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1 Introduction

Self-dual Yang-Mills (SDYM) and self-dual gravity (SDGR) have many remarkable prop-
erties. Both can be viewed as truncations of the YM and GR that keep only a subset of
the solutions (and also interactions) of the full theories. In the case of SDYM these are “in-
stantons”, which are gauge field configurations whose field strength is purely anti-self-dual,
so that the self-dual part of the curvature 2-form vanishes

F aSD = 0 , (1.1)

Here a is the Lie algebra index, and the form indices are suppressed. Gauge fields sat-
isfying this first order differential equation are then also automatically solutions of the
second-order YM field equations dµAF aµν = 0, where dA is the covariant derivative with
respect to the connection A. In the case of SDGR the solutions are Einstein (i.e. having
the vanishing tracefree part of the Ricci tensor) metrics with purely anti-self-dual Weyl
curvature. While this appears to be a second-order in derivatives condition on the metric,
there exists reformulations in which the gravitational self-duality equations are first order
in derivatives, see below. One can then see that, similar to the case of SDYM, solutions
of the first-order self-duality equations are also automatically solutions of the second-order
field equations of full GR.

Both SDYM and SDGR can also be studied as quantum theories. They are both one-
loop exact and quantum finite, see [1] for a discussion of this point. Both theories can be
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usefully characterised (and contrasted with their full YM and GR cousins) in terms of the
scattering amplitudes that they produce. At tree level, the only non-vanishing (for complex
momenta) amplitude is at 3 particles. This amplitude is chiral. In our conventions this is
the −−+ amplitude. All higher point amplitudes vanish at tree level. At one-loop level,
all same (negative) helicity amplitudes are non-vanishing. We refer the reader to e.g. [1]
and references therein for more information.

There exist several known formulations of SDYM and SDGR. In the former case, what
appears to be the most useful covariant formulation is one first proposed by Chalmers and
Siegel [2]. The action can be written as

SSDYM =
∫

ΨiaH i ∧ F a. (1.2)

Here H i, i = 1, 2, 3 is a triple of self-dual two-forms that are also known as ’t Hooft symbols.
These objects are dimensionless and satisfy the algebra of quaternions

H i
µ
αHj

α
ν = −δijδµν + εijkHk

µ
ν . (1.3)

The field Ψia is a triple of Lie algebra valued scalars, and F a is the Lie algebra valued field
strength 2-form. Note that the combination ΨiaH i, for varying Ψia, parametrises a generic
Lie algebra valued self-dual 2-form. Varying the action with respect to Ψia one gets the
equations H i ∧ F a = 0, which imply (1.1). There are other, non-covariant formulations of
SDYM, some of which also feature in [2]. See also [3] for a more recent discussion, and also
on how to obtain (non-covariant) actions from the twistor space.

There exists a covariant formulation of SDGR in flat space, somewhat hidden in the
discussion in [4], and discussed much more explicitly in [5]. We will review this action
below. It is considerably different from the SDYM action (1.2). Another action for SDGR,
applicable for describing anti-self-dual Einstein metrics with non-zero scalar curvature was
studied in [1]. It is based on a “pure connection” description of gravitational instantons,
and is closer to the SDYM Chalmers-Siegel action (1.2). The main purpose of this paper
is to describe a covariant action for SDGR that is applicable for metrics with zero scalar
curvature. Thus, the theory that is the main object of this paper can be referred to as “flat”
SDGR. The action we describe is new, but is close to that in [1], and can be motivated from
the latter by a contraction procedure that drops the connection-connection term from the
field strength. The new action is much closer to the SDYM action (1.2) than the previously
available “flat” SDGR formalism [4, 5].

In its form that is suitable for expanding around the flat space R4 the new action is
remarkably simple

S[a,Ψ] = 1
2

∫
Ψij da

i ∧ daj . (1.4)

Here i, j = 1, 2, 3 and Ψij is a field that is symmetric and tracefree Ψijδij = 0. The action
is a functional of exact two-forms dai, and to obtain Euler-Lagrange equations one varies
with respect to both Ψij and ai. In the main text we will give a formulation that works also
on arbitrary closed manifolds. In this case the exact two-forms in the action are replaced
by arbitrary closed two-forms that are varied by exact forms.
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The background that describes the flat space and that gives a starting point for the
perturbative expansion is

dai = M2Hi , (1.5)

where Hi are the already encountered self-dual 2-forms, and M2 is the parameter of di-
mension mass two, introduced for dimensional reasons. As will be further discussed below,
a triple of 2-forms H i (that is suitably non-degenerate) uniquely determines a conformal
class of a metric for which H i are self-dual. Then, the volume form is fixed as a multiple
of δijH i ∧Hj . Therefore, H i determines a unique metric, and this is how the fields con-
tained in the action (1.4) determine the metric. The action (1.4) expanded around this
background then reads

SSDGR =
∫

Ψij

(
M2H i ∧ daj + 1

2da
i ∧ daj

)
. (1.6)

The first term can be shown, see below, to give the correct action for free gravitons, and
the second term is a simple cubic vertex. It is instructive to compare this to the SDYM
action (1.2) that we write in the form that exhibits strongest similarity to (1.6)

SSDYM =
∫

Ψia

(
H i ∧ dAa + 1

2f
a
bcH

i ∧Ab ∧Ac
)
. (1.7)

Here Aa is a one-form connection taking values in a Lie algebra with structure constants
fabc . The new SDGR action thus exhibits the double copy structure [6] of gravity rather
explicitly. Indeed, this is particularly prominent in the first, kinetic terms of both actions.
It is clear that one passes from SDYM to SDGR by replacing the Lie algebra index in
Ψia, Aa by the “gravitational” index i. This is precisely what the double copy procedure is
supposed to do, replacing “colour” by “kinematics”. It is this similarity between the SDYM
and the new SDGR action that is, in our opinion, one of the most attractive features of the
new formulation. In the main text we will see that the similarity between the two theories
extends further and SDYM and SDGR in the form (1.4) are similar in many aspects. For
previous work relating SDYM and SDGR we note, in particular, [7].

We will also show that in the light-cone gauge the new action reduces to the well-known
Siegel action [4]

S =
∫

(Φ−2�Φ+2 +MPl εA′B′εC′D′Φ+2∂
+A′

∂+C′Φ−2∂
+B′

∂+D′Φ−2) , (1.8)

where Φ±2 are two scalars representing helicity ±2 states of the graviton.
A part of our motivation in this paper stems from the study of Chiral Higher Spin

Gravity [8–12], which is the minimal extension of gravity by massless higher spin fields.
Its action contains the SDYM and SDGR actions that are coupled to higher spin fields
featuring their own interactions too. The theory is UV-finite at one-loop despite the naive
non-renormalizability of higher derivative higher spin interactions [11–13] and captures a
subset of correlation functions of Chern-Simons matter theories [14] via AdS/CFT. The
action (1.4) arose as a by product of [15], where covariant actions featuring gauge and
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gravitational interactions of higher spin fields were constructed. But these higher spin con-
siderations will not play any role in this paper. We motivate and introduce the action (1.4)
staying firmly in the context of usual gravity and its self-dual truncation.

The outline of the paper is as follows. In section 2 we present the new formulation
of the SDGR in flat space and discuss its relation to mathematical results and to other
formulations. In section 3 we discuss the perturbative aspects such as gauge-fixing, ampli-
tudes and the light-cone gauge. Finally, in section 4 we identify the gauge algebra behind
flat SDGR, which turns out to be a certain contraction of so(3, 2) that is different from
the Poincare algebra.

2 Self-dual gravity

The discussion of this section is phrased in terms of Euclidean signature gravity. Indeed,
anti-self-dual Einstein metrics are only non-trivial (i.e. not maximally symmetric) when the
signature is Euclidean or split. Alternatively, one can interpret the constructions below as
those for complexified GR.

2.1 Hyper-Kähler manifolds

It is well-known that a zero scalar curvature four-dimensional gravitational instanton is
a hyper-Kähler manifold. We recall that a hyper-Kähler manifold of dimension 4k is an
Einstein manifold that is Kähler with respect to 3 different complex structures I, J,K
that anti-commute and form the algebra of imaginary quaternions IJ = K. This means
that the manifold has a quaternionic structure, which in turn implies that the holonomy
is contained in Sp(k) and the manifold has zero scalar curvature. In the case k = 1 we
have Sp(1) = SU(2) and a hyper-Kähler manifold is a complex 2-dimensional Calabi-Yau
manifold. Any compact such manifold is either a K3 surface or a torus T 4.

Given that the holonomy of a 4-dimensional hyper-Kähler manifold is contained in
one of the two chiral halves SU(2) of the 4-dimensional rotation group SO(4), it is always
possible to choose a gauge in which the chiral half of the spin connection for the other
SU(2) vanishes. This gives a very convenient starting point for describing such manifolds.
In the mathematical literature such a description is well known. It has been sketched in [16]
and described in details in [17].

We start by describing the result that appears as Lemma 3.1 in [17].

Lemma 1 Let X be a 4-manifold and (ω1, ω2, ω3) a triple of closed 2-forms on X that
satisfy

ωi ∧ ωj = 2δijµ , (2.1)

where µ is some non-vanishing 4-form on X. Then X carries a hyper-Kähler, which is
characterised by the fact that all ωi are self-dual and the volume form is µ.

The proof is based on several steps, see [17], and we just sketch the main points. Given
a triple of non-degenerate 2-forms ωi on X there exists a unique conformal class of a metric
on X which makes ωi self-dual. If the wedge product on the subbundle in Λ2 spanned by ωi
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is definite, then the conformal metric one obtains is of a Riemannian signature. Choosing
a volume form one then gets a metric. In the case of 2-forms satisfying (2.1) the natural
volume form to complete the definition of the metric is µ. Overall, with (2.1) satisfied we
get a Riemannian signature metric gω defined by ωi.

The second important statement is that when the 2-forms are closed dωi = 0, and
satisfy (2.1), the self-dual part of the spin connection vanishes. This immediately implies
that gω is Einstein of zero scalar curvature, and with only a half of its Weyl curvature
possibly non-zero. Indeed, the fact that the self-dual part of the spin connection is zero
implies that also its curvature 2-form is zero. However, as is well-known, see e.g. [18],
chapter 5, the curvature of only one of the two chiral halves of the spin connection contains
enough information to impose the Einstein condition. Thus, in general, the curvature of
the self-dual part of the spin connection can be decomposed into its self- and anti-self-dual
parts (as a 2-form). The self-dual part then encodes one of the two chiral halves of the Weyl
curvature, as well as the scalar curvature. The anti-self-dual part encodes the tracefree part
of Ricci. When both these parts vanish we have a zero scalar curvature Einstein manifold,
whose self-dual part of the Weyl curvature also vanishes. This is a gravitational instanton.

We can then propose a variational principle that leads to (2.1) as one of the Euler-
Lagrange equations. The action we take is

S[Ψ, ω] = 1
2

∫
Ψijωi ∧ ωj . (2.2)

Here Ψij is a field that is symmetric Ψij = Ψ(ij), which is moreover assumed to be tracefree
δijΨij = 0. Varying the action with respect to this field produces the condition (2.1).

The action (2.2) can also be varied with respect to ωi. It should be kept in mind,
however, that the 2-forms ωi are not free to vary, as they are assumed to be closed. This
means that it is natural to allow only a variation of each one of them by an exact form.
Thus, the definition of the action is completed by requiring that the variations in the space
of 2-forms are by an exact form

δωi = dai . (2.3)

This is similar to the variational principles considered by Hitchin in [19]. With this in
mind, the Euler-Lagrange equation arising by varying ωi are

dΨij ∧ ωj = 0 , (2.4)

where we used the fact that ωi are closed. This equation describes a propagation of the
field Ψij in the background of the gravitational instanton described by ωi.

The action (2.2) is invariant under diffeomorphisms

δωi = Lηωi, δΨij = LηΨij , (2.5)

where η ≡ ηµ and Lη = {d, iη} is the Lie derivative. Also, if one decides to parametrise
2-forms ωi in a given cohomology class, then the variation in each cohomology class is an
exact form dai. It is clear that the 1-forms ai are defined modulo exact forms dθi, where
θi are zero-forms.
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2.2 Relation to SDGR on anti-de Sitter space

There is another covariant action for SDGR [1], which is better suited for expansion over
(anti-) de Sitter space. The flat action we described above can be understood as arising
by a “contraction” procedure from the action [1].

Action [1] has a related field content and reads

S[Ψ, A] = 1
2

∫
ΨijF i ∧ F j . (2.6)

The action is a functional of the “Lagrange multiplier” field Ψij , which is the same field
that appears in (2.2), and an SO(3) connection Ai. The object F i is the curvature 2-form

F i = dAi + 1
2ε

ijkAj ∧Ak . (2.7)

The symmetries of this theory are the local SO(3) symmetries and diffeomorphisms.
The action (2.6) describes anti-self-dual Einstein metrics with non-zero scalar curva-

ture. The logic that leads to this conclusion is very similar to that described in the previous
subsection. Thus, the equation one obtains by varying with respect to Ψij is

F i ∧ F j = 2δijµ . (2.8)

Similar to the flat case, in which the role of F i is played by the symplectic forms ωi, the
triple F i of curvature 2-forms can be used to define a Riemannian signature metric gF . It
has the unique conformal class that makes the 2-forms F i self-dual, and it has the volume
form µ. The second step is also similar to one we had in the flat case. When (2.8) are
satisfied, the Bianchi identity dAF i = 0 implies that the connection Ai is the self-dual part
of the spin connection for the metric gF . However, unlike in the flat case, this connection no
longer needs to vanish. Instead, its curvature, which coincides with the self-dual part of the
Riemann curvature, is in an appropriate sense constant, which means that only the scalar
curvature, and possibly the anti-self-dual part of the Weyl curvature is non-vanishing. This
means that the metric gF is a gravitational instanton. For more details on this construction
we refer the reader to [1] and also to [18].

It is now clear that we can obtain the action (2.2) from (2.6) by a contraction procedure
that sets to zero the AA terms in (2.6). After this the curvature 2-forms F i are exact forms
F i = dAi ≡ dai, and the action coincides with (2.2) restricted to the situation of “exact”
2-forms ωi. It is clear, however, that the action (2.2) where ωi do not need to be exact, is
more general and makes sense also on closed 4-manifolds.

2.3 Relation between different formulations of (SD)GR

All action discussed above have a direct relation to the action of General Relativity pro-
posed by Plebanski [20]. This action reads

S[H,A,Ψ] =
∫
H iFi −

1
2

(
Ψij + Λ

3 δij
)
H iHj . (2.9)
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Here H i is a triple of 2-forms, and Ai is an SO(3) gauge field. As before Ψij are “Lagrange
multiplier” fields. The equation for H i is

Fi =
(

Ψij + Λ
3 δij

)
Hj . (2.10)

Plebanski action can be used to obtain an alternative description of GR in which only
the fields Ψij and Ai remain. This is done by solving the equation (2.10) for the 2-form
fields H i. This gives

H i =
(

Ψ + Λ
3 1
)−1

ij
F j . (2.11)

Substituting this into the original action gives

S = 1
2

∫
F iF j(Ψ + Λ1)−1

ij . (2.12)

This action is still equivalent to the full Einstein-Hilbert action with a non-zero cosmological
constant. The truncation to SDGR corresponds to an expansion of the matrix (Ψ + Λ1)−1

in powers of Ψ, and then dropping all terms apart from

S = 1
2

∫
F iF jΨij . (2.13)

If one further drops the AA term in the curvature one obtains the “flat” SDGR action (2.2)
that is the subject of this paper.

There is another action for flat SDGR, which is due to Siegel [4]. It is obtained by
dropping the cosmological constant term, as well as the AA term from the curvature. In
order to distinguish the new field, which is no longer a connection, from Ai, we change the
name to ai. The action is then

S[H,A] =
∫
H idai −

1
2ΨijH

iHj . (2.14)

The action in [4] is a different, but a closely related one. To see this, we first note that the
purpose of the last term containing Ψij is to impose the constraint that implies that H i is
the self-dual part of the 2-form constructed from the frame. Thus, (2.14) is equivalent to
an action for the frame field and a triple of 1-forms

S[e,A] =
∫

(e ∧ e)iSDdai . (2.15)

Here (e∧e)iSD is the triple of self-dual 2-forms constructed from the frame e. As is explained
in [5], the variation of this action with respect to ai gives an equation that implies that the
self-dual part of the spin connection vanishes, which thus gives the correct description of
gravitational instantons.

The difference between (2.14), (2.15) and (2.2) is in a different field content that is
used to obtain the equation that guarantees that the self-dual part of the spin connection
vanishes. In (2.14), (2.15) we have a metric-like field H i or a frame e, and the main
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equation that arises is a first order partial differential equation on this metric-like field.
The action (2.2) gives a “connection” description of gravitational instantons, in which the
metric is constructed from the derivative ωi = dai of the connection-like field ai. The main
arising equation in this formalism is the algebraic equation (2.1) for the objects ωi = dai.

The advantage of the formulation (2.2) as compared to (2.15) is that the covariant
form of gauge-fixing that is necessary to do covariant perturbative calculations is much
simpler for (2.2) than for (2.15). For the latter, the gauge-fixing is quite non-trivial and
was recently described in [21]. This reference contains the description relevant for full GR.
The case of SDGR is obtained by a truncation. Nevertheless, even in the truncated case the
gauge-fixing remains quite involved. In contrast, there is a much simpler covariant gauge-
fixing that is available for the action (2.2). This will be described below. This, together
with the strong similarity to the known SDYM action (1.2) that we already discussed
in the Introduction suggests that the action (2.2) is more useful for explicit calculations
than (2.15).

3 Perturbative expansion, amplitudes, light-cone

We now consider the action (2.2) in the form (1.4) that is appropriate for expansion around
the flat space background. The gauge symmetries of this action are diffeomorphisms as
well as shifts of the 1-form potentials ai by exact 1-forms. Together, these can be described
as follows

δai = dξi + iηH
i + iηda

i , δΨij = iηdΨij , (3.1)

where we used Lη = {d, iη} and absorbed d(iηωi) into ξi. This gives the most convenient
representation of the gauge symmetries, because in this form there are no derivatives of
the vector fields ηµ. The diffeomorphisms then act purely algebraically on the fields, which
greatly simplifies the gauge-fixing, see below.

3.1 Free fields and the spinor notation

We have already quoted the perturbative expansion of the action (2.2) around the flat
space background in (1.6). The background corresponds to the choice of the basic 2-forms
ωi being equal to the ’t Hooft symbols H i. To understand the structure of the first, kinetic
term of the action (1.6) it is very useful to pass to the spinor notation.

The spinor translation of the fields Ψij , ai is as follows. The object aiµ becomes aABµ ,
which is a one-form with values in symmetric rank two spinors. Indices µ, ν, . . . = 0, . . . , 3
are world indices; A,B,C, . . . = 1, 2 and A′, B′, . . . = 1, 2 are the spinor indices of the
Lorentz algebra sl(2,C). Translating into spinor indices also the spacetime (1-form) index
µ we get an object aABCC′ , where now we have two different types of spinor indices.
The tracefree field Ψij translates into the totally symmetric rank 4 spinor ΨABCD. The
spinor notation for the partial derivative is ∂AA′ . The exterior derivative dai becomes
the following spinorial object ∂CC′aABDD′ . The first, kinetic term in (1.6) involves taking
the wedge product of this with self-dual 2-forms H i. This causes the self-dual projection
of the object ∂CC′aABDD′ , because self-dual forms only pair non-trivially with self-dual
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one under the wedge product. The self-dual projection of the 2-form ∂CC′aABDD′ is the
object ∂CC′aABD

C′ in which the primed spinor index is contracted. All in all, the spinor
translation of the kinetic term in (1.6) reads

S(2)[Ψ, a] =
∫

ΨABCD∂
A
A′aBCDA

′
. (3.2)

We have rescaled the field ΨABCD to absorb the dimensionful quantity M2 into it, so as
to get the canonically normalised kinetic term. This means that the potential field a has
mass dimension one, while Ψ has mass dimension two.

We now introduce a very convenient notation. To save indices, from now on, the indices
that belong to a group of symmetric (or to be symmetrized) indices can be denoted by the
same letter. The kinetic term written in this notation reads

S =
∫

ΨAAAA∂
A
A′aAAAA

′
. (3.3)

The corresponding equations of motion are

∂B
A′ ΨAAAB = 0 , ∂AB′ aAAA,B

′ = 0 . (3.4)

These equations are well-known [22–25]. They describe the helicity +2 and −2 states of the
free graviton. The first one is just a part of the Bianchi identities for the Weyl tensor. As
expected, we have the correct free limit where the theory describes free massless spin-two
degrees of freedom.

3.2 Gauge-fixing

The gauge symmetries (3.1) linearized around the flat background are

δaAB = dξAB + ηAB′ eBB
′

δΨAAAA = 0 . (3.5)

Here eAA′ is the background vierbein 1-form, and the last piece in the gauge transformation
for the potential fields ai originates from iηH

AB, where we converted vector-field ηµ into
a bi-spinor ηAA′ = eAA

′
µ ηµ with the help of background vierbein eAA

′
µ . Now, aAB can be

decomposed into two irreducible spin-tensors:

aAB = eCC′ΦABC,C′ + eAB′ ΦBB′ (3.6)

of type (3, 1) and (1, 1), respectively. It is clear that η-symmetry allows us to gauge away
the second component in a peaceful algebraic way. As the result we have a theory of two
irreducible spin-tensors, ΨABCD and ΦABC,A′ , as the physical fields and with the following
linearised gauge transformations

δΦAAA,A′ = ∂AA
′
ξAA , δΨAAAA = 0 , (3.7)

where we used our convention that a set of spinor indices that is symmetrised is denoted
by the same letter.
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The linearised action (3.3) does not depend on the ΦBB′ component of the connection,
and in this sense already has the diffeomorphism symmetry gauge-fixed. There is still the
symmetry δΦAAA,A′ = ∂AA

′
ξAA that this action is invariant under. To gauge-fix it, and

produce a kinetic term that can be inverted to obtain the propagator, we use a variant
of the Lorentz gauge. The same gauge-fixing procedure but for the SDGR with non-zero
cosmological constant has been described in [1].

The idea is to add a Lagrange multiplier term imposing the Lorentz gauge condition

∂BB
′ΦAAB,B′ = 0 . (3.8)

This is added with a Lagrange multiplier ΨAA. One then notices that the field ΨAAAA

already present in the action can be combined with the new Lagrange multiplier field ΨAA

to produce the new field

Ψ̃ABCD := ΨABCD + Ψ(ABεC)D . (3.9)

The new field is totally symmetric in its first 3 spinor indices, and consists of two different
irreducible components ΨABCD and ΨAB. Returning to the convention of a repeated spinor
index to denote a group of spinor indices that is totally symmetric, the gauge-fixed action
becomes ∫

Ψ̃AAAB∂B
B′ ΦAAA,B′ . (3.10)

This action depends on two fields ΦAAA,B′ and Ψ̃AAAB that both contain the same number
of components. The operator that maps one into the other is a version of the (chiral) Dirac
operator, and is non-degenerate. Its inverse is the propagator of the theory.

3.3 Tree-level amplitudes

Polarisation spinors We start by discussing the momentum space representation of the
solutions of the linearised field equations (3.4). It is clear that these equations describe
the two helicities of the graviton asymmetrically. One of the two helicities resides in the
“potential” field ΦAAA,B′ , while the other helicity resides in ΨAAAA. Let us agree that it is
the negative helicity that is described by the connection. The corresponding polarisation
tensor is then

ε−AAA,A′(k) = M
qAqAqAkA′

(qk)3 . (3.11)

Here we have a null momentum kAA′ = kAkA′ , qA is an auxiliary spinor, and (qk) := qAkA
is the spinor contraction. We have also included a dimensionful parameter M to an ap-
propriate power in front, so that the polarisation spinor is dimensionless. The polarisation
spinor introduced satisfies the first of the equations in (3.4).

The polarisation spinor describing the opposite, positive helicity is an object with only
unprimed spinor indices and is given by

ε+AAAA = M−1kAkAkAkA . (3.12)

The mass parameter in front is so that the mass dimension of this spinor is one. This polar-
isation spinor satisfies the momentum space version of the second of the equations in (3.4).
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Amplitude characterisation of the cubic vertex. We now evaluate the cubic vertex
in (1.6) on shell, by inserting into it appropriate polarisation spinors. Given that we have
absorbed the mass parameter M2 into Ψ to give it the mass dimension two, the interaction
takes the form

1
2M2

∫
ΨAAAAdaAA ∧ daAA . (3.13)

On negative helicity states ε−(k) the 2-forms daAA have only the ASD parts, because
their SD parts vanish in view of the equation satisfied by these states. So, the only non-
vanishing part of daAA is the spinor

M
qAqA
(qk)2kA′kB′ . (3.14)

Note that, apart from the dimensionful prefactor, this is the usual polarisation state for a
single negative helicity graviton.

The cubic interaction in (1.6) contains the wedge product of two such da factors. This
converts into the contraction of the primed indices, which gives

M2[12]2 qAqAqAqA(q1)2(q2)2 . (3.15)

We now contract this with a positive helicity polarisation spinor (3.12), and multiply the
result by M−2 present in front of the action. The amplitude is then given by

A−−+ = 1
M

[12]2 (q3)4

(q1)2(q2)2 . (3.16)

Eliminating factors of the auxiliary spinor q using the momentum conservation identities
(q3)/(q1) = −[12]/[32], (q3)/(q2) = −[21]/[31] we get

A−−+ = 1
M

[12]6

[23]2[13]2 . (3.17)

This is the usual result in gravity. This also allows us to identify M = MPl.

3.4 Light-cone gauge

Another very useful characterisation of the theory can be obtained by passing into the
light-cone gauge. This reduces everything to the physical degrees of freedom only. Light-
cone gauge also allows to perform explicit computations of Feynman diagrams since SDGR
turns out to be a rather simple theory of two ‘scalar’ fields representing helicity ±2 states.

As the first step we impose the light-cone gauge by setting ΦAB+,+′ = 0.1

Then, the physical degree of freedom is in Φ−2 = (∂++′)−2Φ−−−,+′ and Φ−−−,−′ =
∂+−′(∂++′)−1Φ−−−,+′ is an auxiliary field. As for ΨABCD, the physical degree of free-
dom resides in Φ+2 = (∂++′)2Ψ−−−−, the rest being auxiliary fields. Plugging this into
the full action we end up with the Siegel action [4]

S =
∫

(Φ−2�Φ+2 +MPl εA′B′εC′D′Φ+2∂
+A′

∂+C′Φ−2∂
+B′

∂+D′Φ−2) , (3.18)

where we also introduced a coupling constant g. We note that Φ±2 are related via
φ±s = (∂++′)∓2Φ±s to the fields φ±s that transform canonically under the Lorentz trans-
formations, see e.g. [8, 26] and [4] for more detail on light-cone manipulations.

1We change the range of indices from 1, 2 to A = +, −, A′ = +′, −′, etc.
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4 Gauge algebra of SDGR

It is also interesting to discuss the gauge algebra of SDGR in flat and anti-de Sitter space.
Let us start with the Lorentz LAA, LA′A′ and translations PAA′ generators of the anti-de
Sitter algebra so(3, 2) ∼ sp(4,R):

[LAB, PCC′ ] = εBCPAC′ + εACPBC′ , (4.1a)

[LA′B′ , PCC′ ] = εB′C′PCA′ + εA′C′PCB′ , (4.1b)

[PAA′ , PBB′ ] = εA′B′LAB + εABLA′B′ , (4.1c)

[LAB, LCD] = εBCLAD + 3 more , (4.1d)

[LA′B′ , LC′D′ ] = εB′C′LA′D′ + 3 more . (4.1e)

Introducing a gauge field of this algebra, A = 1
2ω

AALAA + 1
2ω

A′A′
LA′A′ + eAA

′
PAA′ the

curvature F (A) of A decomposes into

dωAA + ωAC ∧ ωCB + eAB′ ∧ eAB′ = RAA , (4.2a)

deAA
′ + ωA

′
B′ ∧ eAB′ + ωAB ∧ eBA

′ = TAA
′
, (4.2b)

dωA
′A′ + ωA

′
C′ ∧ ωC′B′ + eB

A′ ∧ eBA′ = RA
′A′
, (4.2c)

the second one being torsion and the other two being two components of the curvature
two-form. The first curvature is the one that is used in the AdS-SDGR with RAB =
FAB + eAB′ ∧ eAB′ . The Ψ-equations of motion guarantee that FAA can be expressed as
eAB′ ∧ eAB′ .

In order to reproduce the structures relevant for the flat space SDGR, we can take a
limit where LAA becomes central and LA′A′ disappears from [P, P ], i.e.

[LAB, PCC′ ] = 0 , (4.3a)
[LA′B′ , PCC′ ] = εB′C′PCA′ + εA′C′PCB′ , (4.3b)
[PAA′ , PBB′ ] = εA′B′LAB , (4.3c)
[LAB, LCD] = 0 , (4.3d)

[LA′B′ , LC′D′ ] = εB′C′LA′D′ + 3 more . (4.3e)

Note that this limit is rather different from the flat space limit where the only change as
compared to (4.1) is

[PAA′ , PBB′ ] = 0 . (4.4)

The limiting algebra (4.3) takes advantage of the specific structure that is available only in
4d: there are chiral LAA and anti-chiral LA′A′ generators and we can treat them differently.
The curvatures corresponding to (4.3) are

dωAA + eAB′ ∧ eAB′ = PAA , (4.5a)

deAA
′ + ωA

′
B′ ∧ eAB′ = TAA

′
, (4.5b)

dωA
′A′ + ωA

′
C′ ∧ ωC′B′ = PA

′A′
. (4.5c)

Our action takes advantage of PAA = FAA + eAB′ ∧ eAB′ only.
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Let us discuss the relation to the well-known oscillator realisation of so(5) ∼ sp(4). One
takes four operators with canonical commutation relations, [yA, yB] = iεAB, [ȳA′ , ȳB′ ] =
iεA′B′ and defines

LAB = −i2 {yA, yB} , LA′B′ = −i2 {ȳA
′ , ȳB′} , PAA′ = −i2 {yA, ȳA

′} . (4.6)

These generators obey (4.1). The limiting algebra (4.3) can be obtained in the commutative
limit [yA, yB] = 0, while leaving [ȳA′ , ȳB′ ] = iεA′B′ untouched.

The construction above has an obvious higher spin generalization. In the higher spin
case the gauge algebra is the even subalgebra of the Weyl algebra A2 [27], i.e. its ele-
ments are even functions f(y, ȳ) = f(−y,−ȳ). Similarly to SDGR, the limiting algebra
is the commutative limit in yA. Despite being commutative the algebra still features a
certain deformation to A∞- and L∞-algebras described in [28] (the deformation is due
to a Z2-orbifold: Poisson manifolds with discrete symmetries can have more deforma-
tions in the sense of deformation quantization provided one considers the corresponding
Poisson orbifold).

5 Discussion

In this paper we have given a new simple action formulation of self-dual gravity that
is appropriate for describing gravitational instantons with zero scalar curvature. Many
elements of this description can be found in the mathematical literature [16, 17], but the
action (2.2) appears to be new.

We have seen that the action (2.2), when expanded around an appropriate background
ωi = H i, gives rise to the kinetic term (3.3). The corresponding linearised field equations
describe two different graviton helicities, one contained in the field ΦAAA,B′ and the other
in ΨAAAA. We have also seen that the arising interaction, which is of the form Ψdada,
correctly reproduces the 3 point graviton scattering amplitude (3.17). The action (2.2)
also gives rise to the familiar pattern (3.18) in the light-cone gauge.

One of the most intriguing aspects of the new formulation of SDGR is that the structure
of the arising kinetic term (3.3) literally mimics the structure familiar from the SDYM case.
Indeed, as discussed in details in [1], the spinor translation of the first, kinetic term in (1.7)
is given by ΨAB∂B

B′
AAB′ . We thus see that the change in the case of gravity is to add two

more unprimed spinor indices. The gauge-fixing that is most useful in the case of SDYM,
see [1], is also the complete analog of the one in (3.9). Thus, the kinetic terms of SDGR
and SDYM can be treated in exact parallel, and the arising propagator is the inverse of an
appropriate chiral Dirac operator.

It is interesting that this suggests a new perspective on the colour/kinematics duality
and the double copy structure [6] of gravity. Indeed, the double copy prescription is to first
write the YM amplitudes so that the colour/kinematic symmetry is manifest. The second
step is to replace the “colour” numerators with the “kinematic” ones. It is interesting
that one can pass from the kinetic term of SDYM in (1.7) to the kinetic term of SDGR
in (1.6) simply by replacing the Lie algebra “colour” index of Ψia, Aa with the “chiral”
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index i = 1, 2, 3 that enumerates the generators of the self-dual chiral half of the Lorentz
Lie algebra. This suggests that there is a link between the chiral half of the Lorentz algebra
and the mysterious “kinematics” Lie algebra whose existence is suggested by the statement
of the colour/kinematics duality, see [29] for an attempt at identification of this Lie algebra.
It would be very interesting to see if the new formulation of SDGR can shed any light on
the double copy structure of gravity, even if only in the self-dual sector, see [7] and more
recently [30] for work on the double copy in the self-dual sector. We hope to return to this
question in another publication.
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