 1.7, 20°C and 0.47 T Proton Larmor frequency (MHz)

Figure 4: evolution with the field of the relaxation rates of a totally reduced 1.5 mM Cr⁶⁺ solution at pH 1.7

5. Perspectives

Study of the reduction kinetics "live" in a single NMR tube,

•Follow-up of the reduction of Cr⁶⁺ by zerovalent aluminium,

•Follow-up of the reduction of Cr⁶⁺ by Fe²⁺ ions.

References

[1] P.B. Tchounwou et al, EXS. 2012, 101, 133–164. [2] M. Pettine et al, Environ. Sci. Technol. 2002, 36, 901-907. [3] I.J. Buerge, S.J. Hug, Environ. Sci. Technol. 1997, 31, 1426-1432. [4] C.J. Lin et al, Water Res. 2009, 43, 5015-5022. [5] V.A. Okello et al, Environ. Sci. Technol. 2012, 46, 10743-10751. [6] I. Bertini et al, Inorg. Chem. 2001, 40, 4030-4035. [7] R.T. Pflaum, L.C. Howick, J. Am. Chem. Soc. 1956, 78, 4862-4866. [8] A. Sanchez-Hachair, A. Hofmann, C. R. Chimie. 2018, 21, 890-896.

BIOMEDICAL PHYSICS DEPARTMENT, UMONS, BELGIUM.