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1 {
2 "string": "Hello , world",
3 "integer": 42,
4 "double": 2.718,
5 "array": ["string"],
6 "object": {"anything": "correct"}
7 }

Listing 1: A JSON document.

How to know whether a JSON document satisfies a given set of
constraints?

↪→ Automata-based verification1.

What kind of automata can be used? How to construct such an
automaton?

↪→ Realtime one-counter automata and our learning algorithm!

1For XML documents, see Chitic and Rosu, “On Validation of XML Streams
Using Finite State Machines”, 2004
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A deterministic finite automaton2 (DFA) is a tuple
A = (Q,Σ, δ, q0,F ) where:
I Q is the set of states,
I Σ is the alphabet,
I q0 ∈ Q is the initial state,
I F ⊆ Q is the set of accepting states, and
I δ ⊆ Q × Σ → Q is the transition function.

The run for the word w = a1 . . . an ∈ Σ∗ (n ∈ N) is the sequence of
states

q0
a1−→
A

p1
a2−→
A

. . .
an−→
A

pn.

If pn ∈ F , the run is said accepting.
The language of A is the set

L(A) = {w ∈ Σ∗ | ∃q ∈ F , q0
w−→
A

q}.

2Hopcroft and Ullman, Introduction to Automata Theory, Languages and
Computation, 2000.
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Let L ⊆ Σ∗.
We want an algorithm to learn a DFA accepting L.

↪→ active learning algorithm.

Active because the algorithm queries information during the learning
process.
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Learner Teacher
Knows L

Membership query w ∈ L?

true or false

Equivalence query L(H) = L?

true or a counterexample

Figure 1: Angluin’s framework Angluin, “Learning Regular Sets from
Queries and Counterexamples”, 1987
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Algorithm 1 Abstract learner for L∗ [Angluin, “Learning Regular
Sets from Queries and Counterexamples”, 1987]
Require: The target language L
Ensure: A DFA accepting L is returned

1: Initialize the data structure
2: Fill the data structure with membership queries
3: while true do
4: Make sure the data structure respects some constraints
5: Construct the DFA A
6: Ask an equivalence query over A
7: if the answer is positive then
8: return A
9: else

10: Given the counterexample w , refine the data structure
11: Fill the data structure with membership queries
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Let L = {anb(b∗a)m(a|b)∗ | n,m ≥ 0} over Σ = {a, b}.

Let u ∈ Σ∗. For all w ∈ Σ∗, we look if uw ∈ L.
We construct a table where the rows are indexed by the u and the
columns by the w .
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Let L = {anb(b∗a)m(a|b)∗ | n,m ≥ 0} over Σ = {a, b}.

ε a b aa ab ba bb . . .

ε 0 0 1 0 1 1 1 . . .
a 0 0 1 0 1 1 1 . . .
b 1 1 1 1 1 1 1 . . .
aa 0 0 1 0 1 1 1 . . .
ab 1 1 1 1 1 1 1 . . .
...

...
...

...
...

...
...

... . . .
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...
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...
...

... . . .

Let u, v ∈ Σ∗ and L ⊆ Σ∗. We say that u ∼ v if and only ifa

∀w ∈ Σ∗, uw ∈ L ⇔ vw ∈ L.

aHopcroft and Ullman, Introduction to Automata Theory, Languages and
Computation, 2000.
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ε a b aa ab ba bb . . .

ε 0 0 1 0 1 1 1 . . .
a 0 0 1 0 1 1 1 . . .
b 1 1 1 1 1 1 1 . . .
aa 0 0 1 0 1 1 1 . . .
ab 1 1 1 1 1 1 1 . . .
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...
...

...
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... . . .

Proposition 1
Let L be a language over Σ. Then, there is a DFA accepting L if
and only if the index of ∼ is finite.
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The Myhill-Nerode congruence
encoded in this table has a finite
index. We have two equivalence
classes: JεK∼ and JbK∼.

ε b

a

b

a, b
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A realtime one-counter automaton (ROCA) is a tuple
A = (Q,Σ, δ=0, δ>0, q0,F ) where Q, q0, and F are defined as
before, and the transition functions δ=0 and δ>0 are defined as:

δ=0 : Q × Σ → Q × {0,+1}
δ>0 : Q × Σ → Q × {−1, 0,+1}.

A configuration is a pair (q, n) ∈ Q × N.
The transition relation −→

A
⊆ (Q × N)× Σ× (Q × N) contains

(q, n) a−→
A

(p,m) if and only if{
δ=0(q, a) = (p, c) ∧ m = n + c if n = 0

δ>0(q, a) = (p, c) ∧ m = n + c if n > 0.

Let w ∈ Σ∗. The counter value of w , according to A, is:

cA(w) = n ⇔ ∃q ∈ Q, (q0, 0)
w−→
A

(q, n).
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Figure 2: An ROCA A.
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L(A) = {anb(b∗a)n(a|b)∗ | n ≥ 0}.
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Let A be an ROCA accepting L. We study the equivalence relation
≡ induced by A over Σ∗.
Let u, v ∈ Σ∗. We say that u ≡ v if and only if

1. ∀w ∈ Σ∗, uw ∈ L ⇔ vw ∈ L, and
2. ∀w ∈ Σ∗, uw , vw ∈ Pref (L) ⇒ cA(uw) = cA(vw).

For example, let L = {anb(b∗a)n(a|b)∗ | n ≥ 0}. Then, b ≡ abba
but ab 6≡ aab.
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Let A be an ROCA accepting L. Using the relation ≡, we can
construct an infinite deterministic automaton accepting L: the
behavior graph of A BG(A) = (Q≡,Σ, δ≡, q0

≡,F≡) with:
I Q≡ = {JuK≡ | u ∈ Pref (L)},
I q0

≡ = JεK≡,
I F≡ = {JuK≡ | u ∈ L}, and
I δ≡ : Q ×Σ → Q such that δ(JuK≡, a) = JuaK≡ with a ∈ Σ and

u, ua ∈ Pref (L).
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Figure 3: The behavior graph of A.
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Theorem 2
Let A be an ROCA accepting L and BG(A) be its behavior graph.
Then, BG(A) is ultimately periodic.

Moreover, it is possible to construct an ROCA accepting L from
BG(A).
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Let A be an ROCA accepting L.

I Rough idea3: learn a sufficiently large initial fragment of
BG(A) and construct an ROCA from it.

I What is an initial fragment?
↪→ BG`(A) is a subgraph of BG(A) whose set of states is
{JuK≡ ∈ Q≡ | ∀x ∈ Pref (u), 0 ≤ cA(x) ≤ `}, with ` ∈ N. Let
L` = L(BG`(A)).

I How to construct an ROCA from BG`(A)?
↪→ Not the focus here but it is possible.
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Membership query w ∈ L(A)?

true or false

Counter value query for w

cA(w)

Partial equivalence query L(H) = L`?

true or a counterexample

Equivalence query L(H) = L(A)?

true or a counterexample

Figure 4: Adaptation of Angluin’s framework for ROCAs.
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Algorithm 2 Adaptation of L∗ for ROCAs.
Require: A teacher knowing an ROCA A
Ensure: An ROCA accepting the same language is returned

1: Initialize the data structure D` up to ` = 0
2: while true do
3: Make D` respect the needed constraints and construct AD`

4: Ask a partial equivalence query over AD`

5: if the answer is negative then
6: Update D` with the provided counterexample . ` is not

modified
7: else
8: Construct all the possible ROCAs A1, . . . ,An from AD`

9: Ask an equivalence query over each Ai
10: if the answer is true for an Ai then return Ai
11: else Select one counterexample and update D` . ` is

increased
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Let A be an ROCA accepting L ⊆ Σ∗.
An observation table up to ` is a tuple O` = (R , S, Ŝ,L`, C`) with:
I R ⊆ Σ∗ is the prefix-closed set of representatives,
I S ⊆ Ŝ ⊆ Σ∗ are two suffix-closed sets of separators,
I L` : (R ∪ RΣ)Ŝ → {0, 1}, and
I C` : (R ∪ RΣ)S → {0, . . . , `} ∪ {⊥}.

Let Pref (O`) = {w ∈ Pref (us) | u ∈ R ∪ RΣ, s ∈ Ŝ,L`(us) = 1}.
The following holds for all u ∈ R ∪ RΣ:
I ∀s ∈ Ŝ,L`(us) = 1 if and only if us ∈ L`.

I ∀s ∈ S, C`(us) =
{

cA(us) if us ∈ Pref (O`)

⊥ otherwise.
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ε

ε 0, 0
a 0, 1
ab 0, 1
aba 1, 0

b 1, 0
aa 0,⊥

abb 0,⊥
abaa 1, 0
abab 1, 0

↪→ Getting the algorithm to eventually finish is harder than it looks.
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Theorem 3
Let A be an ROCA accepting a language L ⊆ Σ∗. Given a teacher
for L with an automaton A, and t the length of the longest
counterexample for (partial) equivalence queries:

I An ROCA accepting L can be computed in time and space
exponential in |A|, |Σ| and t.

I The learner asks:
I O(t3) partial equivalence queries
I O(|A|t2) equivalence queries
I An exponential number of membership (resp. counter value)

queries in |A|, |Σ|, and t.
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Figure 5: Experimental results for randomly generated ROCAs.
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