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A B S T R A C T

Using industrial robots as machine tools is targeted by many industries for their lower cost and larger workspace.
Nevertheless, performance of industrial robots is limited due to their mechanical structure involving rotational
joints with a lower stiffness. As a consequence, vibration instabilities, known as chatter, are more likely to
appear in industrial robots than in conventional machine tools. Commonly, chatter is avoided by using stability
lobe diagrams to determine the stable combinations of axial depth of cut and spindle speed. Although the
computation of stability lobes in conventional machine tools is a well-studied subject, developing them in ro-
botic milling is challenging because of the lack of accurate multi-body dynamics models involving joint com-
pliance able of predicting the posture-dependent dynamics of the robot. In this paper, two multi-body dynamics
models of articulated industrial robots suitable for machining applications are presented. The link and rotor
inertias along with the joint stiffness and damping parameters of the developed models are identified using a
combination of multiple-input multiple-output identification approach, computer-aided design model of the
robot, and experimental modal analysis. The performance of the developed models in predicting posture-de-
pendent dynamics of a KUKA KR90 R3100 robotic arm is studied experimentally.

1. Introduction

Robotic machining is a new application for robots that are usually
involved in handling, pick and place, assembling or welding tasks.
Compared to conventional machine tools, milling with robots offers a
larger workspace at a lower cost but to the detriment of accuracy.
Indeed, most of industrial robots are designed as open serial chains with
rotational joints which lower their rigidity. During the milling opera-
tion, process forces applied at the tool tip can lead to significant tra-
jectory deviation and excessive vibrations. Targeted fields of applica-
tion are mainly the aeronautics industry, in which large parts are being
machined, as well as the foundry industry for finishing operations on
parts with complex shapes. Soft materials such as wood, plastic, foam or
aluminium can be machined with an accuracy close to conventional
machine tools whereas thin layers of hard material such as steel or
inconel can hardly be removed [1].

The low joint stiffness of robots is known as the main drawback
since process forces exciting the structure may lead to milling in-
stabilities known as chatter. Consequences of self-excited vibrations

range from a shorter tool life, poor surface finish to a defective spindle.
While significant research has been carried out in conventional ma-
chining [2–5] in order to predict stable cutting conditions using stabi-
lity lobe diagrams, few similar studies have been completed in robotic
machining. Due to the lack of joint stiffness, milling with robots leads to
other sources of instability. Though regenerative chatter is usually
considered as the main source of instability in CNC machines when the
tool cuts a surface already machined [6], Pan and Zhang [7] pointed
out that mode coupling chatter was the dominant source of instability
in robotic machining. Since the robot dynamics is driven by its flexible
joints, milling forces tend to excite the lower frequency modes. In order
to cope with the lack of joint stiffness, Zargarbashi et al. [8] proposed a
kinetostatic index to optimize the robot posture for five-axis machining
task. Mousavi et al. [9,10] presented two types of robot modelling by
considering either only the joint flexibility or their combination with
the link flexibility in order to predict the robot dynamic behaviour in
different postures. Identification of link elastic properties was carried
out on the basis of CAD models and FEM methods. The second mod-
elling was later used to predict the areas of the workspace in which
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milling operations would be stable [11]. Mejri et al. [12,13] stated that
a significant variability in the modal parameters could be observed
depending on the robot configuration and suggested that this effect
needed to be taken into account in the stability prediction. Most recent
studies [14,15] also recommended to consider the cross coupling terms
of the tool tip frequency response function matrix in analysing the
stability of milling.

Although a multi-body modelling of the robotic arm would be ideal
to predict the varying dynamic behaviour of the robot in its workspace,
an accurate joint modelling is still challenging. While some authors
[16,17] only consider joint flexibility around the axes of motion, others
take into consideration a flexibility perpendicular to the joint axis using
the so-called Virtual Joint Modeling (VJM) method to model the tilting
rigidity of the bearings [18–20]. In more complex models, a non linear
stiffness is introduced around the joint axis or additionally hysteresis of
the gear-torque is considered [21–23]. However, the joint stiffness and
damping identification is still an open issue as no straightforward
method exists to map the robot dynamic behaviour in its entire work-
space. Local identification methods allow determining each joint stiff-
ness around the axis of motion separately. For instance, Olabi et al. [24]
hanged dead weights at various locations of their robot to display the
stiffness characteristics of each axis. On the other hand, global methods
identify all robot rotational stiffness at once but often require expensive
equipment or fastidious set-up. Dumas et al. [25] proposed a method
which is robust for joint stiffness identification around the axes of
motion but needs the use of a laser tracker [26,27]. The aforementioned
methods do not provide any information about the robot modal char-
acteristics which are of the highest importance to predict the milling
stability. Therefore, experimental modal analysis techniques are used to
measure the natural frequencies, the mode shapes and an estimation of
the modal dampings. Past studies mimicked the procedure used in CNC
machine by measuring the frequency response functions (FRFs) at the
tool tip [12,15]. More recently, the robot dynamics was mapped for a
restrained milling area in front of the manipulator [28].

In this paper, a straightforward approach to identify the inertial and
elastic parameters of a Multi-Body Dynamics (MBD) model of an in-
dustrial robot is presented and experimentally validated. The link and
rotor inertias along with the joint stiffness and damping parameters of a
robotic arm are determined using a combination of rigid body identi-
fication method and experimental modal analysis (EMA). The novel
approach is based on the identification of robot inertial parameters
using exciting trajectories followed by a model updating in a static
posture. Elastic parameters are determined in a posture suitable for
milling operations and used to predict the robot dynamic behaviour in
robot configurations beyond the milling area.

2. Multi-body dynamics with flexible joints

Using the augmented link representation for n-link serial manip-
ulators, the Craig’s convention is adopted [29] to describe the kine-
matics of the Kuka KR90 R3100 robot by only considering the first three
revolute joints (Fig. 1a). Joint i connects links −i 1 and i, and a local
coordinate system (xi, yi, zi) is attached to link i.

The origin Oi of frame (xi, yi, zi) is located at the intersection of joint
i axis and the common normal to axes of joints −i 1 and i. Joint angles
qi are measured around the axes of motion of the manipulator oriented
along zi. Mass mi of each link i is assumed to be non-zero, and vector

= C C CC [ ]i xi yi zi
T locates the centre of mass of link i in the corre-

sponding local frame. Tensor Ii defines the moment of inertia matrix of
link i around Oi in frame i:
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The inertial parameters of each link consist of ten parameters including

mi, miCxi, miCyi, miCzi, Ixxi, Iyyi, Izzi, Ixyi, Ixzi, and Iyzi. Considering the
typically large gear ratios of industrial manipulators, the inertia of the
joint rotors may have a significant effect on robot dynamics. As shown
in Fig. 1b, the motor actuating joint i is located on link −i 1 and its axis
is aligned with zi. The joint rotors are assumed to be cylindrical and
therefore their inertia tensor with respect to (xi, yi, zi) is described as a
diagonal matrix =I diag I( ,mi m xxi, Im,yyi, Im,zzi) with =I Im xxi m yyi, , .

The Multi-Body Dynamics model of the manipulator with three
flexible revolute joints is shown in Fig. 1b. The system consists of seven
bodies, including the ground (body 0), three links, and the three asso-
ciated motors. The stiffness and the damping at the interface between
each link are modelled by three torsional springs and viscous dampers
around xi, yi, and zi axis. More specifically, flexibility qi around rotation
axis zi accounts for the elasticity between each rotor and its actuated
link while qix and qiy are transversal elasticities around xi and yi axes
representing the bearing compliance. Among the twelve degrees of
freedom of the model in Fig. 1b only three (qm1, qm2, and qm3) are ac-
tuated, which makes the identification of the inertia and elastic para-
meters of this model challenging. In the next section, the model in
Fig. 1b is simplified to a system comprising the three motors and a joint
flexibility only around the rotation axis, namely the SDOF flexible joint
model. The inertia and elastic parameters of the simplified system will
be identified using exciting trajectories and experimental modal ana-
lysis in Sections 2.2 and 3. The identified parameters will eventually be
used to calibrate the model parameters of the generalized model in
Fig. 1b, namely the 3DOF flexible joint model.

2.1. MBD with SDOF joint model

The equation governing the dynamics of the system shown in Fig. 1b
when only the joint flexibility around its rotation axis zi is considered
can be obtained using Lagrange’s method as follows [30]:
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where = ⋯q qq [ ]n T1 is the instantaneous angular position of the links
and = ⋯q qq [ ]m m mn T1 is the corresponding positions of the rotors
after reduction gears. The inertia matrix in Eq. (2) consists of the
augmented link inertia matrix, M(q) and rotor inertia matrix, Mm.
Considering the typically high gear ratio of industrial robot joints, the
coupling between the rotor and link inertia terms is neglected. The
augmented link inertia is a non linear function of the joint configuration
q and contains the link inertia terms as well as NiIm,xxi and NiIm,yyi terms
in the off-diagonal elements, where Ni is the gear ratio of joint i. The
rotor inertia matrix, Mm, is a diagonal matrix of N Ii m zzi

2
, terms. The

damping matrix, C q q( , ˙ ), is a non linear function of joint positions and
velocities and represents the centrifugal and Coriolis forces. The gravity
vector is denoted by g(q). The Fvq and Fvqm terms represent the viscous
friction forces applied on the link and the rotor, respectively, and Fcq
and Fcqm are the Coulomb friction terms. The K and D matrices are di-
agonal matrices of the joint stiffness and damping coefficients. The
actuation torque applied on the rotors is denoted by τ and the combined
effects of the gravity compensation spring and the milling forces act as
an external torque τext.

The KUKA KR90 arm includes a gravity compensation system that
acts like a spring to reduce the gravity load on the second joint.
Following the approach presented by Swevers et al. [31], the torque
generated by the gravity compensation arm is approximated using the
following Fourier series expansion:
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In this work, three terms ( =L 3) in the Fourier series expansion
were used to approximate the torque generated by the gravity com-
pensation arm. The resulting torque Tg is substituted in the second
element of τext in Eq. (2) to consider the additional external torque
provided to the second joint by the gravity compensation arm.

2.2. Identification of rigid body dynamics

In the absence of machining forces, the joint flexibilities can be
neglected resulting in the simplification of the equations of motion in
Eq. (2) into the following:
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This equation is linear in terms of the base parameters of the manip-
ulator [32], and can therefore be reformulated as the following linear
equation:

= τYπ , (5)

where the components of the vector of base parameters, π, and the
regression matrix Y are provided in Appendices A and B, respectively.
The base parameters of the manipulator are the minimum number of
parameters that are required for describing its dynamics uniquely [33].
For the considered system with three motors and their rigid joint, a
total of 18 base parameters are required to describe the relationship
between the actuating torque, τ, and the resulting joint positions, q,
velocities, q̇ and accelerations, q̈. As shown in Table A.8, in addition to
the base parameters combining the inertial parameters of the links and
the rotors, viscous and Coulomb friction coefficients and the Fourier
coefficients of the function describing the gravity compensating system
(i.e. B1, B2, and B3 in Eq. (3)) can be supplemented to enrich the
identification procedure. A Multi-Input Multi-Output (MIMO) Least
Squares Estimation (LSE) is used to identify the rigid body (base)
parameters gathered in vector π. The input signals to the identification
are the displacement, velocity, and acceleration signals of the three
joints of the manipulator, q. The output signals are the corresponding

joint torque signals, τ. These signals are obtained by moving the end
effector on optimized trajectories within the workspace of the robot and
recording the joint encoder and motor torque signals at a set of discrete
time instants, …t t, , M1 . The system parameters, π, are then obtained
using the LSE on a set of equations obtained by repeating Eq. (5) at
every time step:

=πA T, (6)
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In order to ensure that the obtained torque and joint displacement
data are informative [34], persistently excitation trajectories are de-
signed to minimize the condition number of the observation matrix, A,
in Eq. (5). The design of such optimum trajectory in joint space was
proposed by Swevers et al. [35], where the joint velocity along the
trajectory is made of a finite sum of harmonic sine and cosine functions.
Finite Fourier series expansions therefore define the time evolution of
the joints of the manipulator and their time derivatives as follows:
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where ωf is the assumed fundamental angular frequency of the Fourier
series. The constant coefficients, al

i and b ,l
i constitute the optimization

design parameters, δ, which are determined by minimizing the condi-
tion number of the observation matrix, A. The optimization problem is
summarized as follows:

= ωδ A δ^ arg min cond( ( , )),δ f (11)

subjected to

Fig. 1. Modelling of the KUKA KR90 R3100 robot.
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with Ts being the sampling period and =Tf
π

ω
2

f
. The set of equations

shown in Eq. (12) determines the constraints of the optimization pro-
blem. These constraints are governed by the displacement, velocity, and
acceleration limitations of the joints, and the workspace of the robot.
Vectors qmin and qmax determine the allowable range of axis displace-
ment, vectors q̇min and q̇max determine the allowable axis velocity range
and vectors q̈min and q̈max determine the allowable axis acceleration
range. Also, S stands for the available workspace while s q( ) is a subset
of positions reachable by the end effector of the manipulator according
to the optimized trajectories. A sample of optimized end effector tra-
jectory obtained for the KUKA KR90 arm in this work, and the corre-
sponding allowable workspace, is shown in Fig. 2a.

2.3. Experimental results

The identification procedure described in Section 2.2 is applied to
determine the parameters of the rigid body model of a KUKA KR90
R3100 HA robotic arm. The architecture of this arm is common to most
industrial robots with a1 = 0.35m and a2 = 1.35m (Fig. 1a). Only the
first three links were considered in this study. Without any tool at-
tached, the third link merges the elbow, the forearm, the wrist and the
flange of the robot.

The optimum excitation trajectory was determined by solving the
optimization problem defined in Eqs. (11) and (12). Five harmonic
terms were considered in the Fourier series expansion of the trajectory
of each joint in Eqs. (8)–(10). The fundamental frequency of the ex-
citation trajectory, ,

ω
π2
f was set to 0.1 Hz; a sufficiently low frequency to

not excite the joint flexibility. The joint constraints restricting their
displacement, velocity, and acceleration are shown in Table 1. Since no
joint acceleration limit was provided by the robot manufacturer, high
values were set.

Workspace limits are presented in Table 2.

The constrained non linear optimization problem defined in Eq. (11)
was solved using the fmincon function of Matlab. Starting from var-
ious initial values for the optimization parameters, δ, a total of six
different excitation trajectories were obtained. The average condition
number among the obtained solutions was 28, which was sufficiently
low, considering the limited workspace. Fig. 2b depicts the trajectory of
each joint for one of the excitation trajectories. The corresponding Tool
Centre Point (TCP) trajectory is shown in Fig. 2a. The KUKA KR90 robot
was programmed using the point-to-point spline command in
order to produce smooth motions. Using the Trace feature of the KUKA
teach pendant, motor torques and encoder positions were recorded
using a sampling rate of 250 Hz on a Personal Computer, and the joint
velocity and acceleration signals were obtained by numerical differ-
entiation of the encoder data using the FFT filtering method [36]. Prior
the numerical differentiation, a low-pass filter was applied to prevent
noise magnification with a tapering from unity to zero from 3 to 4 Hz.
Application example of the low-pass filter for one of the excitation
trajectories is shown in Fig. 3: raw torque and position measurements
are compared to their filtered version and numerical differentiation
leads to the corresponding acceleration signals. Applying the low-pass
filter did not change the position signals which might be due to the
internal filtering of KUKA software. The 18 base parameters along with
the friction and gravity compensation coefficients were estimated by
providing the joint and torque data obtained from four of the six gen-
erated trajectories to the LSE problem defined in Eq. (6). The measured
and estimated torque signals corresponding to the four trajectories are
shown in Fig. 4, as well as their error in Nm. The close agreement of the
estimated and measured torque signals confirms the accuracy of the
MBD model with rigid joints described with the equations of motion in
Eq. (4).

The 27 identified parameters, π, along with the joint position
measured during the last two trajectories are eventually used in Eq. (6)
to predict the joint torque signals. The predicted and measured torque
signals are shown in Fig. 5. As shown in this figure, the identified model
accurately estimates the joint torques for arbitrary trajectories.

3. Experimental modal analysis

Modal properties of the KUKA KR90 arm were identified by con-
ducting a set of Experimental Modal Analysis (EMA) tests. Instrumented
hammer (Kistler 9722A500) with a rubber tip was used as the

Fig. 2. Example of excitation trajectory.

Table 1
Joint angular, velocity and acceleration limits for the KUKA KR90 R3100 HA
robot.

Axis qmin [rad] qmax

[rad]
q̇min [rad/
s]

q̇max [rad/
s]

q̈min [rad/
s2]

q̈max [rad/
s2]

1 −3.23 3.23 −1.83 1.83 −8 8
2 0.09 2.44 −1.76 1.76 −8 8
3 −2.7 2.1 −1.87 1.87 −8 8

Table 2
Workspace limits.

xmin [m] xmax [m] ymin [m] ymax [m] zmin [m] zmax [m]

−1.5 2.6 −1.6 1.4 0.5 2.5
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excitation method, and the responses were measured simultaneously
using three accelerometers installed on the flange in normal (X), and
lateral (Y and Z) directions (Fig. 6). Because of the high rigidity of the
system in the direction normal to the flange, a high-sensitivity accel-
erometer (Kistler 8776A50M1) was used to measure the response in X
direction, and two identical miniature accelerometers (PCB 352C23)
were used to measure the responses in Y and Z directions. The measured
force and acceleration signals were digitized and transferred to a PC
using a NI9234 data acquisition card. The Frequency Response Func-
tions (FRFs) were computed using Cutpro software [37]. Implementing
the roving hammer technique, impulses were applied at 23 points dis-
tributed on the three links of the robot, including the three X, Y, and Z
directions on the flange, points x21, y21 and z21. The excitation points
are shown in Fig. 6. In total, 23× 3 FRFs with 0.5 Hz frequency re-
solution were obtained. The actuator brakes were released when per-
forming the hammer tests to account for the controller stiffness, how-
ever repeating the tests with brakes engaged did not make any tangible
differences in the measured FRFs, showing that the stiffness of the
controller is high enough to be neglected in this analysis.

In order to study the posture-dependent dynamics of the robot
structure, EMA was conducted in three different postures shown in
Fig. 6. In the rest of this article, Posture 1 will be referred to as the rigid
posture, Posture 2 as the upright posture, and Posture 3 as the milling
posture.

Modal parameter identification was carried out using the time do-
main Least Squares Complex Exponential (LSCE) method implemented
in the LMS Test.Lab Rev. 8A software. Modal analysis results show that
the posture-dependent modes of the structure are located below 30 Hz,
and the modes above 30 Hz are mostly influenced by the wrist structure
and therefore are independent of the orientation of the first three joints.
Consequently, only the modes below 30 Hz will be discussed in this
work. The summation function indicator [38] of all the FRFs measured
in each posture is shown in Fig. 7. Also shown in this figure are the
stabilization diagrams obtained by the LSCE modal identification in
each posture. A streak of “s” characters indicates that the identification

algorithm converges to a stable mode at the corresponding frequency.
As shown in Fig. 7, in all of the postures, four modes below 30 Hz

are identified. The shape, frequency, and modal damping ratio of each
of the four identified modes in each posture are shown in Fig. 8. Also
shown in this figure are the auto Modal Assurance Criteria (MAC) tables
of the identified mode shapes in each posture.

According to the modal analysis results demonstrated in Fig. 8, the
mode shapes in all of the postures are originated from the deflections at
the joints and the links are rigid. Mode one (10.0 Hz) in the milling
posture is greatly influenced by the stiffness of joint one around its
rotation axis (q1). Mode two (11.0 Hz) in this posture is formed by the
deflection of the second joint around its rotation axis (q2), and mode
four (23.7 Hz) mainly includes the deflection of the third joint around
its rotation axis (q3). Mode three (19.2 Hz) in the milling posture in-
cludes simultaneous deformations of joint one around its rotation axis
(q1) and around the axis normal to it (qx1). While all of the deformations
observed in modes one, two, and four are considered in the MBD model
with the SDOF joint model, the deflection around x1 axis is discarded
since mode three cannot be simulated by the SDOF joint model. Because
deflections around the axes of rotation of joints two and three (q2 & q3)
generate similar motions in the Cartesian space, a relatively high cor-
relation is observed between modes two and four in the auto-MAC
matrix shown in Fig. 8d for the milling posture; same comment apply to
modes one and three. Similar modal behaviours are observed in the
upright and rigid postures, except that the modal frequencies and their
stiffness vary in those postures. In the upright posture, the mode as-
sociated with the deflection of joint one around its rotation axis (q1) is
identified as mode three at 20.4 Hz, while modes associated with the
deflections of joints two and three around their respective rotation axis
(q2 & q3) are identified as modes two and four at 11.8 and 25.4 Hz,
respectively. Mode one at 11 Hz in the upright posture includes the
deflections of the first joint around the axis normal to its rotation axis
(qx1) (similar to mode three in the milling posture) and therefore cannot
be simulated using the SDOF joint model. In the rigid posture, the third
(17.8 Hz) and fourth (22.1 Hz) modes are mainly associated with the

Fig. 3. Raw measurements and filtered/computed signals.
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Fig. 4. Fitting of the measured torques over four excitation trajectories.

Fig. 5. Torque prediction over two other measured trajectories.
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deflections of the first and third joints around their rotation axis (q1 &
q3), respectively. According to the stabilization diagram in this posture
(Fig. 8a), there are two closely spaced modes at 11 and 11.5 Hz. Note
that the frequency resolution of the measured FRFs was 0.5 Hz and
therefore the two modes could not be distinguished in the corre-
sponding plot depicting the sum of FRFs (Fig. 7a). According to the
identified mode shapes, while mode two is dominated by the deflec-
tions of joint two around its rotation axis (q2), mode one includes de-
flections of the first joint around the axis normal to its rotation axis
(q1x) and therefore it cannot be simulated using the SDOF joint model.
Additionally, because the first two modes in the rigid posture are clo-
sely spaced, the identified mode shapes are influenced by measurement
and identification errors. For instance, deflections of the second and
third links are observed in the identified mode shapes, which is highly
unlikely to happen at such low frequencies. The auto-MAC matrix of the
measured mode shapes includes high correlation between the first and
second modes in the rigid postures.

4. Robot structural dynamics

Considering the typically low feedrate during robotic milling op-
erations, the motion of the robot can be regarded as quasi-static where
the joint angles, q, only vary incrementally around the operating pos-
ture, q0:

= +q q qΔ .0 (13)

Consequently, the joint velocity and accelerations also vary in-
crementally around zero:

= =q q q q˙ Δ ˙ and ¨ Δ¨ . (14)

In addition, by assuming perfect performance of the joint controllers in
regularizing the rotor position, the rotor rotation angles are assumed to
remain constant at Nrq0, where Nr is the diagonal matrix of joint gear
ratios. Considering these assumptions, the equations of motion of the
MBD model with the SDOF joint model in Eq. (4) can be simplified into
the following equation:

+ + + − + =M q q C q q q Dq K q q g q 0( ) ¨ ( , ˙ ) ˙ ˙ ( ) ( ) .m (15)

Note that compared to Eq. (2), in Eq. (15), the inertia matrix includes
the augmented link inertia term, M, only and the rotor inertia term,
Mm, is missing because of the assumption that the rotors are perfectly
regularized at zero velocity. Consequently, all the rotor inertia terms
must be removed from vector π. Out of the three Im,zzi terms, only Im,zz3

can be explicitly identified in Section 2.3 as π16, and Im,zz1 and Im,zz2 are
only implicitly identified as part of π1 and π2. Since these values cannot
be identified individually, they are assumed to be equal to the identified

Im,zz3 value. This assumption is reasonable due to the similar size of the
motors actuating joints 1, 2, and 3 and their similar gear ratios in the
particular case of the KUKA KR90 robot. If it is not the case, authors
advise to rely on the gear ratios to scale Im,zz3 for the first two rotors.
Moreover, since friction and gravity compensation coefficients are
mainly related to the rotors, their contributions are also removed from
vector π. Therefore, in Eq. (15), damping matrix D will account for the
joint and link damping. Hence, these considerations allow rewriting
Eq. (15) in terms of the regression matrix Ỹ and the base parameter
vector π̃ without the effects related to the rotors as follows:

+ + − =πY Dq K q q 0˜ ˜ ˙ ( ) .m (16)

Considering the assumed small deflection of the joints, the non linear
equations of motion in Eq. (16) can be linearized around the opera-
tional joint configuration, q0, resulting in the following linear equation
describing the oscillations of the system in joint space:

+ + =M q C q K q 0Δ¨ Δ ˙ Δ ,0 0 0 (17)

where the linearized mass (M0), damping (C0: combining the effects of
the Christoffel C and damping D matrices), and stiffness (K0: combining
the effects of the gravity g(q) and stiffness K matrices) matrices are
obtained as follows:

= ∂
∂

= ∂
∂

+ = ∂
∂

+π π πM Y
q

C Y
q

D K Y
q

K
˜ ˜
¨

;
˜ ˜
˙

;
˜ ˜

.
q

0

0

0

0

0

0 (18)

All of the parameters of the mass, stiffness, and damping matrices are
obtained from the rigid body identifications, except the joint stiffness
and damping parameters, K and D. These parameters will be identified
on the basis of the modal analysis results presented in Section 3.

4.1. Identification of joint elastic parameters

By introducing the state vector =q q q[Δ Δ ˙ ] ,s
T T T Eq. (17) can be

expressed in its first order form as

+ =Aq Bq 0^ ˙ ^ ,s s (19)

where Â and B̂ are the system matrices:

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢ −

⎤
⎦⎥

A C M
M 0

B K 0
0 M

^ , ^ .
0 0

0

0

0 (20)

The natural frequencies of the robot structure are obtained from the
generalized eigenvalues of Â and B̂ matrices [38]:

= = −f
λ λ

π
ζ λ

πf
*

2
, and Re( )

2
,r

r r
r

r

r

(21)

Fig. 6. Three robot postures studied using EMA.
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where fr and ζr, =r n1. (n=3) are the natural frequencies and the
corresponding modal damping ratios, respectively. The asterisk stands
for the complex conjugate, and λr are the generalized eigenvalues:

=v λ vA B^ ^ .r r r (22)

Vectors vr are the corresponding eigenvectors. Since Â and B̂ matrices
are real, their generalized eigenvalues and eigenvectors appear in
complex conjugate pairs. As a result, for the n-DOF arm, n pairs of ei-
genvectors and eigenvalues are obtained. Each pair of eigenvalues (λr,
λr*) corresponds to one modal frequency (fr), and each pair of

Fig. 7. Stabilization diagrams of the LSCE modal identification in the three postures (right y-axis is the model order); meanings of the symbols: o pole not stable, f
pole is stable in frequency, d pole is stable in frequency and damping, v pole vector is stable, s pole is completely stable.
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eigenvectors (v v, *r r ) corresponds to the associated mode shape. Note
that the resulting mode shape is in joint space, but obtaining the mode
shape in Cartesian space is straightforward using forward kinematics.

The stiffness and damping parameters of the joints are determined
by using the modal parameters obtained in Section 3. The modal
parameters obtained from the milling posture are used for the

identification of the joint parameters and the ones obtained from the
other two postures will be used for the verification of the identified
model.

Since the MBD model with SDOF joints includes three degrees of
freedom ( =n 3), only three modes can be created using this model, but
four modes were identified from the modal analysis in Section 3. The
identified mode three at 19.2 Hz in the milling posture includes a sig-
nificant deflection of joint one around x1 axis, which is not included in
the SDOF joint model. Because the third mode in the milling posture
cannot be simulated using the presented model, it will not be used in
the identification. As discussed in Section 3, modes one, two, and four
in the milling posture are associated with dominant deflections of joints
one, two, and three around their rotation axis, respectively. The stiff-
ness and damping coefficients of each joint can therefore be adjusted to

Fig. 8. Mode shapes identified using EMA in the three postures.

Table 3
Identified joint stiffness and damping parameters with the SDOF flexible joint
model.

Joint 1 Joint 2 Joint 3

Joint stiffness [Nm/rad] 3.12e6 3.75e6 2.98e6
Joint damping [Nm.s/rad] 1.45e3 1.10e3 0.29e3
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obtain the measured natural frequency and modal damping ratio for the
associated mode. The resulting joint parameters are shown in Table 3.

The identified joint parameters are used in Eqs. (19)–(22) to obtain
the frequency, damping ratio, and shape of the three modes of the MBD
model with SDOF flexible joints in the three tested postures: milling,
upright, and rigid.

The simulated mode shapes and associated modal frequencies and
damping ratios in the milling posture are shown in Fig. 9. Compared to
the measured mode shapes and modal parameters in the same posture,
shown in Fig. 8c, the identified model predicts similar shapes, fre-
quencies, and damping ratios. The third measured mode at 19.2 Hz is
not predicted because the deflection of the first joint around x1 axis is
not included in the SDOF joint model. The MAC table in Fig. 9 shows
the correlation between the measured and identified mode shapes in
the milling posture. Neglecting the third measured mode, measured
modes one, two, and four are highly correlated with simulated modes
one, two, and three.

The identified modal parameters in the milling posture are used to
construct the FRFs between the three DOFs at the robot flange, x21, y21
and z21 (Fig. 6). The magnitudes of the resulting FRFs along with the
corresponding measured FRFs are shown in Fig. 10. As depicted in this
figure, except at around the mode at 19.2 Hz which is not predictable
using the SDOF joint model, a reasonable agreement is observed be-
tween the predicted and measured FRFs. The largest discrepancies are
observed at modes with small amplitudes and in cross-FRFs. The modes
with small amplitudes in the FRFs are more rigid and thus more difficult
to excite. This makes their measurement more sensitive to noise and
measurement inaccuracies. The measured cross-FRFs, in addition to
being a few times more rigid than the direct-FRFs, show a considerable
level of asymmetry (e.g Hxy≠Hyx) which contradicts the linear self-
adjoint system used to model the dynamics [39]. Inaccuracy in the
impact direction during the hammer test might also amplify the phe-
nomenon. The non-symmetry of the FRF matrix in articulated industrial

robots has been reported in other research as well [15] and is a subject
for further studies. In order to study the accuracy of the developed MBD
model in predicting the structural vibrations of the robot in arbitrary
postures, the identified model is used to compute the mode shapes and
modal parameters in the upright and rigid postures. The MAC tables
between the predicted and measured mode shapes in the rigid and
upright postures are shown in Fig. 11a and Fig. 11b, respectively. In the
upright posture, a high level of correlation is observed between the
three predicted modes and measured modes two to four. In the rigid
posture, although the second and third predicted modes are highly
correlated with the third and fourth measured modes, the first predicted
mode is not correlated with any of the measured ones. As shown in the
stabilization diagram of modal identification in this posture (Fig. 8d),
the difference between the frequencies of the first two identified modes
is less than the resolution of measured FRFs (0.5 Hz). As a result, the
identified mode shapes of these two modes are highly affected by
measurement and identification errors.

Also the comparison between the predicted and measured modal
frequencies and damping ratios in those two postures are shown in
Table 4. The modes that cannot be predicted by the SDOF joint model
are marked with /. As joint stiffness and damping were identified for
the milling posture (posture 3), frequencies and damping ratios in this
posture match the experimental ones. The most significant error in the
prediction of modal frequencies is − 28% error observed in the second
measured mode in the upright posture (20.4 Hz). Average frequency
and damping ratio prediction errors are 12.8% and 41.2%, respectively.

5. Multi-body dynamic model with 3DOF flexible joints

As presented in Section 4, the MBD model with SDOF flexible joints
can be identified using a combination of rigid body identification
methods and EMA, however this model cannot be used to simulate the
mode shapes involving joint deflections around an axis other than the

Fig. 9. Simulated mode shapes with the SDOF flexible joint model for the milling posture.
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rotation axis. In order to capture the missing mode mainly involving a
deflection of the first joint around x1 axis, MBD model with 3DOF
flexible joints shown in Fig. 1b is considered. Nevertheless, the inertia
parameters of the model with 3DOF flexible joints cannot be identified
using rigid body identification methods because only one out of the
three DOFs per joint is actuated. Therefore, computer-aided design
models of the robot are used as an entry point to estimate all the six
parameters composing the inertia tensors of each link. The mass dis-
tribution is rebalanced with respect to the volume of each link and its
associated density, bearing in mind the known total weight of the robot
(1129 kg). Derivation of a similar robot model can be found in [40].
Using the mass matrix of the manipulator from the rigid body identi-
fication in the three studied postures for EMA, link inertia tensors are
slightly adjusted for a better fitting. At present, the ad-hoc tuning of the

mass matrix based on CAD data appears to be a common practice [28].
As part of this study, the rigid body identification allows relying on the
determined base parameters as a guideline to tune the link inertia
tensors. However, multiple sets of inertial parameters can be derived
and lead to the same dynamic equations. Table 5 presents the tuned
inertia parameters. The lumped parameters are eventually assigned to
moving frames representing the robot links using the homogeneous
transformation matrix formalism.

Joint elastic parameters are identified in the milling posture on the
basis of the error between the simulated and measured frequencies and
damping ratios in Section 3. The quadratic-like cost function was de-
fined as

Fig. 10. Amplitude of measured and fitted frequency response function matrix H(ω) at the end-effector obtained with the SDOF flexible joint model for the milling
posture.

Fig. 11. Assessment of the posture dependency prediction through the MAC matrices.

Table 4
Prediction of the natural frequencies and damping ratios in other postures by
using the identified SDOF flexible joint model (experimental frequencies and
damping ratios in brackets).

Mode Milling pose Upright pose Rigid pose

fn [Hz] ζn [%] fn [Hz] ζn [%] fn [Hz] ζn [%]

1 10.0 (10.0) 1.4 (1.4) / (11.0) / (0.7) / (14.0) / (0.5)
2 11.0 (11.0) 1.0 (1.0) 10.9 (11.8) 1.0 (0.7) 13.0 (14.5) 1.3 (0.8)
3 / (19.2) / (0.5) 14.6 (20.4) 2.1 (1.6) 14.2 (17.8) 2.0 (1.2)
4 23.7 (23.7) 0.8 (0.8) 23.7 (25.4) 0.8 (0.7) 21.7 (22.5) 0.7 (1.0)

Table 5
Tuned Kuka KR90 dynamic parameters.

Mass [kg] Shoulder Arm Forearm
512 249 223

Ixx [kg.m2] 15.4 80.0 45.9
Iyy [kg.m2] 30.9 150.6 125.9
Izz [kg.m2] 30.2 150.8 125.9
Ixy [kg.m2] 1.9 −1.1 −1.4
Ixz [kg.m2] 0.9 0.5 0.1
Iyz [kg.m2] 0.4 −0.1 −1.2
Cx [m] −0.02 0.53 0.42
Cy [m] 0 0 0.02
Cz [m] −0.21 0.25 −0.02
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where subscript n is the mode number and k is the kth iteration [41].
Weighting coefficients on the frequency Wf and on the damping ratio
Wζ emphasize the quantities to fit in priority, the frequencies in this
context (Wf=100 and Wζ=1). Normalization factors, fn,exp. and ζn,exp.
are applied in order to include both the targeted experimental fre-
quency fn,exp. and damping ratio ζn,exp. expressed in Hz and in %, re-
spectively. The four experimental modes obtained in Section 3 in the
milling posture were taken into account in the fitting procedure.
Table 6 presents all the resulting elastic parameters which allow
matching all the measured robot modes below 30 Hz. Regarding the
stiffness values around the motion axes, values seem in accordance with
the ones reported in the literature usually in the range of 0.1e6 to
7.0e6 Nm/rad [42]. On the other hand, stiffness values normal to the
motion axes are unsurprisingly higher than the ones around the axes of
motion. Determined joint damping values are more difficult to interpret
but provide coherent damping ratios for the targeted modes. Overall,
the determined elastic parameters are likely to be treated as fitting
parameters without any physical meaning because of the uncertainty on
the mass matrix identification.

In Fig. 12, the measured and fitted FRFs of the first four dominant
structural modes of the robot are shown in the milling posture. Again
only the amplitudes of the FRFs measured at the end effector are pre-
sented for points x21, y21 and z21 (Fig. 6). The MBD model with 3DOF
flexible joints is able to fit the missing peaks that the model with SDOF
flexible joints could not replicate. Since the link inertia tensors were
tuned with respect to the model identified through exciting trajectories,
the quality of fitting regarding the direct-FRFs is preserved, while
capturing the third mode at 19.2 Hz generating a deflection of the first
joint around x1 axis. Regarding the cross-FRFs, Hxz, presenting the

highest amplitude, is particularly well correlated.
The updating of all the four mode shapes is confirmed by the high

diagonal values shown in the MAC matrix (Fig. 13a). In comparison
with the MAC matrix obtained with MBD model with the SDOF flexible
joint representation in Section 4 (Fig. 9) for the milling posture, modes
one, two and four show the same level of correlation. The third mode is
now quite well correlated with 71%. Simulated mode shapes are pre-
sented in Fig. 13b. As before, mode shapes one, two and four, domi-
nated by a deflection around the axes of motion, are captured and mode
shape three highlights the sought combined deflections around and
normal to the first joint (q1 and q1x).

The identified elastic parameters using the MBD model with the
3DOF flexible joint representation were eventually used to predict the
modes in the rigid and upright postures. As a result, all the four mode
shapes below 30 Hz could be reproduced and the resulting natural
frequencies were closer to the experimental values than the ones re-
ported in Table 4 using the SDOF flexible model (Table 7). Average
frequency prediction error reduces to 5.5% from 12.8% when the SDOF
joint model was used. However, the prediction on the damping ratios is
worse since joint damping is affected by various factors such as the
controller, the link flexibility and the gearbox. As shown in the MAC
matrices in the predicted postures in Fig. 13a, correlated values for the
rigid posture are still influenced by measurement and identification
errors for the second mode as explained in Section 3. Otherwise, the
first modes in the rigid and upright postures, which involved deflections
normal to the first joint, are now captured. Mode shapes predicted in
the upright posture follow the same trend as in the milling posture.
High correlations are also observed between modes one and three and
between modes two and four for the milling and upright postures as
depicted in the measured auto-MAC matrices from Section 3 (Fig. 8d).

As a concluding remark, despite that simulated mode shapes in
Fig. 13b showcase the most significant deflections, it is clear that
smaller deviations arise around all the directions and for all the axes of
the joints. For instance, the second mode of the milling posture is
mainly dominated by a deflection around the second motion axis (q2)
but also requires the inclusion of DOF q1y in order to faithfully re-
produce the corresponding experimental mode shape. Therefore, all the
elastic parameters of the MBD model with 3DOF flexible joints were
taken into account even if only four modes were fitted.

6. Conclusion

A MBD model with SDOF joint model was presented to simulate the
dynamics of an industrial robotic manipulator in machining

Table 6
Identified joint stiffness and damping for the 3DOF flexible joint model of the
KUKA KR90 robot in the milling posture.

Joint stiffness [Nm/rad] Joint damping [Nm.s/rad]

k1 k1x k1y d1 d1x d1y
5.0e6 6.1e6 11.9e6 0.02e3 0.04e3 3.1e3
k2 k2x k2y d2 d2x d2y
6.9e6 11.8e6 8.1e6 2.4e3 0.04e3 9.4e3
k3 k3x k3y d3 d3x d3y
2.8e6 5.2e6 12.0e6 0.2e3 9.2e3 0.08e3

Fig. 12. Amplitude of measured and fitted frequency response function matrix H(ω) at the end-effector obtained with the 3DOF flexible joint model for the milling
posture.
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applications. The parameters of the model were identified using a
combination of rigid body model identification method and experi-
mental modal analysis.

The presented model can be used to predict the varying (posture-
dependent) dynamics of the robot, which is essential for planning ma-
chining operations to avoid excessive vibrations and chatter. The pre-
sented identification approach is convenient to perform in industrial
setups and does not require a detailed model of the link geometry.

A KUKA KR90 robotic arm was used as a case study, and it was
shown that the presented MBD model with SDOF representation can
fairly accurately simulate the vibration mode shapes in various pos-
tures. However, one mode shape that involved joint deflections around
an axis perpendicular to the joint rotation axis could not be simulated
using the presented model. The influence of the mode shapes that
cannot be simulated on the overall dynamics may be different in var-
ious manipulators and also in various postures.

Consequently, a MBD model with 3DOF flexible joints was devel-
oped in order to capture all the measured mode shapes. However, such
a model requires the knowledge of all the link inertia tensors. For that

reason, a first guess of the inertial parameters was obtained using the
CAD models of the links. The whole set of inertial parameters was then
refined on the basis of the rigid body model identification results as a
guideline in an ad-hoc method to tune the mass matrix of the manip-
ulator. Thereafter, elastic parameters around and normal to the axes of
motion were determined for one robot posture using a quadratic-like
cost function. Note that the solution was not unique as the number of
elastic parameters was higher than the number of measured modes thus
leading to an underdetermined identification. Hence, the identified
joint stiffness and damping ratios for the extended model did not have a
physical meaning and were treated as fitting parameters. Finally, all
posture-dependent modes were modelled, even those inducing deflec-
tions around axes perpendicular to the motion axes. The identified
elastic parameters were eventually used to predict the robot natural
frequencies, damping ratios and mode shapes in two other postures
with a satisfying accuracy.
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Appendix A. Identified parameters

Appendix B. Regressor matrix

=Y q q q π τ( , ˙ , ¨) (B.1)

Fig. 13. Resulting vibrational modes obtained with the 3DOF flexible joint model.

Table 7
Prediction of the natural frequencies and damping ratios in other postures for
the model involving 3DOF flexible joints (experimental frequencies and
damping ratios in brackets).

Mode Milling pose Upright pose Rigid pose

fn [Hz] ζn [%] fn [Hz] ζn [%] fn [Hz] ζn [%]

1 10.0 (10.0) 1.1 (1.4) 11.7 (11.0) 1.7 (0.7) 13.0 (14.0) 2.2 (0.5)
2 11.1 (11.0) 1.0 (1.0) 11.8 (11.8) 1.1 (0.7) 13.6 (14.5) 1.3 (0.8)
3 18.7 (19.2) 0.6 (0.5) 18.2 (20.4) 0.3 (1.6) 19.1 (17.8) 0.1 (1.2)
4 23.8 (23.7) 0.8 (0.8) 24.3 (25.4) 0.9 (0.7) 22.0 (22.5) 0.8 (1.0)

H.N. Huynh, et al. Robotics and Computer Integrated Manufacturing 61 (2020) 101852

13



=
⎡

⎣

⎢
⎢

⋯
⋯
⋯

⎤

⎦

⎥
⎥

Y Y Y
Y Y Y
Y Y Y

Y
1,1 1,2 1,22

2,1 2,2 2,22

3,1 3,2 3,22 (B.2)

=Y q̈1,1 1 (B.3)

= =Y Y 01,2 1,9 (B.4)

= −Y a q q2 (q̈ cos( ) q̇ q̇ sin( ))1,3 1 1 2 1 2 2 (B.5)

= − +Y a q q2 (q̈ sin( ) q̇ q̇ cos( ))1,4 1 1 2 1 2 2 (B.6)

= − +Y
q

q
q̈
2

q̈ cos(2 )
2

q̇ q̇ sin(2 )1,5
1 1 2

1 2 2 (B.7)

= − −Y q qcos( ) q̇ q̈ sin( )1,6 2 2
2

2 2 (B.8)

= − −Y q qq̈ sin(2 ) 2 q̇ q̇ cos(2 )1,7 1 2 1 2 2 (B.9)

= −Y q qq̇ sin( ) q̈ cos( )1,8 2
2

2 2 2 (B.10)

= + + + +
− + − + −
− + − +

Y a q a q q a q q
a q q a q q a q
a q q a q q

q̈ cos( ) q̈ cos(2 ) 2 q̈ cos( )
2 q̇ q̇ sin( ) 2 q̇ q̇ sin( ) q̇ q̇ sin( )
2 q̇ q̇ sin(2 ) q̇ q̇ sin(2 )

1,10 2 1 3 2 1 2 3 1 1 2 3

1 1 2 2 3 1 1 3 2 3 2 1 3 3

2 1 2 2 3 2 1 3 2 3 (B.11)

= − − + − +
− + − + −
− + − +

Y a q a q q a q q
a q q a q q a q
a q q a q q

q̈ sin( ) q̈ sin(2 ) 2 q̈ sin( )
2 q̇ q̇ cos( ) 2 q̇ q̇ cos( ) q̇ q̇ cos( )
2 q̇ q̇ cos(2 ) q̇ q̇ cos(2 )

1,11 2 1 3 2 1 2 3 1 1 2 3

1 1 2 2 3 1 1 3 2 3 2 1 3 3

2 1 2 2 3 2 1 3 2 3 (B.12)

= − + +

+ +

+Y q q

q q

q̇ q̇ sin(2 2 )

q̇ q̇ sin(2 2 )

q q
1,12

q̈
2

q̈ cos(2 2 )
2 1 2 2 3

1 3 2 3

1 1 2 3

(B.13)

= − + − +
− + − + − +

Y q q q q
q q q q q q

cos( ) q̇ 2 cos( ) q̇ q̇
cos( ) q̇ q̈ sin( ) q̈ sin( )

1,13 2 3 2
2

2 3 2 3

2 3 3
2

2 2 3 3 2 3 (B.14)

Table A1
Base parameters of the Kuka KR90 R3100 robot and gravity compensation and friction coefficients.

i Physical meaning of parameter i Value

1 + + + + + + + + + + +a M M M a a a aI I I I I ( ) M M M I Nm,yy2 m,yy3 yy2 yy3 zz1 12 2 3 3 22 m2 12 m3 12 m3 22 m,zz1 12 1897.8

2 + + +M a aI M I Nzz2 3 22 m3 22 m,zz2 22 1466.5

3 + +M a a MM C3 2 m3 2 x2 2 678.7
4 MCy2 2 48.3
5 − − −M a aI I Mxx2 yy2 3 22 m3 22 −662.2

6 + M aI Cxz2 z3 3 2 34.4
7 Ixy2 91.9
8 Iyz2 −1.0
9 Izz3 162.1
10 MCx3 3 129.1
11 MCy3 3 −2.7

12 −I Ixx3 yy3 −155.7
13 Ixz3 1.4
14 Ixy3 3.1
15 Iyz3 −1.0
16 Im,zz3 0.0113
17 −I Im,xx2 m,yy2 0.0147
18 −I Im,xx3 m,yy3 0.0112
19 B1 −7938.1
20 B2 −72.8
21 B3 257.1
22 Fv1 5.4
23 Fc1 1.2
24 Fv2 5.0
25 Fc2 1.4
26 Fv3 3.7
27 Fc3 0.9
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q̇ q̇ sin(2 2 N )

N q̇ q̇ sin(2 2 N )

q q
1,18

q̈
2

q̈ cos(2 2 N )
2 1 2 2 3 3

3 1 3 2 3 3

1 1 2 3 3

(B.19)

=Y 02,1 (B.20)

=Y q̈2,2 2 (B.21)

= −Y a q g qq̇ sin( ) cos( )2,3 1 1
2

2 2 (B.22)

= +Y a q g qcos( ) q̇ sin( )2,4 1 2 1
2

2 (B.23)

= −Y
qq̇ sin(2 )

22,5
1

2
2

(B.24)

= −Y qq̈ sin( )2,6 1 2 (B.25)

=Y qq̇ cos(2 )2,7 1
2

2 (B.26)

= −Y qq̈ cos( )2,8 1 2 (B.27)

= +Y q̈ q̈2,9 2 3 (B.28)

= − + + + +
− + + −

Y a q g q q a q a q q
a q a q q a q
2 q̈ cos( ) cos( ) q̈ cos( ) q̇ sin( )

q̇ sin( ) q̇ sin(2 ) 2 q̇ q̇ sin( )
2,10 2 2 3 2 3 2 3 3 1 1

2
2 3

2 3
2

3 2 1
2

2 3 2 2 3 3 (B.29)

= + − − + +
− + + −

Y g q q a q a q a q q
a q a q q a q

sin( ) 2 q̈ sin( ) q̈ sin( ) q̇ cos( )
q̇ cos( ) q̇ cos(2 ) 2 q̇ q̇ cos( )

2,11 2 3 2 2 3 2 3 3 1 1
2

2 3

2 3
2

3 2 1
2

2 3 2 2 3 3 (B.30)

= −
+

Y
q qq̇ sin(2 2 )
22,12

1
2

2 3
(B.31)

= − +Y q qq̈ sin( )2,13 1 2 3 (B.32)

= +Y q qq̇ cos(2 2 )2,14 1
2

2 3 (B.33)

= − +Y q qq̈ cos( )2,15 1 2 3 (B.34)

= +Y q̈ N q̈2,16 2 3 3 (B.35)

= −Y
qN q̇ sin(2 N )

22,17
2 1

2
2 2

(B.36)

= −
+

Y
q qq̇ sin(2 2 N )

22,18
1

2
2 3 3

(B.37)

= = = = = = = =Y Y Y Y Y Y Y Y 03,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8 (B.38)
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= − + + + +
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Y a q g q q a q q

a q

q̈ cos( ) cos( ) q̇ sin( )

q̇ sin( )

a q

a q q

3,10 2 2 3 2 3 1 1
2

2 3
q̇ sin( )

2

2 2
2

3
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2

2 1
2

3
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2
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(B.40)

= + − + + +
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Y g q q a q a q q
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sin( ) q̈ sin( ) q̇ cos( )

q̇ cos( )

a q

a q q
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2
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3
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= −
+

Y
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1
2
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= +Y q qq̇ cos(2 2 )3,14 1
2

2 3 (B.44)

= − +Y q qq̈ cos( )3,15 1 2 3 (B.45)

= +Y N (q̈ N q̈ )3,16 3 2 3 3 (B.46)

=Y 03,17 (B.47)

= −
+

Y
q qN q̇ sin(2 2 N )
23,18

3 1
2

2 3 3
(B.48)
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