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Abstract. We introduce and study hybrid automata with strong resets. They gen-
eralize o-minimal hybrid automata, a class of hybrid automata which allows mod-
eling of complex continuous dynamics. A number of analysis problems, such
as reachability testing and controller synthesis, are decidable for classes of o-
minimal hybrid automata. We generalize existing decidability results for con-
troller synthesis on hybrid automata and we establish new ones by proving that
average-price and reachability-price games on hybrid systems with strong resets
are decidable, provided that the structure on which the hybrid automaton is de-
fined has a decidable first-order theory. Our proof techniques include a novel
characterization of values in games on hybrid systems by optimality equations,
and a definition of a new finitary equivalence relation on the states of a hybrid
system which enables a reduction of games on hybrid systems to games on finite
graphs.

1 Introduction

Hybrid systems and automata. Systems that exhibit both discrete and continuous be-
havior are referred to as hybrid systems [1]. Continuous changes to the system’s state
are interleaved with discrete ones, which may alter the constraints for future contin-
uous behaviors. Hybrid automata are a formalism for modeling hybrid systems [2].
Hybrid automata are finite automata augmented with continuous real-valued variables.
The discrete states can be seen as modes of execution, and the continuous changes of
the variables as the evolution of the system’s state over time. The mode specifies the
continuous dynamics of the system, and mode changes are triggered by the changes in
variable’s values.

Verification and controller synthesis. Formal verification of hybrid systems is an active
field of research in computer science (e.g. [3,4,5,6,7]). When augmented with price
information, they can serve as models for resource consumption. The price does not
constrain the behavior of the system, but gives quantitative information about it. This
research directions ha recently received substantial attention. Timed automata[3] have
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been extended with price information [8,9]. Similarly, the model of o-minimal1 hybrid
systems has been extended with price functions [10].

The designer of the system often lacks full control over its operation. The behavior of
the system is a result of an interaction between a controller and the environment. This
gives rise to the controller synthesis problem, where the goal is to design a program
such that, regardless of the the environment’s behavior, the system behaves correctly
and optimally. A game-based approach to the controller synthesis problem was first
proposed by Church [11], and was applied to hybrid automata [12,10] and timed au-
tomata [13]. There are two players, controller and environment, and they are playing
a zero-sum game. The game is played on the hybrid automaton and consists of rounds.
In this paper, we use player Min to denote the controller and player Max to denote the
environment. These are standard player names in zero-sum games. In each round, Min
proposes a transition. Based on that, and in accordance with the game protocol, Max
performs this or another transition.

Hybrid games with strong resets. We are considering a subclass of hybrid automata: hy-
brid automata with strong resets (HASR). In order to represent the automaton finitely,
we require that all the components of the system are first-order definable over the or-
dered field of reals. The term “strong resets” comes from the property of the system
that all the continuous variables are non-deterministically reset after each discrete tran-
sition. As opposed to timed automata, where flow rates are constant, and reseting of the
variables upon a discrete transition is not compulsory [3], HASR allow for rich contin-
uous dynamics [5,10,12]. In the game setting, we allow only for alternating sequences
of timed and discrete transitions [12,10]. Allowing an arbitrary number of continuous
transitions prior to a discrete one, without the requirement of o-minimality, renders it
impossible to construct a bisimulation of finite index [14,15].

Contributions. We are considering hybrid games with strong resets which generalize
the previously studied o-minimal hybrid games [12,10]. The o-minimality assumption,
together with the decidability of the first-order theory, was crucial in establishing pre-
vious decidability results [10].

For controller synthesis, only reachability-price games were studied so far [10].
However, the decidability result was limited to o-minimal hybrid games, where the
price function is positive and non-decreasing. In this work, we extend the previous
results to arbitrary price functions. Moreover, we show decidability of solving average-
price games which, until now, were studied only in a discrete time setting [16].

In order to characterize the concept of game value, we use a technique of optimality
equations [17]. For each game we introduce a set of equations. We prove that, if a pair
of functions from the states to real numbers satisfies those equations, then the values of
those functions are actually game values. We also show how to find solutions to such
equations. This technique is new in the area of infinite state systems and we believe that
its introduction contributes to the value of our results.

1 O-minimality refers to the underlying algebraic structure. A structure is said to be o-minimal
if every first-order definable subset of its domain is a finite union of points and intervals.
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We introduce a new equivalence relation over the state space of the game. This equiv-
alence is coarser then the previously considered in this context [12,10] and also induces
a finite bisimulation.

To compute solutions to the optimality equations, we construct a finite priced graph,
using the introduced equivalence relation. We prove that we can derive solutions to the
original problem from solutions to the finite problem. Both average-price and reachabi-
lity-price games on finite graphs are known to be decidable.

It is worth noting that our results can be easily extended to relaxed hybrid au-
tomata [7], where the strong reset requirement is replaced by a requirement that every
cycle in the control graph has a transition that resets all the variables. This extension
can be achieved by a refinement of the equivalence relation and a minor modification
of the finite graph obtained from it. We decided against considering this more general
model, as it would have a negative impact on the clarity of presentation and exposition
of our results.

Organization of the paper. The paper is organized as follows. Sec. 2 introduces notions
of computability, definability, and zero-sum games. We recall the known results for
finite average-price and reachability-price games. Sec. 3 introduces zero-sum hybrid
games with strong resets. We characterize game values using optimality equations, and
prove that if these equations have solutions then the games are determined and almost-
optimal strategies exist. In the rest of the paper we are showing that the solutions to the
optimality equations indeed exist. A finite abstraction over the state space of the hybrid
game is introduced in Sec. 4. It is used to construct a finite priced game graph. In Sec. 5,
we show that solutions to optimality equations for finite average-price and reachability-
price games on this graph coincide with solutions to the optimality equations for their
hybrid analogues.

2 Preliminaries

We introduce key notions and results that will be used further in the paper, such as com-
putability, definability, decidability, and two-player zero-sum games on priced graphs.
We also briefly summarize known results for average-price and reachability-price games
on finite graphs.

Throughout the paper R∞ denotes the set of real numbers augmented with positive
and negative infinities, and R+ and R⊕ denote the sets of positive and non-negative
reals, respectively. If G = (V, E) is a graph then for for a vertex v we write vE to
denote the set {v′ : (v, v′) ∈ E}.

2.1 Computability and Definability

Computability. Let f : X → R be a partial function, which is defined on a set D ⊆
X ⊆ R

n. We say that f is computable if f(x) is rational for every rational x ∈ D,
and there exists an algorithm that computes it given x. It is approximately computable
if for every rational x ∈ D, and every ε > 0, we can compute a y ∈ R such that
|y − f(x)| < ε. It is decidable if the following problem is decidable: given a rational
x ∈ D and c ∈ Q, decide whether f(x) � c. A set X ⊆ R

n is decidable if there is an
algorithm that, given a rational x, can decide whether x ∈ X .
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Proposition 1. If a function is decidable then it is approximately computable. If a de-
cidable set contains a rational element, then there is an algorithm that outputs one.

Earlier definitions apply to the broadly accepted Turing machine model of computation.
When dealing with real computation, the Blume-Shub-Smale (BSS) model [18,19] can
also be considered. In the BSS model all real numbers are among the valid inputs and
outputs.

Definability. Let M = 〈R, 0, 1, +, ·, �〉 be the field of reals We will say that a set
X ⊆ R

n is definable in M if it is first-order definable in M . The first-order theory
of M is the set of all first-order sentences that are true in M. A well known result by
Tarski [20] is that the first-order theory of the ordered field of reals is decidable.

It is possible to enrich the structure M with more operations (e.g., trigonometric
functions, exponential function, etc.), but decidability of the respective first-order the-
ory might be broken. Decidability of M is necessary to establish Cor. 19 and 21, and
Thm 22. Unlike results in [6,10,12], definability over M is not necessary to establish
determinacy and existence of almost-optimal strategies (Thms 7, 11, 17, and 20). These
results are a direct consequence of the “strong reset” property mentioned in the intro-
duction.

Note that, if a real partial function is definable it is decidable, and if a set is definable
it is decidable.

2.2 Zero-Sum Games

Priced game graphs. Let S be a set of states, E ⊆ S × S be an edge relation, and
π : E → R a price function. A priced game graph is Γ = ((S, E), SMin, SMax, π), where
S = SMin � SMax. Note that S and E do not have to be finite or even countable.

A run of Γ is a sequence ρ = 〈s0, s1, . . .〉 of elements of S, where ρ(0) = s0
is called the initial state, and (si, si+1) ∈ E for all i ∈ N. A finite run is a finite
sequence ρ = 〈s0, . . . , sk〉 of elements of S, satisfying the same conditions. We write
Runs (Runsfin) to denote the set of all runs (finite runs) of Γ .

Strategies. A strategy for player Min is a function μ : Runsfin → S, such that for every
ρ = 〈s0, s1, . . . , sn〉 ∈ Runsfin, if sn ∈ SMin then (sn, μ(ρ)) ∈ E. A positional strategy
for player Min is a function μ : SMin → S that satisfies the same conditions. A positional
strategy μ naturally induces the strategy Runsfin � 〈s0, s1, . . . , sn〉 	→ μ(sn) ∈ S,
which, for simplicity, we also refer to as μ. (Positional) strategies for player Max are
defined analogously. We write ΣMin and ΣMax for the sets of strategies for player Min
and Max, respectively, and we write ΠMin and ΠMax for the sets of their positional
strategies. For s ∈ S and strategies μ ∈ ΣMin and χ ∈ ΣMax, we define the run starting
at s and following μ and χ by Run(s, μ, χ) = 〈s0, s1, s2, . . .〉, where s0 = s and for all
i ≥ 0, μ(s0, . . . , si) = si+1 if si ∈ SMin, and χ(s0, . . . , si) = si+1 if si ∈ SMax.

Let P∗ : Runs → R∞ and P∗ : Runs → R∞ be lower and upper payoff functions,
respectively. In a two-player zero-sum game, player Min wants to minimize the value
of P∗ of a play and player Max wants to maximize the value of P∗ of the play. We
require that P∗ � P∗, and if P = P∗ = P∗ then we call P the payoff function. Payoff
functions define a zero-sum game on a priced game graph Γ .
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Example 2. Let us consider a very simple priced game graph, consisting of one vertex
and two edges. One of these edges bears a price of 0, and the other one the price of 1.
For the sake of the definition completeness, we say that the set of vertices of player Min
is empty.

If we use the average-price payoff functions (see Sec. 2.3 for the definition) and
consider an infinite run ρ of the form 10

︸︷︷︸

2·20

1100
︸︷︷︸

2·21

11110000
︸ ︷︷ ︸

2·22

. . . one can see, after a brief

calculation, that P∗(ρ) = 1/2 which is not equal to P∗(ρ) = 2/3.

Determinacy. We define lower value Val∗(s) = supχ∈ΣMax
infμ∈ΣMin P∗(Run(s, μ, χ)),

and upper value Val∗(s) = infμ∈ΣMin supχ∈ΣMax
P∗(Run(s, μ, χ)), for all s ∈ S. Note

that Val∗ � Val∗, and if these values are equal, then we will refer to them as the
value of the game from this state, denoted by Val(s). We will also say that the game
from this state is determined. We say that it is positionally determined, if Val(s) =
supχ∈ΠMax

infμ∈ΣMin P∗(Run(s, μ, χ)) = infμ∈ΠMin supχ∈ΣMax
P∗(Run(s, μ, χ)).

For all μ ∈ ΣMin and s ∈ S, we define Valμ(s) = supχ′∈ΣMax
P∗(Run(s, μ, χ′)).

Analogously, for χ ∈ ΣMax we define Valχ(s) = infμ′∈ΣMin P∗(Run(s, μ′, χ)). For
ε > 0, we say that μ ∈ ΣMin is ε-optimal if for every s ∈ S, we have that Valμ(s) �
Val∗(s) + ε. We define ε-optimality of strategies for Max analogously.

Decidability and computability. We will say that a zero-sum game on a game graph Γ
is decidable if the partial function Val : S → R is decidable. A game has computable
ε-optimal strategies if there exist ε-optimal strategies for both players, which are com-
putable.

2.3 Average-Price and Reachability-Price Games on Finite Graphs

We recall the known results that will be used later, when discussing hybrid games. We
characterize the game values using optimality, equations and recall strategy improve-
ment algorithms, used for finding solutions to these equations. The games are deter-
mined (Thms 3 and 4), decidable and have computable optimal strategies (Cor. 5).

Average-price games. The goal of player Min in the average-price game on Γ is to min-
imize an average price per step in a run, and the goal of player Max is to maximize it. For
every run ρ = 〈s0, s1, s2, . . .〉, we define P∗(ρ) = lim infn→∞(1/n)

∑n−1
i=0 π(si, si+1),

and P∗(ρ) = lim supn→∞(1/n)
∑n−1

i=0 π(si, si+1).

Optimality equations for average-price games. Let Γ be a priced game graph, and let
G, B : S → R. We say that the pair of functions (G, B) is a solution of optimality equa-
tions for the average-price game Γ , denoted by (G, B) |= OptAvg(Γ ), if the following
conditions hold for all states s ∈ SMin:

G(s) = min
(s,s′)∈E

{G(s′)}, B(s) = min
(s,s′)∈E

{

π(s, s′)−G(s)+B(s′) : G(s′) = G(s)
}

,

and the analogous two equations hold, with max instead of min in both, for all s ∈ SMax.
The two functions G and B are called gain and bias, cf. [17]. Solutions of the gain-bias



68 P. Bouyer et al.

optimality equations for a finite game graph always exist and they are used to establish
positional determinacy of average-price games. For every state s ∈ S, the gain of s is
uniquely determined by optimality equations and it is equal to the value of the average-
price game starting from s.

Theorem 3. For every finite priced game graph Γ , there is a pair of functions G, B :
S → R, such that (G, B) |= OptAvg(Γ ), and for every state s ∈ S, the average-price
game Γ from s is determined and Val(s) = G(s). Both players have positional optimal
strategies.

Reachability-price games. A reachability-price game (Γ, F) consists of a priced game
graph Γ and a set of final states F ⊆ S. The goal of player Min is to reach a final state
and the goal of player Max is to prevent it. Moreover, player Min wants to minimize the
total price of reaching a final state, while player Max wants to maximize it. For a run
ρ = 〈s0, s1, s2, . . .〉, we define Stop(ρ) = infn{sn : sn ∈ F}. The reachability-price
payoff P(ρ) of the run ρ = 〈s0, s1, s2, . . .〉 is defined by P(ρ) =

∑Stop(ρ)−1
i=0 π(si, si+1)

if Stop(ρ) < ∞, and P(ρ) = ∞ otherwise.

Optimality equations for reachability-price games. Let P : S → R and D : S → N.
We say that (P, D) is a solution of the optimality equations for the reachability-price
game (Γ, F), denoted by (P, D) |= OptReach(Γ, F), if the following conditions hold for
all states s ∈ S. If s ∈ F then P (v) = D(v) = 0; if s ∈ SMin \ F then

P (s) = min
(s,s′)∈E

{π(s, s′) + P (s′)},

D(s) = min
(s,s′)∈E

{

1 + D(s′) : P (s) = π(s, s′) + P (s′)
}

,

and the analogous two equations hold, with max instead of min, for all s ∈ SMax \ F.
Intuitively, in the equations above, P (s) and D(s) capture “optimal price to reach a final
state” and “optimal number of steps to reach a final state with optimal price” from state
s ∈ S, respectively.

Let W Max ⊆ S be the set of non-final states from which player Max can prevent
ever reaching a final state. This set can be easily computed in time O(|S| + |E|) for a
finite game graph Γ . Moreover, let W Min ⊆ S \ W Max be the set of states which have
a negative value in the average-price game obtained from Γ by removing all states from
the set W Max. It is easy to argue that for all s ∈ W Max, we have Val(s) = +∞, and for
all s ∈ W Min, we have Val(s) = −∞. Let Sfin = S \ (W Max ∪ W Min) and let Γ fin be
the priced game graph obtained from Γ by restricting to the set of states Sfin.

Theorem 4. For every finite priced game graph Γ , there is a pair of functions P :
Sfin → R and D : Sfin → N, such that (P, D) |= OptReach(Γ

fin, F), and for every state
s ∈ Sfin, the reachability-price game Γ from s is determined and Val(s) = P (s).

Strategy improvement algorithms [17,13,21] can be used to prove Thms 3 and 4, and to
compute solutions of optimality equations OptAvg(Γ ) and OptReach(Γ

fin, F).

Corollary 5. Average-price and reachability-price games on finite priced game graphs
are decidable and have computable optimal strategies.
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3 Games on Hybrid Automata with Strong Resets

We introduce hybrid automata with strong resets and define zero-sum hybrid games
on these automata, which fit in the general framework presented in Sec. 2.2. The key
result is that optimality equations characterize the game values of average-price and
reachability-price hybrid games (Thms 7 and 11). This allows us to later prove the main
result of this paper, i.e., that these games are positionally determined and decidable.

Our definition of a hybrid automaton varies from that used in [12,10], as we hide
the dynamics of the system into guard functions. This approach allows for cleaner and
more succinct notation and exposition, without loss of generality.

Priced hybrid automata with strong resets. Let L be a finite set of locations. Fix n ∈ N

and define the set of states S = L × R
n. Let A be a finite set of actions and define the

set of times T = R⊕ We refer to action-time pairs (a, t) ∈ A × T as timed actions.
A priced hybrid automaton with strong resets (PHASR) H = 〈L, A, G, R, π〉 consists
of finite sets L of locations and A of actions, a guard function G : A → 2S×T, a reset
function R : A → 2S, and a continuous price function π : S × (A × T) → R. We say
that H is a definable PHASR if the sets G, R, and the function π are definable.

For states s, s′ ∈ S and a timed action (a, t) ∈ A × T, we write s
a−→t s′ iff (s, t) ∈

G(a) and s′ ∈ R(a). If s, s′ ∈ S, τ = (a, t) ∈ A × T, and s
a−→t s′ then we write

s
τ−→ s′. We define the move function M : S → 2A×T by M(s) = {(a, t) : (s, t) ∈

G(a)}. Note that M is definable if G is definable. A run from state s ∈ S is a sequence
〈s0, τ1, s1, τ2, s2, . . .〉 ∈ S × ((A × T) × S)ω, such that s0 = s, and for all i ≥ 0, we

have si
τi+1−−−→ si+1.

We say that the hybrid automaton is price-bounded if there exists a constant B ≥ 0,
such that for all s ∈ S and τ ∈ M(s), we have |π(s, τ)| ≤ B. For technical convenience,
we only consider price-bounded hybrid automata in this paper. Without it, it would be
necessary to account for non-determinacy. This would have a negative effect on clarity
of the paper.

Hybrid games with strong resets. A hybrid game with strong resets (HGSR) Γ =
〈H, MMin, MMax〉 consists of a PHASR H = 〈L, A, G, R, π〉, a Min-move function MMin :
S → 2A×T and a Max-move function MMax : S × (A × T) → 2A×T. We require
that for all s ∈ S, we have MMin(s) ⊆ M(s), and that for all τ ∈ MMin(s), we have
MMax(s, τ) ⊆ M(s). W.l.o.g., we assume that for all s ∈ S, we have MMin(s) �= ∅, and
that for all τ ∈ MMin(s), we have MMax(s, τ) �= ∅. If H and the move functions are
definable then, we say that Γ is definable.

A hybrid game with strong resets is played in rounds. In every round, the following
three steps are performed by the two players Min and Max from the current state s ∈ S.

1. Player Min proposes a timed action τ ∈ MMin(s).
2. Player Max responds by choosing a timed action τ ′ = (a′, t′) ∈ MMax(s, τ).

3. Player Max chooses a state s′ ∈ R(a′), i.e., such that s
τ ′
−→ s′. The state s′ becomes

the current state for the next round.

A play of the game Γ from state s ∈ S is a sequence 〈s0, τ1, τ
′
1, s1, τ2, τ

′
2, s2, . . .〉 ∈

S × ((A × T) × (A × T) × S)ω, such that s0 = s, and for all i ≥ 0, we have τi+1 ∈
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MMin(si) and τ ′
i+1 ∈ MMax(si, τi+1). Note that if 〈s0, τ1, τ

′
1, s1, τ2, τ

′
2, s2, . . .〉 is a play

then the sequence 〈s0, τ
′
1, s1, τ

′
2, s2, . . .〉 is a run of the hybrid automaton H.

A hybrid game with strong resets can be viewed as a game on a priced game graph.
The set of states S′ is a subset of: S∪(S×(A×T))∪((A×T)). The E′ relation is defined
as follows: (s, (s, τ)) ∈ E′ iff τ ∈ MMin(s), and ((s, τ), τ ′) ∈ E iff τ ′ ∈ MMax(s, τ),
and ((a′, t′), s′) ∈ E′ iff s′ ∈ R(a′). We define Γ ′ = ((S′, E′), S, S′ \ S, π′), where
π′((s, τ), (a′, t′)) = π(s, t′), and 0 for all other edges. Additionally we require that
S′ \ S contains all states reachable from S and does not contain those that are not. For
all (a, t), (a′, t′) ∈ S′, if a = a′ then (a, t)E′ = (a′, t′)E′.

It is clear that plays of Γ directly correspond to runs on Γ ′. Moreover, any run of Γ ′

uniquely determines a run of H. To recall the definitions of strategies, payoff functions
and game values, see Sec. 2.2. We define payoffs of Γ ′ runs as functions of the uniquely
determined H runs.

In the following, we lift the concept of reachability-price and average-price games,
as defined in Sec. 2.3, to hybrid games with strong resets. We show that values of these
games are characterizable by optimality equations and we argue that if the game is
determined, ε-optimal positional strategies are definable.

Average-price hybrid games. The goals of players Min and Max in an average-price
game are to minimize and maximize, respectively, the average price per round of a
play. This corresponds to defining the lower and upper payoffs as follows. For a run
ρ = 〈s0, s1, . . .〉 of H, we define the lower payoff P∗ and the upper payoff P∗ by

P∗(ρ) = lim inf
n→∞

1
n

n−1
∑

i=0

π(si, τi+1), P∗(ρ) = lim sup
n→∞

1
n

n−1
∑

i=0

π(si, τi+1).

As we did in the case of finite game graphs (Thm 3), we prove determinacy and
characterize the values of average-price games on hybrid automata with strong resets by
optimality equations involving gain and bias. Let G, B : S ∪

(

S× (A×T)
)

∪ A → R.
We say that (G, B) is a solution to average-price optimality equations, denoted by
(G, B) |= OptAvg(Γ ), if the following equations hold for all s ∈ S. If s ∈ S, then

G(s) = min
τ∈MMin(s)

{G(s, τ)}, (1)

B(s) = inf
τ∈MMin(s)

{−G(s) + B(s, τ) : G(s, τ) = G(s)}; (2)

if s ∈ S and τ ∈ MMin(s), then

G(s, τ) = max
(a′,t′)∈MMax(s,τ)

{G(a′)}, (3)

B(s, τ) = sup
(a′,t′)∈MMax(s,τ)

{

π(s, a′, t′) − G(s, τ) + B(a′) : G(a′) = G(s, τ)
}

; (4)

and if a ∈ A

G(a) = max
s∈R(a)

{G(s)}, B(a) = sup
s∈R(a)

{−G(a) + B(s) : G(s) = G(a)}.
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Note that the above optimality equations refer to Γ ′, which allows us to model opti-
mal choices that both players make in all steps of the hybrid game. Also note that in the
definition of gain we use min and max rather than inf and sup. This is valid because
gain has a finite range, namely G(A), and A is finite.

Remark 6. Observe that if Γ is definable then the left hand sides of the optimality
equations are definable functions of the right hand side arguments.

Theorem 7. If (G, B) |= OptAvg(Γ ) then for every state s ∈ S, the average-price
hybrid game Γ from s is determined and we have Val(s) = 3 · G(s). Moreover, for
every ε > 0, positional ε-optimal strategies exist for both players.

The factor of 3 in the statement of Thm 7 is due to the fact that the value of gain
is subtracted in each of the three bias equations. This is necessary because a round
of a hybrid game Γ is encoded by a sequence of three edges in the finite graph ̂Γ
(introduced in Sec. 4). This is a technical detail needed in the proof of Thm 17.

Corollary 8. If there exists (G, B) such that (G, B) |= OptAvg(Γ ) and Γ definable
then positional ε-optimal strategies are definable.

The theorem and corollary follow from the following two lemmas and their proofs,
which imply that for all states s ∈ S, we have that Val∗(s) ≤ 3 · G(s) and Val∗(s) ≥
3 · G(s), respectively.

Lemma 9. Let (G, B) |= OptAvg(Γ ). Then for all ε > 0, there is με ∈ ΠMin, such that
for all χ ∈ ΣMax and for all s ∈ S, we have P∗(Play(s, με, χ)) ≤ 3 · G(s) + ε.

Lemma 10. Let (G, B) |= OptAvg(Γ ). Then for all ε > 0, there is χε ∈ ΠMax, such
that for all μ ∈ ΣMin and for all s ∈ S, we have P∗(Play(s, μ, χε)) ≥ 3 · G(s) − ε.

We prove Lem. 9 by observing that for every ε′ > 0, player Min can choose τ ∈
MMin(s) in such away that: G(s) = G(s, τ) and B(s) � B(s, τ) − ε′, We call this
choice ε′-optimal. To complete the proof, we prove that if με ∈ ΠMin is such that for
every, s ∈ S με(s) is ε-optimal, then με is ε-optimal. The proof of Lem. 10 is similar.

Reachability-price hybrid games. A hybrid reachability-price game with strong resets
(Γ, F) consists of a hybrid game with strong resets Γ and of a (definable) set F ⊆ S of
final states.

For a run ρ = 〈s0, s1, s2, . . .〉 of H, we define Stop(ρ) = infn{sn : sn ∈ F}.
The reachability-price payoff P(ρ) is defined by P(ρ) =

∑Stop(ρ)−1
i=0 π(si, τi+1) if

Stop(ρ) < ∞, and P(ρ) = ∞ otherwise.
As in the case of finite reachability-price games, we prove determinacy and char-

acterize game values using optimality equations (Thm 4). We adapt the optimality
equations in the same way as for average-price hybrid games. We write (P, D) |=
OptReach(Γ, F) to denote a solution of the reachability-price optimality equations.

Theorem 11. If (P, D) |= OptReach(Γ, F) then for every state s ∈ S, the reachability-
price hybrid game (Γ, F) from state s is determined and we have Val(s) = P (s). More-
over, for every ε > 0, positional ε-optimal strategies exist for both players.

Corollary 12. If there exists (P, D) such that (P, D) |= OptReach(Γ, F) and Γ defin-
able then positional ε-optimal strategies are definable.
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4 A Finite Abstraction

We introduce a finitary equivalence relation over the state space of the hybrid game Γ .
It is used to construct a finite priced game graph ̂Γ .

For s ∈ S and (a, t) ∈ MMin(s), we define

AMax(s, (a, t)) = {a′ ∈ A : (a′, t′) ∈ MMax(s, (a, t)) for some t′ ∈ T},

i.e., AMax(s, (a, t)) is the set of actions a′ ∈ A, such that there is a valid response
(a′, t′) ∈ A × T of player Max to the proposal (a, t) of player Min. For s ∈ S and
t ∈ T, let

AMinMax(s, t) =
{(

a, AMax(s, (a, t))
)

: (a, t) ∈ MMin(s)
}

,

i.e., the set AMinMax(s, t) is the set of all pairs (a, A′) ∈ A × 2A, such that player Min
can propose the timed action (a, t) from state s, and the set of actions, appearing in
valid responses of player Max to the proposal (a, t) of player Min, is exactly A′.

Let R = { R1, R2, . . . , Rn } be such that Ri ⊆ S for all i. For s, s′ ∈ S, we define
s ∼R s′ to hold iff the following conditions are satisfied: for all i = 1, 2, . . . , n, we
have that s ∈ Ri iff s′ ∈ Ri; AMinMax(s, T) = AMinMax(s′, T).

We will use R = {R(a)}a∈A for average-price games and R = {F} ∪ {R(a)}a∈A

for reachability-price games. If the set R is understood from the context, or if for the
purpose of our discussion the exact identity of the set R is not important then, we
often write simply ∼ instead of ∼R. Note that the second condition in the definition
of ∼ states that the functions AMinMax(s, ·), AMinMax(s′, ·) : T → A × 2A have the same
ranges. Therefore, if Q ∈ S/∼, then it makes sense to set AMinMax(Q, T) to be the range
of the function AMinMax(s, ·) for any s ∈ Q.

Remark 13. Observe that ∼ is an equivalence relation on the set of states S, and that
there are finitely many equivalence classes of ∼. Moreover, if Γ is definable then every
equivalence class is also definable.

From Γ to the finite game. The main goal of this section is to define a finite game
graph ̂Γ whose plays correspond to sequences of rounds, each of which consists of the
following steps. Let a′′ ∈ A be the current action.

1. Max chooses Q ∈ S/∼ such that Q ⊆ R(a′′).
2. Min chooses a pair (a, A′) ∈ AMinMax(Q, T).
3. Max chooses an action a′ ∈ A′, which becomes the current action.

Note that, unlike in the hybrid game Γ , here in every step players make choices out of
finite sets of options. It is instructive to think of mapping choices made by the players
in steps 3, 1, and 2 of the hybrid game Γ to steps 1, 2, and 3 of the finite game ̂Γ in the
following way.

1. Max’s choice of s ∈ R(a′′) is mapped to his choice of the equivalence class [s]∼.
2. Min’s choice of (a, t) ∈ MMin(s) is mapped to his choice of

(

a, AMax(s, (a, t))
)

.
3. Max’s choice of (a′, t′) ∈ MMax(s, (a, t)) is mapped to his choice of a′.
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The above finitary abstraction of choices made by players in every round of the
hybrid game Γ = (H, MMin, MMax) is formalized by the following finite game graph
̂H = (̂S, ̂E), where:

̂S = A ∪ S/∼ ∪
{

(Q, a, A′) : Q ∈ S/∼ and (a, A′) ∈ AMinMax(Q, T)
}

,

̂E =
{

(a, Q) : Q ⊆ R(a)
}

∪
{(

Q, (Q, a, A′)
)

: (a, A′) ∈ AMinMax(Q, T)
}

∪
{(

(Q, a, A′), a′) : a′ ∈ A′}.

We define the finite game graph ̂Γ = ( ̂H, ̂SMin, ̂SMax, π̂), where (̂SMin, ̂SMax) is a parti-
tion of ̂S and π̂ : ̂E → R is a price function. Let ̂SMin = S/∼ and let ̂SMax = ̂S \ ̂SMin.
The price function π̂ is defined to be 0 for edges of the form (a, Q) or

(

Q, (Q, a, A′)
)

,
and for edges of the form

(

(Q, a, A′), a′) we define

π̂
(

(Q, a, A′), a′) = sup
s∈Q

inf
t∈TMin

s,(a,A′)

sup
t′∈TMax

s,(a,t),a′

π(s, (a′, t′)), where

TMin
s,(a,A′) = {t ∈ T : (a, t) ∈ MMin(s) and A′ = AMax(s, (a, t))},

TMax
s,(a,t),a′ = {t′ ∈ T : (a′, t′) ∈ MMax(s, (a, t))}.

The set TMin
s,(a,A′) is the set of times t, such that if Min proposes the timed action (a, t)

from state s, then A′ is the set of actions which occur in valid responses of Max. Sim-
ilarly, the set TMax

s,(a,t),a′ is the set of times t′ ∈ T, for which the timed action (a′, t′) is
a valid response of Max to the proposal (a, t) of Min.

Note that the value of π̂ always exists. This follows from the assumption that hybrid
automata with strong resets under consideration are price-bounded.

Theorem 14. If Γ is definable then the finite priced game graph ̂Γ is also definable.

Discussion. In the hybrid game Γ , each step of a round has a hybrid nature, i.e., consists
of both a discrete and a continuous component. In the first two steps, players Min and
Max make a discrete choice of an action followed by a continuous choice of time. In
the last step, player Max makes a discrete choice of an equivalence class (recall the ∼
equivalence), followed by a continuous choice of a state in that class.

The construction of ̂Γ is built upon an idea to separate the discrete and continuous
choices of both players. This separation is achieved by reconstructing the round of
a game in such a way that first players make their discrete choices (in three steps)
and then they make their continuous choices, which must be sound with respect to the
discrete choices made earlier.

In ̂Γ , the discrete steps of the reconstructed round are encoded in the choices of
edges. The continuous choices are not present, however. Instead, we set the prices of
edges as if, after making the discrete choices, the players were making optimal contin-
uous choices (with respect to the discrete ones). This reduces the problem of solving
a hybrid game Γ to a finite problem. The correctness of this approach will follow from
Thms 17 and 20, which can be found in Sec. 5.
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Example 15. To make the construction of ̂Γ clearer, we provide a simple example. Let
V1 = {(x, y) : x + y � 10}, V2 = R

2 \ V1, V3 = {(x, y) : y + x2 � 0}, I1 = (1, 2),
I2 = (3, 4) and I3 = (5, 6). We define the hybrid automaton H = 〈L, A, G, R, π〉 as
follows: L = {
}, A = {a, b}, S = L × R

2, G = {a}× (S × I3) ∪ {b}× (L × V3) × I2,
R = A × (L × V1), and the price function is given by π(x, y, A, t) = −(t + x2 + y2).
Fig 1(a-c) provides more insight into the definition of H.

Recall that M(s) = {(c, t) : (s, t) ∈ G(c)}. We define Γ by setting MMin(s) =
M(s) ∩ {a} × T and if t ∈ I1 then MMax(s, a, t) = {(a, t)} otherwise, if t ∈ I3 then
MMax(s, a, t) = {(a, t)} ∪ {b} × I2.

Now we can construct the equivalence ∼R, where R = {R(a), R(b)}. All elements
of L×V1 are contained in both R(a) and R(b). If we look at the set AMinMax(s, T) then it
is easy to see that for all s ∈ L× (V1 \V3) it is equal to {(a, {a})}, and for all elements
s ∈ L × V3, to {(a, {a}), (a, {a, b})}. On the other hand, elements s ∈ L × V2 are not
contained in any set in R, and the set AMinMax(s, T) is alway equal to {(a, {a})}. This
gives us three equivalence classes of ∼R, namely Q1 = L×V3, Q2 = L×(V1 \V3) and
Q3 = L × V2. The finite priced game graph ̂Γ obtained from Γ using ∼R is depicted
on Fig 1(d).

a) b)
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a b

�

y = −x2
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Fig. 1. a) Graph structure underlying H. b) State space of H. c) Guard function of H. d) The
priced game graph ̂Γ obtained from Γ through finite abstraction. A1 stands for {(a, {a})} and A2

for {(a, {a}), (a, {a, b})}. Edge price is omitted when it is equal to zero.

5 Solving Average-Price and Reachability-Price Games

The key result of this section is that solutions of optimality equations for the average-
price game ̂Γ and for the reachability-price game ( ̂Γ , ̂F) on the finite priced game
graph ̂Γ coincide with the solutions of the optimality equations for the hybrid average-
price game Γ and of the hybrid reachability-price game (Γ, F) respectively (Thms 17
and 20). In addition (by Thms 7 and 11) it follows that average-price and reachability-
price hybrid games are positionally determined and decidable (Cor. 19 and 21).

Average-price games. The following are the optimality equations for the average-price
game on the finite priced game graph ̂Γ . For Q ∈ S/∼ = ̂SMin, we have:

̂G(Q) = min
(Q,(Q,a,A′))∈̂E

{ ̂G(Q, a, A′)},
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̂B(Q) = min
(Q,(Q,a,A′))∈̂E

{− ̂G(Q) + ̂B(Q, a, A′) : ̂G(Q) = ̂G(Q, a, A′)};

for (Q, a, A′) ∈ (S/∼ × A × 2A) ⊆ ̂SMax, we have:

̂G(Q, a, A′) = max
((Q,a,A′),a′)∈̂E

{ ̂G(Q, a, A′)},

̂B(Q, a, A′) = max
((Q,a,A′),a′)∈̂E

{

π̂((Q, a, A′), a′) − ̂G(Q, a, A′) + ̂B(a′) :

̂G(Q, a, A′) = ̂G(a′)
}

;

and for a ∈ A ⊆ ̂SMax, we have:

̂G(a) = max
(a,Q)∈̂E

{ ̂G(Q)}, ̂B(a) = max
(a,Q)∈̂E

{− ̂G(a) + ̂B(Q) : ̂G(a) = ̂G(Q)}.

Our goal is to show that a solution ( ̂G, ̂B) of OptAvg( ̂Γ ) can be used to obtain a solu-
tion (G, B) of OptAvg(Γ ). Recall that a solution of optimality equations OptAvg(Γ ) for
a hybrid average-price game is a pair (G, B) of functions G, B : S ∪

(

S × (A × T)
)

∪
A → R.

Proposition 16. If Γ is a hybrid average-price game, then for all states s ∈ S and for
all τ ∈ MMin(s), the values G(s), B(s), G(s, τ), and B(s, τ) satisfying equations (1–
4), respectively, are uniquely determined and first-order definable (provided that Γ is
definable) from the (finitely many) values {G(a), B(a) : a ∈ A}.

Theorem 17. Let Γ be a hybrid average-price game and let ( ̂G, ̂B) |= OptAvg( ̂Γ ). If
G, B : S ∪

(

S× (A×T)
)

∪ A → R satisfy equations (1–4), and for all a ∈ A, it holds

that G(a) = ̂G(a) and B(a) = ̂B(a), then (G, B) |= OptAvg(Γ ).

Example 18. Recall the game graph ̂Γ from Ex. 15. Fig 2 depicts the optimal choices
of both players in the average-price game and the solution to the optimality equations
for finite average-price games. The value of the game from every state is −2/3, because
( ̂G, ̂B) |= OptAvg( ̂Γ ).

We use the solutions to OptAvg( ̂Γ ) to obtain solutions to OptAvg(Γ ). We set G ≡
− 2

3 , B(a) = ̂B(a) = 0 and B(b) = ̂B(b) = 0. The remaining values are uniquely
determined by these. One can see that the value of the average-price game on Γ is −2
and that the players have ε-optimal strategies as follows: from every state in Q1 player
Min should play (a, 6−ε), and from every state in Q2 ∪Q3, Min should play (a, 2−ε).
Player Max on the other hand has always to play Min’s choice unless he is in the state
(s, a, t) and t > 5, when he should make the move (b, 3 + ε). From every state in A,
Max should choose choose to play (0, 0) ∈ Q2.

Corollary 19. Definable average-price hybrid games with strong resets are decidable.
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Fig. 2. Solid arrows denote the optimal strategies of both players. Above each vertex one can find
its gain and bias.

Reachability-price games. As in the case of average-price hybrid games the solutions
to the optimality equations for the finite game ( ̂Γ , ̂F) coincide with the solutions to the
optimality equations for the hybrid game (Γ, F). The main results are as follows, and is
proved in a similar fashion as Thm 17.

Theorem 20. Let ( ̂P , ̂D) |= OptReach( ̂Γ , ̂F ), where (Γ, F ) is a hybrid reachability-
price game. If for all a ∈ A, we set P (a) = ̂P (a) and D(a) = ̂D(a), then there are
unique extensions of P, D : A → R to P, D : S ∪

(

S × (A × T)
)

∪ A → R such that
(P, D) |= OptReach(Γ, F ).

Corollary 21. Definable reachability-price hybrid games with strong resets are
decidable.

Computability of ε-optimal strategies. Definable average-price and reachability-price
admit ε-optimal strategies. We present the following computability result.

Theorem 22. If Γ is a definable hybrid game with strong resets then, if in the average-
price (reachability-price) game a player can always make a rational ε-optimal move,
then ε-optimal strategies are computable.
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