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The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic
environment.

Good? Performance evaluated through payoff functions.

Usual problem is to optimize the expected performance or the
probability of achieving a given performance level .

Not sufficient for many practical applications.

� Several extensions, more expressive but also more complex. . .

Aim of this talk

Multi-constraint percentile queries: generalizes the problem to
multiple dimensions, multiple constraints.
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Context

Verification and synthesis:

� a reactive system to control,
� an interacting environment,
� a specification to enforce.

Model of the (discrete) interaction?

� Antagonistic environment: 2-player game on graph.
� Stochastic environment: MDP.

Quantitative specifications. Examples:

� Reach a state s before x time units ; shortest path.
� Minimize the average response-time ; mean-payoff.

Focus on multi-criteria quantitative models
� to reason about trade-offs and interplays.
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Strategy (policy) synthesis for MDPs

system
description

environment
description

informal
specification

model as
an MDP

model as
a winning
objective

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy =
controller

no yes

1 How complex is it to decide if
a winning strategy exists?

2 How complex such a strategy
needs to be? Simpler is
better.

3 Can we synthesize one
efficiently?
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Markov decision processes

s1 s2

s3

s4

a1, 2

a2,−1

a3, 0

b3, 3

a4, 1

0.3

0.1

0.7

0.9

MDP M = (S ,A, δ,w)

� finite sets of states S and actions A
� probabilistic transition δ : S × A→ D(S)
� weight function w : A→ Zd

Run (or play): ρ = s1a1 . . . an−1sn . . .
such that δ(si , ai , si+1) > 0 for all i ≥ 1

� set of runs R(M)
� set of histories (finite runs) H(M)

Strategy σ : H(M)→ D(A)

� ∀ h ending in s, Supp(σ(h)) ∈ A(s)
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Markov decision processes

s1 s2

s3

s4

a1, 2

a2,−1

a3, 0

b3, 3

a4, 1

0.3

0.1

0.7

0.9

Sample pure memoryless strategy σ

Sample run ρ = s1a1s2a2s1a1s2a2(s3a3s4a4)ω

Other possible run ρ′ = s1a1s2a2(s3a3s4a4)ω

Strategies may use

� finite or infinite memory

� randomness

Payoff functions map runs to numerical
values

� truncated sum up to T = {s3}:
TST (ρ) = 2, TST (ρ′) = 1

� mean-payoff: MP(ρ) = MP(ρ′) = 1/2

� many more
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Markov chains
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Once initial state sinit and strategy σ fixed,
fully stochastic process

; Markov chain (MC)

State space = product of the MDP and the
memory of σ

Event E ⊆ R(M)

� probability PσM,sinit
(E)

Measurable f : R(M)→ (R ∪ {−∞,∞})d
� expected value EσM,sinit

(f )

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 8 / 33



Context Percentile Queries Shortest Path Discounted Sum Conclusion

Markov chains

s1 s2

s3

s4

a1, 2

a2,−1

a3, 0

b3, 3

a4, 1

0.3

0.1

0.7

0.9

Once initial state sinit and strategy σ fixed,
fully stochastic process

; Markov chain (MC)

State space = product of the MDP and the
memory of σ

Event E ⊆ R(M)

� probability PσM,sinit
(E)

Measurable f : R(M)→ (R ∪ {−∞,∞})d
� expected value EσM,sinit

(f )

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 8 / 33



Context Percentile Queries Shortest Path Discounted Sum Conclusion

Markov chains

s1 s2

s3

s4

a1, 2

a2,−1

a3, 0

b3, 3

a4, 1

0.3

0.1

0.7

0.9

Once initial state sinit and strategy σ fixed,
fully stochastic process

; Markov chain (MC)

State space = product of the MDP and the
memory of σ

Event E ⊆ R(M)

� probability PσM,sinit
(E)

Measurable f : R(M)→ (R ∪ {−∞,∞})d
� expected value EσM,sinit

(f )

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 8 / 33



Context Percentile Queries Shortest Path Discounted Sum Conclusion

1 Context, MDPs, Strategies

2 Percentile Queries

3 Shortest Path

4 Discounted Sum

5 Conclusion

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 9 / 33



Context Percentile Queries Shortest Path Discounted Sum Conclusion

Single-constraint percentile problem
Ensuring a given performance level with sufficient probability

� uni-dimensional weight function w : A→ Z and payoff
function f : R(M)→ R ∪ {−∞,∞}

� well-studied for various payoffs

Single-constraint percentile problem

Given MDP M = (S ,A, δ,w), initial state sinit, payoff function f ,
value threshold v ∈ Q, and probability threshold α ∈ [0, 1] ∩Q,
decide if there exists a strategy σ such that

PσM,sinit

[
{ρ ∈ Rsinit(M) | f (ρ) ≥ v}

]
≥ α.
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� well-studied for various payoffs

Single-constraint percentile problem

Given MDP M = (S ,A, δ,w), initial state sinit, payoff function f ,
value threshold v ∈ Q, and probability threshold α ∈ [0, 1] ∩Q,
decide if there exists a strategy σ such that

PσM,sinit

[
{ρ ∈ Rsinit(M) | f (ρ) ≥ v}

]
≥ α.

� percentile constraint, often PσM,sinit

[
f ≥ v

]
≥ α
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Illustration: stochastic shortest path problem

Shortest path (SP) problem for weighted graphs

Given state s ∈ S and target set T ⊆ S , find a path from s to a
state t ∈ T that minimizes the sum of weights along edges.

� PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

For SP, we focus on MDPs with positive weights

� Truncated sum payoff function for ρ = s1a1s2a2 . . . and
target set T :

TST (ρ) =

{∑n−1
j=1 w(aj) if sn first visit of T

∞ if T is never reached
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Illustration: stochastic shortest path problem

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

Two-dimensional weights on actions: time and cost.

Often necessary to consider trade-offs: e.g., between the probability
to reach work in due time and the risks of an expensive journey.
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Illustration: stochastic shortest path problem

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

Classical problem considers only a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.
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Classical problem considers only a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.

C2: 50% of them cost at most 10$ to reach work.

� Bus ; ≥ 70% of the runs reach work for 3$.
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Illustration: stochastic shortest path problem

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

Classical problem considers only a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.

C2: 50% of them cost at most 10$ to reach work.

� Bus ; ≥ 70% of the runs reach work for 3$.

Taxi 6|= C2, bus 6|= C1. What if we want C1 ∧ C2?
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Illustration: stochastic shortest path problem

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

C1: 80% of runs reach work in at most 40 minutes.

C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries.

� Sample strategy: bus once, then taxi. Requires memory .

� Another strategy: bus with probability 3/5, taxi with
probability 2/5. Requires randomness.
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Illustration: stochastic shortest path problem

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

C1: 80% of runs reach work in at most 40 minutes.

C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries.

In general, both memory and randomness are required.

6= classical problems (single constraint, expected value, etc)
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Multi-constraint percentile problem

Multi-constraint percentile problem

Given d-dimensional MDP M = (S ,A, δ,w), initial state sinit,
payoff function f , and q ∈ N percentile constraints described by
dimensions li ∈ {1, . . . , d}, value thresholds vi ∈ Q and probability
thresholds αi ∈ [0, 1] ∩Q, where i ∈ {1, . . . , q}, decide if there
exists a strategy σ such that query Q holds, with

Q :=

q∧
i=1

PσM,sinit

[
fli ≥ vi

]
≥ αi .

Very general framework allowing for: multiple constraints related
to 6= or = dimensions, 6= value and probability thresholds.

; For SP, even 6= targets for each constraint.

; Great flexibility in modeling applications.
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Results overview (1/2)

Wide range of payoff functions

� multiple reachability,

� mean-payoff (MP, MP),

� discounted sum (DS).

� inf, sup, lim inf, lim sup,

� shortest path (SP),

Several variants:

� multi-dim. multi-constraint,

� single-constraint.

� single-dim. multi-constraint,

For each one:

� algorithms,

� memory requirements.

� lower bounds,

; Complete picture for this new framework.
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Results overview (2/2)

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(M)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(M)·E(Q) P(M)·E(Q)

SP
P(M)·Pps(Q) [HK14] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [HK14] PSPACE-h. [HK14] PSPACE-h. [HK14]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

� F = {inf, sup, lim inf, lim sup}
� M = model size, Q = query size

� P(x), E(x) and Pps(x) resp. denote polynomial, exponential
and pseudo-polynomial time in parameter x .

All results without reference are new.
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Results overview (2/2)

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
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NP-h. NP-h. PSPACE-h.

In most cases, only polynomial in the model size.

� In practice, the query size can often be bounded while the
model can be very large.
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No time to discuss every result!
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Four groups of results

1 Reachability. Algorithm based on multi-objective linear
programming (LP) in [EKVY08]. We refine the complexity
analysis, provide LBs and tractable subclasses.

� Useful tool for many payoff functions!
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Four groups of results

2 F and MP. Easiest cases.

� inf and sup: reduction to multiple reachability.
� lim inf, lim sup and MP: maximal end-component (MEC)

decomposition + reduction to multiple reachability.
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ε-gap DS
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Four groups of results

3 MP. Technically involved.

� Inside MECs: (a) strategies satisfying maximal subsets of
constraints, (b) combine them linearly.

� Overall: write an LP combining multiple reachability toward
MECs and those linear combinations equations.
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Results overview (2/2)
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ε-gap DS
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Four groups of results

4 SP and DS. Based on unfoldings and multiple reachability.

� For SP, we bound the size of the unfolding by node merging.
� For DS, we can only approximate the answer in general. Need

to analyze the cumulative error due to necessary roundings.
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Four groups of results

4 SP and DS.
; Technical focus of this talk.

� Intuitive unfoldings, interesting tricks for DS.
� Start simple and iteratively extend the solution.
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Some related work

Same philosophy (i.e., beyond uni-dimensional E or P
maximization), 6= approaches.

� Beyond worst-case synthesis: E + worst-case [BFRR14b].
� Survey of recent extensions in VMCAI’15 [RRS15].

Multi-dim. MDPs: DS [CMH06], MP [BBC+14, FKR95].

Many related works for each particular payoff: MP [Put94],
SP [UB13, HK14], DS [Whi93, WL99, BCF+13], etc.

� All with a single constraint.

Multi-constraint percentile queries for LTL [EKVY08].

� Closest to our work.
� We use multiple reachability.
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5 Conclusion
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Single-constraint queries

Single-constraint percentile problem for SP

Given MDP M = (S ,A, δ,w), initial state sinit, target set T ,
threshold v ∈ N, and probability threshold α ∈ [0, 1] ∩Q, decide if
there exists a strategy σ such that PσM,sinit

[
TST≤v

]
≥ α.

� Hypothesis: all weights are non-negative.

Theorem

The above problem can be decided in pseudo-polynomial time and
is PSPACE-hard. Optimal pure strategies with pseudo-polynomial
memory exist and can be constructed in pseudo-polynomial time.

� Polynomial in the size of the MDP, but also in the threshold v .

� See [HK14] for hardness.
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Pseudo-PTIME algorithm (1/2)
Key idea: pseudo-PTIME reduction to the stochastic reachability
problem (SR - single target).

SR problem

Given unweighted MDP M = (S ,A, δ), initial state sinit, target
set T and probability threshold α ∈ [0, 1]∩Q, decide if there exists
a strategy σ such that PσM,sinit

[
♦T

]
≥ α.

Theorem

The SR problem can be decided in polynomial time. Optimal pure
memoryless strategies exist and can be constructed in polynomial
time.

� Linear programming.
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Pseudo-PTIME algorithm (2/2)

s1

s2

a, 2

b, 5
0.5

0.5

Sketch of the reduction

1 Start from M, T = {s2}, and v = 7.
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Pseudo-PTIME algorithm (2/2)

s1

s2

a, 2

b, 5
0.5

0.5

Sketch of the reduction

1 Start from M, T = {s2}, and v = 7.

2 Build Mv by unfolding M, tracking the current sum up to the
threshold v , and integrating it in the states of the expanded
MDP.
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Pseudo-PTIME algorithm (2/2)

3 Bijection between runs of M and Mv

TST (ρ) ≤ v ⇔ ρ′ |= ♦T ′, T ′ = T × {0, 1, . . . , v}
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Pseudo-PTIME algorithm (2/2)

3 Bijection between runs of M and Mv

TST (ρ) ≤ v ⇔ ρ′ |= ♦T ′, T ′ = T × {0, 1, . . . , v}

4 Solve the SR problem on Mv

� Memoryless strategy in Mv ; pseudo-polynomial memory in
M in general
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Pseudo-PTIME algorithm (2/2)

If we just want to minimize the risk of exceeding v = 7,

� an obvious possibility is to play b directly,

� playing a only once is also acceptable.

For the single-constraint problem, both strategies are equivalent

; we can discriminate them with richer queries
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Multi-constraint queries (1/2)

Multi-constraint percentile problem for SP

Given d-dimensional MDP M = (S ,A, δ,w), initial state sinit and
q ∈ N percentile constraints described by target sets Ti ⊆ S ,
dimensions li ∈ {1, . . . , d}, value thresholds vi ∈ N and probability
thresholds αi ∈ [0, 1] ∩Q, where i ∈ {1, . . . , q}, decide if there
exists a strategy σ such that query Q holds, with

Q :=

q∧
i=1

PσM,sinit

[
TSTi

li
≤ vi

]
≥ αi ,

where TSTi
li

denotes the truncated sum on dimension li and
w.r.t. target set Ti .
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Multi-constraint queries (2/2)

Theorem

This problem can be decided in

exponential time in general,

pseudo-polynomial time for single-dimension single-target
multi-contraint queries.

It is PSPACE-hard even for single-constraint queries. Randomized
exponential-memory strategies are always sufficient and in general
necessary, and can be constructed in exponential time.

� Polynomial in the size of the MDP, blowup due to the query.

� Hardness already true for single-constraint [HK14].

; wide extension for basically no price in complexity.

B Undecidable for arbitrary weights (2CM reduction)!
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EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP Mv similar to single-constraint case:

� stop unfolding when all dimensions reach sum v = maxi vi .

2 Maintain single-exponential size by defining an equivalence
relation between states of Mv :

� Sv ⊆ S × ({0, . . . , v} ∪ {⊥})d ,
� pseudo-poly. if d = 1.

3 For each constraint i , compute a target set Ri in Mv :

� ρ |= constraint i in M ⇔ ρ′ |= ♦Ri in Mv .

4 Solve a multiple reachability problem on Mv .

� Generalizes the SR problem [EKVY08, RRS14].
� Time polynomial in Mv but exponential in q.
� Single-dim. single target queries ⇒ absorbing targets
⇒ polynomial-time algorithm for multiple reachability.
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Multi-constraint queries

Multi-constraint percentile problem for DS

Given d-dimensional MDP M = (S ,A, δ,w), initial state sinit and
q ∈ N percentile constraints described by discount factors
λi ∈]0, 1[∩Q, dimensions li ∈ {1, . . . , d}, value thresholds vi ∈ N
and probability thresholds αi ∈ [0, 1] ∩Q, where i ∈ {1, . . . , q},
decide if there exists a strategy σ such that query Q holds, with

Q :=

q∧
i=1

PσM,sinit

[
DSλili ≥vi

]
≥ αi ,

where DSλili (ρ) =
∑∞

j=1 λ
j
i · wli (aj) denotes the discounted sum on

dimension li and w.r.t. discount factor λi .

We allow arbitrary weights.

Multi-Constraint Percentile Queries Randour, Raskin, Sankur 25 / 33



Context Percentile Queries Shortest Path Discounted Sum Conclusion

Precise discounted sum problem is hard

Precise DS problem

Given value t ∈ Q, and discount factor λ ∈ ]0, 1[, does there exist
an infinite binary sequence τ = τ1τ2τ3 . . . ∈ {0, 1}ω such that∑∞

j=1 λ
j · τj = t?

� Reduces to an almost-sure percentile problem on a
single-state 2-dim. MDP.

� Still not known to be decidable!
; related to open questions such as the universality problem for

discounted-sum automata [BHO15, CFW13, BH14].

We cannot solve the exact problem but we can approximate
correct answers.
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ε-gap percentile problem (1/3)

Classical decision problem.

� Two types of inputs: yes-inputs and no-inputs.
� Correct answers required for both types.

Promise problem [Gol06].

� Three types: yes-inputs, no-inputs, remaining inputs.
� Correct answers required for yes-inputs and no-inputs, arbitrary

answer OK for the remaining ones.

ε-gap problem.

� The uncertainty zone can be made arbitrarily small,
parametrized by value ε > 0.
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ε-gap percentile problem (2/3)

We build an algorithm.

Inputs: query Q and precision factor ε > 0.

Output: Yes, No or Unknown.

� If Yes, then a strategy exists and can be synthesized.

� If No, then no strategy exists.

� Answer Unknown can only be output within an uncertainty
zone of size ∼ ε.

⇒ Incremental approximation scheme.
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ε-gap percentile problem (3/3)

Theorem

There is an algorithm that, given an MDP, a percentile query Q
for the DS and a precision factor ε > 0, solves the following ε-gap
problem in exponential time. It answers

Yes if there is a strategy satisfying query Q2·ε;

No if there is no strategy satisfying query Q−2·ε;

and arbitrarily otherwise.

� Shifted query: Qx ≡ Q with value thresholds vi + x (all
other things being equal).

+ PSPACE-hard (d ≥ 2, subset-sum games [Tra06]), NP-hard
for q = 1 (K -th largest subset problem [GJ79, BFRR14b]),
exponential memory sufficient and necessary.
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Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.
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2 Finite unfolding?
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Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.

2 Finite unfolding?
� Sums not necessarily increasing (6= SP).

⇒ Not easy to know when to stop.

� Use the discount factor.

⇒ Weights contribute less and less to the sum along a run.
⇒ The range of possible futures narrows the deeper we go.
⇒ Cutting all branches after a pseudo-polynomial depth changes

the overall sum by at most ε/2.
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2 Pseudo-polynomial depth.

� 2-exponential unfolding overall!
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Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.

2 Pseudo-polynomial depth.

� 2-exponential unfolding overall!

3 Reduce the overall size?
� No direct merging of nodes (no integer labels, 6= SP), too

many possible label values.
� Introduce a rounding scheme of the numbers involved

(inspired by [BCF+13]).

⇒ We bound the error due to cumulated roundings by ε/2.
⇒ Single-exponential width.
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Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.

2 Pseudo-polynomial depth.

3 Single-exponential width.

4 Leaf labels are off by at most ε. Classify each leaf
w.r.t. each constraint.
∼ Same idea as for SP.

⇒ Defining target sets for multiple reachability.

� Leaves can be good, bad or uncertain (if too close to
threshold).
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Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.

2 Pseudo-polynomial depth.

3 Single-exponential width.

4 Leaf labels are off by at most ε. Classify each leaf
w.r.t. each constraint.

� Leaves can be good, bad or uncertain (if too close to
threshold).

5 Finally, two multiple reachability problems to solve.

� If OK for good leaves, then answer Yes.
� If KO for good but OK for uncertain, then answer Unknown.
� If KO for both, then answer No.
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Algorithm: key ideas

1 Goal: multiple reachability over appropriate unfolding.

2 Pseudo-polynomial depth.

3 Single-exponential width.

4 Leaf labels are off by at most ε. Classify each leaf
w.r.t. each constraint.

� Leaves can be good, bad or uncertain (if too close to
threshold).

5 Finally, two multiple reachability problems to solve.

� If OK for good leaves, then answer Yes.
� If KO for good but OK for uncertain, then answer Unknown.
� If KO for both, then answer No.

That solves the ε-gap problem.
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Summary

Multi-constraint percentile queries.

� Generalizes the classical threshold probability problem.

Wide range of payoffs: reachability, inf, sup, lim inf, lim sup,
mean-payoff, shortest path, discounted sum.

� Various techniques are needed.

Complexity usually acceptable.

� Often only polynomial in the model size, while exponential in
the query size for the most general variants.
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Results overview

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reachability P [Put94] P(M)·E(Q) [EKVY08], PSPACE-h —

f ∈ F P [CH09] P
P(M)·E(Q)

PSPACE-h.

MP P [Put94] P P

MP P [Put94] P(M)·E(Q) P(M)·E(Q)

SP
P(M)·Pps(Q) [HK14] P(M)·Pps(Q) (one target) P(M)·E(Q)

PSPACE-h. [HK14] PSPACE-h. [HK14] PSPACE-h. [HK14]

ε-gap DS
Pps(M,Q, ε) Pps(M, ε)·E(Q) Pps(M, ε)·E(Q)

NP-h. NP-h. PSPACE-h.

� F = {inf, sup, lim inf, lim sup}
� M = model size, Q = query size

� P(x), E(x) and Pps(x) resp. denote polynomial, exponential
and pseudo-polynomial time in parameter x .

Thank you! Any question?
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