Learning Realtime One-Counter Automata Submitted at TACAS 2022

Véronique Bruyère

Guillermo A. Pérez Gaëtan Staquet

Theoretical computer science **Computer Science Department** Science Faculty University of Mons

Formal Techniques in Software Engineering Computer Science Department Science Faculty University of Antwerp

November 17, 2021

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000	00	

- 1. Motivation
- 2. Learning deterministic finite automata
- 3. Learning realtime one-counter automata
- 4. Experimental results

Motivation	DFA Learning	Learning ROCA	Experimental results	References
•0	000000	00000000000	00	

1. Motivation

- 2. Learning deterministic finite automata
- 3. Learning realtime one-counter automata
- 4. Experimental results

Motiva ○●	tion	DFA Learning 000000	Learning ROCA	Experimental results 00	References
1	{				
2		"string": "He	llo, world",		
3		"integer": 42	,		
4		"double": 2.7	18,		
5		"array": ["st	ring"],		
6		"object": {"a	nything": "corr	rect"}	
7	}				

¹For XML documents, see Chitic and Rosu, "On Validation of XML Streams Using Finite State Machines", 2004

0 0	ition	OFA Learning 000000	Learning ROCA 0000000000000	Experimental results	References
1	{				
2		"string": "He	llo, world",		
3		"integer": 42	,		
4		"double": 2.7	18,		
5		"array": ["st	ring"],		
6		"object": {"a	nything": "corr	rect"}	
7	}				

How to know whether a JSON document satisfies a given set of constraints?

¹For XML documents, see Chitic and Rosu, "On Validation of XML Streams Using Finite State Machines", 2004

1 {	esults References
<pre>2 "string": "Hello, world",</pre>	
3 "integer": 42,	
4 "double": 2.718,	
5 "array": ["string"],	
<pre>6 "object": {"anything": "correct"}</pre>	
7 }	

How to know whether a JSON document satisfies a given set of constraints?

 \hookrightarrow Automata-based verification¹.

¹For XML documents, see Chitic and Rosu, "On Validation of XML Streams Using Finite State Machines", 2004

	ation	DFA Learning 000000	Learning ROCA 0000000000000	Experimental results 00	References
1	{				
2		"string": "He	llo, world",		
3		"integer": 42	,		
4		"double": 2.7	18,		
5		"array": ["st	ring"],		
6		"object": {"a	nything": "corr	rect"}	
7	}				

How to know whether a JSON document satisfies a given set of constraints?

 \hookrightarrow Automata-based verification¹.

What kind of automata can be used? How to construct such an automaton?

¹For XML documents, see Chitic and Rosu, "On Validation of XML Streams Using Finite State Machines", 2004

0	ation	000000	000000000000000000000000000000000000000	00	References
1	{				
2		"string": "He	llo, world",		
3		"integer": 42	,		
4		"double": 2.7	18,		
5		"array": ["st	ring"],		
6		"object": {"a	nything": "corr	rect"}	
7	}				

How to know whether a JSON document satisfies a given set of constraints?

 \hookrightarrow Automata-based verification¹.

What kind of automata can be used? How to construct such an automaton?

 \hookrightarrow Realtime one-counter automata and our learning algorithm!

¹For XML documents, see Chitic and Rosu, "On Validation of XML Streams Using Finite State Machines", 2004

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	00000	000000000000	00	

1. Motivation

- 2. Learning deterministic finite automata
 - Deterministic finite automaton
 - Active learning
- 3. Learning realtime one-counter automata
- 4. Experimental results

A deterministic finite $automaton^2$ (DFA) is a tuple

- $\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, \mathcal{q}_0, \mathcal{F})$ where:
 - Q is the set of states,
 - \blacktriangleright Σ is the alphabet,
 - $q_0 \in Q$ is the initial state,
 - $F \subseteq Q$ is the set of accepting states, and
 - ▶ $\delta \subseteq Q \times \Sigma \rightarrow Q$ is the transition function.

²Hopcroft and Ullman, *Introduction to Automata Theory, Languages and Computation*, 2000.

A deterministic finite $automaton^2$ (DFA) is a tuple

 $\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, \mathcal{q}_0, \mathcal{F})$ where:

- Q is the set of states,
- \blacktriangleright Σ is the alphabet,
- $q_0 \in Q$ is the initial state,
- $F \subseteq Q$ is the set of accepting states, and
- ▶ $\delta \subseteq Q \times \Sigma \rightarrow Q$ is the transition function.

The run for the word $w = a_1 \dots a_n \in \Sigma^*$ $(n \in \mathbb{N})$ is the sequence of states

$$q_0 \xrightarrow{a_1}{\mathcal{A}} p_1 \xrightarrow{a_2} \dots \xrightarrow{a_n}{\mathcal{A}} p_n.$$

If $p_n \in F$, the run is said accepting.

²Hopcroft and Ullman, *Introduction to Automata Theory, Languages and Computation*, 2000.

A deterministic finite $automaton^2$ (DFA) is a tuple

 $\mathcal{A} = (\mathcal{Q}, \Sigma, \delta, \mathcal{q}_0, \mathcal{F})$ where:

- Q is the set of states,
- \blacktriangleright Σ is the alphabet,
- $q_0 \in Q$ is the initial state,
- $F \subseteq Q$ is the set of accepting states, and
- ▶ $\delta \subseteq Q \times \Sigma \rightarrow Q$ is the transition function.

The run for the word $w = a_1 \dots a_n \in \Sigma^*$ $(n \in \mathbb{N})$ is the sequence of states

$$q_0 \xrightarrow{a_1}{\mathcal{A}} p_1 \xrightarrow{a_2} \dots \xrightarrow{a_n}{\mathcal{A}} p_n.$$

If $p_n \in F$, the run is said accepting. The language of \mathcal{A} is the set

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists q \in F, q_0 \xrightarrow{w}_{\mathcal{A}} q \}.$$

²Hopcroft and Ullman, *Introduction to Automata Theory, Languages and Computation*, 2000.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	00000	000000000000	00	

Let $L \subseteq \Sigma^*$. We want an algorithm to learn a DFA accepting L.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	00000	000000000000	00	

Let $L \subseteq \Sigma^*$. We want an algorithm to learn a DFA accepting L.

 \hookrightarrow active learning algorithm.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	00000	000000000000	00	

Let $L \subseteq \Sigma^*$. We want an algorithm to learn a DFA accepting L.

 \hookrightarrow active learning algorithm.

Active because the algorithm queries information during the learning process.

Motivati 00	on DFA Lea	rning Learning R 0000000	.OCA Experimen	ntal results References
	Learner			Teacher
				Knows L

Figure 1: Angluin's framework Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000	00	

Figure 1: Angluin's framework Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987

Figure 1: Angluin's framework Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987

tivation	DFA Learning	Learning ROCA	Experimental results	References
	000000	000000000000	00	

Algorithm 1 Abstract learner for L^* [Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987]

Require: The target language L

Ensure: A DFA accepting *L* is returned

- 1: Initialize the data structure
- 2: Fill the data structure with membership queries
- 3: while true do

Mo

- 4: Make sure the data structure respects some constraints
- 5: Construct the DFA \mathcal{A}
- 6: Ask an equivalence query over A
- 7: **if** the answer is positive **then**
- 8: return \mathcal{A}
- 9: else
- 10: Given the counterexample *w*, refine the data structure
- 11: Fill the data structure with membership queries

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	00000	000000000000	00	

Let $L = \{a^n b (b^* a)^m (a|b)^* \mid n, m \ge 0\}$ over $\Sigma = \{a, b\}$.

Let $u \in \Sigma^*$. For all $w \in \Sigma^*$, we look if $uw \in L$. We construct a table where the rows are indexed by the u and the columns by the w. Motivation 00 DFA Learning

Learning ROCA

Experimental results

References

Let $L = \{a^n b (b^* a)^m (a|b)^* \mid n, m \ge 0\}$ over $\Sigma = \{a, b\}$.

	ε	а	b	аа	ab	ba	bb	
ε	0	0	1	0	1	1	1	
а	0	0	1	0	1	1	1	
b	1	1	1	1	1	1	1	
аа	0	0	1	0	1	1	1	
ab	1	1	1	1	1	1	1	
÷	÷	÷	÷	÷	÷	÷	÷	·

Motivation	
00	

DFA Learning ○○○○○● Learning ROCA

Experimental results

Let $L = \{a^n b (b^* a)^m (a|b)^* \mid n, m \ge 0\}$ over $\Sigma = \{a, b\}$.

	ε	а	b	аа	ab	ba	bb	
ε	0	0	1	0	1	1	1	
а	0	0	1	0	1	1	1	
b	1	1	1	1	1	1	1	
аа	0	0	1	0	1	1	1	
ab	1	1	1	1	1	1	1	
÷	÷	÷	÷	÷	÷	÷	÷	·

Let $u, v \in \Sigma^*$ and $L \subseteq \Sigma^*$. We say that $u \sim v$ if and only if^a

$$\forall w \in \Sigma^*, uw \in L \Leftrightarrow vw \in L.$$

^aHopcroft and Ullman, *Introduction to Automata Theory, Languages and Computation*, 2000.

Motivation	
00	

Learning ROCA

Experimental results

References

Let $L = \{a^n b (b^* a)^m (a|b)^* \mid n, m \ge 0\}$ over $\Sigma = \{a, b\}$.

	ε	а	b	аа	ab	ba	bb	
ε	0	0	1	0	1	1	1	
а	0	0	1	0	1	1	1	
b	1	1	1	1	1	1	1	
аа	0	0	1	0	1	1	1	
ab	1	1	1	1	1	1	1	
÷	÷	÷	÷	÷	÷	÷	÷	·

Proposition 1

Let L be a language over Σ . Then, there is a DFA accepting L if and only if the index of \sim is finite.

Motivation	
00	

Learning ROCA

Experimental results

References

Let
$$L = \{a^n b (b^* a)^m (a|b)^* \mid n, m \ge 0\}$$
 over $\Sigma = \{a, b\}$.

The Myhill-Nerode congruence encoded in this table has a finite index. We have two equivalence classes: $[\![\varepsilon]\!]_{\sim}$ and $[\![b]\!]_{\sim}$.

Motivation	
00	

Learning ROCA

Experimental results

References

Let $L = \{a^n b (b^* a)^m (a|b)^* \mid n, m \ge 0\}$ over $\Sigma = \{a, b\}$.

The Myhill-Nerode congruence encoded in this table has a finite index. We have two equivalence classes: $[\![\varepsilon]\!]_{\sim}$ and $[\![b]\!]_{\sim}$.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000	00	

1. Motivation

2. Learning deterministic finite automata

- 3. Learning realtime one-counter automata
 - Realtime one-counter automata
 - Behavior graph
 - Learning algorithm

4. Experimental results

Motivation 00 DFA Learning 000000 Learning ROCA

Experimental results

References

A realtime one-counter automaton (ROCA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta_{=0}, \delta_{>0}, q_0, F)$ where Q, q_0 , and F are defined as before, and the transition functions $\delta_{=0}$ and $\delta_{>0}$ are defined as:

$$\begin{split} \delta_{=0} &: Q \times \Sigma \to Q \times \{0, +1\} \\ \delta_{>0} &: Q \times \Sigma \to Q \times \{-1, 0, +1\}. \end{split}$$

Learning ROCA

Experimental results

References

A realtime one-counter automaton (ROCA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta_{=0}, \delta_{>0}, q_0, F)$ where Q, q_0 , and F are defined as before, and the transition functions $\delta_{=0}$ and $\delta_{>0}$ are defined as:

$$\begin{split} \delta_{=0} &: Q \times \Sigma \to Q \times \{0, +1\} \\ \delta_{>0} &: Q \times \Sigma \to Q \times \{-1, 0, +1\}. \end{split}$$

A configuration is a pair $(q, n) \in Q \times \mathbb{N}$.

Learning ROCA

Experimental results

References

A realtime one-counter automaton (ROCA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta_{=0}, \delta_{>0}, q_0, F)$ where Q, q_0 , and F are defined as before, and the transition functions $\delta_{=0}$ and $\delta_{>0}$ are defined as:

$$\begin{split} \delta_{=0} &: Q \times \Sigma \to Q \times \{0, +1\} \\ \delta_{>0} &: Q \times \Sigma \to Q \times \{-1, 0, +1\}. \end{split}$$

A configuration is a pair $(q, n) \in Q \times \mathbb{N}$. The transition relation $\xrightarrow{\mathcal{A}} \subseteq (Q \times \mathbb{N}) \times \Sigma \times (Q \times \mathbb{N})$ contains $(q, n) \xrightarrow{a}_{\mathcal{A}} (p, m)$ if and only if $\begin{cases} \delta_{=0}(q, a) = (p, c) \land m = n + c & \text{if } n = 0 \\ \delta_{>0}(q, a) = (p, c) \land m = n + c & \text{if } n > 0. \end{cases}$

Learning ROCA

Experimental results

References

A realtime one-counter automaton (ROCA) is a tuple $\mathcal{A} = (Q, \Sigma, \delta_{=0}, \delta_{>0}, q_0, F)$ where Q, q_0 , and F are defined as before, and the transition functions $\delta_{=0}$ and $\delta_{>0}$ are defined as:

$$\begin{split} \delta_{=0} &: \mathcal{Q} \times \Sigma \to \mathcal{Q} \times \{0, +1\} \\ \delta_{>0} &: \mathcal{Q} \times \Sigma \to \mathcal{Q} \times \{-1, 0, +1\}. \end{split}$$

A configuration is a pair $(q, n) \in Q \times \mathbb{N}$. The transition relation $\xrightarrow{\mathcal{A}} \subseteq (Q \times \mathbb{N}) \times \Sigma \times (Q \times \mathbb{N})$ contains $(q, n) \xrightarrow{a}_{\mathcal{A}} (p, m)$ if and only if $\begin{cases} \delta_{=0}(q, a) = (p, c) \wedge m = n + c & \text{if } n = 0 \\ \delta_{>0}(q, a) = (p, c) \wedge m = n + c & \text{if } n > 0. \end{cases}$

Let $w \in \Sigma^*$. The counter value of w, according to \mathcal{A} , is:

$$c_{\mathcal{A}}(w) = n \Leftrightarrow \exists q \in Q, (q_0, 0) \xrightarrow{w}_{\mathcal{A}} (q, n).$$

Figure 2: An ROCA A.

Figure 2: An ROCA A.

$$(q_0,0) \xrightarrow{a}_{\mathcal{A}} (q_0,1) \xrightarrow{a}_{\mathcal{A}} (q_0,2) \xrightarrow{b}_{\mathcal{A}} (q_1,2) \xrightarrow{a}_{\mathcal{A}} (q_1,1) \xrightarrow{a}_{\mathcal{A}} (q_1,0) \xrightarrow{a}_{\mathcal{A}} (q_2,0).$$

Figure 2: An ROCA A.

$$(q_0,0) \xrightarrow{a}_{\mathcal{A}} (q_0,1) \xrightarrow{a}_{\mathcal{A}} (q_0,2) \xrightarrow{b}_{\mathcal{A}} (q_1,2) \xrightarrow{a}_{\mathcal{A}} (q_1,1) \xrightarrow{a}_{\mathcal{A}} (q_1,0) \xrightarrow{a}_{\mathcal{A}} (q_2,0).$$

$$\mathcal{L}(\mathcal{A}) = \{ a^n b (b^* a)^n (a|b)^* \mid n \ge 0 \}.$$

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	00000000000	00	

Let \mathcal{A} be an ROCA accepting L. We study the equivalence relation \equiv induced by \mathcal{A} over Σ^* .

Let $u, v \in \Sigma^*$. We say that $u \equiv v$ if and only if

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000000000000000000000000000000	00	

Let \mathcal{A} be an ROCA accepting L. We study the equivalence relation \equiv induced by \mathcal{A} over Σ^* .

Let $u, v \in \Sigma^*$. We say that $u \equiv v$ if and only if

1. $\forall w \in \Sigma^*, uw \in L \Leftrightarrow vw \in L$, and

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000000000000000000000000000000	00	

Let \mathcal{A} be an ROCA accepting L. We study the equivalence relation \equiv induced by \mathcal{A} over Σ^* .

Let $u, v \in \Sigma^*$. We say that $u \equiv v$ if and only if

1. $\forall w \in \Sigma^*, uw \in L \Leftrightarrow vw \in L$, and

2. $\forall w \in \Sigma^*, uw, vw \in Pref(L) \Rightarrow c_{\mathcal{A}}(uw) = c_{\mathcal{A}}(vw).$

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	00000000000	00	

Let \mathcal{A} be an ROCA accepting L. We study the equivalence relation \equiv induced by \mathcal{A} over Σ^* . Let $u, v \in \Sigma^*$. We say that $u \equiv v$ if and only if 1. $\forall w \in \Sigma^*, uw \in L \Leftrightarrow vw \in L$, and 2. $\forall w \in \Sigma^*, uw, vw \in Pref(L) \Rightarrow c_{\mathcal{A}}(uw) = c_{\mathcal{A}}(vw)$.

For example, let $L = \{a^n b(b^*a)^n (a|b)^* \mid n \ge 0\}$. Then, $b \equiv abba$ but $ab \not\equiv aab$.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000	00	

Let \mathcal{A} be an ROCA accepting L. Using the relation \equiv , we can construct an infinite deterministic automaton accepting L: the behavior graph of \mathcal{A} $BG(\mathcal{A}) = (Q_{\equiv}, \Sigma, \delta_{\equiv}, q_{\equiv}^0, F_{\equiv})$ with:

$$Q_{\equiv} = \{ \llbracket u \rrbracket_{\equiv} \mid u \in Pref(L) \},$$

$$\blacktriangleright \ q^0_{\equiv} = \llbracket \varepsilon \rrbracket_{\equiv},$$

•
$$F_{\equiv} = \{ \llbracket u \rrbracket_{\equiv} \mid u \in L \}$$
, and

► $\delta_{\equiv} : Q \times \Sigma \to Q$ such that $\delta(\llbracket u \rrbracket_{\equiv}, a) = \llbracket ua \rrbracket_{\equiv}$ with $a \in \Sigma$ and $u, ua \in Pref(L)$.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000000000000000000000000000000	00	

Figure 3: The behavior graph of A.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000000000000000000000000000000	00	

Figure 3: The behavior graph of A.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000000000000000000000000000000	00	

Let A be an ROCA accepting L and BG(A) be its behavior graph. Then, BG(A) is ultimately periodic.

Motivation	DFA Learning	Learning ROCA	Experimental results	Reference
00	000000	000000000000000000000000000000000000000	00	

Let \mathcal{A} be an ROCA accepting L and $BG(\mathcal{A})$ be its behavior graph. Then, $BG(\mathcal{A})$ is ultimately periodic. Moreover, it is possible to construct an ROCA accepting L from $BG(\mathcal{A})$.

Motivation	
00	

Learning ROCA

Experimental results

References

Let \mathcal{A} be an ROCA accepting L.

³Based on the algorithm for VCA [Neider and Löding, *Learning visibly one-counter automata in polynomial time*, 2010].

V. Bruyère, G. A. Pérez, G. Staquet Learning ROCA — Learning algorithm

Motivation	DFA Learning	Learning ROCA	Experimental	results
00	000000	00000000000	00	

 Rough idea³: learn a sufficiently large initial fragment of BG(A) and construct an ROCA from it.

³Based on the algorithm for VCA [Neider and Löding, *Learning visibly one-counter automata in polynomial time*, 2010].

V. Bruyère, G. A. Pérez, G. Staquet Learning ROC

Notivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000	00	

Rough idea³: learn a sufficiently large initial fragment of BG(A) and construct an ROCA from it.

What is an initial fragment?
→ BG_ℓ(A) is a subgraph of BG(A) whose set of states is
{[[u]]₌ ∈ Q₌ | ∀x ∈ Pref(u), 0 ≤ c_A(x) ≤ ℓ}, with ℓ ∈ N. Let
L_ℓ = L(BG_ℓ(A)).

³Based on the algorithm for VCA [Neider and Löding, *Learning visibly one-counter automata in polynomial time*, 2010].

lotivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	0000000000000	00	

- Rough idea³: learn a sufficiently large initial fragment of BG(A) and construct an ROCA from it.
- ▶ What is an initial fragment? $\hookrightarrow BG_{\ell}(\mathcal{A})$ is a subgraph of $BG(\mathcal{A})$ whose set of states is $\{\llbracket u \rrbracket_{\equiv} \in Q_{\equiv} \mid \forall x \in Pref(u), 0 \le c_{\mathcal{A}}(x) \le \ell\}$, with $\ell \in \mathbb{N}$. Let $L_{\ell} = \mathcal{L}(BG_{\ell}(\mathcal{A}))$.
- How to construct an ROCA from BG_ℓ(A)?
 → Not the focus here but it is possible.

³Based on the algorithm for VCA [Neider and Löding, *Learning visibly one-counter automata in polynomial time*, 2010].

lotivation	DFA Learning	Learning ROCA	Experimental results	References
0	000000	0000000000000	00	

- Rough idea³: learn a sufficiently large initial fragment of BG(A) and construct an ROCA from it.
- ▶ What is an initial fragment? $\hookrightarrow BG_{\ell}(\mathcal{A})$ is a subgraph of $BG(\mathcal{A})$ whose set of states is $\{\llbracket u \rrbracket_{\equiv} \in Q_{\equiv} \mid \forall x \in Pref(u), 0 \le c_{\mathcal{A}}(x) \le \ell\}$, with $\ell \in \mathbb{N}$. Let $L_{\ell} = \mathcal{L}(BG_{\ell}(\mathcal{A}))$.
- How to learn $BG_{\ell}(\mathcal{A})$? $\hookrightarrow BG_{\ell}(\mathcal{A})$ is actually a DFA.

³Based on the algorithm for VCA [Neider and Löding, *Learning visibly one-counter automata in polynomial time*, 2010].

Motivation 00	DFA Learning 000000	Learning ROCA	Experimental results 00	References
	orner		Тер	hor
			Know	/s A
	5			

true or a counterexample

true or a counterexample

Motivation	
00	

Learning ROCA

Experimental results

References

Algorithm 2 Adaptation of L^* for ROCAs.

Require: A teacher knowing an ROCA \mathcal{A}

Ensure: An ROCA accepting the same language is returned

- 1: Initialize the data structure \mathcal{D}_ℓ up to $\ell=0$
- 2: while true do
- 3: Make \mathcal{D}_ℓ respect the needed constraints and construct $\mathcal{A}_{\mathcal{D}_\ell}$
- 4: Ask a partial equivalence query over $\mathcal{A}_{\mathcal{D}_{\ell}}$
- 5: **if** the answer is negative **then**
- 6: Update \mathcal{D}_{ℓ} with the provided counterexample $\triangleright \ell$ is not modified
- 7: **else**
- 8: Construct all the possible ROCAs A_1, \ldots, A_n from A_{D_ℓ}
- 9: Ask an equivalence query over each A_i
- 10: **if** the answer is true for an A_i **then return** A_i
- 11: **else** Select one counterexample and update $\mathcal{D}_{\ell}
 ightarrow \ell$ is increased

otivation	DFA Learning	Learning ROCA	Experimental results	References
C	000000	000000000000000000	00	

Let \mathcal{A} be an ROCA accepting $L \subseteq \Sigma^*$. An observation table up to ℓ is a tuple $\mathscr{O}_{\ell} = (R, S, \widehat{S}, \mathcal{L}_{\ell}, \mathcal{C}_{\ell})$ with:

- $R \subseteq \Sigma^*$ is the prefix-closed set of representatives,
- $S \subseteq \widehat{S} \subseteq \Sigma^*$ are two suffix-closed sets of separators,
- $\mathcal{L}_{\ell}: (\mathcal{R} \cup \mathcal{R}\Sigma)\widehat{\mathcal{S}} \to \{0,1\}$, and

$$\blacktriangleright \ \mathcal{C}_{\ell}: (\mathbf{R} \cup \mathbf{R}\Sigma) \mathbf{S} \to \{0, \dots, \ell\} \cup \{\bot\}.$$

otivation	DFA Learning	Learning ROCA	Experimental results	References
C	000000	000000000000000000000000000000000000000	00	

Let \mathcal{A} be an ROCA accepting $L \subseteq \Sigma^*$. An observation table up to ℓ is a tuple $\mathscr{O}_{\ell} = (R, S, \widehat{S}, \mathcal{L}_{\ell}, \mathcal{C}_{\ell})$ with:

- $R \subseteq \Sigma^*$ is the prefix-closed set of representatives,
- $S \subseteq \widehat{S} \subseteq \Sigma^*$ are two suffix-closed sets of separators,
- $\mathcal{L}_{\ell} : (\mathcal{R} \cup \mathcal{R}\Sigma)\widehat{\mathcal{S}} \to \{0,1\}$, and
- $\blacktriangleright \ \mathcal{C}_{\ell}: (\mathbf{R} \cup \mathbf{R}\Sigma) \mathbf{S} \to \{0, \dots, \ell\} \cup \{\bot\}.$

Let $Pref(\mathcal{O}_{\ell}) = \{ w \in Pref(us) \mid u \in R \cup R\Sigma, s \in \widehat{S}, \mathcal{L}_{\ell}(us) = 1 \}.$ The following holds for all $u \in R \cup R\Sigma$:

21/25

Motivation 00	DFA Learning 000000	Learning ROC	CA 000●0	Experimental results 00	References
			ε		
		ε	0, 0		
		а	0, 1		
		ab	0,1		
		aba	1, 0		
		b	1,0		
		аа	$0, \perp$		
		abb	$0, \perp$		
		abaa	1, 0		
		abab	1, 0		

Motivation 00	DFA Learning 000000	Learning RO	CA 000●0	Experimental results 00	References
			ε		
		ε	0, 0		
		а	0, 1		
		ab	0,1		
		aba	1,0		
		abb	0,1		
		b	1,0		
		аа	$0, \perp$		
		abaa	1, 0		
		abab	1, 0		
		abba	1, 0		
		abbb	$0, \perp$		

Motivation 00	DFA Learning 000000	Learning ROC	:A 00●0	Experimental results 00	References
			ε		
		ε	0,0		
		а	0, 1		
		ab	0, 1		
		aba	1,0		
		abb	0, 1		
		abbb	0, 1		
		Ь	1,0		
		аа	$0, \perp$		
		abaa	1,0		
		abab	1,0		
		abba	1,0		
		abbba	1,0		
		abbbb	$0, \perp$		

$\begin{array}{c c} \varepsilon \\ \hline \varepsilon & 0,0 \\ a & 0,1 \\ ab & 0,1 \\ aba & 1,0 \\ abb & 0,1 \\ \hline abbb & 0,1 \\ \hline b & 1,0 \\ aa & 0, \bot \\ abaa & 1,0 \\ abab & 1,0 \\ abbb & 1,0 \\ abbb & 1,0 \\ abbba & 1,0 \\ abbbb & 0, \bot \end{array}$	Motivation 00	DFA Learning 000000	Learning ROC	A 0000	Experimental results 00	References
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				ε		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ε	0,0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			а	0, 1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ab	0,1		
$ \begin{array}{cccc} abb & 0, 1 \\ abbb & 0, 1 \\ \hline b & 1, 0 \\ aa & 0, \bot \\ abaa & 1, 0 \\ abab & 1, 0 \\ abbb & 1, 0 \\ abbba & 1, 0 \\ abbbb & 0, \bot \end{array} $			aba	1, 0		
$ \begin{array}{c ccc} abbb & 0, 1 \\ \hline b & 1, 0 \\ aa & 0, \bot \\ abaa & 1, 0 \\ abab & 1, 0 \\ abba & 1, 0 \\ abbba & 1, 0 \\ abbbb & 0, \bot \end{array} $			abb	0,1		
$ \begin{array}{cccc} b & 1, 0 \\ aa & 0, \bot \\ abaa & 1, 0 \\ abab & 1, 0 \\ abba & 1, 0 \\ abbba & 1, 0 \\ abbbb & 1, 0 \\ abbbb & 0, \bot \end{array} $			abbb	0,1		
$\begin{array}{c c} aa & 0, \bot \\ abaa & 1, 0 \\ abab & 1, 0 \\ abba & 1, 0 \\ abbba & 1, 0 \\ abbbb & 1, 0 \\ abbbb & 0, \bot \end{array}$			b	1,0		
$\begin{array}{c c} abaa & 1,0 \\ abab & 1,0 \\ abba & 1,0 \\ abbba & 1,0 \\ abbbb & 1,0 \\ abbbb & 0, \bot \end{array}$			аа	$0, \perp$		
$ \begin{array}{c c} abab & 1,0 \\ abba & 1,0 \\ abbba & 1,0 \\ abbbb & 0, \bot \end{array} $			abaa	1, 0		
$\begin{array}{c c} abba & 1,0\\ abbba & 1,0\\ abbbb & 0, \bot \end{array}$			abab	1, 0		
$\begin{array}{c c} \textbf{abbba} & 1,0\\ \textbf{abbbb} & 0, \bot \end{array}$			abba	1, 0		
$abbbb \mid 0, \perp$			abbba	1, 0		
			abbbb	$0, \perp$		

 \hookrightarrow Getting the algorithm to eventually finish is harder than it looks.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000	00	

Let \mathcal{A} be an ROCA accepting a language $L \subseteq \Sigma^*$. Given a teacher for L with an automaton \mathcal{A} , and t the length of the longest counterexample for (partial) equivalence queries:

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000	00	

Let \mathcal{A} be an ROCA accepting a language $L \subseteq \Sigma^*$. Given a teacher for L with an automaton \mathcal{A} , and t the length of the longest counterexample for (partial) equivalence queries:

An ROCA accepting L can be computed in time and space exponential in |A|, |∑| and t.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	00000000000●	00	

Let \mathcal{A} be an ROCA accepting a language $L \subseteq \Sigma^*$. Given a teacher for L with an automaton \mathcal{A} , and t the length of the longest counterexample for (partial) equivalence queries:

- An ROCA accepting L can be computed in time and space exponential in |A|, |∑| and t.
- The learner asks:
 - $\mathcal{O}(t^3)$ partial equivalence queries
 - \blacktriangleright $\mathcal{O}(|\mathcal{A}|t^2)$ equivalence queries
 - An exponential number of membership (resp. counter value) queries in |A|, |Σ|, and t.

Motivation	DFA Learning	Learning ROCA	Experimental results	References
00	000000	000000000000	•0	

1. Motivation

- 2. Learning deterministic finite automata
- 3. Learning realtime one-counter automata
- 4. Experimental results

References I

Angluin, Dana. "Learning Regular Sets from Queries and Counterexamples". In: Inf. Comput. 75.2 (1987), pp. 87–106. DOI: 10.1016/0890-5401(87)90052-6. URL: https://doi.org/10.1016/0890-5401(87)90052-6. Chitic, Cristiana and Daniela Rosu, "On Validation of XML Streams Using Finite State Machines". In: Proceedings of the Seventh International Workshop on the Web and Databases, WebDB 2004, June 17-18, 2004, Maison de la Chimie, Paris, France, Colocated with ACM SIGMOD/PODS 2004. Ed. by Sihem Amer-Yahia and Luis Gravano. ACM, 2004, pp. 85–90. DOI: 10.1145/1017074.1017096. URL: https://doi.org/10.1145/1017074.1017096.

Hopcroft, John E. and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation, Second Edition. Addison-Wesley, 2000.

References II

Neider, Daniel and Christof Löding. Learning visibly one-counter automata in polynomial time. Tech. rep. Technical Report AIB-2010-02, RWTH Aachen (January 2010), 2010.