Strategy Synthesis for Multi-dimensional Quantitative Objectives

Krishnendu Chatterjee¹ Mickael Randour² Jean-Francois Raskin³

¹ IST Austria

² UMONS

³ ULB

18.04.2012

Aim of this work

EGs & MPGs

Controller synthesis

- > quantitative requirements

Aim of this work

EGs & MPGs

Controller synthesis

- quantitative requirements

Implementable controllers \leadsto restriction to finite-memory strategies.

Aim of this work

- Study games with
 - multi-dimensional quantitative objectives (energy and mean-payoff)
 - > and a parity objective.
 - → First study of such a conjunction.
- Address questions that revolve around strategies:
 - bounds on memory,
 - synthesis algorithm,
 - \triangleright randomness $\stackrel{?}{\sim}$ memory.

Results Overview

EGs & MPGs

Memory bounds

optimal	finite-memory optimal	optimal
exp.	exp.	infinite [CDHR10]

Strategy synthesis (finite memory)

MEPGs	MMPPGs	
EXPTIME	EXPTIME	

Randomness as a substitute for finite memory

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		$\sqrt{}$
two-player	×	×	×	√

- 1 Classical energy and mean-payoff games
- 2 Extensions to multi-dimensions and parity
- 3 Memory bounds

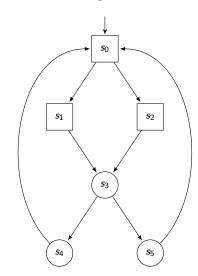
- 4 Strategy synthesis
- 5 Randomization as a substitute to finite-memory
- 6 Conclusion and ongoing work

- 1 Classical energy and mean-payoff games

•000

Turn-based games

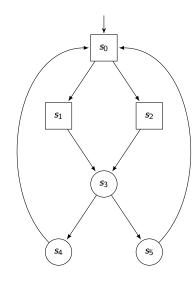
EGs & MPGs



- $G = (S_1, S_2, s_{init}, E)$ $S = S_1 \cup S_2, S_1 \cap S_2 = \emptyset, E \subseteq S \times S$
- \mathbf{P}_1 states $=\bigcirc$
- \mathbb{P}_2 states = \square

Turn-based games

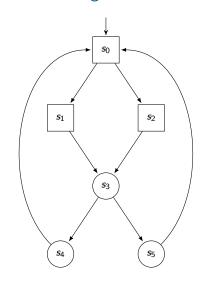
EGs & MPGs



- $G = (S_1, S_2, s_{init}, E)$ $S = S_1 \cup S_2, S_1 \cap S_2 = \emptyset, E \subseteq S \times S$
- \mathcal{P}_1 states $=\bigcirc$
- \mathbb{P}_2 states $= \square$
- Play $\pi = s^0 s^1 s^2 \dots s^n \dots s.t.$ $s^0 = s_{init}$
- Prefix $\rho = \pi(n) = s^0 s^1 s^2 \dots s^n$

Pure strategies

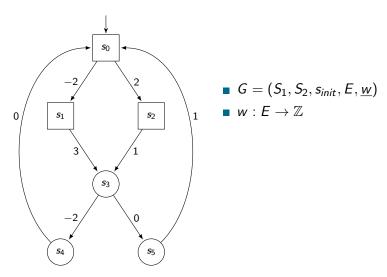
EGs & MPGs



- Pure strategy for \mathcal{P}_i $\lambda_i \in \Lambda_i : \mathsf{Prefs}_i(G) \to S \text{ s.t. for all }$ $\rho \in \mathsf{Prefs}_i(G), (\mathsf{Last}(\rho), \lambda_i(\rho)) \in E$
- Memoryless strategy $\lambda_i^{pm} \in \Lambda_i^{PM} : S_i \to S$
- Finite-memory strategy $\lambda_i^{fm} \in \Lambda_i^{FM}$: Prefs_i(G) \rightarrow S, and can be encoded as a deterministic Moore machine

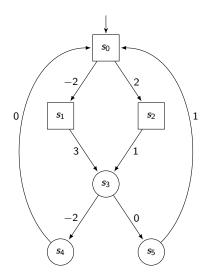
Integer payoff function

EGs & MPGs



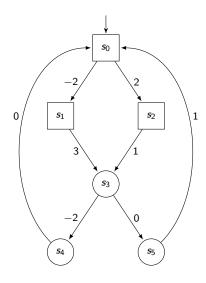
Integer payoff function

EGs & MPGs



- $G = (S_1, S_2, s_{init}, E, w)$
- $\mathbf{w}: E \to \mathbb{Z}$
- Energy level $\mathsf{EL}(\rho) = \sum_{i=0}^{i=n-1} w(s_i, s_{i+1})$
- Mean-payoff $\mathsf{MP}(\pi) = \liminf_{n \to \infty} \frac{1}{n} \mathsf{EL}(\pi(n))$

Energy and mean-payoff objectives



■ Energy objective

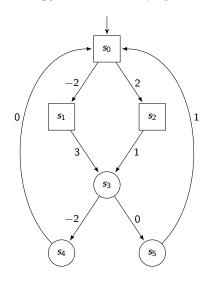
Given initial credit $v_0 \in \mathbb{N}$. $PosEnergy_G(v_0) = \{\pi \in Plays(G) \mid$ $\forall n \geq 0 : v_0 + \mathsf{EL}(\pi(n)) \in \mathbb{N}$

Mean-payoff objective

Given threshold $v \in \mathbb{O}$. $MeanPayoff_G(v) =$ $\{\pi \in \mathsf{Plays}(G) \mid \mathsf{MP}(\pi) \geq v\}$

EGs & MPGs

Energy and mean-payoff objectives



$$\lambda_1(s_3) = s_4$$

- λ_1 wins for MeanPayoff_G $(\frac{-1}{4})$
- $\triangleright \lambda_1$ loses for PosEnergy_G(v_0), for any arbitrary high initial credit

$$\lambda_1(s_3) = s_5$$

- $\triangleright \lambda_1$ wins for MeanPayoff_G $(\frac{1}{2})$
- λ_1 wins for PosEnergy_G(v_0), with $v_0 = 2$

EGs & MPGs

Decision problems

EGs & MPGs

0000

- Unknown initial credit problem:
 - $\exists ? v_0 \in \mathbb{N}, \lambda_1 \in \Lambda_1 \text{ s.t. } \lambda_1 \text{ wins for PosEnergy}_G(v_0)$
- Mean-payoff threshold problem:

Given $v \in \mathbb{Q}$, $\exists ? \lambda_1 \in \Lambda_1$ s.t. λ_1 wins for MeanPayoff_G(v)

MPG threshold v problem equivalent to EG-v unknown initial credit problem [BFL⁺08].

Complexity of EGs and MPGs

EGs & MPGs

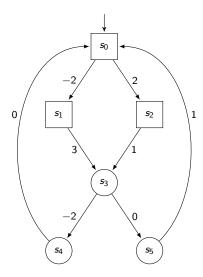
	EGs	MPGs
Memory to win	memoryless	memoryless
	[CdAHS03, BFL ⁺ 08]	[EM79, LL69]
Decision problem	$NP \cap coNP$	$NP \cap coNP$

- 2 Extensions to multi-dimensions and parity

Randomization

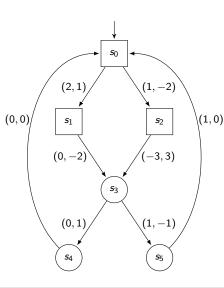
000000

Multi-dim. & parity



- $G = (S_1, S_2, s_{init}, E, w)$
- $\mathbf{w}: E \to \mathbb{Z}$

Multi-dimensional weights

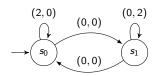


- $G = (S_1, S_2, s_{init}, E, \underline{k}, w)$
- $\mathbf{w}: E \to \mathbb{Z}^k$
- multiple quantitative aspects
- natural extensions of energy and mean-payoff objectives and associated decision problems

EGs & MPGs

■ Finite memory suffice for MEGs [CDHR10].

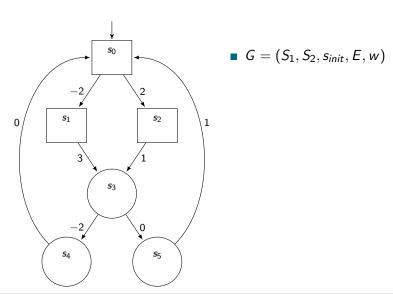
- Finite memory suffice for MEGs [CDHR10].
- However, infinite memory is needed for MMPGs, even with only one player! [CDHR10]

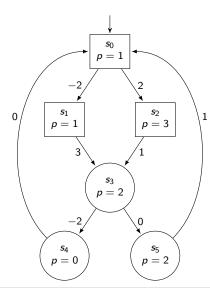


- ▷ To obtain $MP(\pi) = (1,1)$, \mathcal{P}_1 has to visit s_0 and s_1 for longer and longer intervals before jumping from one to the other.
- Any finite-memory strategy induces an ultimately periodic play s.t. $MP(\pi) = (x, y), x + y < 2$.
- \triangleright With lim sup as MP the gap is huge : (2,2).

- If players are restricted to finite memory [CDHR10],
 - → MEGs and MMPGs are still determined and they are log-space equivalent,
 - b the unknown initial credit and the mean-payoff threshold problems are coNP-complete,
 - \triangleright no clue on memory bounds for \mathcal{P}_1 (for \mathcal{P}_2 , we know it is memoryless).

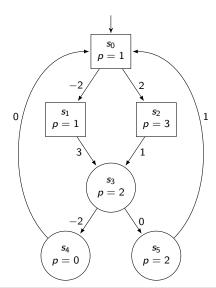
- If players are restricted to finite memory [CDHR10],
 - → MEGs and MMPGs are still determined and they are log-space equivalent,
 - b the unknown initial credit and the mean-payoff threshold problems are coNP-complete,
 - \triangleright no clue on memory bounds for \mathcal{P}_1 (for \mathcal{P}_2 , we know it is memoryless).
- Other interesting results on decision problems on MEGs are proved in [FJLS11]. Surprisingly, given a fixed initial vector, the problem becomes EXPSPACE-hard.





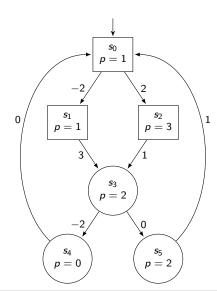
- $G_p = (S_1, S_2, s_{init}, E, w, p)$
- $p:S\to\mathbb{N}$

- ightharpoonup canonical way to express ω -regular objectives
- □ achieve the energy or mean-payoff objective while satisfying the parity condition



- To win the energy parity objective, \mathcal{P}_1 must
 - visit s₄ infinitely often,
 - \triangleright alternate with visits of s_5 to fund future visits of s_4 .

EGs & MPGs



- To win the energy parity objective, \mathcal{P}_1 must
 - \triangleright visit s_4 infinitely often,

Synthesis

- alternate with visits of s_5 to fund future visits of s_4 .
- To achieve optimality for the mean-payoff parity objective, \mathcal{P}_1 should wait longer and longer between visits of s_4 .

EPGs & MPPGs

EGs & MPGs

■ Exponential memory suffice for EPGs and deciding the winner is in NP \cap coNP [CD10].

EPGs & MPPGs

- Exponential memory suffice for EPGs and deciding the winner is in NP ∩ coNP [CD10].
- Infinite memory is needed for MPPGs and deciding the winner is in NP ∩ coNP [CHJ05, BMOU11].

FPGs & MPPGs

- Exponential memory suffice for EPGs and deciding the winner is in NP \cap coNP [CD10].
- Infinite memory is needed for MPPGs and deciding the winner is in NP \cap coNP [CHJ05, BMOU11].
- Finite-memory ε -optimal strategies for MPPGs always exist [BCHJ09].
- $lackbox{}{\mathcal{P}}_1$ has a winning strategy for the MPPG $\langle G, p, w \rangle$ iff \mathcal{P}_1 has a winning strategy for the EPG $\langle G, p, w + \varepsilon \rangle$, with $\varepsilon = \frac{1}{|S|+1}$ CD10.

Restriction to finite memory

- Infinite memory:
 - □ needed for MMPGs & MPPGs.
 - practical implementation is unrealistic.

Restriction to finite memory

■ Infinite memory:

- □ needed for MMPGs & MPPGs.
- > practical implementation is unrealistic.
- Finite memory:
 - preserves game determinacy,
 - > provides equivalence between energy and mean-payoff settings,
 - b the way to go for strategy synthesis.

Restriction to finite memory

■ Infinite memory:

EGs & MPGs

- > needed for MMPGs & MPPGs.
- practical implementation is unrealistic.

■ Finite memory:

- > preserves game determinacy,
- □ provides equivalence between energy and mean-payoff settings,
- > the way to go for strategy synthesis.

Our goals:

- bounds on memory,
- > strategy synthesis algorithm,
- > encoding of memory as randomness.

- Memory bounds

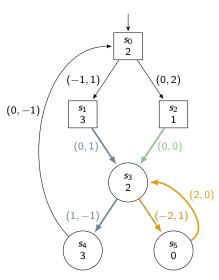
Obtained results

EGs & MPGs

MEPGs	MMPPGs		
optimal	finite-memory optimal	optimal	
exp.	exp.	infinite [CDHR10]	

By [CDHR10], we only have to consider MEPGs. Recall that the unknown initial credit decision problem for MEGs (without parity) is coNP-complete.

Upper memory bound: even-parity SCTs



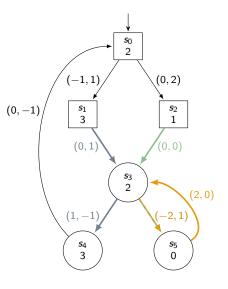
A winning strategy λ_1 for initial credit $v_0 = (2,0)$ is

$$\triangleright \lambda_1(*s_1s_3) = s_4$$

$$\triangleright \lambda_1(*s_2s_3) = s_5$$
,

$$> \lambda_1(*s_5s_3) = s_5.$$

Upper memory bound: even-parity SCTs



A winning strategy λ_1 for initial credit $v_0 = (2,0)$ is

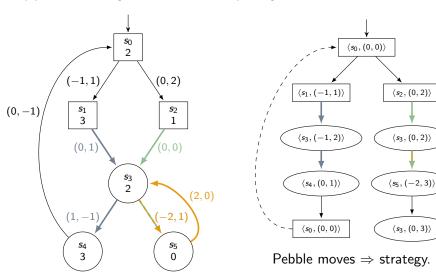
$$\triangleright \lambda_1(*s_1s_3) = s_4$$
,

$$\triangleright \ \lambda_1(*s_2s_3)=s_5,$$

$$> \lambda_1(*s_5s_3) = s_5.$$

- Lemma: To win, \mathcal{P}_1 must be able to enforce positive cycles of even parity.
 - Self-covering paths on VASS Rac78, RY86].
 - Self-covering trees (SCTs) on reachability games over VASS [BJK10].

Upper memory bound: even-parity SCTs

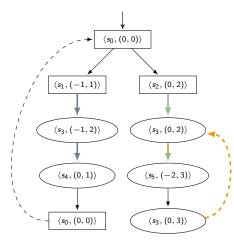


Upper memory bound: even-parity SCTs

T = (Q, R) is an epSCT for s_0 , $\Theta : Q \mapsto S \times \mathbb{Z}^k$ is a labeling function.

- Root labeled $\langle s_0, (0, \dots, 0) \rangle$.
- Non-leaf nodes have

- \triangleright unique child if \mathcal{P}_1 ,
- ightharpoonup all possible children if \mathcal{P}_2 .
- Leafs have even-descendance energy ancestors: ancestors with lower label and minimal priority even on the downward path.



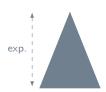
Pebble moves \Rightarrow strategy.

Upper memory bound: SCTs for VASS games

Theorem (application of [BJK10]): On a VASS game with weights in $\{-1,0,1\}^k$, if state s is winning for \mathcal{P}_1 , there is a SCT for s of depth at most $I = 2^{(d-1)\cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$, with c a constant independent of the considered VASS game and d its branching degree.

- → If there exists a winning strategy, there exists a "compact" one.
- → Idea is to eliminate unnecessary cycles.

Upper memory bound: SCTs for MEGs (no parity)

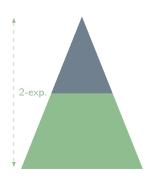


EGs & MPGs

$$\begin{aligned} w : E &\to \{-1, 0, 1\}^k \\ I &= 2^{(d-1) \cdot |S|} \cdot (|S| + 1)^{c \cdot k^2} \end{aligned}$$

Depth bound from [BJK10].

Upper memory bound: SCTs for MEGs (no parity)



$$w: E \to \{-1, 0, 1\}^k$$

$$I = 2^{(d-1)\cdot|S|} \cdot (|S|+1)^{c\cdot k^2}$$

$$\Downarrow$$

$$w: E \to \mathbb{Z}^k, \ W \text{ max absolute weight,}$$

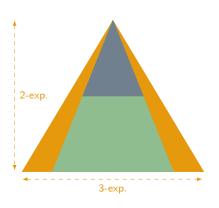
$$V \text{ bits to encode } W$$

$$I = 2^{(d-1)\cdot W\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$$

 $=2^{(d-1)\cdot 2^{V}\cdot |S|}\cdot (W\cdot |S|+1)^{c\cdot k^2}$

Naive approach: blow-up by W in the size of the state space.

Upper memory bound: SCTs for MEGs (no parity)



$$W: E \to \{-1, 0, 1\}^{k}$$

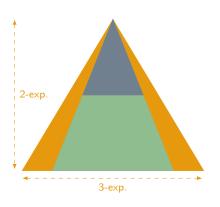
$$I = 2^{(d-1)\cdot |S|} \cdot (|S| + 1)^{c \cdot k^{2}}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, V bits to encode W $I = 2^{(d-1)\cdot W\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2} = 2^{(d-1)\cdot 2^V\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$

Width bounded by $L = d^{I}$

Naive approach: width increases exponentially with depth.

Upper memory bound: SCTs for MEGs (no parity)



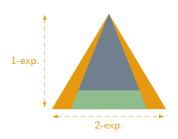
$$I = 2^{(d-1)\cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, V bits to encode W $I = 2^{(d-1)\cdot W\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$ $=2^{(d-1)\cdot 2^{V}\cdot |S|}\cdot (W\cdot |S|+1)^{c\cdot k^2}$

Width bounded by $L = d^{I}$

Naive approach: overall, 3-exp. memory $< L \cdot I$, without parity.

Upper memory bound: epSCTs for MEPGs



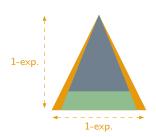
EGs & MPGs

$$\begin{aligned}
 w : E &\to \{-1, 0, 1\}^k \\
 I &= 2^{(d-1)\cdot |S|} \cdot (|S| + 1)^{c \cdot k^2} \\
 &\downarrow \downarrow
 \end{aligned}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, $I = 2^{(d-1)\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$

Refined approach: no blow-up in exponent as branching is preserved, extension to parity.

Upper memory bound: epSCTs for MEPGs



EGs & MPGs

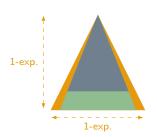
$$I = 2^{(d-1)\cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, $I = 2^{(d-1)\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$

Width bounded by
$$L = |S| \cdot (2 \cdot I \cdot W + 1)^k$$

Refined approach: merge equivalent nodes, width is bounded by number of incomparable labels (see next slide).

Upper memory bound: epSCTs for MEPGs



EGs & MPGs

$$I = 2^{(d-1)\cdot |S|} \cdot (|S|+1)^{c \cdot k^2}$$

 $w: E \to \mathbb{Z}^k$, W max absolute weight, $I = 2^{(d-1)\cdot |S|} \cdot (W\cdot |S|+1)^{c\cdot k^2}$

Width bounded by
$$L = |S| \cdot (2 \cdot I \cdot W + 1)^k$$

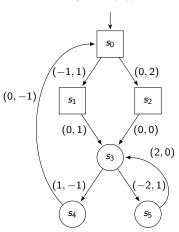
Refined approach: overall, **single exp. memory** $\leq L \cdot I$, for multi energy *along with* parity. Initial credit bounded by $I \cdot W$.

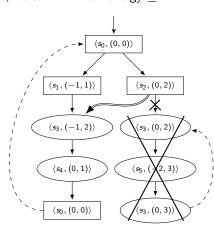
Upper memory bound: from MEPGs to MEGs

- Thanks to the bound on depth for MEPGs, encode parity $(2 \cdot m \text{ priorities})$ as m additional energy dimensions.
 - > For each odd priority, add one dimension.
 - Decrease by 1 when this odd priority is visited.
 - Increase by I each time a smaller even priority is visited.
- \mathbf{P}_1 maintains the energy positive on all additional dimensions iff he wins the original parity objective.

Upper memory bound: merging nodes in SCTs

- Key idea to reduce width to single exp.
 - \mathcal{P}_1 only cares about the energy level.
 - If he can win with energy v, he can win with energy $\geq v$.





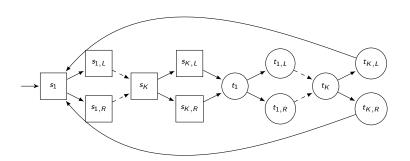
Synthesis

Lower memory bound

EGs & MPGs

Lemma: There exists a family of multi energy games $(G(K))_{K>1} = (S_1, S_2, s_{init}, E, k = 2 \cdot K, w : E \rightarrow \{-1, 0, 1\}) \text{ s.t.}$ for any initial credit, \mathcal{P}_1 needs exponential memory to win.

Lower memory bound



$$\forall 1 \leq i \leq K, w((\circ, s_i)) = w((\circ, t_i)) = (0, \dots, 0),$$

$$w((s_i, s_{i,L})) = -w((s_i, s_{i,R})) = w((t_i, t_{i,L})) = -w((t_i, t_{i,R})),$$

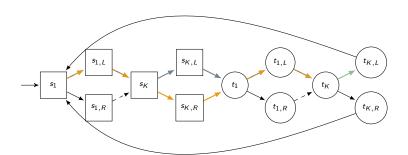
$$\forall 1 \leq j \leq k, \ w((s_i, s_{i,L}))(j) = \begin{cases} = 1 \text{ if } j = 2 \cdot i - 1 \\ = -1 \text{ if } j = 2 \cdot i \end{cases}.$$

$$= 0 \text{ otherwise}$$

Synthesis

Lower memory bound

EGs & MPGs



If \mathcal{P}_1 plays according to a Moore machine with less than 2^K states, he takes the same decision in some state t_x for the two highlighted prefixes (let x = K w.l.o.g.).

- $\Rightarrow \mathcal{P}_2$ can alternate and enforce decrease by 1 every two visits.
- $\Rightarrow \mathcal{P}_1$ loses for any $v_0 \in \mathbb{N}^k$.

Conclusion

- 4 Strategy synthesis

EGs & MPGs

Algorithm CpreFP for MEPGs and MMPPGs:

- > symbolic and incremental,
- winning strategy of at most exponential size,
- worst-case exponential time.

EGs & MPGs

Algorithm CpreFP for MEPGs and MMPPGs:

- > symbolic and incremental,
- winning strategy of at most exponential size,
- worst-case exponential time.

Idea: greatest fixed point of a Cpre_C operator.

- \triangleright Exponential bound on the size of manipulated sets (\sim width).
- Exponential bound on the number of iterations if a winning strategy exists (\sim depth).

Symbolic synthesis algorithm: Cpre

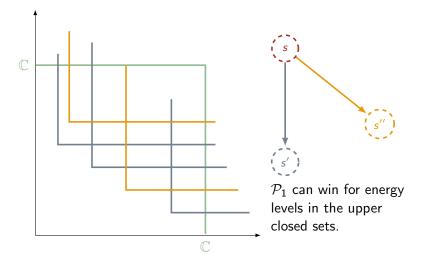
- $\mathcal{U}(\mathbb{C}) = 2^{U(\mathbb{C})}$, the powerset of $U(\mathbb{C})$,
- lacksquare Cpre $_{\mathbb C}:\mathcal U(\mathbb C) o\mathcal U(\mathbb C)$, Cpre $_{\mathbb C}(V)=$

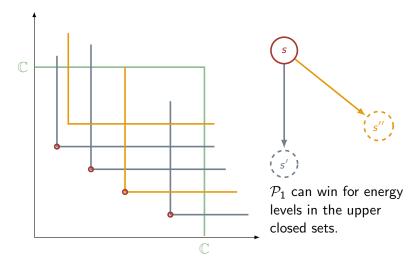
$$\{(s_1, e_1) \in U(\mathbb{C}) \mid s_1 \in S_1 \land \exists (s_1, s) \in E, \exists (s, e_2) \in V : e_2 \leq e_1 + w(s_1, s)\}$$

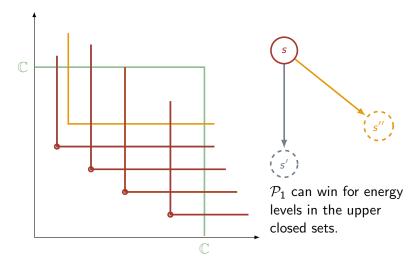
$$\cup$$

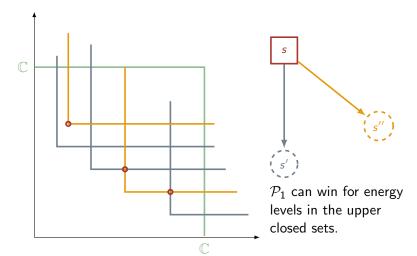
$$\{(s_2, e_2) \in U(\mathbb{C}) \mid s_2 \in S_2 \land \forall (s_2, s) \in E, \exists (s, e_1) \in V : e_1 \leq e_2 + w(s_2, s)\}$$

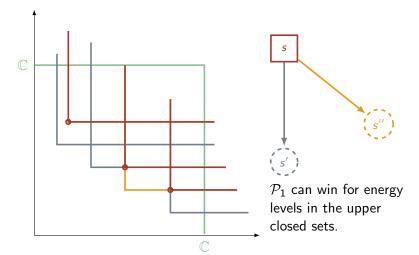
▷ Intuitively, compute for each state the set of winning initial credits, represented by the minimal elements of these upper closed sets.











Correctness

EGs & MPGs

 $(s_{init}, (c, ..., c)) \in \mathsf{Cpre}^*_{\mathbb{C}} \leadsto \mathsf{winning} \mathsf{strategy} \mathsf{for} \mathsf{initial} \mathsf{credit} (c, ..., c).$

Completeness

ightharpoonup Winning strategy and SCT of depth $I \rightsquigarrow (s_{init}, (\mathbb{C}, \dots, \mathbb{C})) \in \mathsf{Cpre}_{\mathbb{C}}^*$ for $\mathbb{C} = 2 \cdot I \cdot W$.

Correctness

EGs & MPGs

 $(s_{init},(c,\ldots,c)) \in \mathsf{Cpre}^*_{\mathbb{C}} \leadsto \mathsf{winning} \mathsf{strategy} \mathsf{for} \mathsf{initial} \mathsf{credit} (c,\ldots,c).$

Completeness

ightharpoonup Winning strategy and SCT of depth $I \leadsto (s_{init}, (\mathbb{C}, \dots, \mathbb{C})) \in \mathsf{Cpre}_{\mathbb{C}}^*$ for $\mathbb{C} = 2 \cdot I \cdot W$.

- Incremental approach over \mathbb{C} can be used.
- Efficient implementation using antichains.

Conclusion

- Randomization as a substitute to finite-memory

EGs & MPGs

Question: when and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one?

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		
two-player	×	×	×	

Sure semantics → almost-sure semantics (i.e., probability) one).

EGs & MPGs

Question: when and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one ?

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×	√	√
two-player	×	×	×	

- ightharpoonup Energy \sim safety.
- Losing path → finite prefix witness → positive probability.

EGs & MPGs

Question: when and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one ?

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×	√	√
two-player	×	×	×	

- One-player → obtain the same edges frequencies through a probability distribution.
- \triangleright Two-player \rightsquigarrow no way to ensure balance against any strategy of \mathcal{P}_2 with an *a priori* fixed distribution.

EGs & MPGs

Question: when and how can \mathcal{P}_1 trade his pure finite-memory strategy for an equally powerful randomized memoryless one?

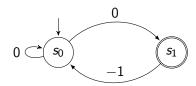
	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		√
two-player	×	×	×	\checkmark

- Then, induction on the number of priorities and the size of games, with subgames that reduce to the MP Büchi and MP coBüchi cases.

Mean-payoff Büchi games

EGs & MPGs

Remark. MPBGs require infinite memory for optimality.

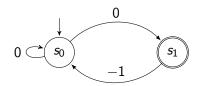


 $\triangleright \mathcal{P}_1$ has to delay his visits of s_1 for longer and longer intervals.

Mean-payoff Büchi games

EGs & MPGs

Remark. MPBGs require infinite memory for optimality.

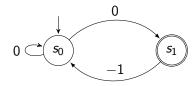


 $\triangleright \mathcal{P}_1$ has to delay his visits of s_1 for longer and longer intervals.

Lemma: In MPBGs, ε -optimality can be achieved surely by pure finite-memory strategies and almost-surely by randomized memoryless strategies.

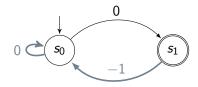
MPBGs: sketch of proof

EGs & MPGs

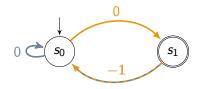


1 Let $G=(S_1,S_2,s_{init},E,w,F)$, with F the set of Büchi states. Let n=|S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s\in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\lozenge F}$ s.t.

MPBGs: sketch of proof



- 1 Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s \in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$ s.t.
 - λ_1^{gfe} ensures that any cycle c of its outcome have $EL(c) \geq 0$ [CD10].



- 1 Let $G = (S_1, S_2, s_{init}, E, w, F)$, with F the set of Büchi states. Let n = |S|. Let Win be the set of winning states for the MPB objective with threshold 0 (w.l.o.g.). For all $s \in Win$, \mathcal{P}_1 has two uniform memoryless strategies λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$ s.t.
 - λ_1^{gfe} ensures that any cycle c of its outcome have $EL(c) \geq 0$ [CD10],
 - Win.

- **2** For $\varepsilon > 0$, we build a pure finite-memory λ_1^{pt} s.t.
 - (a) it plays $\lambda_1^{\it gfe}$ for $\frac{2 \cdot W \cdot n}{\varepsilon} n$ steps, then
 - (b) it plays $\lambda_1^{\diamondsuit F}$ for *n* steps, then again (a).

EGs & MPGs

- **2** For $\varepsilon > 0$, we build a pure finite-memory λ_1^{pt} s.t.
 - (a) it plays λ_1^{gfe} for $\frac{2 \cdot W \cdot n}{2} n$ steps, then
 - (b) it plays $\lambda_1^{\diamondsuit F}$ for *n* steps, then again (a).

This ensures that

- \triangleright F is visited infinitely often,
- \triangleright the total cost of phases (a) + (b) is bounded by $-2 \cdot W \cdot n$, and thus the mean-payoff is at least $-\varepsilon$.

EGs & MPGs

Based on λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$, we obtain almost-surely ε -optimal randomized memoryless strategies, i.e.,

$$\begin{split} \forall \, \varepsilon > 0, \, \, \exists \, \lambda_1^{\textit{rm}} \in \Lambda_1^{\textit{RM}}, \, \, \forall \, \lambda_2 \in \Lambda_2, \\ \mathbb{P}_{s_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2} \left(\mathsf{Par}(\pi) \, \, \mathsf{mod} \, \, 2 = 0 \right) = 1 \, \, \wedge \, \, \mathbb{P}_{s_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2} \left(\mathsf{MP}(\pi) \geq -\varepsilon \right) = 1. \end{split}$$

EGs & MPGs

Based on λ_1^{gfe} and $\lambda_1^{\diamondsuit F}$, we obtain almost-surely ε -optimal randomized memoryless strategies, i.e.,

$$\begin{split} \forall \, \varepsilon > 0, \, \, \exists \, \lambda_1^{\textit{rm}} \in \Lambda_1^{\textit{RM}}, \, \, \forall \, \lambda_2^{\textit{pm}} \in \Lambda_2^{\textit{PM}}, \\ \mathbb{P}_{s_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2^{\textit{pm}}} \left(\mathsf{Par}(\pi) \, \, \mathsf{mod} \, \, 2 = 0 \right) = 1 \, \, \wedge \, \, \mathbb{P}_{s_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2^{\textit{pm}}} \left(\mathsf{MP}(\pi) \geq -\varepsilon \right) = 1. \end{split}$$

EGs & MPGs

Based on λ_1^{gfe} and $\lambda_1^{\Diamond F}$, we obtain almost-surely ε -optimal randomized memoryless strategies, i.e.,

$$\begin{split} \forall \, \varepsilon > 0, \, \, \exists \, \lambda_1^{\textit{rm}} \in \Lambda_1^{\textit{RM}}, \, \, \forall \, \lambda_2^{\textit{pm}} \in \Lambda_2^{\textit{PM}}, \\ \mathbb{P}_{\textit{s}_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2^{\textit{pm}}} \left(\mathsf{Par}(\pi) \, \, \mathsf{mod} \, \, 2 = 0 \right) = 1 \, \, \wedge \, \, \mathbb{P}_{\textit{s}_{\textit{init}}}^{\lambda_1^{\textit{rm}}, \lambda_2^{\textit{pm}}} \left(\mathsf{MP}(\pi) \geq -\varepsilon \right) = 1. \end{split}$$

Strategy:

$$\forall s \in S, \ \lambda_1^{rm}(s) = egin{cases} \lambda_1^{gfe}(s) \ \text{with probability } 1 - \gamma, \\ \lambda_1^{\diamondsuit F}(s) \ \text{with probability } \gamma, \end{cases}$$

for some *well-chosen* $\gamma \in]0,1[$.

Büchi

- \triangleright Probability of playing as $\lambda_1^{\diamondsuit F}$ for n steps in a row and ensuring visit of F strictly positive at all times.
- ightharpoonup Thus λ_1^{rm} almost-sure winning for the Büchi objective.

Mean-payoff

- - all end components
 - in all MCs induced by pure memoryless strategies of \mathcal{P}_2 .
- \triangleright Choose γ so that all ECs have expectation $> -\varepsilon$.
- ▷ Put more probability on lengthy sequences of gfe edges.

- 1 Classical energy and mean-payoff games
- 2 Extensions to multi-dimensions and parity
- 3 Memory bounds
- 4 Strategy synthesis
- 5 Randomization as a substitute to finite-memory
- 6 Conclusion and ongoing work

Conclusion

- Quantitative objectives
- Parity
- Restriction to finite memory (practical interest)
- Exponential memory bounds
- EXPTIME symbolic and incremental synthesis
- Randomness instead of memory

Results Overview

EGs & MPGs

■ Memory bounds

MEPGs	MMPPGs			
optimal	finite-memory optimal	optimal		
exp.	exp.	infinite [CDHR10]		

Strategy synthesis (finite memory)

MEPGs FXPTIMF	MMPPGs	
	EXPTIME	

Randomness as a substitute for finite memory

	MEGs	EPGs	MMP(P)Gs	MPPGs
one-player	×	×		
two-player	×	×	×	

Ongoing work

EGs & MPGs

 Consider alternative, more natural definition of MP-like objective, with possibly good synthesis properties. Thanks. Questions?

EGs & MPGs

Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Better quality in synthesis through quantitative objectives.

In *Proc. of CAV*, volume 5643 of *LNCS*, pages 140–156. Springer, 2009.

Patricia Bouyer, Ulrich Fahrenberg, Kim Guldstrand Larsen, Nicolas Markey, and Jirí Srba.

Infinite runs in weighted timed automata with energy constraints.

In *Proc. of FORMATS*, volume 5215 of *LNCS*, pages 33–47. Springer, 2008.

Tomás Brázdil, Petr Jancar, and Antonín Kucera.

Reachability games on extended vector addition systems with states.

In *Proc. of ICALP*, volume 6199 of *LNCS*, pages 478–489. Springer, 2010.

EGs & MPGs

Patricia Bouyer, Nicolas Markey, Jörg Olschewski, and Michael Ummels.

Measuring permissiveness in parity games: Mean-payoff parity games revisited.

In *Proc. of ATVA*, volume 6996 of *LNCS*, pages 135–149. Springer, 2011.

Krishnendu Chatterjee and Laurent Doyen.

Energy parity games.

In *Proc. of ICALP*, volume 6199 of *LNCS*, pages 599–610. Springer, 2010.

Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga.

Resource interfaces.

In *Proc. of EMSOFT*, volume 2855 of *LNCS*, pages 117–133. Springer, 2003.

Conclusion

EGs & MPGs

Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.

Generalized mean-payoff and energy games.

In *Proc. of FSTTCS*, volume 8 of *LIPIcs*, pages 505–516. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski.

Mean-payoff parity games.

In *Proc. of LICS*, pages 178–187. IEEE Computer Society, 2005.

A. Ehrenfeucht and J. Mycielski.

Positional strategies for mean payoff games.

International Journal of Game Theory, 8(2):109–113, 1979.

Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirí Srba. Energy games in multiweighted automata.

In *Proc. of ICTAC*, volume 6916 of *LNCS*, pages 95–115. Springer, 2011.

EGs & MPGs

T.M. Liggett and S.A. Lippman.

Short notes: Stochastic games with perfect information and time average payoff.

Siam Review, 11(4):604-607, 1969.

Charles Rackoff.

The covering and boundedness problems for vector addition systems.

Theor. Comput. Sci., 6:223-231, 1978.

Louis E. Rosier and Hsu-Chun Yen.

A multiparameter analysis of the boundedness problem for vector addition systems.

J. Comput. Syst. Sci., 32(1):105-135, 1986.