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Abstract—This paper presents the bifurcation analysis of an
anaerobic digestion model, which includes hydrogen production
along with methane production. Analytical expressions of the
equilibria are given and the conditions for their occurrence
are provided. The analytical developments are validated by
means of bifurcation diagrams built with specialized continuation
software. Special emphasis is put on revealing the relationship
between hydrogen and methane outflow rate. The complex system
behavior is illustrated by means of phase portraits.

Index Terms—nonlinear systems, bifurcation analysis, anaero-
bic digestion

I. INTRODUCTION

Anaerobic digestion denotes a series of biological trans-

formations in which organic matter is degraded by several

microbial populations in the absence of oxygen. During the

process, biogas is produced, which can be used for electricity

and heat generation, or can be processed into renewable

natural gas and transportation fuels. Anaerobic digestion has

become the preferred waste treatment method, due to its

ability to process high organic loads and to generate less

sludge to be disposed. However, due to the process complexity

which makes it difficult to understand and operate, anaerobic

digestion is not yet used at its full potential.

One of the main difficulties in understanding and control-

ling the anaerobic digestion process comes from the lack

of measurements, which hampers the comprehension of the

relationships between the various variables of the system. In

an attempt to alleviate this issue and to provide a platform for

research and developments in anaerobic digestion, a general

model has been proposed, ie. the anaerobic digestion model

no.1 (ADM1) [1], which models all the stages appearing in the

process. As a consequence, a high dimensional model has been

obtained, consisting of 35 differential equations coupled with

8 algebraic equations, which has been continuously adapted

and extended to accommodate various types of waste. The

ADM1 model is too complex to be used for control design

purposes, where generally one-, two- or three-step models are

employed. However, it has been successfully used as a system

emulator for developing reduced order models [2] or testing

control and observation algorithms [3]. A steady state analysis

of ADM1 has been performed in [4] employing continuation

software, with the aim of emphasizing the mechanisms which

should be taken in a reduced order model in order to capture

the main process dynamics, as many two-step models that have

been used extensively for control design do not show the same

behavior as ADM1.

The bifurcation analysis of anaerobic digestion models has

been considered by many researchers (eg. [5], [6]), as the

system complexity is reflected by its steady state multiplicity.

The steady state analysis allows to detect the conditions which

trigger the anaerobic digestion instability, that is generally

assessed as the lost ability of the system to produce biogas.

The biogas produced through anaerobic digestion is a mix of

methane, hydrogen and carbon dioxide. Often the emphasis

is on producing methane, and the control criteria are for-

mulated such as to maximize the outflow rate of methane.

However, hydrogen production by the anaerobic digestion of

organic substrates becomes more and more popular, and the

question that arises is whether or not the same system could

be used alternatively for methane production and hydrogen

production. Even when the goal is to maximize the methane

production, there are experimental studies which indicate that

the hydrogen concentration is a fast and reliable indicator

for process stability. Therefore, revealing the relationships

between methane and hydrogen could bring valuable insight

into process dynamics and would allow the development of

control strategies that could be easier implemented in practice,

as gas measurements are widely available on biogas plants.

In this paper, a model of the anaerobic digestion pro-

cess is considered, which characterizes also the evolution

of the hydrogen concentration inside the reactor along with

the methane production. A slightly modified version of this

model has been considered in [7], where the steady state

behavior of the system has been studied numerically. Here,

we provide analytical expressions for the system equilibria,

analytical conditions for the occurrence of the equilibria and

we discuss the steady state relationship between hydrogen

concentration and methane outflow rate. Bifurcation diagrams

obtained numerically and simulated phase portraits of the

system are included as a validation for the analytical results.

A comparison of the obtained results with the steady state978-1-5090-2720-0/16/$31.00 ©2016 IEEE
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analysis of the ADM1 model [4] indicate that the model

considered here exhibits the same complexity of the steady

state behavior as ADM1.

II. MODEL DESCRIPTION

The model studied throughout this paper includes three

stages of the anaerobic digestion process [7], acidogenesis,

acetogenesis and methanogenesis, and involves four nutrient

groups and the corresponding bacterial groups: simple sub-

strates S, volatile fatty acids V , acetic acid A, hydrogen H ,

acidogenic bacteria XS , acetogenic bacteria XV , acetoclastic

methanogens XA and hydrogenotrophic methanogens XH .

The model has the general structure

ξ̇ = D(ξin − ξ)− F +Kr(ξ) (1)

where D is the dilution rate representing the influent flow

scaled by the reactor volume, ξ is the state vector made

of concentrations of components in the reactor, ξin is the

vector of inlet concentrations, F is the rate of removal in

gaseous form of components, K is the matrix of stoichiometric

coefficients and r(ξ) represents the vector of reaction rates.

Neglecting the transfer from liquid to the gas phase the mass

balances for each component read:

dXS

dt
= −DXS + gS(S)XS (2)

dXV

dt
= −DXV + gV (V,H)XV (3)

dXA

dt
= −DXA + gA(A)XA (4)

dXH

dt
= −DXH + gH(H,A)XH (5)

dS

dt
= D(Sin − S)− k1gS(S)XS (6)

dV

dt
= −DV + k2gS(S)XS − k3gV (V,H)XV (7)

dA

dt
= −DA+ k4gS(S)XS + k5gV (V,H)XV −

k6gA(A)XA (8)

dH

dt
= −DH + k7gS(S)XS + k8gV (V,H)XV −

k9gH(H,A)XH (9)

while the rate of methane production is given by:

QM = k10gA(A)XA + k11gH(H,A)XH (10)

In (2)- (10), Sin is the concentration of nutrient in the influent

flow, ki, i = 1 . . . 11 are the stoichiometric parameters, while

gj , j ∈ {S, V,A,H} denote the growth functions. The growth

functions depend on the concentration of the component that is

decomposed and other factors that might inhibit the reaction.

Further on, we use the explicit forms of the growth functions:

gS(S) =
mSS

KS + S
, gV (V,H) =

mV V

KV + V + µHH

gA(A) =
mAA

KA +A+A2/KI

, gH(H,A) =
mHH

KH +H + µAA

TABLE I
NUMERICAL VALUES OF THE PARAMETERS

Parameter Value Parameter Value

mS 3.5day−1 KS 0.4g COD/L
mV 0.86day−1 KV 0.3g COD/L
mA 0.4day−1 KA 0.15g COD/L
mH 2.1day−1 KH 2.5e-5g COD/L
Sin 40g COD/L µH 1
KI 10g COD/L µA 5

where mj and Kj , with j ∈ {S, V,A,H} respectively denote

the maximum growth rates and the half-saturation constants

in the absence of inhibition; KI is a coefficient describing the

inhibition due to A on the growth of XA; µH and µA are inhi-

bition factors for the growth of XV and XH respectively due

to H and A. The numerical values of the kinetic parameters

are given in Table I, while the stoichiometric parameters are:

k1 = 11.11, k2 = 1.962, k3 = 20, k4 = 6.419, k5 = 10.357,

k6 = 20, k7 = 2.367, k8 = 5.268, k9 = 16.667, k10 = 19,

k11 = 15.667.
As proved in [7], all solutions of (2)- (9) with nonnegative

initial conditions remain nonnegative and are bounded. Further

on, we make use explicitly of the mathematical expressions

of the system growth functions to analytically compute and

characterize the equilibria. This is particularly important in

view of efficiently operating and controlling the anaerobic

digestion process.

III. CALCULATION AND CHARACTERIZATION OF THE

STEADY STATES

To simplify the computation and characterization of the

system equilibria, we use a well-known canonical state trans-

formation, which reduces the system dynamics to the so called

reaction manifold [8]. Let us consider the state transformation

ξ = [ ξa ξb ]′ 7→ x = [ xa xb ]′, with xa = ξa =
[ XS XV XA XH ]′ and xb given by

xb =









S + k1XS

V − k2XS + k3XV

A− k4XS − k5XV + k6XA

H − k7XS − k8XV + k9XH









(11)

The state equations are rewritten as:

ẋ1 =
dXS

dt
= −Dx1 + gS(S)x1 (12)

ẋ2 =
dXV

dt
= −Dx2 + gV (V,H)x2 (13)

ẋ3 =
dXA

dt
= −Dx3 + gA(A)x3 (14)

ẋ4 =
dXH

dt
= −Dx4 + gH(H,A)x4 (15)

ẋ5 = D(Sin − x5) (16)

ẋ6 = −Dx6 (17)

ẋ7 = −Dx7 (18)

ẋ8 = −Dx8 (19)

The system dynamics converges to the space

Sx =
{

x ∈ R
8 |x5 = Sin, x6 = 0, x7 = 0, x8 = 0

}
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All system equilibria lie in Sx, which implies that at equilib-

rium:

S + k1XS = Sin (20)

V − k2XS + k3XV = 0 (21)

A− k4XS − k5XV + k6XA = 0 (22)

H − k7XS − k8XV + k9XH = 0 (23)

The system steady states are the solutions of

(−D + gS(S)) · x1 = 0 (24)

(−D + gV (V,H)) · x2 = 0 (25)

(−D + gA(A)) · x3 = 0 (26)

(−D + gH(H,A)) · x4 = 0 (27)

which lead to several possibilities detailed below. Note that

from a practical point of view, we are interested in the

physical steady states, characterized by nonnegative values of

all state components. Therefore the conditions for physical

steady states are derived by requiring that ξ̄i > 0 for i = 1, 8,

i.e. the value of the state at equilibrium. These conditions and

the analytical expressions of the equilibria are summarized in

Table II and detailed elsewhere.

1) x1 = 0 (XS = 0): In this case, the only physical equi-

librium of the system is the total wash-out state, where

no conversion takes place. This steady state occurs

independent of the dilution rate and the concentration

of substrate in the influent. In physical states, the total

wash-out steady state is given by:

ξW =
[

0 0 0 0 Sin 0 0 0
]

′

2) gS(S) = D, x2 = x3 = x4 = 0 (XV = XA =
XH = 0): This steady state is characterized by the

degradation of the organic substrate and the wash-out

of the acetogenic bacteria, acetoclastic methanogens and

hydrogenotrophic methanogens. Since no methanogenic

biomass is present in the reactor, there will be no

methane production. The equilibrium point

ξ0 =
[

X̄S 0 0 0 S̄ V̄ Ā H̄
]

′

is a conditional physical equilibrium point.

3) gS(S) = D, gV (V,H) = D, x3 = x4 = 0 (XA =
XH = 0): The corresponding steady state

ξV =
[

X̄S X̄V 0 0 S̄ V̄ Ā H̄
]

′

is characterized by the conversion of the substrate into

VFAs which are further processed to acetic acid. Since

none of the methanogens are present in the reactor, no

methane production occurs. This equilibrium point is

physical if the conditions stated in Table II are fulfilled.

4) gS(S) = D, gV (V,H) = D, gA(A) = D, x4 = 0
(XH = 0): The equation gA(A) = D has two real

solutions Āi, i = 1, 2, with Ā1 < Ā2 if

D < max(gA(A)) = gA(
√

KAKI) (28)

Rewriting gA(A) = D as

A2 +KI

(D −mA)

D
+KAKI = 0 (29)

one may find the solutions Āi, i = 1, 2. There may be

up to two equilibria of this type

ξV A
i =

[

X̄S X̄V X̄Ai
0 S̄ V̄ Āi H̄

]

′

The steady states ξV A
i are characterized by methane

production.

5) gS(S) = D, x2 = x3 = 0 (XV = XA = 0),

gH(H,A) = D: One equilibrium occurs in this situa-

tion,

ξH =
[

X̄S 0 0 X̄H S̄ V̄ Ā H̄
]

′

which is a physical steady state if all the states are

nonnegative. The steady state ξH is characterized by

the wash-out of the acetogenic bacteria X̄V and aceto-

clastic methanogens X̄A but some methane production

is ensured by the presence of the hydrogenotrophic

methanogens X̄H .

6) gS(S) = D, gV (V,H) = D, XA = 0, gH(H,A) = D:

This possibility leads to the equilibrium point

ξV H =
[

X̄S X̄V 0 X̄H S̄ V̄ Ā H̄
]

′

where again the methane generation is ensured by the

presence of hydrogenotrophic methanogens X̄H .

7) gS(S) = D, XV = 0, gA(A) = D, gH(H,A) = D: Up

to two equilibria

ξAH
i =

[

X̄S 0 X̄Ai
X̄Hi

S̄ V̄ Āi H̄i

]

′

may be obtained. Both of them are characterized

by methane production which occurs through both

methanogenic pathways.

8) gS(S) = D, XV = 0, gA(A) = D, XH = 0: In this case

also at most two equilibrium points may be obtained.

These equilibria have the form

ξAi =
[

X̄S 0 X̄Ai
0 S̄ V̄ Āi H̄

]

′

The methane production is ensured by the presence of

the hydrogenotrophic methanogens.

9) gS(S) = D, gV (V,H) = D, gA(A) = D, gH(H,A) =
D: This alternative also leads to up to two equilibria

ξ∗i =
[

X̄S X̄Vi
X̄Ai

X̄Hi
S̄ V̄i Āi H̄i

]

′

which are characterized by the coexistence of all

species. Consequently, methane is produced through

both methanogenic pathways.

IV. BIFURCATION DIAGRAMS AND SYSTEM PHASE

PORTRAIT

The analytical computation of equilibria presented in Sec-

tion III allows us to determine not only the type of equilibria in

which the anaerobic digestion system produces methane (hy-

drogen is produced in all steady states except of the total wash-

out condition), but also to classify these equilibria in terms
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TABLE II
ANALYTICAL EXPRESSIONS AND CONDITIONS FOR OCCURRENCE OF THE EQUILIBRIA

Equilibrium Expression Conditions

ξW
X̄S = 0, X̄V = 0, X̄A = 0, X̄H = 0

-
S̄ = Sin, V̄ = 0, Ā = 0, H̄ = 0

ξ0
X̄S =

(Sin−S̄)
k1

, X̄V = 0, X̄A = 0, X̄H = 0 D < mS

S̄ = DKS/(mS −D), V̄ = k2/k1(Sin − S̄)
Ā = k4/k1(Sin − S̄), H̄ = k7/k1(Sin − S̄) S̄ < Sin

ξV
X̄S =

(Sin − S̄)

k1
, X̄V =

k2X̄S − V̄

k3
, X̄A = 0, X̄H = 0 D < mS , S̄ < Sin

S̄ =
DKS

(mS −D)
, V̄ =

D(KV + µHH̄)

(mV −D)
, Ā = k4X̄S + k5X̄V D < mV ,

k1

k2
V̄ + S̄ < Sin

H̄ =

(

(k3k7 + k8k2)

k3
X̄S −

k8

k3

DKV

(mV −D)

)

/

(

1 +
k8

k3

DµH

(mV −D)

)

ξV A
i

X̄S =
(Sin − S̄)

k1
, X̄V =

k2X̄S − V̄

k3

X̄Ai
=

1

k6
(k4X̄S + k5X̄V −Ai), X̄H = 0 D < mS , S̄ < Sin, D < mV

S̄ =
DKS

(mS −D)
, V̄ =

D(KV + µHH̄)

(mV −D)
, Āi from (29) D < max(gA(A)) ,

k1

k2
V̄ + S̄ < Sin

H̄ =

(

(k3k7 + k8k2)

k3
X̄S −

k8

k3

DKV

(mV −D)

)

/

(

1 +
k8

k3

DµH

(mV −D)

)

k3c1Āi + k5c1V̄ + S̄ < Sin

ξH
X̄S =

(Sin − S̄)

k1
, X̄V = 0, X̄A = 0, X̄H =

1

k9
(k7X̄S − H̄) D < mS , S̄ < Sin, D < mH

S̄ =
DKS

(mS −D)
, V̄ = k2X̄S , Ā = k4X̄S , H̄ =

D(KH + µAk4X̄S)

(mH −D)

k1

k7
H̄ + S̄ < Sin

ξV H

X̄S =
(Sin − S̄)

k1
, X̄V =

k2X̄S − V̄

k3
D < mS , S̄ < Sin

X̄A = 0, X̄H =
1

k9
(k7X̄S + k8X̄V − H̄) D < mV , D < mH

S̄ =
DKS

(mS −D)
, Ā = k4X̄S + k5X̄V , H̄ =

D(KH + µAĀ)

(mH −D)

k1

k2
V̄ + S̄ < Sin

V̄ =
D

(

KV (mH −D) + µHD
(

KH + µAX̄S
(k3k4+k5k2)

k3

))

(

(mV −D)(mH −D) + µHµAD2 k5

k3

) k3c2H̄ + k8c2V̄ + S̄ < Sin

ξAH
i

X̄S =
(Sin − S̄)

k1
, X̄V = 0 D < mS , S̄ < Sin, D < max(gA(A))

X̄Ai
=

1

k6
(k4X̄S − Āi), X̄H =

1

k9
(k7X̄S − H̄i) D < mH ,

k1

k4
Āi + S̄ < Sin

S̄ =
DKS

(mS −D)
, V̄ = k2X̄S , Āi from (29), H̄i = D

(KH + µAĀi)

(mH −D)

k1

k7
H̄i + S̄ < Sin

ξA
i

X̄S =
(Sin − S̄)

k1
, X̄V = 0, X̄Ai

=
1

k6
(k4X̄S − Āi), X̄H = 0 D < mS , S̄ < Sin, D < max(gA(A))

S̄ =
DKS

(mS −D)
, V̄ = k2X̄S , Āi from (29), H̄ = k7X̄S

k1

k4
Āi + S̄ < Sin

ξ∗
i

X̄S =
(Sin − S̄)

k1
, X̄Vi

=
1

k3
(k2X̄S − V̄i) D < mS , S̄ < Sin, D < max(gA(A))

X̄Ai
=

1

k6
(k4X̄S + k5X̄Vi

− Āi), D < mV , D < mH ,
k1

k2
V̄i + S̄ < Sin

X̄Hi
=

1

k9
(k7X̄S + k8X̄Vi

− H̄i), S̄ =
DKS

(mS −D)
k3c1Āi + k5c1V̄i + S̄ < Sin

V̄i = D
(KV + µHH̄i)

(mV −D)
, Āi from (29), H̄i = D

(KH + µAĀi)

(mH −D)
k3c2H̄i + k8c2V̄i + S̄ < Sin

of their methane productivity. However, since the anaerobic

digestion process is operated by means of the dilution rate,

it would be interesting to have a view on the change in the

methane outflow rate and in the concentration of hydrogen as

the dilution rate is changed. Such a graphical representation is

the one-parameter bifurcation diagram (i.e. the dilution rate is

varied while the inlet substrate concentration is kept constant).

In principle such a bifurcation diagram may be constructed for

each of the system states. Here we present only the diagrams

for methane outflow rate and hydrogen concentration.

The one-parameter bifurcation diagrams can be constructed

by using the expression of equilibria given in Table II for

various dilution rate values. Alternatively, one may use a

continuation software, which computes the bifurcation di-

agrams numerically without requiring any prior knowledge

on the system dynamics. The diagrams presented in Figs. 1

and 2 are obtained by employing such a software, namely

MatCONT [9], as a way of verifying the correctness of the

calculations presented in Section III.

Figs. 1 and 2 illustrate all equilibrium branches detailed in
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Fig. 1. Bifurcation diagram for the hydrogen concentration
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Fig. 2. Bifurcation diagram for the methane outflow rate

Section III, except from the trivial solution, the total wash-

out solution. Each branch is presented in a different color

and type of line and a label has been assigned to it, which

indicates the mechanism that leads to the occurrence of the

equilibria and allows their identification. For example, the

label x2, x3, x4 6= 0 indicates that the equilibrium occurs when

all types of biomass are present in the reactor (this corresponds

to choice 9 in the list), thus the branch corresponds to

the equilibria ξ∗i . Characteristic for one-parameter bifurcation

diagrams are the limit points (denoted by LP ) and branch

points (denoted by BP ). The limit points indicate that the

specific equilibrium ceases to exist for dilution rates higher

than the one corresponding to the limit point. The branch

points indicate that two distinct equilibrium branches come

together, of which one ceases to exist. There are four limit

points and seven branch points, respectively shown in Figs. 1

and 2 with a star and a bullet. Since the limit points and

the branch points indicate the occurrence/disappearance of

the equilibria, their coordinates can be computed from the

conditions for physical equilibria listed in Table II.

The number of equilibrium points which occur for a certain

dilution rate is given by the number of branches encountered

at that specific dilution rate. Note that in Fig. 1, there are two

branches of type x2, x4 = 0 for dilution rates between the val-

ues corresponding to BP3 and LP4, and two branches of type

x4 = 0 for dilution rates between the values corresponding to

BP5 and LP3. This becomes evident in Fig. 2. For example,

at the dilution rate D = 0.3, the system has 11 equilibrium

points: two for x2, x3, x4 6= 0 (ξ∗
1

and ξ∗
2

), two for x2 = 0
(ξAH

1
and ξAH

2
), two for x2, x4 = 0 (ξA

1
and ξA

2
), two for

x4 = 0 (ξV A
1

and ξV A
2

), one for x3, x4 = 0 (ξV ), one for

x2, x3, x4 = 0 (ξ0) and the total wash-out (ξW ), which is not

indicated on the bifurcation diagrams.

Since hydrogen is consumed by the hydrogenotrophic

methanogens x4 to produce methane, it is obvious that hydro-

gen and methane production cannot be maximum at the same

time. In fact, the highest hydrogen concentration is achieved

when the hydrogenotrophic methanogens have been washed-

out (x4 = 0), which in turn corresponds to either a lower

methane production if the acetoclastic methanogens are still

present in the reactor (branch x4 = 0) or zero methane

production if the acetoclastic methanogens have been also

washed-out (branch x3, x4 = 0). Qualitatively similar results

are described by the branch x2, x4 = 0, which indicates that

the presence of the acetogenic bacteria x2 in the previous case

(x4 = 0) generates an increase in the hydrogen concentration,

which diminishes however when the dilution rate increases.

This increase is also observed in the methane outflow rate.

On the contrary, the highest methane production is achieved

when all types of biomass are present in the reactor (branch

x2, x3, x4 6= 0). Compared to the branch x2 = 0, higher

methane outflow rate is obtained but the same concentration

of hydrogen is achieved.
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1

Fig. 3. The system phase portrait on the invariant set x2 = 0

In the following, the system steady state multiplicity is il-

lustrated by means of the system phase portrait for the dilution

rate D = 0.3. Taking into account the high dimensionality of

the system, and the fact that the system dynamics converge

to the space Sx which contains all system equilibria, without

loss of generality the phase portrait is restricted to the space

Sx. Furthermore, note that except for the total system wash-
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out, all steady states lie on the hyperplane x2 = X̄S . Hence a

three dimensional representation of the phase portrait on the

hyperspace Sx ∩ x2 = X̄S can be obtained. Since x2 = 0,

x3 = 0, and x4 = 0 are system invariants (ie. a system

trajectory starting in an initial condition in this set, stays in

this set for all future times), the system phase portrait in these

sets are presented in separate figures for a better visibility.
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Fig. 4. The system phase portrait on the invariant set x3 = 0
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Fig. 5. The system phase portrait on the invariant set x4 = 0

Figs. 3- 5 respectively represent the system phase portrait

on the invariants x2 = 0, x3 = 0 and x4 = 0. The

continuous black lines represent physical boundaries computed

by respectively setting V = 0, A = 0 and H = 0 in (21)-

(23). Note that on x2 = 0, a trajectory starting in an initial

condition for which x3 6= 0 converges either to ξ0 or ξAH
1

,

while a trajectory starting in an initial condition with x3 = 0
converges either to ξ0 or ξA

1
. On the x3 = 0 invariant, all

trajectories starting in initial conditions for which x2 6= 0
converge to ξV , while a trajectory starting on the x2 = 0
axis stays on that axis and converges to ξ0. On the x4 = 0
invariant, a trajectory starting on the x2 = 0 axis stays on

this axis and converges either to ξ0 or ξA
1

, while trajectories

starting in initial conditions for which x2 6= 0 either converge

to ξV or ξV A
1

. Fig. 6 shows the system phase portrait in the

interior of the state space. Every trajectory starting in an initial

condition with x2, x3, x4 6= 0 converges either to ξV or ξ∗
1

,

which is the equilibrium point characterized by the highest

methane production among all the system equilibria for a

certain dilution rate. However, the region of attraction of ξ∗
1

is

smaller than the one of ξV , which makes the system operation

quite difficult.
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Fig. 6. The system phase portrait in the interior of the state space
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