Higher-spin gravities with bifundamental
 fields and dynamical 2-form

Nicolas Boulanger

Université de Mons (UMONS), Belgium
SISSA, 29 July 2014

Based on works - to appear soon - done in collaboration with E. Sezgin and P. Sundell

Plan

(1) Introduction to unfolding And VASiliev's EQUATIONS
(2) Extension with bifundamental fields
(3) Underlying Frobenius algebra; Action

4 Conclusions

1. INTRO TO UNFOLDING ; VASILIEV'S EQUNS

- Weyl's Gauge Principle : HS theories contain gravity. ∞-dim gauge algebra;
- Vasiliev's unfolding : A geometric, Cartan-like approach to field theory;
- AdS/CFT dualities for Vasiliev's theory : $A d S_{4} / C F T_{3}$ [Sezgin-Sundell, Klebanov-Polyakov] and $A d S_{3} / C F T_{2}$ [Gaberdiel-Gopakumar]. Relations with statistical physics, non-commutative field theory, strings.

The gauge principle [H. Weyl, 1929]
M. A. Vasiliev : fully nonlinear field equations for higher-spin gauge fields in 4D [Vasiliev, 1990 - 1992] and in D space-time dimensions [hep-th/0304049]. Salient features:

- Manifest diffeomorphism invariance, no explicit $d^{2} s$;
- Cartan integrability \Rightarrow gauge invariance under $\mathfrak{h s}_{D}$;
- Two ∞-dim $\mathfrak{s o}(2, D-1)$ modules : adjoint and twisted-adjoint representations \rightsquigarrow master 1-form and master zero-form. Uses unfolding in terms of FDA.

Unfolded equations and FDA

A free (graded commutative, associative) differential algebra \mathfrak{R} is set $\left\{X^{\alpha}\right\}$ of a priori independent variables, locally-defined differential forms obeying first-order equations of motion

$$
\mathscr{R}^{\alpha}=\mathrm{d} X^{\alpha}+Q^{\alpha}(X)=0, \quad Q^{\alpha}(X)=\sum_{n} f_{\beta_{1} \ldots \beta_{n}}^{\alpha} X^{\beta_{1}} \cdots X^{\beta_{n}} .
$$

Nilpotency of d and integrability condition $\mathrm{d} \mathscr{R}^{\alpha}=0$ require

$$
Q^{\beta} \frac{\partial Q^{\alpha}}{\partial X^{\beta}} \equiv 0 .
$$

For $X_{\left[p_{\alpha}\right]}^{\alpha}$ with $p_{\alpha}>0$, gauge transformation preserving $\mathscr{R}^{\alpha} \approx 0$:

$$
\delta_{\epsilon} X^{\alpha}=\mathrm{d} \epsilon^{\alpha}-\epsilon^{\beta} \frac{\partial^{L}}{\partial X^{\beta}} Q^{\alpha} .
$$

The principle of unfolding [VASILIEv, 1988 -]

- The concepts of spacetime, dynamics and observables are derived from infinite-dimensional FDA's.
- Unfolded dynamics is an inclusion of local d.o.f. into field theories described on-shell by flatness conditions on generalized curvatures.
- The local, perturbative d.o.f. are contained in the zero-forms;
- Lorentz-covariant derivative, minimal coupling.

HSGRA's minimal model : VERY schematically

- A master 1-form $A=\sum_{s=2,4, \ldots} A_{(s)}$ where

$$
A_{(s)}=-i \sum_{t=0}^{s-1} d x^{\mu} A_{\mu}^{a(s-1), b(t)}(x) M^{a_{1} b_{1}} \ldots M^{a_{t} b_{t}} P^{a_{t+1}} \ldots P^{a_{s}-1}
$$

- A master zero-form $\Phi=\sum_{s=0,2,4, \ldots} \Phi_{(s)}$ where

$$
\begin{gathered}
\Phi_{(s)}=\sum_{k=0}^{\infty} \frac{1}{k!} \Phi^{a(s+k), b(s)}(x) M^{a_{1} b_{1}} \ldots M^{a_{s} b_{s}} P^{a_{s+1}} \ldots P^{a_{s}+k} ; \\
\text { Vasiliev's eqns : } F+\sum_{n=1}^{\infty} J_{(n)}(A, A ; \Phi, \ldots, \Phi)=0, \\
D_{x} \Phi+\sum_{n=2}^{\infty} P_{(n)}(A ; \Phi, \ldots, \Phi)=0, \\
F:=\mathrm{d}_{x} A+A \star A, D_{x} \Phi:=\mathrm{d}_{x} \Phi+[A, \Phi]_{\pi}, \pi(P, M)=(-P, M),
\end{gathered}
$$

Some elements of Vasiliev's 4D equations

Master fields of the minimal bosonic model :

$$
\star \underline{\text { adjoint }} \quad A=A_{x}+A_{z}
$$

$$
A_{x}=\mathrm{d} x^{M} A_{M}(x, Z ; Y), \quad A_{z}=\mathrm{d} Z^{\underline{\alpha}} A_{\underline{\alpha}}(x, Z ; Y)
$$

and a

$$
\star \text { twisted-adjoint zero-form } \Phi=\Phi(x, Z ; Y)
$$

where the x^{M} 's are commuting coordinates, while

$$
\left(Y^{\underline{\alpha}}, Z^{\underline{\alpha}}\right)=\left(y^{\alpha}, \bar{y}^{\dot{\alpha}} ; z^{\alpha},-\bar{z}^{\dot{\alpha}}\right) \quad \text { are non-commutative. }
$$

Minimal bosonic higher-spin gravity :

$$
\begin{gathered}
F+\Phi \star J=0, \quad D \Phi=0, \quad \mathrm{~d} J=0, \\
F:=\mathrm{d} A+A \star A, \quad D \Phi:=\mathrm{d} \Phi+[A, \Phi]_{\pi}, \\
\tau(A, \Phi)=(-A, \pi(\Phi)), \quad(A, \Phi)^{\dagger}=(-A, \pi(\Phi)), \\
\hookrightarrow[A, J]_{\pi}=0=[\Phi, J]_{\pi} .
\end{gathered}
$$

[The integrability of $F+\Phi \star J=0$ implies that $D \Phi \star J=0$, that is, $D \Phi=0$, where the twisted-adjoint covariant derivative $D \Phi=d \Phi+A \star \Phi-\Phi \star \pi(A)$.

This constraints is integrable since
$D^{2} \Phi=F \star \Phi-\Phi \star \pi(F)=-\Phi \star J \star \Phi+\Phi \star \pi(\Phi) \star J$ gives zero, using the constraint on F and $0=[\Phi, J]_{\pi}$ with $\left.\pi(J)=J.\right]$
\hookrightarrow Integrability implies invariance under Cartan gauge transformations

$$
\delta_{\epsilon} A=D \epsilon, \quad \delta_{\epsilon} \Phi=-[\epsilon, \Phi]_{\star}^{\pi}
$$

for zero-form gauge parameters $\epsilon(x, Z ; Y)$ obeying the same kinematic constraints as the master one-form, i.e. $\tau(\epsilon)=-\epsilon$ and $(\epsilon)^{\dagger}=-\epsilon$.
\hookrightarrow The closure of the gauge transformations reads

$$
\left[\delta_{\epsilon_{1}}, \delta_{\epsilon_{2}}\right]=\delta_{\epsilon_{12}}, \quad \epsilon_{12}=\left[\epsilon_{1}, \epsilon_{2}\right]_{\star}
$$

defining the algebra $\mathfrak{h s}(4)$.

2. EXTENSION WITH BIFUNDAMENTAL FIELDS

Vasiliev's equations can be written as

$$
F_{[2]}+B_{[0]} \star J_{[2]}=0, \quad D B_{[0]}=0
$$

where

$$
\begin{gathered}
F_{[2]}:=\mathrm{d} A_{[1]}+A_{[1]} \star A_{[1]}, D B_{[0]}:=\mathrm{d} B_{[0]}+A_{[1]} \star B_{[0]}-B_{[0]} \star A_{[1]} \\
J_{[2]}:=-\frac{i}{4}\left(d z^{\alpha} d z_{\alpha} k \kappa+d \bar{z}^{\dot{\alpha}} d \bar{z}_{\dot{\alpha}} \bar{k} \bar{\kappa}\right),
\end{gathered}
$$

satisfying

$$
\mathrm{d} J_{[2]}=0, \quad\left[A_{[1]}, J_{[2]}\right]_{\star}=0, \quad\left[B_{[0]}, J_{[2]}\right]_{\star}=0
$$

DISCUSSION

- Extension : on $\mathscr{M}_{8}=\mathscr{X}_{4} \times \mathscr{Z}_{4}$,

$$
\begin{aligned}
A & =A_{[1]}+A_{[3]}+A_{[5]}+A_{[7]} \\
B & =B_{[0]}+B_{[2]}+B_{[4]}+B_{[6]}+B_{[8]}
\end{aligned}
$$

Does not change the perturbative spectrum around $A d S_{4}$ and facilitates deformations of the action [N.B.-P.Sundell (2011)] by HS invariants $\operatorname{Tr}\left[(\Phi \kappa)^{n}\right], \operatorname{Tr}\left[(\Phi \kappa)^{n} \kappa \bar{\kappa}\right] \rightarrow$ nontrivial on-shell action yielding correct higher spin amplitudes [Colombo-Sundell, Didenko-Skvortsov (2012)] reproducing $\left\langle J_{s_{1}}\left(\vec{x}_{1}\right) \ldots J_{s_{n}}\left(\vec{x}_{n}\right)\right\rangle$ for free $O(N)$ model.

- The deformations of the action : ∞-many in the original model. Arbitrariness in the relative coefficients of the n-point functions;
- New extension presented here : enlarges the symmetries \Rightarrow restricts the space of higher spin invariants \Rightarrow eliminating all degrees of arbitrariness implied for the tree amplitudes in the original formulation.
- Left to verify : Remaining invariants gives rise to all holographic n-point functions.

BIFUNDAMENTAL EXTENSION ; DYNAMICAL 2-FORM.

Closed and central 2-form $J_{[2]}$, in an otherwise dynamical set of fields, suggests $J_{[2]}$ vacuum expectation value of a dynamical 2-form $\widetilde{B}_{[2]}$, subject to some differential constraint

$$
\widetilde{D} \widetilde{B}_{[2]}=0
$$

such that

$$
F_{[2]}+B_{[0]} \star \widetilde{B}_{[2]}=0
$$

remains Cartan-integrable.

Cartan-integrability can be achieved by adding a new $\widetilde{A}_{[1]}$.
Finally, Cartan-integrable system with dynamical 2-form :

$$
\begin{gathered}
F_{[2]}+B_{[0]} \star \widetilde{B}_{[2]}=0, \quad \widetilde{F}_{[2]}+\widetilde{B}_{[2]} \star B_{[0]}=0, \\
D B_{[0]}:=\mathrm{d} B_{[0]}+A_{[1]} \star B_{[0]}-B_{[0]} \star \widetilde{A}_{[1]}=0, \\
\widetilde{D} \widetilde{B}_{[2]}:=\mathrm{d} \widetilde{B}_{[2]}+\widetilde{A}_{[1]} \star \widetilde{B}_{[2]}-\widetilde{B}_{[2]} \star A_{[1]}=0, \\
F_{[2]}:=\mathrm{d} A_{[1]}+A_{[1]} \star A_{[1]}, \quad \widetilde{F}_{[2]}:=\mathrm{d} \widetilde{A}_{[1]}+\widetilde{A}_{[1]} \star \widetilde{A}_{[1]} .
\end{gathered}
$$

Duality extension

Without adding new degrees of freedom, extend the system universally. In particular, on $\mathscr{M}_{8}=\mathscr{X}_{4} \times \mathscr{Z}_{4}$
$A=A_{[1]}+A_{[3]}+A_{[5]}+A_{[7]}, \quad \widetilde{A}=\widetilde{A}_{[1]}+\widetilde{A}_{[3]}+\widetilde{A}_{[5]}+\widetilde{A}_{[7]}$,
$B=B_{[0]}+B_{[2]}+B_{[4]}+B_{[6]}+B_{[8]}, \quad \widetilde{B}=\widetilde{B}_{[2]}+\widetilde{B}_{[4]}+\widetilde{B}_{[6]}+\widetilde{B}_{[8]}$
obeying the duality extended version of the BiF system :

$$
\begin{aligned}
& \mathrm{d} A+A \star A+B \star \widetilde{B}=0 \\
& \mathrm{~d} \widetilde{A}+\widetilde{A} \star \widetilde{A}+\widetilde{B} \star B=0 \\
& \mathrm{~d} B+A \star B-B \star \widetilde{A}=0 \\
& \mathrm{~d} \widetilde{B}+\widetilde{A} \star \widetilde{B}-\widetilde{B} \star A=0 .
\end{aligned}
$$

System invariant under

$$
\begin{aligned}
& \delta A=d \epsilon+[A, \epsilon]_{\star}-\eta \star \widetilde{B}-B \star \widetilde{\eta}, \\
& \delta \widetilde{A}=d \widetilde{\epsilon}+[\widetilde{A}, \widetilde{\epsilon}]_{\star}-\widetilde{\eta} \star B-\widetilde{B} \star \eta, \\
& \delta B=d \eta+A \star \eta+\eta \star \widetilde{A}-\epsilon \star B+B \star \widetilde{\epsilon}, \\
& \delta \widetilde{B}=d \widetilde{\eta}+\widetilde{A} \star \widetilde{\eta}+\widetilde{\eta} \star A-\widetilde{\epsilon} \star \widetilde{B}+\widetilde{B} \star \epsilon .
\end{aligned}
$$

The resulting field content can be extended into a bulk manifold \mathscr{B}_{9} with boundary $\mathscr{M}_{8}=\partial \mathscr{B}_{9}$ after which a bulk action of generalized Hamiltonian type can be constructed by introducing dual Lagrange multipliers. Before going to action, relation to Vasiliev's model.

Vasiliev phase

- Defining $W=\frac{1}{2}(A+\widetilde{A}), V=\frac{1}{2}(A-\widetilde{A})$, the field equations

$$
\begin{aligned}
\hookrightarrow \mathrm{d} W+W \star W+V \star V+\frac{1}{2}\{B, \widetilde{B}\} & =0 \\
\mathrm{~d} V+\{W, V\}_{\star}-\frac{1}{2}[B, \widetilde{B}]_{\star} & =0, \\
\mathrm{~d} B+[W, B]_{\star}-\{V, B\} & =0, \\
\mathrm{~d} \widetilde{B}+[W, \widetilde{B}]_{\star}+\{V, \widetilde{B}\}_{\star} & =0 ;
\end{aligned}
$$

- Corresponding gauge transformations

$$
\begin{aligned}
\delta W & =D \varepsilon+\ldots, \quad \delta V=D \beta+\ldots \\
\delta B & =D \eta+\ldots, \quad \delta \widetilde{B}=D \widetilde{\eta}+\ldots
\end{aligned}
$$

- Assume existence of globally-defined, closed 2-form $J_{[2]}$ on base manifold;
- Set VEV : $\left(W^{(0)}, V^{(0)}, B^{(0)}, \widetilde{B}^{(0)}\right)=(\Omega, 0,0, J)$;
- Expand $\widetilde{B}=J+C, W=\sum_{n \geqslant 0} W^{(n)}$,

$$
(B, V, C)=\sum_{n \geqslant 1}\left(B^{(n)}, V^{(n)}, C^{(n)}\right)
$$

- At the first order, $D_{0} V^{(1)}=0, \quad D_{0} C^{(1)}+2 V^{(1)} \star J_{[2]}=0$;
- gauge transformations

$$
V^{(1)}=D_{0} \beta^{(1)}, \delta C^{(1)}=D_{0} \widetilde{\eta}^{(1)}+2 \beta^{(1)} \star J_{[2]} ;
$$

- $\hookrightarrow \operatorname{Set} C^{(1)}=0=V^{(1)}$. Continuing, the full $(V, C) \rightarrow(0,0)$;
- Original system \longrightarrow Vasiliev's equations $\mathrm{d} W_{[1]}+W_{[1]}^{2}+B_{[0]} \star J_{[2]}=0, d B_{[0]}+\left[W_{[1]}, B_{[0]}\right]=0$, setting to zero the higher forms in W and B.
- The gauge invariance of the original system has an important consequence : Not any HS invariant of the Vasiliev system descends from an invariant of the original extended system upon gauge fixing;
- invariants are highly restricted! given on-shell by

$$
\begin{aligned}
\mathscr{I}_{(1)} & =\int_{\mathscr{P}_{4}} \operatorname{Tr}_{\mathfrak{h}}\left(B_{[0]} \star J_{[2]} \star B_{[0]} \star J_{[2]}\right), \\
{\left[\text { Also } \mathscr{I}_{(2)}\right.} & \left.=\int_{\mathscr{\mathscr { A }}_{4}} \operatorname{Tr}_{\mathfrak{h}}\left(B_{[0]} \widetilde{B}_{[4]}+B_{[2]} \widetilde{B}_{[2]}\right)\right]
\end{aligned}
$$

3. UNDERLYING FROBENIUS ALGEBRA ; ACTION

Introduce

$$
e_{i j} e_{k l}=\delta_{j k} e_{i l}, \quad i=1,2
$$

and combine

$$
\begin{aligned}
\mathscr{A} & :=A e_{11}+\widetilde{A} e_{22}, \quad \mathscr{B}:=B e_{12}-\widetilde{B} e_{21} \\
\Lambda & :=\epsilon e_{11}+\widetilde{\epsilon} e_{22}, \quad \Sigma:=\eta e_{12}-\widetilde{\eta} e_{21}
\end{aligned}
$$

Then, the extended system :

$$
\begin{gathered}
\mathrm{d} \mathscr{A}+\mathscr{A}^{2}-\mathscr{B}^{2}=0, \quad \mathrm{~d} \mathscr{B}+\mathscr{A} \mathscr{B}-\mathscr{B} \mathscr{A}=0 \\
\delta \mathscr{A}=\mathrm{d} \Lambda+[\mathscr{A}, \Lambda]+\{\Sigma, \mathscr{B}\}, \quad \delta \mathscr{B}=\mathrm{d} \Sigma+\{\mathscr{A}, \Sigma\}-[\Lambda, \mathscr{B}] .
\end{gathered}
$$

Assembling the fields into a single master field

$$
\Psi:=\mathscr{A}+\mathscr{B}, \quad \theta:=\Lambda+\Sigma,
$$

the equations of motion, gauge transformations, generalized Bianchi identities and curvature gauge covariance :

$$
\begin{gathered}
R:=\mathrm{d} \Psi+\bar{\Psi} \Psi=0, \quad \delta_{\theta} \Psi=\mathrm{d} \theta+\Psi \theta-\bar{\theta} \Psi, \\
\mathrm{d} R+\Psi R-\bar{R} \Psi \equiv 0, \quad \delta R_{\theta}=[R, \theta]
\end{gathered}
$$

where $\bar{\Psi}:=\mathscr{A}-\mathscr{B}, \bar{\theta}:=\Lambda-\Sigma$ and $\bar{R}:=\mathrm{d} \bar{\Psi}+\Psi \bar{\Psi}$.

SUPERCONNECTION

Introducing extra Kleinian h with
$h^{2}=1, \quad\left[h, e_{11}\right]=0=\left[h, e_{22}\right], \quad\left\{h, e_{12}\right\}=0=\left\{h, e_{21}\right\}$,
and defining

$$
\boldsymbol{\Psi}:=h \Psi, \quad \boldsymbol{\theta}:=\theta, \quad \boldsymbol{q}:=h \mathrm{~d}
$$

it follows from $\bar{\Psi}=h \Psi h$ that

$$
\begin{array}{cl}
\boldsymbol{R}:=\boldsymbol{q} \Psi+\boldsymbol{\Psi}^{2}=0, & \delta_{\boldsymbol{\theta}} \boldsymbol{\Psi}=\boldsymbol{q} \boldsymbol{\theta}+[\boldsymbol{\Psi}, \boldsymbol{\theta}], \\
\boldsymbol{q} \boldsymbol{R}+[\boldsymbol{\Psi}, \boldsymbol{R}] \equiv 0, & \delta_{\boldsymbol{\theta}} \boldsymbol{R}=[\boldsymbol{R}, \boldsymbol{\theta}] .
\end{array}
$$

- A one-parameter family of cubic bulk actions
$S_{\text {bulk }}^{\text {cubic }}=\int_{\mathscr{M}} L_{\text {bulk }}^{\text {cubic }}$ with non-trivial Poisson three-vector :

$$
\left.\begin{array}{rl}
L_{\mathrm{bulk}}^{\mathrm{cubic}}=\operatorname{Tr}_{\mathscr{A}}(& \widetilde{U} D B+V\left[F+B \widetilde{B}+\alpha\left(U \widetilde{U}-\frac{1}{3} V^{2}\right)\right] \\
& +U \widetilde{D} \widetilde{B}+\widetilde{V}\left[\widetilde{F}+\widetilde{B} B+\alpha\left(\widetilde{U} U-\frac{1}{3} \widetilde{V}^{2}\right)\right]
\end{array}\right)
$$

- $U=U_{[2]}+\ldots+U_{[8]}$ conjugated to $B, V=V_{[1]}+\ldots+V_{[7]}$ conjugated to $A, \operatorname{idem}(\widetilde{U}, \widetilde{B})$ and $(\widetilde{V}, \widetilde{A})$;
- Cartan transformations send the Lagrangian to a total derivative, hence
$\left.\left(U, V, \tilde{V}, \widetilde{U} ; \eta^{U}, \eta^{V}, \eta^{\tilde{V}}, \eta^{\tilde{U}}\right)\right|_{\partial \mathscr{M}}=(0,0,0,0 ; 0,0,0,0)$, while $\left(B, A, \widetilde{A}, \widetilde{B} ; \epsilon^{B}, \epsilon^{A}, \epsilon^{\tilde{A}}, \epsilon^{\tilde{B}}\right)$ can be defined locally and left free to fluctuate on $\partial \mathscr{M}$.
- Upon introducing the momenta-like variables inside Ψ,

$$
\boldsymbol{A}:=\sum_{I} A^{I} e_{I}, \quad \boldsymbol{B}:=\sum_{P} B^{P} f_{P}
$$

the action takes the form

$$
\begin{aligned}
S_{\text {bulk }}^{\text {cubic }}[Z]= & \int_{\mathscr{M}} \operatorname{Tr}_{\mathscr{A}} \operatorname{Tr}_{\mathscr{F}}\left[\frac{1}{2} Z \mathrm{q} Z+\frac{g}{3} Z^{3}\right] \\
& -\frac{1}{4} \oint_{\partial \mathscr{M}} \operatorname{Tr}_{\mathscr{A}} \operatorname{STr}_{\mathscr{F}}\left[\pi_{h}(Z) Z\right]
\end{aligned}
$$

- \mathscr{F} is an internal Frobenius algebra [an unital associative algebra with a non-degenerate invariant bilinear form].

4. CONCLUSIONS

I) By imposing boundary conditions by hand, Vasiliev's higher-spin gravity is embedded into a larger theory without altering the perturbative spectrum ;
iI) What used to be interaction ambiguities are now 2-form moduli ;
III) Dramatic reduction in the number of higher-spin invariants, as the new model has more gauge symmetries inside the bulk;
IV) New master theory free of parameters. Direct contact to Frobenius algebras, 2D TFT ... and OSFT?

