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Preface

Motivation and Objectives

Changes to software artifacts and related entities tend to be progressive and in-
cremental, driven, for example, by feedback from users and other stakeholders,
such as bug reports and requests for new features, or more generally, changes
of functional or non-functional requirements. In general, evolutionary charac-
teristics are inescapable when the problem to be solved or the application to
be addressed belongs to the real world.

There are different strategies to address evolution. Model-based software
development using the UML, as proposed by the OMG’s MDA initiative, ad-
dresses evolution by automating (via several intermediate levels) the transfor-
mation of platform-independent design models into code. In this way, software
can be evolved at the model level without regard for technological aspects,
relying on automated transformations to keep in sync implementations on
different target platforms.

Classical re-engineering technology, instead, starts at the level of programs
which, due to the absence or poor quality of models, provide the only definite
representation of a legacy system. The abstractions derived from the source
code of these systems are not typically UML models, but they may play a
similar role in the subsequent forward engineering steps.

Which approach is preferable in which situation, and how both strate-
gies could be combined, is an open question. To answer that question and to
implement any solutions deriving from these answers we require

e a uniform understanding of software evolution phenomena at the level of
both models and programs, as well as of their interrelation;

e a common technology basis that is able to realize the manipulation of arti-
facts at the different levels, and to build bridges between them.

It is the hypothesis of this workshop that graphs, seen as conceptual mod-
els as well as data structures, defined by meta models or other means, and
transformations, given as program or model transformations on graph- or tree-
based presentations, provide us with unifying models for both purposes.

Transformations provide a very general approach to the evolution of soft-
ware systems. Literally all activities that lead to the creation or modification of
documents have a transformational aspect, i.e., they change a given structure
into a new one according to pre-defined rules. As a common representation of
artifacts like models, schemata, data, program code, or software architectures,



graphs have been used both for the integration of development tools and as a
conceptual basis to reason on the development process and its products.
Based on this conceptual and technological unification, it is the objective
of the workshop to provide a forum for studying software evolution phenomena
and discussing their support at different levels of abstraction.
Topics of interest include

graph-based models for analysis, visualization, and re-engineering

software refactoring and architectural reconfiguration

model-driven architecture and model transformations

* consistency management and co-evolution

relation and tradeoffs between model- and program-based evolution
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Workshop Program

The workshop offers presentations of different lengths.

L: long presentation (15 min of lecture + 5 min discussion)

S: short presentation (5 min of lecture + 5 min discussion)

Saturday, October 2nd

8.45-9.00: Opening and Welcome

9.00 - 10.00 Transformation Technology
L: Leveraging UML Profiles to generate Plugins from Visual Model Trans-

formations, Hans Schippers, Pieter Van Gorp, Dirk Janssens p-7
S: The Side Transformation Pattern - making transforms modular and re-
usable, Edward D. Willink, Philip J. Harris p- 18
S: An Algebraic Baseline for Model Transformations in MDA, Artur
Boronat, Josa A. Cara, Isidro Ramos p- 30
S: Ewvolution of Language Interpreters, Ralf Laemmel p. 46
S: Reflective designs, Robert Hirschfeld, Ralf Laemmel p- 52

10.00 - 10.30 Meta Models I
L: Towards a Megamodel to Model Software Evolution Through Transforma-

tions, Tam NGuyen, Jean-Marie Favre p- 56
S: Modeling Software FEvolution by Treating History as a First Class Entity,
Stephane Ducasse, Jean-Marie Favre, Tudor Girba p- 71

10.30 - 11.00 Coffee

11.00 - 11.30 Meta Models II
L: Towards Integrating C'VSS Repositories, Bug Reporting and Source Code
Meta-Models , Giuliano Antoniol, Massimiliano Di Penta, Harald Gall,

Martin Pinzger p- 83
S: Behavioral Refinement of Graph Transformation-Based Models, Sebastian
Thone, Reiko Heckel p- 95

11.30 - 12.30 Analysis
L: Detecting Structural Refactoring Conflicts using Critical Pair Analysis ,

Tom Mens, Gabriele Taentzer, Olga Runge p- 105
L: Predicting Incompatibility of Transformations in Model-driven Develop-
ment, Mehdi Jazayeri, Johann Oberleitner p- 120
S: Proof Transformation via Interpretation Functions, Piotr Kosiuczenko
p. 128
S: On the Evolution Complexity of Design Patterns, Tom Mens, Amnon H.
Eden p- 136

12.30 - 14.00 Lunch



14.00 - 15.00 Architectural Evolution
L: Evolution Through Architectural Reconciliation, Paris Avgeriou, Nicolas

Guelfi, Gilles Perrouin p. 152
L: Towards an Integrated View on Architecture and its Evolution, Martin
Pinzger, Michael Fischer, Harald Gall p- 168
S: Fresco: Flexible and Reliable Evolution System for Components, Yves Van-
dewoude, Yolande Berbers p- 182
S: Dynamic software assembly for automatic deployment-oriented adapta-
tion, Anthony Savidis p. 191

15.00 - 15.30 Discussion
15.30 - 16.00 Coffee

16.00 - 18.00 ERCIM and ESF Meeting
During this meeting we will discuss the details of the new ERCIM Working
Group on Software Evolution we are currently starting up. We will also
discuss some administrative matters for the ESF RELEASE network. All
ERCIM and RELEASE members are expected to join this meeting, but the
meeting is also open to anyone else who is potentially interested.



SETra 2004 Preliminary Version

Leveraging UML Profiles to generate Plugins
from Visual Model Transformations

Hans Schippefs Pieter Van Gorp, Dirk Janssens

Formal Techniques in Software Engineering
Universiteit Antwerpen, Belgium
{hans.schippers,pieter.vangorp,dirk.janssens}@ua.ac.be
*Aspirant of the Fund for Scientific Research (FWO) - Vlaanderen

Abstract

Model transformation is a fundamental technology in the MDA. Therefore, model trans-
formations should be treated as first class entities, that is, models. One could use the
metamodel of SDM, a graph based object transformation language, as the metamodel of
such transformation models. However, there are two problems associated with this. First,
SDM has a non-standardized metamodel, meaning a specific tool (Fujaba) would be needed
to write transformation specifications. Secondly, due to assumptions of the code genera-
tor, the transformations could only be deployed on the Fujaba tool itself. In this paper,
we describe how these issues have been overcome through the development of a template
based code generator that translates instances of a UML profile for SDM to complete model
transformation code that complies to the JMI standard. We have validated this approach by
specifying a simple visual refactoring in one UML tool and deploying the generated plugin
on another UML tool.

Key words: Refactoring, Model Transformation, SDM, JMI

1 Introduction

As Sendall and Kozaczynski sta®{ 03, model transformation can be seen as the
heart and soubf model driven software development. In terms of OMG’s Model
Driven Architecture (MDA Pbj01]), PIM-to-PSM transformations come to mind
immediately, but that is only half the story. Indeed, beside tieBerementga
special kind oftranslationg, there is another important class of model transforma-
tions: rephrasingg Gor04. These are transformations within the same metamodel
(intra-metamodel), which could be applied to change a model because of evolv-
ing requirements, or to enhance a model’s internal structure without modifying
its external behavior (refactoring). Recent experime@®i&.J03 have shown that
Fujaba’s Story Driven Modeling (SDMANTZ98)) can be used as a language for
developing transformations of this class.
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However, one was restricted to Fujaba as its development environment for two
reasons. The first has to do with the fact that SDM is an independent, non-standard
metamodel, and is only implicitly present in the Fujaba source code. Therefore,
SDM specifications could only be written with the Fujaba editor. The second prob-
lem is that model transformations developed with Fujaba can only be deployed
on the Fujaba repository itself. Its cause is that the Fujaba code generator only
integrates with code complying to a Fujaba proprietary API. More specifically, it
generates code that is based on a specific association framework. Obviously, these
issues stand in the way of the approach becoming mainstream. They have been
overcome by, on the one hand, designing a UML profile for SDM, implying that
any CASE tool can be used for the development of transformation models, and
on the other hand, developing a new code generator for the resulting metamodel
[Sch04. The latter was handled in such a way that the part which depends on the
target platform can easily be replaced.

This paper describes this work, and is organized as follows: First, we provide
the required background information by summarizing the related MDA standards.
Next, the architecture of the code generator is described, which is then illustrated by
an example of a model transformation. Finally, conclusions are drawn and potential
future work is discussed.

2 MDA Standards

As explained above, in spite of Fujaba’s value in validating numerous model man-
agement techniqueblZ99,NSWH02WGNO3J, the tool lacks standardization. More
precisely, its code generator reads its input in a proprietary way, from a non-
standard repository, and generates output code for the same repository, again mak-
ing use of its non-standard API. In what follows, some standards and concepts,
which have been used to solve this problem, are presented.

2.1 Meta Object Facility (MOF)

The MOF standard(@bj0Z essentially defines a four-layeredetadata architec-

ture, as shown in Fig.l. At the top (M3) is the meta-metamodel (also known as
the MOF model), a universal language to define metamodels (M2). Metamodels
are themselves languages used to define models (M1), which in turn describe the
actual data (MO0). In other words, the model at leve{ ptovides a description of
some common characteristics of the data at levgl{M One specific set of data,
conforming to a model, is called anstanceof that model. As shown in Fig2,
“model” and “metamodel” are relative concepts: a metamodel can easily be seen
as a model of a model, while the meta-metamodel can be seen as the model of a
metamodel. The Unified Modeling Language (UML) for example, can be formal-
ized by a metamodel (an instance of the MOF model). UML can be used to specify
class diagrams, activity diagrams, etc. which, as a consequence, can be parsed to
instances of the UML metamodel, or models at layer M1.
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Fig. 1. MOF Metadata Architecture

The MOF model is designed to be universal: it should be adequate to de-
scribeany metamodel, including its own metamodel (which is the MOF model
itself). Since “metamodel” is a relative concept, the meta-metamodel (i.e., the
MOF model) can be seen as the metamodel of all metamodels on the M2 layer.
In this sense, the MOF model can be stored on the M2 level. However, one can
only reason about all metamodels in a standard way by agreeing on one model for
meta-metamodeling. Therefore, the MOF model is logically considered to be on
the M3 level. In the context of this paper, the most important merit of the MOF
standard is that it allows the creation of tools for model analysis and manipulation,
which only depend on the MOF model, but not on any specific metamodel. In
particular, a MOF repository can be developed, which supports the storage of any
MOF-compliant models and metamodels. The open source NetBeans Metadata
Repository (MDR Mic02b]) does just that, and was therefore a logical candidate
for the new code generator.

storedin

Specification Model Repository
conformsTo T instanceOf
Language formalizedBy Metamodel

Fig. 2. The relationship between languages, models, metamodels and repositories.

2.2 Java Metadata Interface (JMI)

The MOF standard on itself is not the whole story, since it does not define how
models can be accessed from source code. Or rather, it does, but only for CORBA
IDL, and not for any other language. As its name suggests, the Java Metadata



Interface (JMI) standardjic024 provides a solution here, by actuallyapping
MOF to Java. More specifically, JMI defines one or more Java entities for each
MOF construct, thus introducing a standard API for model access. For example,
a MOF class is mapped to two Java interfaces: one “factory” (or “class proxy”)
interface for constructing objects and one “instance” interface for manipulating
them. By applying this mapping to a metamodel, which of course consists of these
MOF constructs (as it is a MOF instance), a metamodel-specific set of interfaces
Is obtained, through which any instance of this metamodel can be accessed and
manipulated. In case of UML, for example, these interfaces can be used to add a
new UML class to a model of a class diagram, or find an existing UML association
and delete it. In addition, there is also a unique set of reflective interfaces, which
offers the same possibilities, but without having to use metamodel-specific code.

In order to understand that a standard like JMI is sufficient to build model-
manipulating tools in a metamodel- (and model-) independent way, the following
two points are crucial:

(i) modelmanipulation must always be carried out thromggtamodeinterfaces.
For example, a UML class diagram can only be seen in terms of UML classes,
UML attributes, UML associations, etc. which are all concepts from the UML
metamodel, and as such are present in the UML-specific interfaces.

(i) indirectly making use of metamodel-specific interfaces, does not make a tool
metamodel-dependent. In the following section, it will be shown that the
code generator can produce metamodel-specific code by relying on the JMI
mapping rulesonly. Obviously, it is desirable that the generated cxle
metamodel-specific, as each model transformation is metamodel-specific as
well.

3 Architecture

This section describes the overall architecture of JCMTG, that is, the JIMI Compli-
ant Model Transformer Generator, a standards-based alternative for Fujaba’s pro-
prietary way of handling model transformations.

3.1 UML Profile for SDM

As already indicated in Sectidh the trouble with SDM (as it is used in Fujaba)

Is that its syntax as well as its semantics are non-standard, even though they both
resemble their UML counterpart. The latter is illustrated in F&j.which dis-

plays an excerpt of an SDM specification in Fujaba. While elements of both ac-
tivity diagrams and collaboration diagrams can easily be recognized, it is clear that
no CASE tool is capable of drawing similar diagrams, as UML does not support
nesting in that way. Furthermore, the storage of SDM instances in Fujaba is also
non-standard. Both aspects of this problem were tackled in JCMTG by design-
ing a UML profile for SDM. In practice, this comes downnmappingeach SDM
construct to a UML alternative. Additionally, stereotypes have been used to dif-
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Fig. 3. Example SDM specification edited with the Fujaba UML tool.

ferentiate between several variants of the same basic SDM constructs (for example
forEach activities versugodeactivities versus normadtory activities). For the
control flow part, this proved to be quite straightforward, because of the support
of activity diagrams in UML. For the so-calladansformation primitiveswhich
actually resemble collaboration diagrams, UML class diagrams have been chosen
instead, as these often seem to offer more visual features, such as attribute assign-
ments. An excerpt of the SDM-to-UML mapping is given in Tablét should now

be clear that the UML profile allows that, on the one hand, SDM specifications
can be drawn in any CASE tool, while on the other hand, since UML is a MOF
instance, a standards-based MOF repository (in particular, MDR) can be employed
for storage purposes.

SDM Construct UML Construct

Story Activity ActionState

ForEach Activity| ActionState with «for each» stereotype

Unbound object UmiClass

Bound Object UmIClass with «bound» stereotype

Table 1
Extract from SDM-to-UML mapping

3.2 Generation of Transformation Code

An overview of the actual code generation process is displayed irtFiche MOF
repository (MDR) plays an important part, and could be seen as the starting point,

11



as it holds the transformation specification (or transformation model). Since MDR
provides a JMI API, this specification can be analyzed in a standardized way by
the code generator engine. The open source AndroMB#D3 code generator
was chosen for this task, at the heart of which is in fact a set of dynamic content
templates. These provide a “skeleton” of the generated code, which is filled in
depending on the information in the transformation model.

MOF Repository Code Generator
Transformation Model
Is defined on Analyze through INII calls
Dynamic content Templates
1/0 Metamodel Model to transform Generate trangformation code
Instance Of
N\ |:| / |:| \ |:| / <\\
Transform through JMI calls [

Java Transformation Code

Fig. 4. JCMTG Architecture

Fig. 4 illustrates that this transformation model is defined on the metamodel
of the models to be transformed: since we are implementing translations, the in-
and output metamodel of the transformations is the same. The artifact resulting
from template instantiation is a Java source file, containing metamodel-specific JMI
code. This code can analyze and transform any model instantiating this metamodel.
In practice, a transformation writer defines model checks and transformations as
path navigations and rewritings over a graph structure of this metamodel. One can
define a type graph as a class diagram either manually or reverse engineer it from
the target repository sources. ldeally, class diagrams of mainstream metamodels
(e.g., UML 1.5, 2.0, ...) would be shared by the transformation community.

Note that, even though JMI sets a standard, it may be useful to generate code
for other platforms (after all this is MDA). In that case, the dynamic content tem-
plates can easily be replaced by a different set, which target a new platform like
repositories conforming to the Eclipse Modeling Framework (EMBG+04)).

3.3 Constraints at Two Levels

There are two levels in the transformation process where constraints should be
checked.

In order to guarantee generation of correct code, it is important that a transfor-
mation model can be checked for well-formedness. Indeed, UML on itself has quite
loose semantics, and the interpretation specific to SDM is obviously not captured
at all. ldeally, a MOF repository should allow direct verification of such meta-
model well-formedness rules (OCL would make a good candidate here, since it is
a MOF instance itself), but unfortunately, this is currently not implemented in the
MDR. Therefore, the well-formedness of transformation models can currently only

12
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Fig. 5. Fragment of the UML 1.5 metamodel.

be verified after they have been serialized to XMl and imported in a dedicated OCL
constraint checker like OCLEI"04].

Yet, there is another level where constraints come into play, namely within a
transformation specification. Indeed, it may be desirable to only execute (part of)
the transformation if a certain complex condition is satisfied, or perform different
actions depending on the truth value of such a condition. Thus, OCL is relevant
in that context too. However, once more, tool support is lacking. Pragmatically,
JCMTG adopted Java conditions instead. Note that this is not ideal, as it makes the
transformation model depend upon the target platform (JMI, EMF, ...), which pre-
vents large scale reuse of transformation specifications. The Dresden OCL Toolkit
[LOO03] seems to be a promising alternative, as it should be capable of parsing OCL
constraints, and evaluating them directly on a MOF repository. Unfortunately, the
parser is still under development.

4 Example: Pull Up Method

Demonstrating how everything fits together is perhaps best done by means of an
example. Consider the so-called “pull up method” refactoring, which basically just
moves a method of class A to class B, where A inherits from B. The transformation
Is defined on a fragment of the UML 1.5 metamodel shown in Big.

The corresponding transformation model is illustrated in Biyhere, just as in
the Fujaba example (Fi@.on pageb), two main parts can be distinguished, albeit
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not nested anymore. Note that in the UML profile, the reference between the two
parts is maintained by means of a tagged value.

superclass: Classifier
’ . 1 +parent
+owner 1
: < «<failure: =
e

P g
{ < <linles >

Ir wl <<creates
checkPrecondition | 1 i
s 4 < <bounds > . ——
superclassLinkcGeneralization
method:Operation

L L5UCCAS5> >

1

‘\ 1

W {jemtg transprimitive=doPullUpMethod} )/
-~

é) +owner container: Classifier +child
& 1 1

(@) (b)

< <clestroys >

Fig. 6. PUM transformation model

The transformation flow is quite straightforward. First a precondition, which
basically just makes sure it makes sense to apply the refactoring, is checked, and
only if it returned “true”, the actual transformation is carried out. The latter, the
so-called “transformation primitive” specifies a graph rewriting that is displayed in
Fig. 6 (b). Itillustrates the main idea behind SDM: initially, a set of objects match-
ing the structure given in the primitive, is searched for. More precisely, a method
should be found, which belongs to a certain class “container” (this can be checked
via the “owner” association in the UML metamodel). Additionally, “container”
should have a superclass “superclass”, which can be reached by navigating through
the UML metamodel some more. If, and only if, such a structure can be matched,
the “owner” link to “container” is removed, and an “owner” link to “superclass” is
established, signaling successful completion of the transformation.

After specifying this transformation in a UML 1.5 compliant tool, one exports it
to XMI. JCMTG then generates a complete plugin for the Poseidon tool, which has
a JMI compliant UML 1.5 repository. FigZ displays the plugin popup appearing
when one right-clicks on a method. As specified in the abstract transformation, the
method will only be pulled up if the precondition of the refactoring is met.

5 Conclusion and Future Work

It should be clear that the elaborated approach solves the two significant issues
from which Fujaba suffers. First, the UML profile ensures the possible usage of
any UML 1.5 compliant CASE tool to draw transformation models, as well as stan-
dardized model access and storage. Second, the employment of pluggable dynamic
content templates guarantees independence from any specific target platform. Nev-
ertheless, JCMTG is only very young, and many aspects would benefit from certain
improvements. As already mentioned in SectBboafor example, better OCL tool

14
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Fig. 7. Screenshot from the UML CASE tool plugin generated from the abstract transfor-
mation specification.

support both at metamodel- and model-level, would enable integration of constraint
checking. Additionally, expressiveness of SDM could be questioned, especially
in the context of inter-metamodel transformations, that is, transforming instances
from one metamodel to become instances of another metamodel. In this light, but
also when considering very complex transformations, it might be desirable to add
additional constructs to the language. Another important issue has to do with the
dynamic content templates. Although they can easily be replaced, chances are
that a significant amount of any other set of templates would be very similar, if
not identical. Therefore, it would probably be worthwhile to investigate how ex-
tra levels of abstraction can be introduced between the transformation model and
the transformation code. In this light, the transformation engine project at INRIA
[dReleeAl04 is very promising, as it introduces a so-called “pivot-metamodel”.
This is a rather low-level metamodel, from which code generation is straightfor-
ward. The idea is that a transformation model is first translated to this pivot, in-
stead of generating code immediately. This would ensure that a change of target
platform only causes the (trivial) step from pivot to code to be replaced. Finally, a
note on the concrete syntax. The argument that the Fujaba notation was more ele-
gant than the, admittedly somewhat artificial, UML notation is probably valid. It is,
however, important to distinguish between concrete and abstract syntax. Only the
latter is really tied to UML, so nothing prevents a tool developer from creating an
environment with Fujaba’s concrete syntax, and transform this behind the scenes to
fit into the UML profile for storage. That way, the possibility that for instance an
abundance of stereotypes would make transformation specifications less readable,
would not be an issue anymore.
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Abstract

The basic principles of meta-modelling are now well established for individual mod-
els. Activities such as the MOF QVT [5] are now extending these principles to
transformation between models. However, meta-model incompatibilities between
transformations reduce opportunities for effective re-use, hindering wide scale adop-
tion. We introduce a pattern, the Side Transformation Pattern, that arises naturally
as transformations are made re-usable, and present a series of examples that show
how its use can bring clarity and robustness to complex transformation problems.

Key words:
MDA ,MOF ,Modularity,Pattern,QVT, Transformation, UMLX.

1 Introduction

Transformation is often presented as a complete activity. This impression
is particularly prevalent in today’s ‘MDA-compliant’ tools, which perform
a one-stage rewrite of source (Platform Independent Model) concepts into
target (Platform Specific Model) concepts. Such an approach has no explicit
Platform Model as required by the Model Driven Architecture [4], and offers
little opportunity for evolution through progressive transformation.

Where a single stage approach satisfies the user’s requirements, it can offer
dramatic improvements in productivity, for example in code generator tem-
plates that produce Java or C++ source text directly from UML graphical
models. Too often however, the one-stage approach inhibits a proper sepa-
ration of different programming concerns. The result is a lack of flexibility
and visibility in the transformation process, leading to poor opportunities for
enhancement or re-use.
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Once transformation is viewed as a multi-stage programming discipline,
traditional software engineering issues such as modularity and re-use arise.
In the context of transformations, re-use is hampered by incompatibilities
between the meta-models in use.

If a transformation-driven approach with the richness required by many
different user applications is to be widely accepted, both engineering issues and
programming concerns must be addressed in the translation of increasingly
abstract source representations to a variety of different platforms.

We are interested in transforming Domain Specific Visual Languages
(DSVL) that specify required computations and communications into efficient
executable code. The executable code may be either C or VHDL, depending
on whether the target platform is sequential or concurrent in nature. Many
distinct transformations are required - some that resolve graphical abstrac-
tions and instantiation hierarchy can be shared by both targets, others, such
as establishing a sequential schedule or synchronising concurrent execution,
are very target dependent. The complete set of transformations is much too
complicated to express as a single pass, and many, such as state machine
synthesis, overlap with more conventional functionality.

We therefore look to an approach that involves many small transforma-
tions, each dealing with a single aspect of the problem, such that relevant
transformations extracted from a large library of re-usable transformations
can be exploited to build an apparently custom composite with few truly
custom contributions. Such an approach also offers great advantages in the
validation of the complete transformation, control of the transformation code
base, and the transfer of system knowledge.

Even within the UML to Java world, we see benefits in using this approach
to progressively realise the more abstract UML constructs into simple Object
Oriented concepts, which are then reified within the limitations of the Java
meta-model before the final conversion to text. Such a progression can readily
evolve to accommodate additional Domain Specific Visual concepts at the
start, alternate Object Oriented perspectives in the middle, or specialised
code metrics at the end.

In this paper, we first present a transformation pattern that recurs as we
seek to make our transformations modular and re-usable. These are essential
features for a successful MDA [3]. We then outline three different examples
of the pattern in our compilation system. The third example comprises three
distinct invocations of the pattern demonstrating how the pattern may be
composed sequentially, concurrently and recursively.

If a transformation is to be re-usable there are three possibilities

» standardise the meta-model on which the transformation operates
e translate the transformation to the custom meta-model

 translate to and from transformation-specific meta-models.

Standardising the meta-model is not practical, since it is unlikely that any
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Fig. 1. A Monolithic Transformation.

future version of UML will be sufficiently lightweight for typical usage yet
flexible enough for all.

Translating the transformation may be the best option. But we must wait
until tools evolve to support transformations on transformations, and until
our transformations for re-use are written in transformable languages. QVT
looks very promising here.

Projecting the relevant elements of the custom meta-model into the trans-
formation domain is practical now, and may allow optimisation in the future.
This approach forms the basis of the Side Transformation Pattern; a pattern
that, analogously to a side calculation, performs some subsidiary action in
order to make overall progress.

We use a pattern form [2] in order to provide a clear concise exposition
of the problem, context, forces and solution. As such, the aim is to capture
expertise, rather than to claim any great novelty. Many readers will surely
recognise the approach, and, like the authors, may regret that they had not
always had the discipline or tools to apply the pattern more often.

2 The Side Transformation Pattern

Context

You are designing or programming an application. You encounter the need
for a transformation that solves a recurring or complex problem. You find that
re-use requires variation in the different input or output meta-models.

The monolithic solution to this problem demonstrates this context and a
way of extending UML to support describe transformations.

In Figure 1 (based on the proposed UMLX notation [6]) rectangles use
UML class instance notation to show models and their meta-models, lozenges
denote transformation instances, and pointed rectangles identify the input and
output ports of the overall transformation component. The arrows show the
‘data’ flow of models between ports, models and transformations.

Note that although both input and output are shown as instances of Model,
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Fig. 2. Side Transformation Pattern.

each comes from a different package, and so may be radically different.

Problem
How do you make your transform re-usable and modular?

Forces
Monolithic implementation of the transformation avoids complexity.
Monolithic implementation couples the solution to the business rules and
meta-models. This may create problems by:

e inhibiting re-use in other applications
e inhibiting re-use with other meta-models
e inhibiting re-use with other business-rules

A solution to the recurring problem may be available from another pro-
gramming domain.
The transformation may build on existing transformations.

Solution

[solate the solution to the recurring problem from the surrounding appli-
cation in a side transformation (Figure 2).

The solution involves four activities:

1 Fork. The incoming instance of Model from the ApplicationInputMM
(meta-model) is made available to two separate transformation paths,
one for the side transformation and another for the eventual merge.
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2 Project. A view of the Model instance from ApplicationInputMM is cre-
ated that extracts the salient information from the application and ex-
presses it as an instance of Model from the solver’s ProblemMM.

3 Solve. The re-usable solution is applied to transform the problem ex-
pressed as an instance of Model from the solver’s ProblemMM into an
instance of Model from the solver’s SolutionMM.

4 Merge. The second copy of the incoming instance of Model from
ApplicationInputMM is updated or rewritten to incorporate the results
of the side transformation resulting in an instance of Model from the
ApplicationOutputMM.

(Note that the instance of Model from each meta-model represents the root
of the meta-model instantiation, and that each meta-model may be completely
independent. There may therefore be four different Model classes.)

Resulting Context

Separate meta-models are associated with the input and output of the
re-usable solver. The solver is therefore independent of the application.

The Project transformation is responsible for creating the problem view.
The stimuli from the business rules are therefore isolated in a separate module.

The Solve transformation is independent and re-usable.

The Merge transformation is responsible for interpreting the solution.
The responses to the business rules are again isolated in a separate module.

Variations

Meta-models may be re-used; each pair of ProblemMM, SolutionMM and
ApplicationInputMM, ApplicationOutputMM meta-models may be the same
or derived from a shared core meta-model.

The pattern may be applied recursively, with Project, Solve and Merge as
further instances of the pattern.

The pattern may be applied concurrently with multiple Solves contributing
to a more complicated Merge.

3 Example 1: Type Inference Constraints

In our first example we consider a compilation stage for a DSVL that defines
a system as a connection of components. The important parts of the model
are

e actors - components that encapsulate their scheduling
e ports - the communication interfaces of actors

* connections - the communication paths between ports
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The model is hierarchical, so at some hierarchical level within an actor
definition (AD), we may have connections between the port definitions (PD)
of the defined actor and port instances (PI) of the actor instances (Al) instan-
tiated within the defined actor.

In order to make this example accessible to a wider audience, we use UML
2.0 activity diagram notation rather than a DSVL for Figure 3. Actor in-
stances are therefore shown as activities (rounded rectangles), whose external
port (instances) are shown as pins (small rectangles) and internal port (defi-
nitions) are shown as parameters (large rectangles).

Figure 3 conflates two levels of structural hierarchy to highlight the hier-
archical nature of instantiation. The outer actor definition ADO, comprises
instances AIl and AI2 of AD1 and AD2, each of which has a single port PD1
and PD?2 respectively instantiated as PI1 and PI2. AD1 and AD2 in turn
instantiate AD3 and AD4. A single connection traverses the hierarchy from
PI3 of PD3, via C1 to PI1 of PD1, via C0O to PI2 of PD2, and via C2 to
P14 of PDA.

In order to generate code for such a system, it is important to know proper-
ties such as the type of each port and each connection. It is clearly undesirable
for the programmer to have to define the type at each of the 11 nodes, so we
can exploit the constraint that the type must be consistent at all nodes to
infer missing declarations, and to validate redundant declarations.

Within each level of hierarchy we have a constraint for the connections:

Tprn =Tco ="Tpr2, Tpi3 =Tc1 = Tpp1,Trp2 = T2 = Tpia

(where T denotes the type of connection C0), and between hierarchical levels
we have:

Tpp1 =Tpn,Tpp2 = Trr2, Trps = Tpr3, Tpps = Tp1s
and at some point we may have e.g.

Tpps = INTEGER

These constraints may be readily expressed as instances of the meta-model
shown in Figure 4. The Model comprises Constraints that require each
of their Terms to be compatible. A Literal enforces a specific value such
as INTEGER. An Equality associates a free variable such as Tgg. The
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problem therefore involves many constraints that (hopefully) intersect at a
term.equals.

The result is an instance of the input meta-model that satisfies the in-
put /output requirement that each distinct incoming term element appears in
the output exactly once, and that each pair of term elements that share a
common parent in the input also share a parent in the output.

Practical implementation of these type inference algorithms requires awk-
ward recursive traversal up and down the design hierarchy. A monolithic
implementation therefore results in a complicated solution that is very tightly
coupled to the design meta-model, with little opportunity for re-use. How-
ever, the Side Transformation Pattern allows encapsulation of each of these
separate concerns, easing implementation and maintenance:

* The ApplicationInputMM is as required.

e The Project transformation creates the system of type (in)equalities from
the input meta-model.

e The ProblemMM is as shown in Figure 4.
e The Solve reduces the system of (in)equalities into a list of unique types.

* The SolutionMM is as shown in Figure 4, with an additional prohibition on
multiple Term parents.

e The Merge annotates each node in the original design with its inferred type.

e The ApplicationOutputMM is the same as the input, except that all optional
type related attributes have been resolved.

The type solver is now decoupled, and combines elements together with-
out concern for the hierarchical complexities of the DSL or the semantic
validity of the solution. The semantic interpretation of an unresolved con-
straint (a constraint without a term.literal) or a conflicting constraint (a
constraint with more than one distinct term.literal) is resolved as part
of the merge of the solution back into the original model.
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4 Example 2: Common Feature Elimination

Common Sub-expression Elimination is a standard compiler optimisation that
seeks to eliminate repeated computations by caching and re-using the result
of a single computation. The optimisation can be applied more generally in a
modelling context so we refer to feature rather than sub-expression elimina-
tion.

A naive implementation of such an optimisation could incur quadratic
complexity over the full model as an outer search identifies each candidate for
elimination, and as an inner search identifies duplicates.

A more efficient implementation uses the Side Transformation Pattern.

e A linear complexity Project transformation builds an instance of a
ProblemMM, which identifies all the candidates.

e The Solve transformation builds a smaller instance of the SolutionMM iden-
tifying the common features.

e A linear complexity Merge transformation rewrites the input to exploit the
common features.

Separation of the three Project, Solve and Merge transformations isolates
the three distinct activities, provides an opportunity to share the Solve trans-
formation, and results in near linear complexity (if a suitable hashing algo-
rithm is used by the Solve transformation).

5 Example 3: Synchronisation Barrier Insertion

Our third example concerns automatic placement of synchronisation barriers
within a repetitive computation defined by a flow graph. Figure 5 provides an
example, with rectangles encapsulating a nested (hierarchical) computation,
thick bars denoting synchronisation barriers and directed arrows showing the
data flow.

(This graph demonstrates a DSVL. An equivalent UML activity diagram
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Fig. 6. Example pipelined flow graph.
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would require each actor rectangle to be elaborated by an activity with pins
such that all inputs are synchronised, and all outputs synchronised. The
synchronisation barrier must similarly be elaborated by a null activity with
synchronised inputs, and synchronised outputs.)

Each synchronisation barrier captures its input at the end of one compu-
tation cycle and propagates it at the start of the next. The barriers therefore
ensure that the {/,J,K} inputs and { P,Q} outputs constitute coherent tuples.

During one complete evaluation the inputs I, J, K and the current states
of the sub-processes A, B, C, D are used to compute the outputs P and
() and the new states of A, B, C', D. The precedence constraints (data
dependencies) in the flow graph require A to compute before B and C' (which
may compute in parallel). B and C' in turn compute before D completes the
overall computation.

The peak computation rate is determined by the slowest path: a directed
route through the computation graph starting at, and ending at, a synchro-
nisation barrier. There are five such paths in Figure 5, of which clearly one
of the two paths from J to @ is slowest, so the computation time in the ex-
ample i 4. = ta + max(tp + te) + tp where tp is the computation time of
node D, and t,,,, is the worst case computation time. In a naive implementa-
tion, this computation time would limit the maximum throughput to 1/t,,4.
computations per second.

However, since our target platform provides separate resources (paral-
lelism) for each of A, B, C' and D, a higher throughput can be achieved
by introducing additional barriers so that {A}, {B,C'} and {D} are computed
during successive execution cycles. Successful implementation of this requires
the introduction of the seven further barriers (R, S, T, U, V, W and X) as
shown in Figure 6.

The number of barriers to insert on each data flow is often obvious for
simple designs such as Figure 5. However, the problem becomes more difficult
when complex dependencies arise, such as a need to insert further barriers

26



@ ____________ > slow ; hodel
ffrom Application npuaiing
v

. FlowGraphExtraction

F
k4

flowe-graph - Model
(frown FlowGran g

- InvariantPathAnalysis - PhaseAnalysis

¥
h 4 b 4
invariant-path . Maodel phase : Model
(Frorn AnnotatedF o ran iy (o AnhotateciFiowEran g

t

.

fast: Model
(Frown Applic ationDutouiing © ’

Fig. 7. Synchronisation barrier insertion.

within C. A fully automated solution is very desirable.
A valid solution satisfies the constraints:

e each path satisfies the specified throughput
e coherent inputs and outputs remain coherent

An ‘optimum’ solution may require compromises between:

e the costs of inserted barriers
 design margin for the specified throughput
e minimum delay at the outputs

It is not appropriate to elaborate the algorithm details here. Suffice it to
say that the solution can be captured by a set of integers that specify how
many cycles late each actor computes, and that the problem can be represented
by a set of inequalities that must be satisfied by these integers.

The solution is established recursively, so that the synchronisation barriers
required by inner actors are resolved and accommodated by the solution for
outer actors. The solution for a single recursion uses three instances of the
Side Transformation Pattern of Figure 2.

The top level, shown in Figure 7, projects out a meta-model instance that
focuses on the flow-graph details. This is then fed to two different solvers. One
identifies constant paths for which synchronisation barriers are redundant,
and the other identifies the necessary delays on each non-constant path. The
results of these two analyses control the subsequent rewrite of the input model
incorporating the required synchronisation barriers.

Each of the solvers is also an instance of the Side Transformation Pattern.
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The invariant path analysis is comparatively simple and so uses a degen-
erate form of the pattern with the same meta-model throughout and con-
sequently a null Project transform. The Merge merely adds an is-constant
attribute to selected flow-graph nodes.

The phase analysis is more sophisticated and fully exploits the Side Trans-
formation Pattern in a similar way to the first example. The Project transform
creates a system of inequalities describing the system constraints for the solver
to act on. The Solve is based on PIP [1] the Parametric Integer Programming
solver. This generates its own output meta-model describing the solution.
The results are again merged by annotating the flow-graph model.

The final barrier insertion Merge now has two models to combine with
the design model from the original Fork. The Merge is a design rewriter that
inserts synchronisation barriers into non-constant paths in the computation
graph. The input and output meta-models are identical, however the output
has been optimally pipelined on a global basis to satisfy the required compu-
tation throughput.

Once again the pattern enables independent solvers to be used, in this
case an in-house invariant path identification algorithm, but more impor-
tantly a highly optimised generic solver with proprietary input and output
meta-models (C structures) from a third-party. The use of a high-level Side
Transformation to encapsulate the two solvers and merge their results isolates
each of; the mechanism for solving the problem, the description of the design
that contains the problem, and the final application of the solution to that
design.
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7 Conclusion

We have shown how a particular pattern of fork, projection, computation
and merge enables a collection of re-usable transformations to be effectively
combined into a larger composite transformation. This Side Transformation
Pattern promotes encapsulation and isolation of a solver from the application
meta-model and its attendant business rules.

The introduction of this pattern and its degenerate forms can also assist in
the formal description of transformation processes by clearly defining bound-
aries where re-use, validation, and optimisation are possible.

As examples, we have described parts of a Model Driven compilation sys-
tem that converts from a visual representation of a system to executable code
for a variety of platforms by the use of many small progressive transformations
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based on the pattern. In doing so, we have demonstrated that the pattern is
scalable and self-consistent, and that the four major operational phases iden-
tified in this pattern concisely describe fundamental transformation activities,
aiding general discussion of transformation behaviour.
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Abstract

Software evolution can be supported at two levels: models and programs. The
model-based software development approach allows the application of a more ab-
stract process of software evolution, in accordance with the OMG’s MDA initiative.
We describe a framework for model management, called MOMENT, that supports
automatic formal model transformations in MDA. Our model transformation ap-
proach is based on the algebraic specification of models and benefits from mature
term rewriting system technology to perform model transformation using rewriting
logic. In this paper, we present how we apply this formal transformation mech-
anism between platform-independent models, such as UML models and relational
schemas. Our approach enhances the integration between formal environments and
industrial technologies such as .NET technology, and exploits the best features of
both.

Key words: Graph-based models, MDA and model
transformation, consistency and co-evolution, term rewriting
systems.

1 Introduction

The development of information systems is getting increasingly complex as
these systems become both more widely distributed and pervasive in influence
[1]. New technologies that enable these capabilities allow for a wide range of
choices which the software developer must take into account. Such choices in-
volve technologies for describing software such as object-oriented programming
languages, XML, database definition, query languages, etc. These technologies
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have different levels of abstraction. For instance, there are technologies that
support requirements engineering such as DOORS or RequisitePro. There are
also technologies that support modeling approaches such as UML and others
that permit the implementation of a specific solution such as .NET Framework,
Java, etc. On the one hand, modeling approaches provide mechanisms to find
the most effective representation of real-world concepts in the domain space of
a software project. On the other hand, the majority of technical frameworks
offer a large number of mechanisms to build solutions in the computer space.

In general, the initial idea was that the models had to represent reality
from the user perspective, starting from the problem space. However, these
models actually come from the solution space (such as UML) abstracting the
features of object-oriented programming language and constraining the logic
representation of the problem space. This approach was taken in order to
be able to automatically generate software artifacts from a layer that is more
abstract than the final code. Unfortunately, the automatic generation of soft-
ware has not yet reached maturity, provoking the crisis of the CASE tools that
appeared in the mid 90s. Contrary to what we expected ten years ago, we have
arrived to a complicated situation where the design and implementation of a
software product requires an enormous effort involving several technologies.

However, all the software artifacts that we have mentioned above can act as
models with a specific level of abstraction. The generation of code that CASE
tools are supposed to perform (model compilers) can also be considered as
the transformation of a model of a high level of abstraction into one with
a more specific level of abstraction. In accordance with this approach, a
research field has emerged, providing a solution to problems of this kind:
model management. A model is an abstract representation of a domain that
enables communication among heterogeneous stakeholders so that they can
understand each other. Model management [2] aims at solving problems that
require model representation and its manipulation in an automated way.

The OMG’s Model Driven Architecture (MDA) initiative [3] is set in this
context and provides several proposals to define models, through the standard
Meta-Object Facility (MOF) [4]. It also offers proposals to perform model
transformations by means of the Query/View/Transformations (QVT) lan-
guage, which is still in its early stages [5]. While a lot of attention has been
given to the transformation of platform-independent models into platform-
specific models, the scope of MDA goes beyond this in an attempt to model
all the features of a software product throughout its life cycle. Nonetheless,
a precise technique to provide formal support for the entire process of model
transformation has not yet been developed.

The MOMENT (MOdel manageMENT) platform follows this trend by
providing a framework where models can be represented using an algebraic
approach. MOMENT is based on an algebra that is made up of sorts and
operators that permit the representation of any model as a term that can be
automatically manipulated by means of operators. The MOMENT Framework
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benefits from the best features of current visual CASE tools and the main
advantages of formal environments such as term rewriting systems, combining
the best of both industry and research.

This paper presents the generic model transformation mechanism of the
MOMENT Framework, and its application to platform-independent models,
obtaining a UML model from a relational schema in the MDA context. The
paper is structured as follows: Section 2 presents other approaches to provide
automatic support for model transformations; Section 3 indicates an example
to illustrate the transformation process through the paper; Section 4 provides
an overview of the MOMENT Framework; Section 5 presents the model trans-
formation mechanism of the MOMENT Framework, focusing on the use of a
Term Rewriting System (TRS) as a formal environment to perform automatic
model transformations. Finally, Section 6 summarizes the work and indicates
the future directions of our research tasks.

2 State of the Art

The essentials of a model theory for generic schema management are presented
in [6]. This model theory is applicable to a variety of data models such as the
relational, object-oriented, and XML models, allowing model transformations
by means of categorical morphisms. RONDO [2] is a tool based on this ap-
proach. It represents models by means of graph theory and a set of high level
operators that manipulate such models and the mappings between them by
using category theory. Models are translated into graphs by means of specific
operators for each metamodel. These algebraic morphisms are implemented
using imperative algorithms such as CUPID [7]. CUPID is an algorithm for
matching schemas in the RONDO tool.

In the MOMENT platform, we follow the framework that is proposed in
the Meta-Object Facility specification (MOF). MOF is one of the OMG family
of standards for modeling distributed software architectures and systems. It
defines an abstract language and a four-layer framework for specifying, con-
structing and managing technology neutral metamodels. A metamodel is an
abstract language for different kinds of metadata. MOF defines a framework
for implementing repositories that hold metadata described by the metamod-
els. This framework has inspired our platform for model management, al-
though we do not use the same vocabulary to describe metamodels. In the
case of MOF, the two most abstract layers offer an abstract view of a spe-
cific model. This allows for the definition of generic operators to manipulate
models and metamodels.

The MétaGen project [9] has dealt with model engineering since 1991,
aiming at a fully automatic generation of a conventional application from a
description given by its intended user. Such a description is performed by
means of PIR3, a variant of what is known in the Database community as
Entity-Relationship Model. In [10], Revault et al. compared three metamod-
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eling formalisms to share the experience they acquired during the MétaGen
project. In that paper, they presented a way to transform MOF-based meta-
models into PIR3-based metamodels so that the metamodels could benefit
from the MétaGen tools. This proposal constrains the expressivity of the
source metamodels because the Object-Oriented paradigm is richer than the
Entity-Relationship paradigm. Our model management approach supports the
definition of several metamodeling languages such as MOF or PIR3, consider-
ing them as models at the same abstraction level and using generic operators.
This makes automated transformations between models of both metamodels
possible, without loss of expressivity.

XML [18], the standard for data communication between applications is
also used to represent models and metamodels by means of the XMI specifica-
tion [19]. MOF defines a meta-metamodel, while XMI indicates the physical
representation for the metamodels and the models that can be defined with
it. In the model transformation field, there is a XML specification that allows
the transformation of a XML document into another one, called XSLT [20]. It
could be used to transform models that are represented in the XML format.
Comparing XSLT to term rewriting systems, there are some differences that
should be pointed out:

e Although XSLT is said to be a declarative language, control instructions,
such as jumps and loops, can be used to guide the transformation process.
In contrast, a term rewriting system takes over the transformation rule
evaluation process.

e Writing an XSLT program is a long and painful process which implies poor
readability and high maintenance cost for associated programs. Also, writ-
ing an XSLT program requires good skills in the MOF and XMI specifi-
cation, because when using XPATH and XSLT, the developer must take
into account the structure of models which depends on metamodels. These
metamodels are in turn widely influenced by MOF and XMI. By expressing
metamodels as algebras, we can deal with a more specific syntax that reflects
their semantics using the algebras as domain specific languages. Therefore,
writing models (and consequently transformation rules) becomes easier and
more comprehensible.

e Transformation rules in XSLT are applied without taking into account the
target XML schema (metamodel when transforming models), implying a
posterior checking to determine whether the obtained document is a valid
XML document that conforms to the target schema. Rewriting rules in
an algebra take into account the source and the target algebras so that a
posterior checking is no longer needed.

e Executing an XSLT program is not user-friendly for model transformation
because there are no error messages to advise the user about an incorrect
transformation.

The MTRANS Framework [21] provides an abstract language to define
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transformation rules that are compiled to XSLT. Even though this language
is more compact and easier to understand than XSLT, it still keeps instructions
to manage the transformation rules evaluation. Nevertheless, transformations
using XML technology imply the use of standard specifications that are in-
dustrially supported while term rewriting systems usually remain within the
field of research.

3 A Running Example

Consider a car maintenance company that has worked a long time for a large
car dealership. The maintenance company has always worked with an old C
application where the information is stored in a simple relational database
that does not take into account integrity constraints. The car dealership has
recently acquired the car maintenance company and the president has decided
to migrate the old application to a new OO technology in order to improve
maintenance and efficiency. Therefore, the target application will be developed
by means of an OO programming language.

Suppose that a part of the original database are two tables related by means
of a foreign key, representing the information of an invoice and its lines, as
shown in Fig. 1. To obtain a UML model that is semantically equivalent to
this relational schema, a designer usually builds it manually, which involves
high development costs, since the entire initial database must be taken into
account. What is worse is that this process is error-prone due to the human
factor.

4 The MOMENT Framework

The MOMENT (MOment manageMENT) Framework is a modular architec-
ture divided into the three traditional layers: interface, functionality and per-
sistence. In each one of them, the environment benefits from mature tools,
such as graphical CASE tools at the interface layer, term rewriting systems at
the functionality layer, and RDF repositories at the persistence layer. Hence,
the MOMENT Framework aims at using the best features of each environ-
ment, bringing industrial modeling tools closer to more formal systems. Fig.
2 shows an overview of the MOMENT Framework.

The functionality layer permits the representation of models and the per-
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Fig. 2. The MOMENT Framework

formance of transformations over them. The core of the functionality layer
is a module called MOMENT Theory, which allows model representation and
manipulation by means of an algebraic approach. We use the expressiveness
of the algebra that the platform is based on to define and represent a model as
an algebraic term. This algebra represents models by means of terms of a sort
called Schema. These terms are made up of by concepts and properties. The
concepts are the main entities of a model, and the properties either describe
them with values or establish relationships between them. The properties
contain information about cardinality, indicating how many concepts can be
related to the owner of the property.

The MOMENT platform uses several metadata layers to describe any kind
of information including new metadata types. This architecture is based on
both the classical four-layer metamodeling architecture (following standards
such as ISO [11] and CDIF [12]) and on the more modern four-layer framework
proposed in the MOF specification [4]. In our work, we divide the platform
into four abstract layers:

e The MO-layer collects the examples of all the models, i.e., it holds the in-
formation that is described by a data model of the M1-layer.

e The Ml-layer contains the metadata that describes data in the MO-layer
and aggregates it by means of models. This layer provides services to collect
examples of a reality in the lowest layer.

e The M2-layer contains the descriptions (meta-metadata) that define the
structure and semantics of the metadata located at the Ml-layer. This
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layer groups meta-metadata as metamodels. A metamodel is an ”abstract
language” that describes different kinds of data. The M2-layer provides
services to manage models in the next lower layer.

e The M3-layer is the platform core, containing services to specify any meta-
model with the same common representation mechanism. It is the most ab-
stract layer in the platform. It contains the description of the structure and
the semantics of the meta-metadata, which is located at the M2-layer. This
layer provides the ”abstract language” to define different kinds of metadata.

The MOMENT Theory module also provides a mechanism to define trans-
formations between metamodels. The TRS Manager module wraps a TRS,
which carries out the model transformation by applying a set of rewriting rules
automatically. We have used the CafeOBJ environment as TRS [13]. The
Theory Compiler module permits the compilation of the algebraic specifica-
tion of a metamodel into a theory based on equational logic. It also compiles
the defined mappings between the elements of the metamodels into a theory
based on rewriting logic in order to perform the model transformation on the
wrapped TRS.

Some of these modules have been developed using the functional language
F# [14], which provides convenient features to work with algebraic specifica-
tions and with imperative programming environments such as .NET technol-
ogy. A combination of functional languages and algebraic specification lan-
guages has permitted us to reach our goals. On the one hand, the MOMENT
algebra is implemented in F#, which provides efficient structures for naviga-
tion and specification manipulation. On the other hand, a TRS provides a
suitable environment to support automatic model transformation.

5 PIM-to-PIM Transformation

MDA raises the level of abstraction in the software development process by
treating models as primary artifacts. Models are defined using modeling lan-
guages, but when those languages are intended to be used for anything more
sophisticated than drawing pictures, both their syntax and their semantics
must be specified. In this case, the use of formal languages usually involves
dealing with their complex syntax, making them unpopular in industry. In
this sense, the MOMENT Framework is user-friendly and permits the use
of formal techniques from well-known CASE tools to both define models by
means of algebraic specifications and to perform model transformations using
rewriting logic [15].

In this section, we present how MOMENT provides formal support for
generic model transformation in the MDA context, by generating a UML
model from a relational schema. First, we explain a general overview of the
transformation mechanism, and later, we focus on the most formal phases of
the process.
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Overview of the MOMENT model transformation process

Transforming any model using the MOMENT Framework constitutes a process
that is detailed in Fig. 3. To obtain the corresponding UML model from the
relational schema of the motivating example, we perform the following steps:

(i)

(1) and (2):

We specify both relational and UML metamodels, respectively, at the
M2-layer of the MOMENT platform using the operations of the MO-
MENT algebra. Each one of the metamodels is a schema made up of
concepts, which describe the main entities of the ontology, and by prop-
erties, which describine the concepts by specifying values and establishing
relationships between them. These algebraic specifications are performed
through visual wizards that are embedded in a specific CASE tool to dis-
guise the equational logic formalism.

(3):

Mappings are specified between the concepts of both metamodels at the
M2-layer by means of a script language, indicating semantic relationships.
There are two kinds of equivalence mappings that can be expressed in
this language:

(a) Simple mappings, which define a simple correspondence between two
concepts that belong to different metamodels; for instance, between
a table and a class, or between a column of a table and an attribute
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(iii)

(vi)

(vii)

of a class.

(b) Complex mappings, which define correspondences between elements
of a source metamodel and a target metamodel. These mappings
relate two structures of concepts that represent a similar semantic
meaning. For instance, to define an equivalence relationship between
a foreign key of the relational metamodel and an association of the
UML metamodel, we have to relate the foreign key, the unique con-
straint and the not null value constraint concepts to the association
concept. This is because all three of these concepts of the relational
metamodel provide the necessary knowledge to define an association
between two classes in the UML metamodel, such as the cardinalities
of the association.

(4):

The original relational schema is specified by means of concepts and
properties in a schema of the M1-layer of the MOMENT platform. Both
concepts and properties are instances of the elements of the relational
metamodel defined in step 1.

(5) and (6):

Both relational and UML metamodels, respectively, are compiled into
algebraic theories by means of the Theory Compiler module of the Frame-
work. The compilation uses the concepts to define the sorts of the new
theory and the properties to define constructors and query operators.
The generated theories are interpreted by the CafeOBJ TRS, providing
the respective algebras to define models in the TRS as algebraic terms.
(7):

The semantic mapping that is specified between the concepts of both
metamodels at the M2-layer is also compiled into another theory that
extends the theories described above with a set of rewriting rules. This
theory indicates how to transform a model of the source metamodel (re-
lational metamodel) into a new model of the target metamodel (UML)
in an automatic way.

(8):

The original relational schema, which is defined in step (4) at the M1-
layer of the MOMENT platform, is compiled into a term of the relational
algebra in the CafeOBJ TRS by means of the Term Manager module of
the Framework.

(9):

The TRS evaluates the term that represents the initial relational schema
in the algebra obtained in step (7). The user can manage this process
through the Fwvaluator module of the Framework. The evaluation pro-
cess can be carried in a step-by-step mode or in only one step with the
full-evaluation mode, benefitting from the evaluation features of the TRS.
The TRS reduces the initial term by applying the rewriting rules obtained
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in step (7), generating a term of the target algebra.
(viii) (10):

This is the last step of the model transformation process. It parses
the obtained term in step (9), defining a model in the Ml-layer as an
instance of the target metamodel defined at the M2-layer. There, it is
disguised with the visual metaphor associated to the target metamodel
in the graphical CASE tool.

In the model transformation process, the user only interacts with the MO-
MENT platform when defining the source and target metamodels (step (1)
and (2)), the semantic mappings between the elements of both metamodels
(step (3)) and the initial model (step (4)). The other steps are automatically
carried out by the Framework, although the user can participate in the eval-
uation process by specifying the rewriting rules to be applied by the TRS at
each step of the term reduction.

In the following sections, we explain phases (5), (6), (7), (8) and (9) in
more detail, indicating how the TRS is able to perform model transformations
providing formal support to the objectives of MDA.

5.2 Compilation of equational logic based theories

The relational and UML metamodels defined at the M2-layer of the MOMENT
platform are compiled into theories based on equational logic in steps (5) and
(6), respectively. The compilation of MOMENT metamodels into equational
theories uses the concepts of the metamodel to obtain the sorts of the theory;
for instance, the sorts Table, Field, ForeignKey for the relational metamodel,
as well as the identifiers for these sorts, i.e., the sorts Tableld, Fieldld and
ForeignKeyld. The properties of a MOMENT metamodel provide information
about the structure of the term of a sort by means of the cardinalities. Thus,
when a concept A is related to a concept B by means of a property that has
cardinality 1..1, the constructor of the sort A looks like this: op a - : B — A.
Nevertheless, if the minimum cardinality is zero or the maximum cardinality
is many, then the constructor for a term of the sort A looks like this: op a _
: ListB — A, where ListB is a sort that permits the definition of lists, whose
items are terms of sort B. As CafeOBJ belongs to the OBJ language family, it
permits equational specification through several equational theories, such as
associativity, commutativity, identity, idempotence and combinations between
all these. This feature is reflected at the execution level by term rewriting by
means of such equational theories.

Fig. 4 shows the constructors of the compiled theory for the relational
metamodel; and Fig. 5 shows the constructors for the UML metamodel. We
obviate the definition of sorts and other constructors in the theory, as well as
the definition of query operators, focusing on the elements of the metamodels
that permit us to illustrate the example. We must point out that the construc-
tors obtained for the UML theory permit us to define terms that represent
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— FIELD: id, type, is nnv, is pk, tableid, dbid

opfiefd : Field[ Datatype Bool Bool Tableld Databaseld -> Field {constr)

— FOREIGNKEY: id, field lisi, related table, is untque, table that contains the fir, database

ap foreignKey : ForeignKeyld ListField Tableld Bool Tableld Databaseld -> ForeignKey {constr}
~ TABLE

aptable  :Tableld ListField ListForeignKey Databaseld -= Table {canstr}

— DATABASE

op database  : Databaseld ListTable - Database fconstr)

Fig. 4. Part of the relational theory

— ATTRIBUTE: id, type, required, constant, identifier, Claseld, achemaid

op attribute : Attributeld Datatype Boal Bool Boal Classk Schemald = Attribute {canstr}

- ASSOCIATION

op association ____ : Associaiionld AssociationEndld AssociationEndld Schemald -» Association {canstr)
— ASSOCIATIONEND: 1d, id of the class, id of the association, 1sNavigable, ordering, aggregation, min
card., max card, changeability, visibility, id of the schema

op associationEnd ! AssociationEndld Classld Associationld Bool OrderingKind
AgzregationKind Cardinality Cardinality ChangeableKind VisibleKind Schemald - AssaciationEnd {constr}
- CLASS

op class __: Classd ListAttribute Schemald -> Class {canstr)

- OOSCHEMA

op oodchema _ : Schemald ListClass -» OOSchema {canstr)

Fig. 5. Part of the UML theory

UML-compliant models.

5.8  Compilation of rewriting logic-based theories

To transform the relational schema of the example, semantic mappings are
defined between the concepts of both source and target metamodels in step
(3). These mappings are compiled into an algebra that extends both relational
and UML algebras (steps (5) and (6)) with a set of rewriting rules describing
the guidelines for the model transformation. These rules are automatically
applied by the TRS rewriting the initial term into a term of the target alge-
bra. The new algebra constitutes the context where semantical relationships
between the source and target ontologies are defined. To allow the transfor-
mation process, the new algebra must relate the sorts of the initial algebra
(relational metamodel) to the sorts of the target algebra (UML metamodel).
Relationships between the sorts of both algebras result in a subsort order that
involves all the sorts. For instance, in the example, the sort Table is a subsort
of the sort Class, indicating that a class can take the place of a table that was
there before. Subsort relationships affect all the sorts of both algebras, even
identifiers and lists, because they are the related concepts in the MOMENT
algebra.

The properties that relate concepts in the MOMENT algebra define a
canonical order among the sorts of the compiled algebras. This order is taken
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into account to generate the rewriting rules. We present the rewriting rules
that are applied to the relational schema of the example to obtain a semanti-
cally equivalent UML model in CafeOBJ syntax:

(i)

(i)

(i)

Field

A field of a table becomes an attribute of a class in the term that rep-
resents a UML model. The rule reuses the features of the field (datatype,
whether it is null or not and whether it is primary key) to generate an
attribute. Field features also indicate the attribute datatype, whether it
is required or not and whether it is the identifier of the class to which it
belongs:

op field - _ _ _ _ _ : Fieldld Datatype Bool Bool Tableld Databaseld ->
Attribute
eq field FI D NNV PK TI DBI = attribute FI D NNV false PK TI DBI .

Foreign Key

A foreign key can define an association between two classes in the UML
context. The following rule is applied when the foreign key is unique and
not null, obtaining an association 1..1 - 0..* between the classes generated
from the related tables.

op foreignKey _ _ _ _ _ _ : ForeignKeyld ListAttribute Tableld Bool Tableld
Databaseld -> ListClass
ceq foreignKey FkI LA RTI U TI DBI =
(association FkI TI RTI DBI)(associationEnd TI TI FkI true unordered
aggregate card 0 many frozen public DBI)(associationEnd RTI RTI FKI true
unordered none card 1 card 1 frozen public DBI)
if U and isRequired (LA) .
Table

A table becomes a class. The rewriting rules must take into account
the fact that a table is made up of fields and foreign keys, so that a field
will become an attribute of the new class and a foreign key will become a
set of elements of the UML model, i.e., an association and two association
ends, according to the UML metamodel.

op table _ _ _ _ : Tableld ListAttribute ListClass Databaseld -> ListClass
eq table TI LA nilForeignKey DBI = (class TI LA DBI) .
eq table TI LA LC DBI = (class TI LA DBI) LC .

Database
Finally, a database is rewritten into a term of the sort OOSchema,
representing the target UML model, by means of the following rule:

op database _ _ : Databaseld ListClass -> OOSchema
eq database DBI LC = ooSchema DBI LC' .
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Fig. 6. Original term representing the source relational schema, and the generated
term representing the target UML model

5.4 Term rewriting process

Step (8) compiles the relational schema defined in the M1-layer of the MO-
MENT platform, obtaining the algebraic term in Fig. 6.a. The TRS applies
the rewriting rules specified above to this initial term, obtaining a term of the
target algebra (UML), shown in Fig. 6.b. This term is parsed and is defined
as a UML model in the M1-layer of the MOMENT platform. There, it is
automatically related to graphical pictures in a specific CASE tool.

During the term rewriting process, some additional information could be
required in order to perform a correct transformation, as the metamodels do
not have the same expressive power. For instance when a transformation case
has not been taken into account or when several rewriting rules can be applied
to the source model. In this cases a visual wizard helps the user to chose one
option or even to add a new transformation rule, providing a visual interface
for the CafeOBJ interpreter.

To benefit from the MOMENT features, we have integrated the function-
ality of the MOMENT Framework into a visual modeling environment [22]. In
this way, we can relate algebraic specifications to visual notations so that the
user can use these graphics to build a model. The CASE tool we have chosen
is MS Visio [23]. We have developed an add-in that permits the definition
of metamodels with concepts and properties. Fig. 7 shows the interface that
permits the definition of the graphical symbol of a class in the MOMENT
platform.

In visual CASE tools, models are usually defined by dropping graphical
primitives on a sheet where the model is defined. By means of the developed
add-in, dropping a primitive on the sheet does not only add a figure to the
model but it also defines it algebraically, specifying the model so that it can
be manipulated afterwards.
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Fig. 7. Visual interface to define a graphical primitive algebraically

6 Conclusions and further work

Nowadays, software applications have become complex combinations of tech-
nology, which have to be well understood in order to manage them. The
development of software artifacts involves models that can be mixed with
others to obtain an entire system from partial views or that can be intercon-
nected with others in order to guarantee both interoperability in a distributed
environment and their implementations.

Model management [8] is an emerging research field whose aim is to resolve
data model integration and interoperability by means of generic operators.
Similarly, MDA raises the level of abstraction in the software development
process by treating models as primary artifacts. MDA potentially covers the
modeling of all aspects of a system throughout its life cycle, making software
development processes easier and more automated.

The MOMENT (MOdel manageMENT) platform follows this trend by
providing a framework where models can be represented using an algebraic
approach. The MOMENT Framework benefits from the best features of cur-
rent visual CASE tools and from the main advantages of formal environments
such as term rewriting systems, combining both industrial and research fea-
tures.

In this paper, we have presented the generic model transformation mech-
anism provided by the MOMENT Framework, focusing on the use of the
CafeOBJ TRS to perform automatic translations of models. This mechanism
has been applied to platform-independent models in the MDA context, ob-
taining a UML model from a relational schema. The functionality of TRSs
permits us to deal with model management from a more abstract point of
view, since the application of rewriting rules can be performed in a trans-
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parent way. This fact allows us to focus all the efforts on the specification of
models without having to take the evaluation logic into account. Our approach
constitutes an algebraic baseline to cope with the future model transformation
language QVT, providing a user-friendly environment to manipulate models
from a visual CASE tool [22]. In [16], we present the fundamental mainstay on
which we have built our MOMENT platform taking into account our previous
experience in the industrial project RELS, a tool for the recovery of legacy
systems.

Currently, we are working with transformations between relational schemas
and UML models. In the near future, we will also take into account software
architecture specifications by means of PRISMA ADL [17], studying semantic
interoperability between software architectures and other types of software
artifacts represented through UML models.
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Abstract

We are interested in evolution scenarios for language-based functionality. We iden-
tify different dimensions along which such functionality can evolve, including the
following: (i) coding style; (ii) coding details; (iii) data model; (iv) crosscutting con-
cerns; and (v) patches. We focus at language interpreters as examples of language-
based functionality, but similar scenarios exist for type checkers, static analyses,
program transformations, and other sorts of language-based functionality. Our ex-
periences are based on using rule-based programming (with Prolog) for the imple-
mentation of language-based functionality, while evolutionary transformations of
the functionality are perceived as meta-programs.

Keywords: Evolution, Evolutionary Transformations, Rule-Based Programming,
Language Interpreters, Language-Based Functionality, Meta-Programming, Prolog

Note: This extended abstract extracts material from these publications: “Evolu-
tion of rule-based programs” [5] and “Evolution scenarios for rule-based implemen-
tations of language-based functionality” [6]. The accompanying proof-of-concept
implementation is the Prolog-based Rule Evolution Kit [12] (REK).

Introduction

Language-based tools involve some (ad-hoc) elements of a language’s intended
semantics. The amount of adopted semantics depends on the specific service
that is provided by a tool. Here are examples. An analysis tool typically
implements a so-called abstract interpretation, which rephrases the normal
semantics in terms of abstract domains of meanings. A transformation tool
supposedly resembles the intended semantics in so far that it employs alge-
braic laws as well as typing and scoping rules. A translation tool implements
a syntax-to-syntax mapping, which ideally can be complemented into a com-
muting diagram with nodes for the two syntaxes and the two semantics of the
involved languages.
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This is a preliminary version. The final version will be published in
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Type checkers and language interpreters can be seen as prototypical ex-
amples of language-based tools. Such tools implement the language semantics
rather directly. The extensibility of such semantics-oriented programs (and
the underlying formal semantics descriptions) has received ample attention
in the programming-language community. There exist highly advanced ap-
proaches to the reuse of language descriptions or components thereof, e.g.,
monad-style denotational semantics [8], action semantics [9], abstract state
machines [2], strategic programming [7], modular SOS [10], and modular at-
tribute grammars [3]. This suggests that the domain of language descriptions
is suitable for studying evolution of language-based tools in general.

In our work, we aim at a simple, pragmatic, re-engineering-like approach
to the evolution of language-based tools. We use automated transformations
in the sense of meta-programming for the operationalisation of evolution sce-
narios. We will focus here on language interpreters. We assume that language
interpreters are programmed in a rule-based language, say in Prolog. We
employ a suitably designed operator suite for evolutionary transformations.
These operators support the following activities:

e Restructuring to prepare for extensions or revisions.
e Fxtension to add new concerns by modular composition or weaving.
e Revisions to remove or to change inappropriate parts.

Dimensions of evolution

We are going to work through some evolution scenarios for an interpreter of
a simple expression-oriented language. Let us assume that the interpreter is
defined by a Prolog predicate evaluate of the following type:

:— profile evaluate(+exp,+varenv,-val).

REK supports typeful Prolog programming on the basis of profiles as
shown above. The sort exp corresponds to the syntactical domain of ex-
pression forms. The sort varenv models variable environments. The sort val
models the type of evaluation results, which are numbers so far. That is:

:— data exp = const(number) | var(varid) | ... . ¥ expression forms
:— alias varid = atom. % variable identifiers

:— alias varenv = [(varid,val)] Y% variable environments

;- alias val = number. % evaluation results

There is one Prolog clause per expression form. We omit these rules.

Fvolution in the sense of style conversion

The type that we gave for the predicate evaluate above implies big-step
style. Some language extensions are more easily accommodated when small-
step style is chosen, e.g., exception handling or concurrency are of that kind. A
typical evolution step is then to convert an interpreter from big-step to small-
step style. We note that there are further kinds of conversion that relate to
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evolution, e.g., CPS conversion.

To prepare the small-step to big-step conversion, we need to enable small
steps as far as the type of evaluate is concerned. That is, rather than re-
turning a value of sort val, we must return an expression of sort exp, which
is potentially subject to further reduction. To this end, all rules need to be
adapted such that values are injected into expressions via a dedicated func-
tor. REK provides a transformation operator othertype which does just that.
The adapted type of the predicate evaluate is this:

:- profile evaluate(+exp,+varenv,-exp) .

The intrinsic part of the conversion is about rule shredding. That is, we
need to take apart big-step rules such that many small-steps rules are obtained.
REK provides a dedicated transformation operator big2small.

FEvolution with regard to the data model

Let us assume that we want to accommodate object-oriented constructs. It is
straightforward to extend the syntactical domain exp with expression forms
for method calls, field access, object construction, and others. However, the
interpretation of these constructs cannot be accomplished by just adding rules
to the original predicate evaluate.

One problem is that the type of evaluation results needs to be made fit
such that different kinds of results are accommodated. In fact, in our running
example, the definition of val, as a type alias, is in the way. We need to turn
val into a proper datatype with one alternative for numbers, and another one
for object references. REK provides an operator othertype, which supports
such evolution in the data dimension. The adapted sort val looks as follows:

:- data val = num(number) % results as before
| oref(integer). 7% new kind of result

Clearly, the othertype operator does not just adapt the sort val, but also
the actual interpreter rules. That is, all pre-existing positions of type val
have to wrap numbers with the functor num.

FEvolution with regard to crosscutting concerns

The object-oriented language extension also requires an enhanced predicate
for expression evaluation. So far, we only pass around an environment for
variables. We need to add parameters for a virtual method table (cf. sort vmt
below), for the current object (cf. sort this), and for an object store (cf. sort
store). The original rules have to be adapted such that they participate in a
data flow for these new semantic components.

Such data flow or computation that affects many or all existing rules is best
viewed as the implementation of a crosscutting concern in the sense of aspect-
oriented programming. (This link between aspect-oriented programming, rule-
based programming and program transformation is explored in [4].)
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For comparison, here is the original type of the predicate evaluate:
:- profile evaluate(+exp,+varenv,-val).
The OO-enabled predicate must be of the following type:

:- profile evaluate(+exp,+varenv,+vmt,+this,+store,-val,-store).

REK provides operators for adding positions and establishing the appro-
priate data flow as needed above. The operator add enhances the type of a
predicate, and it adds fresh variables to the relevant literals in the rules. The
operator thread adapts rules such that all relevant variables are unified in a
way to encode the intended data flow.

Fvolution in the sense of conservative extension

We are now in the position to add the rules for the object-oriented constructs.
The previous advances of the data model and data flow have made it possible
to perform a truly conservative extension in the end: the rules to be added
do not affect the reduction of programs that do not refer to the new con-
structs [1]. This sort of evolution is very simple because it basically means to
‘put together’ two rule sets as opposed to an invasive transformation of rules.

Fvolution in the sense of point-wise restructuring

Rule-based programs can also be subjected to rather specific restructuring
transformations, where the programmer points out locations of interest. As
an illustration, we will improve one particular detail of the interpreter that we
obtained so far. That is, we are going to reduce the number of arguments of
the predicate for expression evaluation.

For comparison, the current profile is this:

:- profile evaluate(+exp,+varenv,+vmt,+this,+store,-val,-store).

It seems that having three positions +varenv,+vmt,+this is somewhat out-
rageous since these positions are all concerned with environment-like informa-
tion. All this information is passed on to subcomputations.

So we aim at compound environments with the following structure:

:— alias env = (varenv,vmt,this).
The profile of the predicate for evaluation is simplified as follows:

:— profile evaluate(+exp,+env,+store,-val,-store).

The required grouping effort is simply automated by REK’s group opera-
tor. Again, this operator does not simply change the predicate type, but the
grouping also affects all relevant literals in the many rules.

The illustrated grouping transformation operates at the level of predicate
positions. One can also consider forms of restructuring that operate at other
levels, e.g., the level of functor positions or the the level of rule bodies. Folk-
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lore examples of transformations at the level of rule bodies are folding and
unfolding, where unfolding means to symbolically perform predicate applica-
tion, and folding is the inverse [11]. More generally, all kinds of refactoring
transformations can be instantiated for language interpreters and other rule-
based programs.

Fvolution in the sense of patching

We consider one more evolution scenario. Let us assume that we want to
enable logging of method calls. Thereby, we would obtain a simple debugging
facility for the interpreted object-oriented language. It is relatively straight-
forward to adapt the OO interpreter for this purpose. We basically need to
adapt the interpreter rule for method calls such that method calls are logged.
Rather than messing with existing rules, we can apply an evolutionary trans-
formation that records the intent of adaptation more explicitly and separately.
REK offers a corresponding inject operator, which allows one to enhance the
body of a given rule by stating the additional literals.

Concluding remarks

We have sketched some evolution scenarios for language interpreters. (For a
profound presentation, we refer to [5,6].) This work contributes to the emerg-
ing field ‘software evolution for language-based functionality’. The increasing
interest in this field is motivated by new applications related to modelling and
meta-modelling in software development. These applications call for better
understanding of the evolution of languages (or meta-models) and language-
based functionality (or model-driven transformations).

Our transformational approach to evolution receives input from other dis-
ciplines such as program and data refinement, program synthesis, transforma-
tional program development (from specifications), data re-engineering, and
grammarware engineering. We have deployed evolutionary transformations as
a general method for restructuring, extending, shrinking and revising language-
based functionality such as interpreters.

Future work on the subject has to provide practically useful tool support
for the evolution of rule-based programs, a comprehensive analysis of basic and
composed evolution operators, and a meaningful, formal model of evolution,
with coverage of transformations that are not strictly semantics-preserving.

References

[1] Aceto, L., W. Fokkink and C. Verhoef, Conservative extension in structural
operational semantics, Bulletin of the European Association for Theoretical
Computer Science 69 (1999), pp. 110-132, columns: Concurrency.

50



[2] Borger, E. and R. Stérk, “Abstract State Machines: A Method for High-Level
System Design and Analysis,” Springer-Verlag, 2003.

[3] Kastens, U. and W. Waite, Modularity and reusability in attribute grammars,
Acta Informatica 31 (1994), pp. 601-627.

[4] Lammel, R., Declarative aspect-oriented programming, in: O. Danvy, editor,
Proceedings PEPM’99, 1999 ACM SIGPLAN Workshop on Partial Fvaluation
and Semantics-Based Program Manipulation PEPM’99, San Antonio (Texas),
BRICS Notes Series NS-99-1, 1999, pp. 131-146.

[5] Lammel, R., Fvolution of Rule-Based Programs, Journal of Logic and Algebraic
Programming 60—-61C (2004), pp. 141-193, in: Special Issue on Structural
Operational Semantics, edited by L. Aceto and W. Fokkink.

[6] Lammel, R., Fvolution scenarios for rule-based implementations of language-
based functionality, in: L. Aceto, W. Fokkink and I. Ulidowski, editors, Proc. of
SOS workshop (Structured Operational Semantics), ENTCS (2004), 20 pages.
To appear.

[7] Limmel, R., E. Visser and J. Visser, The Essence of Strategic Programming
(2002—2004), draft; Available at http://www.cwi.nl/~ralf.

[8] Moggi, E., Notions of computation and monads, Information and Computation
93 (1991), pp. 55-92.

[9] Mosses, P., “Action Semantics,” Number 26 in Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, 1992.

[10] Mosses, P., Pragmatics of Modular SOS, in: H. Kirchner and C. Ringeissen,
editors, Algebraic Methodology and Software Technology: 9th International
Conference, AMAST’ 02, LNCS 2422 (2002), pp. 21-40.

[11] Pettorossi, A. and M. Proietti, Rules and Strategies for Transforming Functional
and Logic Programs, ACM Computing Surveys 28 (1996), pp. 360-414.

[12] The Rule Evolution Kit — downloads, documentation, papers, on-line demos
(2004), maintained by R. Lammel; http://www.cs.vu.nl/rek/; Version of the
software: 0.78.

51


http://www.cwi.nl/~ralf
http://www.cs.vu.nl/rek/

SETra 2004 Preliminary Version

Reflective Designs

Robert Hirschfeld !

DoCoMo Communications Laboratories Europe

Munich, Germany

Ralf Lammel 2

Vrije Universiteit & Centrum voor Wiskunde en Informatica
Amsterdam, The Netherlands

Abstract

We render runtime system adaptations by design-level concepts such that running
systems can be adapted and examined at a higher level of abstraction. The overall
idea is to express design decisions as applications of design operators to be carried
out at runtime. Design operators can implement design patterns for use at runtime.
Applications of design operators are made explicit as design elements in the running
system such that they can be traced, reconfigured, and made undone.

Our approach enables REFLECTIVE DESIGNS: on one side, design operators em-
ploy reflection to perform runtime adaptations; on the other side, design elements
provide an additional reflection protocol to examine and configure performed adap-
tations. Our approach helps understanding the development and the maintenance of
the class of software systems that cannot tolerate downtime or frequent shutdown-
revise-startup cycles.

We have accumulated a class library for programming with REFLECTIVE DESIGNS
in Squeak/Smalltalk. This library employs reflection and dynamic aspect-oriented
programming. We have also implemented tool support for navigating in a system
that is adapted continuously at runtime.

Keywords: Reflective Designs, Runtime Adaptation, Design Elements, Design Op-
erators, Design Patterns, Reflection, Method-Call Interception, Meta-Programming,
Aspect-Oriented Programming, Dynamic Weaving, Dynamic Composition, As-
pectS, Squeak, Smalltalk, Metaobject Protocol

Note: This extended abstract summarises our full paper [7].
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Runtime system adaptation

Our work on REFLECTIVE DESIGNS is concerned with adaptation of software
systems at runtime, as needed for dynamic component coordination [11], run-
time system configuration [1], dynamic service adaptation [5,6], and rapid pro-
totyping without shutdown-revise-startup cycles [12]. Runtime adaptability
is crucial for systems with strong availability demands, such as in telecom-
munications. Downtime of such systems can barely be tolerated. Software
maintenance and evolution has to be carried out in the running system.

REFLECTIVE DESIGNS enhance object-oriented design and programming
by techniques for runtime system adaptation. There are two key notions:
design elements and design operators, which we will explain in turn.

Design elements

We contend that a program is structured according to design decisions. We re-
quire that design decisions are represented explicitly in the program. Thereby,
software design will be traceable in the program. We even require that de-
sign decisions are to be represented explicitly in the running system. We use
the term design element to denote representations of design decisions in pro-
grams. In fact, we require that design elements are amenable to reflection such
that design decisions can be observed and modified at runtime. With that,
the notion of runtime system adaptations boils down to explicit construction,
modification, and retirement of design elements.

Design elements can be examined and (re-) configured. Here, examination
and (re-) configuration are used in the sense of introspection and interces-
sion. Normal object-oriented introspection and intercession concerns the fields
and methods of objects. Design-level introspection and intercession concerns
design-level concepts such as the participants for a given design element. The
examination of participants exemplifies design-level introspection. The con-
figuration of participants and their roles exemplifies design-level intercession.
Furthermore, for each object in the running system, we can introspect effective
adaptations, i.e., the list of design elements that affect the object at hand.

Design operators

When compared to basic techniques such as the use of a metaobject proto-
col [8], the use of design elements makes runtime system adaptations more
disciplined and more manageable. To this end, we provide abstractions that
capture common design elements in a reusable manner. Applications of such
abstractions perform system adaptations at a design level; hence, we call them
design operators. Our work, so far, has concentrated on operators that model
the realisation of common design patterns. The view ’design patterns as op-
erators’ also occurs in previous work [15,2,9,10,13,14]. The novelty of our
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work is that our operators serve for runtime system adaptation, and runtime
reflection on designs.

We can distinguish at least three kinds of operators. Additive operators
superimpose additional structure or behaviour onto the running software sys-
tem. Subtractive operators define and remove slices of behaviour or structure
in the running software system. Refactoring operators revise the running sys-
tem in a semantics-preserving manner.

It is clear that design operators can only be provided in the context of
a sufficiently reflective programming system. Actual applications of design
operators result in two effects. Firstly, the corresponding design elements are
constructed. Secondly, the system’s actual structure and behaviour is adapted
as intended by the underlying design decision. Applications of design operators
can be made undone by deactivating the corresponding design element. In case
an inactive element is never ever needed again, we can let the element retire.

Implementation in Squeak/Smalltalk

We have developed the REFLECTIVE DESIGNS framework as a class library for
Squeak/Smalltalk. The implementation makes original use of infrastructure
for reflection, method wrappers [3], and dynamic aspect-oriented programming
with AspectS [4]. The REFLECTIVE DESIGNS framework involves several lay-
ers of abstraction, while these layers are presented as APIs to the programmer.
The idea is that layers at a higher level of abstraction perform less lower level
reflection. Using the REFLECTIVE DESIGNS framework, we have exercised
some scenarios of runtime system adaptations.

We have also provided interactive tool support for reflective designs. Ac-
cordingly, we have extended some existing tools, such as the normal system
browser, and we have provided new tools such as a dedicated ‘reflective designs
center’. The tool extensions are particularly interesting in so far that we have
implemented them as self-applications of the REFLECTIVE DESIGNS frame-
work, e.g., the system browser is adapted by appropriate design elements.

Concluding remarks

We believe that REFLECTIVE DESIGNS and our prototypical implementation
of this approach provide useful input for further research on runtime system
adaptation. Major directions for future work are the following. Firstly, the
fusion of REFLECTIVE DESIGNS and refactoring transformations should be
completed. We note that we have focused on additive and subtractive adap-
tations in our work so far. Secondly, the robustness of REFLECTIVE DESIGNS
should be improved by dedicated system analyses and rollback mechanisms.
Thirdly, our practical approach to reflective designs needs to be complemented
by formal support. The ultimate goal is an approach where runtime system
adaptations are as powerful and robust as static meta-programs today.
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Abstract

Model Driven Engineering is a promizing approach that could lead to the emer-
gence of a new paradigm for software evolution, namely Model Driven Software
Evolution. Models, Metamodels and Transformations are the cornerstones of this
approach. Combining these concepts leads to very complex structures which re-
vealed to be very difficult to understand especially when different technological
spaces are considered such as XMLWare (the technology based on XML), Gram-
marware and BNF, Modelware and UML, Dataware and SQL, etc. The concepts
of model, metamodel and transformation are usually ill-defined in industrial stan-
dards like the MDA or XML. This paper provides a conceptual framework, called a
megamodel, that aims at modelling large-scale software evolution processes. Such
processes are modeled as graphs of systems linked with well-defined set of relations
such as RepresentationOf (u), ConformsTo (x) and IsTransformedIn (7).

Key words: model driven engineering, meta-model, software
evolution, mda, megamodel

1 Introduction

Model Driven Engineering (MDE) is a promising approach to develop and
evolve software. Model, Metamodel and Transformations are the basic con-
cepts of MDE. These concepts are far from new. They were already used in
Ancient Egypt, though there were not formalized as such [3]. More recently,
these concepts have been studied in many fields of Computer Science, may be
under different perspectives and using other terminology. The Model Driven
Architecture (MDA) standard, launched by the OMG in 2001 [14], had just
popularized the vision that models, metamodels and transformations could
play a central role in software engineering.
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The OMG gran vision presenting the MDA as the next paradigm in soft-
ware engineering [14] is a source of strong debate. MDA is poorly defined, too
complex, restrictive with the imposed use of MOF standard [14]. More im-
portantly previous, yet similar approaches, such as syntax-driven approaches,
have failed to find their path in industry. In fact we believe that there is
nothing new in MDA, but thats why this may work this time (Episode I[6],).
MDA could be more successful than previous because the software engineer-
ing community is more mature, concepts are better understood and tools are
already there.

1.1 MDE and Technological Spaces

MDE is not MDA however. In fact, MDA is just a specific incarnation of
the Model Driven Engineering approach which is applied to software systems.
MDE is by no means restricted to the MDA standard. In fact, the MDE ap-
proach might not be restricted to the development and evolution of software
systems, though this is on what we concentrate. MDA is a complex set of
technologies dominated by the MOF god ( Episode II[7]). MDE is on the
contrary an open and integrative approach that embraces many other Tech-
nological Spaces (TSs) in a uniform way [13]. In this paper, the focus is on
Software Technological Spaces, that is those used to produce software. The
emphasis of MDE is on bridges between technological spaces, and on inte-
gration of bodies of knowledge developed by different research communities.
Examples of TSs include not only MDA and MOF, but also Grammarware
[12] and BNF, Documentware and XML, Dataware and SQL, Modelware and
UML, etc. In each space, the concepts of model, metamodel and transforma-
tion take a different incarnation. For instance what is called a "metamodel”
in Modelware corresponds to what is called a "schema” in Documentware and
Dataware, a ”"grammar” in Grammarware, or even a ”viewpoint” in the soft-
ware architecture community [9]. In fact the concept of model, metamodels,
and transformation are poorly defined in MDA, and this is the same in other
standards such as XML. The true essence of these concepts is deeply buried
into complex technologies.

1.2 Modelling software evolution

Getting a better understanding of these concepts is important, in particu-
lar to model software evolution. The focus of this paper is not on small
scale software. These software products can be evolved without problem in
an ad-hoc way. We are on the contrary interested in ewvolution-in-the-large,
that is the evolution of large-scale industrial software systems. The evolu-
tion of these systems often involve various Technologicial Spaces over time,
and various TSs are usually used at the same time. Whatever the technol-
ogy used, recognizing the concepts of model and metamodels is important in
this context [5]. In particular these concepts explain the metamodel/model
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co-evolution phenomenona. The notion of model itself is also required to un-
derstand model/code co-evolution.These problems are not theoretical. They
correspond to actual issues with strong implication on software industry de-
velopment processes.

1.8 Towards a megamodel for MDE

Following the series ”"From Ancient Egypt to Model Driven Engineering” [3],
the goal of this paper is to provide a megamodel that is ”good enough” to de-
scribe MDE. Simply put this ”megamodel”, which is a model of MDE, should
explain what is a model, a metamodel, a transformation, but also what is
a transformation model, a model transformation, a model of model, a meta-
model of transformation, and any combination of these terms. The megamodel
should make it possible to reason about a complex software engineering process
without entering into the details of technological space involved. Obviously
the results obtained when reasoning on the megamodel must be consistent
with those that would be obtained directly with the reality. Technically this
megamodel is a metamodel, and therefore a model [3]. But since these terms
are defined by the megamodel, calling it a metamodel would be confusing.

The goal of this paper is by no means to invent new concepts. On the
contrary we just want to model what already exist. Nothing more. In-
stead of defining new words this paper relies on existing research on MDE
[17][2][11][10][1]. In [17], Seidewitz describes informally, yet thoughtfully,
models and meta-models. Bézivin identifies two fundamental relations coined
RepresentationOf and ConformsTo [2]. Atkinson and Kuhne study the rela-
tionship between MDA and ontologies [1]. Almost all pieces of work carried
out to define MDE concepts are either very specific and restricted to a partic-
ular TS, or they are expressed in plain english. By contrast the mega-model
presented in this paper is expressed in UML with OCL constraints.

This paper presents the current version of the megamodel we have built so
far. This megamodel has been carefully designed, and more importantly it has
been validated through a large number of examples from different technological
spaces. In [3], the study of MDE is taken from an historical perspective and it
is shown how artefacts from Ancient Egypt to modern software technologies
all conform to the megamodel in a smooth way.

The megamodel is summarized in Figure 10 at the end of this paper. It is
made of 5 core associations, namely 9, u, €, x and 7. It describes the concepts
of model, language, metamodel, and transformation. The reader is invited
to refer to the series "From Ancient Egypt to Model Driven Engineering”
in which, each association is described in a different episode with plenty of
concrete examples. For instance Episode I [6] concentrates on models and
p. Episode 1T [7]concentrates on languages and metamodels, that is € and x.
Other episodes are under construction.
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1.4 Structure of the paper

The remainder of the paper is structured as following. The basics of the
megamodel are presented in Section 2. Transformations and IsTransformedin
(1) are then introduced in Section 3. Finally Section 4 shows first results in
modelling evolution and Section 5 concludes the paper.

2 Models, Languages, and Metamodels

As shown in the next UML class diagram, the core of MDE megamodel is
centered around four relations: J, u, €, and x (Figure 2). Each relation is
briefly discussed below in a separate section. For further information about
models and p, refer to Episode I [6]; for languages, metamodels, € and ¥,
please refer to Episode II [7].

composite * * sus Shorteuts: N
DecomposedIny A RepresentationOf 6: Decomposedin
part * * model W: RepresentationOf
System € : ElementOf
element * * metamodel
£l (OF ¥ X : ConformsTo
emen Z> A /ConformsTo sus : systemUnderStudy
set * * cmodel e cmodel : conformantModel
Set —==

cModel.systemUnderStudy->notEmpty()
and metamodel = cmodel.set.model->asSet()

Fig. 1. MegaModel: 0, u, €, x

2.1 Systems, Parts and DecomposedIn (¢)

A system is the primary element of discourse when talking about MDE.

This very abstract definition is just here to ensure a broad application
of the megamodel. In short everything is a system, yet the use of the term
"system” is not really important. Systems can be very simple. For instance
the trigonometric value 7 is a system. The pair (0000011,0001101) is also a
system. Complex system can be decomposed in subsystems or parts, leading
to the definition of the Decomposedin relation (§) (Figure 2).

composite *

DecomposedIny

Fig. 2. MegaModel: §

part *

System

For instance (0011,1101) § 1101 just indicates that the second system is a
"part” of the first system. This information could be represented as a ¢ link
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in a UML object diagram, but to save space, we prefer in this paper to use
the traditional z Ry mathematical notation, which is a shortcut to (z,y) € R.
Remember that relations are simply set of pairs in the set theory.

2.2 Models and RepresentationOf (1)

Instead of providing yet-another definition of what a model is, lets cite existing
definitions.

”A model is an abstraction of a physical system, with a certain purpose.”
(UML Std). 7A model is a simplification of a system built with an intended
goal in maind. The model should be able to answer questions in place of the
actual system.” [10]. ”A model is a set of statements about some system under
study (SUS).” [15].

From these definitions we can at least identify three notions: the notion
of model, the notion of system under study (SUS) and a relationship between
these notions. This relation is called RepresentationOf in [2], so we kept the
same terminology. We just use p as shortcut to avoid wrong connotations and
misinterpretations. The p association is depicted in Figure 3.Episode I [6] is
dedicated to the study of this association.

* sus
A RepresentationOf
* model
System ‘

Fig. 3. MegaModel: u

Lets just summarize here the main properties of this relation. It is key
to recognize that the notion of model is relative. This is not an intrinsic
property of a system. For instance, (0011,1101) is a system and it could be
just a system. But one can state that this system plays the role of model by
arguing that (0011,1101) g 7. One can indeed interpret the two parts of this
pair as sequence of bits, and the result as a decimal representation of this the
3.14 value. We can state (0011,1101) p (3,14) and (3,14) p 7. This example
shows that p links can be combined. The combination of x and ¢ links leads
to the notion of interpretation which is well explained in [17].

2.8 Languages, Sets, and ElementOf (€)

In the language theory a language is defined as a set of sentences. For instance
the set {"h”,”ho”,” hoo”,” hooo”, ...} is the language of words that start with
an h and continue with o letters. Lets call this set hoL. The language theory
is built on the set theory. In the megamodel, the association ElementOf (¢)
models this concept (see Figure 4).
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ElementOf V¥ Z>

set *

System
element *

Set

Fig. 4. MegaModel: €

This association denotes € in the set theory. Nothing less, nothing more.
The relationship between the megamodel, the set theory and the language
theory is described in [8]. A language is a set and "hooo” € hoL holds. As
another example, the Java language is the (infinite) set of all java programs.
UML is a modelling language. It is the set of all UML models, so Figure 2 €
UML.

2.4 Metamodels and ConformsTo (x)

Languages are very abstract systems. One need practical means to deal with
languages, leading to the (derived) notion of model of language. There is
nothing new here because languages are just particular systems. For instance,
the regular expression h(o)* is a model of the language hoL described above,
so h(o)x p hoL. A grammar is a model of a language, not a language. An XML
DTD, lets say x.dtd, is a model of a language, not a language. It is well known
that a given language can be modelled by many models (expressed themselves
in the same language or using different languages). In the Grammarware
technological space [12], this fact is expressed by saying that they are many
grammars for a single language (and various grammar languages to express
these grammars, such as BNF and YACC). As an example we also have h(0) *
(0)* p hoL. Instead of using regular expressions, the hoL language can be
also modelled by a grammar expressed in BNF or using YACC.

Models of languages (px) must not be confused with languages of models
(xp). Modelling languages is the common name used for ”languages of mod-
els”. But in fact, the important concept in MDE is the concept of models
of languages of models (pxu), that is, models of modelling languages. These
models are called metamodels. This concept leads to the association Conform-
sTo (x) in the megamodel (Figure 5).

A model must conform to its metamodel. These relation has different
incarnations depending on the Technological Space considered. For instance
in the Grammarware TS, a phrase must conform to the grammar; in the
XMLWare TS, an XML document must conform to a DTD; in the Dataware
TS, the content of a database must conform to the schema of this database.

As shown in Episode II [7], this association was identified as a foundation
of MDE in [2], but our contribution was to show that this is not indeed a
basic association as previously thought. ConformsTo is on the contrary a
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System
* metamodel

A /ConformsTo

~ -
~
~ .

* cmodel 8

cModel.systemUnderStudy->notEmpty()
and metamodel = cmodel.set.model->asSet()

Fig. 5. MegaModel: x

derived association as shown in Figure 2. In fact the ConformsTo takes its
root in the set theory since it summarize a particular composition of u and €
links. That is, it merges the notion of set and the notion of models [8]. The
notion of metamodel given in this paper is indeed compatible with most of
the definition found in the litterature. For instance the following definitions
consistently express the fact that a metamodel is a model of a language of
models: "A meta-model is a model that defines the language for expressing a
model” [16]. 7A metamodel is a specification model for a class of SUS where
each SUS in the class is itself a valid model expressed in a certain modelling
language” [17].

3 Transformations and IsTransformedIn (7)

Though the initial version of the MDA standard did not put emphasis on
transformations, this is really a core concept of MDE, just as model and
metamodel. Furthermore, transformations are fundamental to software evo-
lution. In particular Model Driven Software Evolution could also be called
Transformation Driven Evolution. Unfortunately though notion of transfor-
mation is rather intuitive, there is no consensual terminology and this term is
often used to refer to distinct concepts [8]. So let us clarify this notion. It is
important to distinguish transformation instances, transformation (functions),
transformation models, transformation modelling languages, and transforma-
tion metamodels. The goal of this paper is by no means to define a standard
terminology. It is just to show that there is a serious issue here and that the
megamodel can improve understanding and reasoning about MDE.

3.1 Transformation instances and T

Following the set theory style, we can say that a system is transformed into
another system by modelling this as a simple pair. For that it is enough to
introduce the IsTransformedIn (7) association in the megamodel. This is done
on the left of the following figure.

As an example 1 7 2 means the integer 1 IsTransformedIn 2. The pair (1, 2)
will be called a transformation instance, or transformation application. 1 plays
the role of source for this transformation while 2 plays the role target. If pl
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System
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also called
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AN

IsTransformedIn P> IsTransformedin |-

Fig. 6. MegaModel: Transformation instances (7)

and p2 are programs, pl 7 p2 means that the program pl IsTransformedIn the
program p2. Then (pl,p2) is a program transformation instance. It is impor-
tant to note that they are no constraint on the transformation instances, and
that no reference is made to the complexity of the transformation. (pl,p2)
could simply correspond to the addition of a white space, the modification of
an algorithm, the renaming of a procedure, or it could be a complete reimple-
mentation of the program.

As the reader might have noticed, the fact that 7 is defined on system
makes this association very general. It can be combined arbitrarily with the
other associations introduced so far. For instance we can say that a model is
transformed into another model, that a metamodel is transformed into another
metamodel, that a model is transformed into a metamodel, etc. While this last
example might seems strange at the first sight, just consider that some tools
are able to extract a DTD (e.g. X.dtd) from an XML file z1.xml. The file
X.dtd is the incarnation of a metamodel in the XMLWare Technological Space,
while xz1.xml is a model. This situation can be modelled by the following facts:
xl.oeml 7 X.dtd and xz1.xml x X.dtd. As it will be shown by a graph pattern
in Figure 8, such transformation is the incarnation of "metamodel inference”.
Some commercial tools do that.

3.2 Transformation instances as systems

Considering transformation instances as first-class entities, bring even more
power to the megamodel. Transformation instances are systems themselves.
The associative class on the right of Figure 6 is both a class and an association.
The class should be called TransformationInstance but unfortunately the as-
sociation already received the IsTransformedIn name, and only one name can
be defined in UML for a given element. Anyway, objects of this (associative)
class can be the origin of destination of any link according to UML semantics.
This is exactly what is needed. In particular 7 links can be combined in many
ways leading to complex 7-graphs. For instance the source and/or the target
of a transformation instance could be another transformation instance. The
power of higher order functions and currification is well known in Computer
Science, and this is exactly what happen in the various technological spaces,
though these terms are not necessarily used.

Seeing transformation instances as systems also means that 7 can be com-
bined with all other associations from the megamodel (e.g. €, x, ). This
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is necessary to model the realm of software development. For instance let us
assume that we want to analyse the transformation instance from the program
pl to the program p2, that is the pair (p1, p2). The result of this analysis might
be an XML file dif f12.2ml which models the differences between the source
and the target. We want something smarter that the output of the unix ”dift”
tool. We have dif f12.xml p (pl,p2) and pl 7 p2. So dif f12.2ml is "model
of a transformation instance”. Continuing with the same example, this XML
file might be composed by other transformation instances. For instance the
function f1 which is a part of p1, might have been transformed in the function
f21in p2. So we have dif f12.xml § (f1, f2), p1 § f1, p2 § f2 and f1 7 f2.
Analysing the transformation instance (pl,p2) and producing the summary
di f f12.xml can be useful to understand program evolution. This can be mod-
elled by the following facts (pl,p2) 7 dif f12.2ml and dif f12.2ml pu (pl, p2).
From the occurrence of pattern involving 7 and p in the opposite direction, it
can be deduced that this is a "reverse engineering transformation”, and since
it applies to a transformation instance this concrete operation is an example
of "transformation instance reverse engineering”.

3.3 Transformation (functions)

So far, we have seen that individual systems can be transformed into other
individual systems. Software evolution can be seen as a succession of trans-
formation instances, but this is a very weak result which brings no concrete
benefits. On the contrary, the challenge of MDE is to automate transforma-
tions as far as possible. This could be done only if transformation instances
are considered in isolation. They should be described at a higher level of
abstraction; not on individuals systems, but on set of systems.

A transformation function, or transformation for short, is a function in the
mathematical sense of the term, that is a set of pairs with the constraint that
a value map in the domain maps to at most one value in the range [18]. To be
more precise a transformation (function) is a set of transformation instances.
A transformation instance is an ElementOf (€) zero or more transformations.
The domain of a transformation (function) is the set of systems that can be
transformed. The range of a transformation (function) is the set of systems
that can be obtained via this transformation. This modelling directly comes
from the set theory and the Z mathematical language [18]. We just use here
the term transformation function or simply transformation instead of function
because the term ”software evolution through functions” is less popular that
"software evolution through transformations”. A transformation is however a
function. Hence the fact that the correct term is ”transformation function”.

For instance (1,2) € 7 means that the integer value 1 is transformed in
2. The set {(0,1),(1,2),(2,3),(3,4),...} is a transformation (function) if all
its elements are transformation instances. Lets call this transformation addl
while mul2 will refer to the transformation {(0,0),(1,2),(2,4),(3,6),...}. In
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Fig. 7. MegaModel: Tranformations Functions vs. Transformation Instances

this example we can see that a transformation instance can be element of
various transformation function since (1,2) € addl and (1,2) € mul2. Classi-
fying transformation instances in terms of existing transformation is a known
problem in evolution analysis. For instance the goal might be to recognize
refactorings from transformation instance. In this case one tries to figure
out by observing the difference between two successive versions of a program,
first what has changed, and then in which set this change (this transforma-
tion instance) can be classified. A refactoring such as "rename method” is a
transformation function while the particular application of a refactoring is a
transformation instance.

3.4 Transformation models

Transformation functions as defined above are abstract systems and there are
therefore not operational. What is required in MDE, is a concrete means to
describe transformations. This naturally leads to transformation models. A
transformation model is a model of a transformation (function).

For instance lets call dblC' the C program int f(int z) {return z+z; }, dbl P
the Pascal program function f(x : integer) : integer begin return x * 2 end
and dblC?2 the C program int f(int x){return < 1;}. Tt should be clear that
dblC' - mul2, dblP pn mul2 and dblC2 o mul2. As suggested by this example,
they are plenty of ways and languages to write transformation models. This
example is simple but it is not representative of software evolution through
transformation. A compiler, a refactoring tool, or the YACC tool are bet-
ter examples of transformation models for software evolution because they
transform models.

Transformation models must not be confused with tranformation functions
or with transformation instances. In the XMLWare Technological Space, an
XSLT stylesheet is an example of a transformation model. It models a trans-
formation (function) defined on XML files. This transformation could be be
expressed in any other language, for instance XQuery. The application of the
stylesheet on a particular XML file leads to a transformation instance. The
application of a compiler on a particular program, or the application of YACC
on a particular grammar are examples of transformation instances.

Every modification can be seen as a transformation instance. In fact the
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huge majority of transformation instances applied during software evolution
are ad-hoc. That is they are not elements of an existing transformation func-
tions. Software engineers just change programs, without wondering if this is
an instance of a transformation. Refactorings are examples of transforma-
tions, that can be modeled and therefore automated, but these are isolated
examples. In fact currently software evolution is driven by ad-hoc transfor-
mation instances while the goal of Model Driven Engineering is to drive the
process through a set of reusable transformation functions.

4 Applying the Megamodel to Software Evolution

We believe that all software evolution processes can be modelled as a graph
using the megamodel presented above. Example of graphs are provided in
[3] in the form of UML object diagrams, but Episode I and II present only
a static vision. Before considering transformation and evolution, lets first
consider such a static vision. Simply put each version of a large scale software
is a complex system, so each version can be modelled as a graph built on the
following elements:

* ) links, for instance to model the fact the software under study is made of
packages, which are made of source files, which are made of functions, etc.

e 1 links, for instance to model that a Z model is a specification of an Ada
program.

e ¢ links, for instance to model that an XML model pertains to a Domain
Specific Language (DSL). Languages should be considered as integral parts
of software, especially in the long term since they will invariably evolve [5].

* x links, for instance to model the fact that an XML model is conform to
a DTD which model the DSL mentioned above. Or to model that the
conformity of an Ada program is checked by the Ada compiler, which is a
metaware tool [5].

e 7 links, for instance to model the fact that a binary file has been produced
from an Ada source file, itself produced from a Z specification model.

So each version can be represented by a graph. The evolution of the software
can be modelled by a composition of these graphs using 7 links. At the end,
we just obtain a bigger graph with all kind of links. The megamodel is by no
means restricted to model evolution or software evolution. Since everything
is a system, everything could be transformed. That is, every system can be
the source or the target of a 7 link. This is required because in very large
software companies everything evolve soon or later[5]. In fact evolution can
be modelled by combination of 7 links and other kind of links determining the
kind of evolution. If we consider evolution-in-the large [5], languages evolve
(e). Metamodels evolve (pept). Transformation models evolve (Teut). And
SO on.
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Moreover when two systems connected by a link evolve, this leads to co-
evolution issues. This is because consistency must be maintained between the
ends of the link. Examples of co-evolution phenomenona, include for instance
model/code co-evolution (Tut). Metamodel/model co-evolution [5] is another
example (Tur).

The sequence of greek letters used here above are ambiguous, in particular
because there is no formal rule for the ordering of letters. This is because the
concepts described above corresponds to graph patterns, not simply sequences.
We have identified a lot of interesting patterns that corresponds to known
concepts. Some examples are provided in the next figure.

™ ™
YU TY VU [ TA
MAE’DS XAET»S

Forward Reverse Model Metamodel
engineering engineering / System / Model
transformation transformation co-evolution co-evolution
™™
VLUI|TY YHITY wu|tv
T
System-driven Model-driven Round-trip evolution
evolution evolution
x >
A L ﬂ A A
“w I
Met del Metamodel Metamodel
Metamodel/ Reflexive e.amo' ¢ reverse inference
conformantModel metamodel ehgmeering engineering

Fig. 8. MegaModel: Examples of interesting mega-patterns (7)

5 Conclusion

In this paper we introduced a megamodel to describe MDE concepts and their
relationships. This megamodel is summarized in Figure 9. The view presented
here corresponds has been simplified for the purpose of this paper. A more
complete view making explicit the relationships between the megamodel, the
set theory and the language theory can be found in [8].

In fact, by using the megamodel we discovered that it was much more pow-
erful than expected. It really helped us to connect concepts and technologies
that were apparently disconnected. Surprisingly we discovered that a lot of
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Fig. 9. MegaModel Overview

known issues could be model as graph patterns. And we are still discovering
new ones. With respect to the form of the megamodel, the language used
here is UML, but we are building other incarnations of the megamodel. At
the time of writing this paper we are working on a version in Prolog, in Z
[18], and in hieroglyphics [3][4]. The megamodel is expressed using different
languages. Interestingly the Prolog megamodel is executable, so it can auto-
matically recognize the patterns mentioned above and derive new facts from
a given model expressed in the megamodel [8]. This program results from
the transformation of the UML megamodel with the transformation of OCL
constraints to prolog rules. In other words thats megamodel transformation,
so we applied MDE to its own megamodel... In practice the problem is not
really with the semantics of the megamodel, but with its interpretation [3].
That is formalizing the metamodel is not really an the important issue. MDE
is not per se a formal system and the problem is much more about how to
represent MDE real world, that about the language used to describe the re-
sulting model. In other words the issue is how to extract a model from a
software evolution process. To ease this task we are in the process of defining
systematic mapping between the megamodel and its concrete incarnations in
each technological spaces. Experiments we have done so far are very promis-
ing. This should not be surprising, because we are building the metamodels
to reflect our practical knowledge about existing technological spaces.

We do not claim however that the megamodel presented here is complete
or perfect. Like any other model, the megamodel certainly presents of lot
of room for improvements. For instance, to model co-evolution phenomena
it is necessary to include the notion of distance to express to what extent a
model conforms to a metamodel (metamodel/model co-evolution), or a model
is representation of code (model/code co-evolution). Adding the notion of
metrics is also further work.
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Finally the reader might still wonder what this research is all about. This
is no code there. And nothing new either. Just consider things from a different
perspective. The MDA standards is made of more than 2500 pages. It is full
of complex technologies and they are plenty of commercial tools that claim
to be MDA compliant. This standard is more than three years old. Major
actors in software industry, such as Microsoft and IBM, announced MDE as
being integral part of their strategy. Despite of that most people in academy
still wonder what could be a metamodel transformation, a metamodel-driven
evolution process or even a model-driven evolution process through transfor-
mation. While the term meta has been adopted by software industry leaders,
it is still considered as suspicious by many. The goal of this paper is just to im-
prove the understanding of MDE concepts and to make them more accessible.
We believe that this is a strategical issue for software evolution. After about
50 years of empirical software evolution, it makes no doubt that software can
be evolved in an ad-hoc way. What is needed, is a new paradigm for software
evolution. MDE might be a candidate for that.
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Abstract

The histories of software systems hold useful information when reasoning about the
systems at hand or about general laws of software evolution. Yet, the approaches
developed so far do not rely on an explicit meta-model and do not facilitate the
comparison of different evolutions. We argue for the need to define history as a
first class entity and propose a meta-model centered around the notion of history.
We show the usefulness of our a meta-model by discussing the different analysis it
enables.
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1 Introduction

The importance of observing and modeling software evolution started to be
recognized in 1970’s with the work of Lehman([15]. Since then more and more
research has been spent to identifying the driving forces of software evolution,
and to using this information to better understand software. However, the ap-
proaches developed so far, do not rely on an explicit meta model for evolution
analysis and do not facilitate the comparison of different evolutions.
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The goal of this work is to propose a meta-model which allows for the
usage of historical information just like any other kind of information.

Before going into details, we define three terms: wversion, evolution and
history. A wersion is a snapshot of an entity at a particular moment in time.
The evolution is the process that leads from one version to another. A history
as the reification which encapsulates knowledge about evolution and version
information. According to these definitions, we say that we use the history to
understand the evolution (i.e., history is a model of evolution).

This paper shows Hismo, a meta-model having in its center the notion of
history, and argues that we need such a meta-model to reason about evolution
of software systems. As a validation for our approach we present examples of
historical measurements and history manipulations and show different usages
for reverse engineering.

In the next section we enumerate the requirements a meta-model should
support and we analyze existing techniques to analyze software evolution. In
Section 3, we introduce Hismo, our history meta-model. In Section 4 we
show examples of history measurements and in Section 5 we give examples of
analyses enabled by our meta-model. In the end, we draw the conclusions and
present the future work.

2 Software Evolution Analyses

Based on our analysis of the field, the requirements that a meta-model for
analyzing the evolution of software systems fulfill are:s

e The meta-model should offer means to easily quantify and compare different
property evolutions of different entities. For example, we must be able to
compare the evolution of number of methods in different classes.

e The meta-model should allow for an analysis to be based on the evolution of
different properties. Just like we can now reason about multiple structural
properties, we want to be able to reason about how these properties have
evolved. For example, when a class has only a few methods, but has a large
number of lines of code, it should be refactored. In the same line, adding
or removing the lines of code in a class while preserving the methods might
be a sign of a bug-fix.

e The meta-model should provide change information at different level of
abstraction such as packages, classes, methods (i.e., not just text modifica-
tions).

e The meta-model should provide for the comparison in detail of two distinct
versions of the same entity.

» The analysis should be applicable on any group of versions (i.e., we should
be able to select any portion of the history).
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In the followings we enumerate different techniques used to analyze soft-
ware evolution and how these techniques relate to the above requirements.

2.1 Evolution Chart Visualization

Since 1970 research is spent on building a theory of evolution by formulating
laws based on empirical observations [15] [14]. The observations are based on
interpreting evolution charts which represent some property on the vertical
(i.e., number of modules) and time on the horizontal (see Figure 1). Lately,
the same approach has been employed to understand the evolution of open-
source projects [2] [3]

P,

IEATIRIN
RERN
FRRR

| >

Fig. 1. Evolution chart example with some property on the vertical and time on
the horizontal.

This approach is useful when we need to reason in terms of one property,
but it makes it difficult to reason in terms of more properties at the same
time, and provides only limited ways to compare evolutions of different prop-
erties. For example, it is suitable to use this technique to analyze the evolution
number of modules in a system, but it is difficult to correlate the number of
modules, with the total lines of code and with the number of developers.

In the left part of Figure 1 we display a graph with the evolution of a
property P of an entity. From the figure we can draw the conclusion that P is
growing in time. In the right part of the figure we displayed the evolution of
property P in 12 entities. Almost all graphs show a growth of the P property
but they do not have the same shape. Using the graphs alone it is difficult to
say which are the differences and if they are important. Furthermore, if we
want to correlate the evolution of property P with another property Q, then
we have an even more difficult problem, and the evolution chart does not ease
the task significantly.

2.2 FEvolution Matriz Visualization

Visualization has been also used to reason about multiple evolution properties
and to compare different evolutions of different entities. Lanza and Ducasse
arranged the classes of the history of a system in an Evolution Matrix like in
Figure 2 [12]. Each rectangle represents a version of a class and each line holds
all the versions of that class. Furthermore, the size of the rectangle is given by
different measurements applied on the class version. From the visualization
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different evolution patterns can be detected: pulsar, idle, supernova or white

dwarf.
Pulsar O I:I O |:| |

Idle O 0O000

# of attributes
P

Supernova O O I:I I:l meﬁl’?ofdsI class
White dwarf I:l I:I O O

Fig. 2. Samples of class evolution patterns detectable in the Evolution Matrix.

With this visualization, we can reason in terms of two properties at the
same time, and we can compare different evolutions. The drawback of the
approach resides in the implicitness of the meta-model (i.e., there is no explicit
entity to which to assign the evolution properties) and because of that it is
difficult to combine the evolution information with the version information.
For example, we would like to know if the pulsar or idle classes are big or not.

Based on the detected patterns we can build a vocabulary for characterizing
classes. Thus, in a system we can have pulsar classes or idle classes. But,
pulsar and idle characterize a complete line and not just a cell in the matrix.
Therefore, pulsar and idle characterize the way a class evolved over time and
not a class. Based on this observation we concluded that we need a noun to
which to assign the pulsar-like properties: the history.

Other visualizations approaches are based on similar meta-models. Jazay-
eri analyzes the stability of the architecture [11] by using colors to depict the
changes. Taylor and Munro [18] visualizes version data with a technique called
revision towers. Ball and Eick [1] develope visualizations for showing changes
that appear in the source code. Collberg et al. use graph-based visualizations
to display the changes authors make to class hierarchies [4]. Rysselberghe and
Demeyer use a simple visualization based on information in version control
systems to provide an overview of the evolution of systems [19].

2.3 Release History Meta-Model

Fischer et al. modeled bug reports in relation with version control system
(CVS) items [7]. In Figure 3 we present an excerpt of the Release History
Meta-model. The purpose of this meta-model is to provide a link between the
versioning system to the bug reports.

This meta-model recognizes the notion of the history (i.e., CVSItem) which
contains multiple versions (i.e., CVSItemLog). The CVSIltemLog is related
to a description and to BugReports. The authors used this meta-model to
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recover features based on the bug reports [6]. These features get associated
with a CVSItem.

A similar meta-model have been used to detect logical coupling between
parts of the system [8]. The authors used the CVSItemLogs to detect the parts
of the system which change together and then they used this information to
define a coupling measurement.

1 * 1 1

CVSitem CVSltemLog %\ggﬁ:}l,-:,?
1 1

Feature BugReport I?::cF:ﬁ)’:ic::I:

Fig. 3. Excerpt from the Release History Model-model.

The main drawback of this meta-model is that it does not take into con-
sideration the structure of the software at the version level — i.e., the system
is represented with only files and folders, but no semantical units are repre-
sented (e.g., classes or methods). Therefore, this meta-model does not offer
support for different semantics of change — i.e., it gives no information about
what exactly changed in a system.

Zimmerman et al. aimed to provide mechanism to warn developers that:
“Programmers who changed these functions also changed ...”. The authors
placed their analysis at the level of entities in the meta-model (e.g., methods)
[20]. Unfortunately, they did not explicitly describe their underlying meta-
model.

3 Hismo - History Meta-Model

ClassVersion

* * *

i ClassHistory I

*
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Fig. 4. History and the Evolution Matrix.

Figure 4 shows how a meta-model centered around the notion of history
can be built: each cell in the matrix is a Class Version which makes for each
line to represent a Class History. Moreover, the whole matrix is actually a line
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formed by SystemVersions, which means that the whole matrix can be seen as
a SystemHistory. In the right side of the figure we built a small meta-model
which shows that a SystemHistory has more ClassHistories.

Abstract
Entity
A
Structural 1 1 . .
Entity Version History
. Attribute Access
Attribute |—— Access History History
Namespace Class Method
Namespace Class —— Method History History History
. . Inheritance Parameter Invocation

Inheritance Parameter Invocation History History History

Fig. 5. An excerpt of Hismo and its relation with a source code meta-model. We
did not represent all the inheritance relationships to not affect the readability of
the picture.

In Figure 5 we show a reduced history meta-model based on a source-
code meta-model. In our case we used FAMIX [5]. Each version entity has
a correspondent history entity. Also, the relationship at version level (e.g.,
a Class has more Methods) has a correspondent at the history level (e.g., a
ClassHistory has more MethodHistories).

A history does not have direct relation with a version entity, but through a
Version wrapper. In Figure 6 we show the details of the relationship between
History and Version.

EHistory 1 history 0..1 versions -
— EVersion
/ranks[*]: integer rank -
IF HasVersion /rank: integer * 1 E
0.1 | date: Date
pred
0.1
succ
{
ranks = self.HasVersion.rank->sortedBy(i | i ) rank = self.history.rank
ranks->for(r1,r2 | r1 < r2 implies versions[ri].date < versions[r2].date 3
}

Fig. 6. Details of the relationship between the History, the Version and the struc-
tural entity (E). We used OCL notation.
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4 History Measurements in Hismo

In this section we show some examples of how we use our meta-model to
measure the evolution. We also show how the meta-model supports history
selection and how measurements can be applied on any such selection.

EHistory 0..1 versions EVersion E
/evolutionOfP: real rank /evolutionOfP: real - ' I'P:real
subHistories| /latestEvolutionOfP:real 1 history

/earliestEvolutionOfP: real
fisPulsar: boolean
minRank: integer
maxRank: integer {

filter[0..1]: Predicate evolutionOfP =
(prev.value(P)-self.value(P)).abs()

0..1 root

DerivedFrom

{

evolutionOfP =

Sequence {minRank+1..maxRank}->collect(i | self.versions]i]. evolutionOfP)->sum()
latestEvolutionOfP =

Sequence {minRank+1..maxRank}->collect(i | self.versions]i]. evolutionOfP*2.exp(i-maxRank))->sum()
earliestEvolutionOfP =

Sequence {minRank+1..maxRank}->collect(i | self.vp[i]. evolutionOfP*2.exp(maxRank-i+1))->sum()

}

Fig. 7. Examples of history measurements definitions.

In Figure 7 we introduce three measurements: Evolution of P, Latest Evo-
lution of P and Earliest Evolution of P.

Evolution of a property P (EP) — this measurement is defined as the sum of
the absolute difference of P in subsequent versions. This measurement can
be used as an overall indicator of change.

Latest Evolution of P (LEP) — while EP treats each change the same, with
LEP we focus on the latest changes by weighting function (2!~ Rank) which
decreases the importance of a change as the version (7) in which it occurs
is more distant from the latest considered version (maxRank).

Earliest Evolution of P (EEP) — it is similar to LEP, only that it emphasizes
the early changes.

Figure 7 also shows that given a history we can filter it to obtain a sub
history. As the defined measurements are applicable on a history, and a selec-
tion of a history is another history, the measurements can be applied on any
selection too.

In Figure 8 we show an example of applying the defined history measure-
ments to 5 histories of 5 versions each.

* During the displayed history of D (5 versions) P remained 2. That is the
reason why all three history measurements were 0.

e Throughout the histories of class A, of class B and of class E the P property
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Latest Earliest

E"Z'f”gm Evolution  Evolution
of P of P
. E‘ 7 3.50 3.25
5 E 7 5.75 1.37
. E‘ 3 1.25 2.12
» BEEEE o o oo
. 7 1.50 5.25
{1 —2 —3 — 4 — 5 versions>
Legend:

a version with P = x

Fig. 8. Example of history measurements.

was changed the same as shown by the Evolution of P (EP). The Latest and
the Earliest Evolution of P (LEP and EEP) values differ for the three class
histories which means that (i) the changes are more recent in the history of
class B (ii) the changes happened in the past in the history of class E and
(iii) in the history of class A the changes were scattered through the history
more evenly.

e The histories of class C and E have almost the same LEP value, because of
the similar amount of changes in their recent history. The EP values differ
heavily because class E was changed more throughout its history than class

C.

The P property can be a property like: number of methods of a class,
complexity of a method etc. Furthermore, we can define other measurements
like: addition/removals of P, stability/instability of P etc.

5 Hismo Applications

The benefit of the historical measurements is that we can understand what
happened with an entity without a detailed look at each version — i.e., the
measurements summarize time into numbers which are assigned to the corre-
sponding histories. In the rest of the section, we describe three applications
based on our meta-model:

* Build more complex historical measurements,

¢ Visualize different historical measurements to determine correlations and
patterns of evolution.

e Build automatic queries which combine different evolution characteristics
with version information to improve the detection of design flaws.
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5.1 Yesterday’s Weather

The above mentioned measurements were used to define another measure-
ment: Yesterday’s Weather (YW) [10]. YW is defined to be the retrospective
empirical observation of the phenomenon that at least one of the classes which
were heavily changed in the recent history is also among the most changed
classes in the near future.

The approach consists in identifying, for each version of a subject system,
the classes that were changed the most in the recent history and in checking if
these are also among the most changed classes in the successive versions. The
YW value is given by the number of versions in which this assumption holds
divided by the total number of analyzed versions. If YW raises a high value,
we say it is useful to start reengineering from the classes which changed the
most in the recent past, because there is a high chance that they will also be
among the most changed in the near future.

YW is a historical measurement obtained by combining different historical
measurement which are applied on sub histories.

5.2 Hierarchy Fvolution Complexity View

Based on Hismo, a visualization has been proposed to detect patterns of hi-
erarchy evolution [9]. The visualization is based on the polymetric view [13].
Figure 9 shows the visualization applied on the history of six class hierar-
chies. The nodes represent class histories and the edges inheritance histories.
Both the nodes and the edges are annotated with historical measurements.
The visualization combines the evolution of different properties for building a
vocabulary to characterize the evolution of class hierarchies: old hierarchies,
stable hierarchies etc.

b

mngnugnugnumnn\u‘;ﬁﬁhn D

Fig. 9. Examples of class hierarchies evolution. Nodes represent class histories and
the edges represent inheritance histories. Node width = Evolution of Number of
Methods; Node height = Evolution of Number of Statements; Node color = Class
Age; Edge width = Age; Edge color = Age.
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5.8 Design Flaws Detection

Another usage of history measurements was proposed for improving design
flaws detection [17]. In particular, the work shows how the detection of Data-
Classes and GodClasses [16] based on version measurements can be improved
by taking into account information like: stability or the persistence of the
flaw.

For example, Marinescu defines GodClasses as “those classes that tend to
centralize the intelligence of the system.“ [16]. He also defined measurements-
based expressions to detect GodClasses. We used the historical information
to qualify GodClasses as being harmless if they were stable for a large part
of their history, because that means those classes were not a maintainability
problem in the past (e.g., 95%). Below we present the expression we used.

context ClassHistory
derive isHarmlessGodClass: (self.versions->last().isGodClass) &
(self.stability0fNOM > 0.95)

In this expression, we show how we can combine the historical information
with other kinds of information to build our reasoning.

6 Conclusions and Future Work

Understanding software evolution is important as evolution holds informa-
tion that can be used either in reverse engineering or in developing laws of
evolution.

We browsed various techniques that have been used to understand the
evolution, we discussed their shortcomings and we gathered requirements for
our meta-model:

e Comparison of different evolutions of the same property,

Combination of different property evolutions,

History navigation/selection,

Different semantics of change,

Detailed version comparison.

Based on these requirements we proposed Hismo, a meta-model centered
around the notion of history, and we gave examples of measurements applied
on history. As a validation we showed the usages of our meta-model in different
analyses.

In Figure 10 we show how a GeneralizedHistory is not just a sequence, but
a graph; thus we can model branches. In the future, we would also like to
explore the information given by branches.
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EGenericHistory EVersion

: e p——r 1 histor versions 0..1
/versionlds[*]: string versionld I‘ y /id: string . ;
HasVersions R E
date: Date

*

predecessors SUCCeSSOrs

acyclic

{acyclicy VersionDerivedFrom

{ R { =
versionlds = HasVersions.versions->asSet() predecessors.date < successors.date
} }

Fig. 10. Generalized Hismo.
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1 Introduction

The use of configuration management tools in software development and mainte-
nance activities constitutes a consolidated practice, also supported by software en-
gineering principles. Versioning systems such as the Concurrent Versioning System
(CVS) are commonly adopted, especially for large-scale projects. Often version-
ing systems are complemented by bug reporting tools, that constitute an essential
support for corrective maintenance.

These two families of tools are valuable sources of information to study soft-
ware evolution; CVS can be exploited to get insights about evolution in terms of
size, complexity, amount of changes, and whatever can be mined from source code
or from change logs. On the other hand, bug reporting systems provide insights
on reliability, as well as information on how an organization manages defects (e.qg.,
what is the average defect fixing rate, statistics about defect severity).

There are several freely available or commercial tools, for exaByueilla[24]
or Rational ClearCase, integrating CVS repositories and bug tracking systems.
However, what would be interesting is to also integrate meta-models describing
facts extracted from source code. This would allow maintainers and project man-
agers to get an overall view. For instance, it would be feasible to identify a subset of
components (classes, functions or methods above a given size) which exhibit more
defects than others. Similarly, one could analyze the relationship between defects
and some language constructs e.g., the use of pointers or inheritance versus defect
proneness.

Itis the opinion of the authors that the task of integrating heterogeneous sources
of information may be simplified by the adoption of a meta-model allowing to
accommodate source code abstractions, source code changes as well as details on
bug reports. Different schemata and meta-models have been proposed to represent
both procedural and object-oriented (OO) software; however, the proposed schema
either have been tailored to a specific language such as C, &+Srhalltalk or
Java, or have not been annotated with source code level details or have not been
integrated with other relevant source of information such as bug reports and CVS
data.

This paper proposes to enrich the FAMIX information exchange meta-model
[21] with detailed information extracted from a combination of heterogeneous sour-
ces, namely source code, CVS and bug tracking repositories. FAMIX provides
the concept of property which naturally leads to decorate entities of interest (e.g.,
classes or methods) with a variety of details. Clearly, entity decoration depends on
the particular entity. Some decorations, such as file name and subsystem name, are
common to all entities. Changes and defects are decorations applicable to class,
method, and function entities. Finally, other properties, such as the number of
parameters, belong exclusively to templates, methods and functions.

To reason about changes, bugs and source code entities, to relate facts or extract

5 http://www.rational.com
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statistics, we must build a traceability map between different concepts. At this
purpose, we follow an approach inspired by th# andpatch Unix utilities.
Changes are identified by means of file name and line numbers, hereby referred
aslocation by site This permits the integration of the information extracted from
source code, bug reports and CVS change logs. The above choice stems from
the following observation. Modification Reports (MR) often detail involved files
and changed lines of code; once files and changed lines have been identified, the
changed context (class and method) can be located by parsing sources extracted
from a CVS repository. Vice-versa, given a contextual information (file, beginning
and ending line) it is possible to identify the Problem Report (PR) impacting that
code region.

To verify feasibility, discover particular strengths, problems and pitfalls, the
framework was applied to several releases of Mozilla. Mozilla is a multi-million
LOCs open source projettmanaged via a CVS repository and a bug tracking
system. Source code information, CVS information and bug information were used
to decorate our instantiated meta-model. Particularly, releases from 1.0 to 1.3.1
were used as case study. At the time of writing, integration has been achieved at
the file level; more fine grained integration, namely at the class, method or line
level is only partially supported.

The remainder of the paper is organized as follows. After a review of the related
work, Section3 proposes our approach and presents the framework. Settion
describes the Mozilla case study. Secthatescribes our tools developed to extract
information and to populate the repository; Secttreports on and summarizes
the experiences gained in populating the first release of the repository. Finally
Section7 concludes and outlines foreseeable research activities.

2 Related Work

The present work stems from the release history database of Fisherl€].allje
authors proposed to combine CVS revision data with bug reporting data and to add
some missing information such as, for example, merge points. The same authors
also performed, on the same data, an analysis devoted to track fe&lufasdlly,

Gall et al. [L4] analyzed CVS release history data for detecting logical coupling.

In [18] maintenance requests were classified according to maintenance cate-
gories as IEEE Std. 1219]| then rated on a fault-severity scale using a frequency-
based method. Ball et al5] proposed an approach for visualization of data ex-
tracted from a version control system, while a three-dimensional color visualization
of release history was proposed irf.

Some other relevant studies have been performed in the past with the purpose of
understanding the architecture and the evolution of the Mozilla open source project.
In particular, Godfrey et al. integrated different reverse engineering tools and used
them to extract Mozilla’s architecturé&]. Mockus et al. studied the evolution of

6 http://www.mozilla.org
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two large open source projects, namely Apache and MoZlta [Eick et al. [7]
performed a graphical analysis of computer log.

3 The Framework

The main idea adopted to locate, browse, and integrate heterogeneous informa-
tion is to rely onlocation by site classes, methods, functions as well as defects
and changes must be located by file and line number. The following subsections
provide details on the approaches, implemented or under development, adopted to
build traceability mapping between code area regions (classes, methods, functions),
PRs, and MRs. At the time of writing sources code, PRs, and MRs are managed
at different granularity levels. Integration at file level has already been achieved,
browsing at class, method or line of code level is only supported from source code
entity to code region.

3.1 Bugzilla and CVS repositories

Release history data is retrieved from versioning systems such as thel@\&a
bug tracking systems such as Bugzil4]. In particular, we obtain MRs from CVS
and PRs from Bugzilla. Figl depicts the core of ourelease History Database
with linked MRs and PRs. MRs are stored in thesitemlogentity and PRs in the
bugreportentity of our RHDB. Information about the file to which a MR belongs
is stored incvsitem

cvsitem 1

id * cvsitemlog

rcsfile 1
workfile

id
cvsitemid
revision
date

ladd

Idel

cvsitemlogbugreport

cvsitemlogid
bugreportid

1 bugreport

id
bug_severity
short_desc

Fig. 1. Core of the RHDB

Links between MRs and PRs are stored to the tadgtemlogbugreportEstab-
lishing such links is an important issue of the RHDB population process. Concern-
ing CVS and Bugzilla, this needs to be done separately. A link is stored whenever
a reference to a PR is found in a MR. PR figures in MRs are searched using reg-
ular expressions (e.g., #128764). Because these numbers are entered as free text,
results contain correct and false positive matches as well. To improve data quality,
all matched numbers are validated using information available with PRs such as
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patches that contain the names of files they are applied to. If this file name corre-
sponds to the name of the file of the MR the link is validatgld More details on
bug report and CVS processing can be found i (,14].

Summarizing, the RHDB contains versioning, change and defect relevant data
about each file of each release that has to be integrated with source model data as
described next.

3.2 Source Code Modeling

All the concepts available at design level, such as those modeled via UML dia-
grams, function invocation, and software metrics are extracted and represented.
The source code meta-model was inspired by the FAM2X] nformation ex-
change meta-modél

FAMIX prescribes CASE Data Interchange Format (CDIg])ds the basis for
information exchange. Other standards and interchange formats exist, for exam-
ple XMI, an XML based interchange forma2(], or the Rigi Standard Format
(RSF) R2]. The RSF origins from the Rigi program visualization, reverse engi-
neering and program understanding environment, and is a triple based specification
language that can be easily customized and imported into different tools2 Fig.
shows an RSF excerpt of a class representation. We use RSF to represent the con-
cepts of interest such as classes, class attributes and methods, types, or different
kinds of software metrics, etc.

type nsAutoRefCnt "Class"

contain ./dist/include/xpcom/nsISupportsImpl.h
nsAutoRefCnt

lineno nsAutoRefCnt "88"

type nsAutoRefCnt::mValue "Attribute"
belongsToClass nsAutoRefCnt::mValue
"nsAutoRefCnt"
type nsrefcnt "DataType"
hasType nsAutoRefCnt::mValue "nsrefcnt"
accessControlQualifier
nsAutoRefCnt: :mValue "PRIVATE"

type nsAutoRefCnt::nsAutoRefCnt() "Method"

isAbstract nsAutoRefCnt::nsAutoRefCnt() "TRUE"

belongsToClass nsAutoRefCnt::nsAutoRefCnt ()
"nsAutoRefCnt"

type nsAutoRefCnt "DataType"

hasType nsAutoRefCnt::nsAutoRefCnt ()
"nsAutoRefCnt"

accessControlQualifier
nsAutoRefCnt: :nsAutoRefCnt () "PUBLIC"

Fig. 2. Excerpt of a class RSF representation

Fig. 3 shows, at a high level of abstraction, the steps carried out and the ex-
tracted information for the Mozilla browser. To avoid problem of missing files,
wrong dependencies and compilation errors, the approach is a two phase approach.
First, the source code undergoes a preliminary compilation to produce the target ex-
ecutables. Then source code is parsed and information extracted. The two phases

" http://www.iam.unibe.ch/ ~famoos/
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approach ensures that the application is properly configured for the current instance
of architecture, operating system and, in general, hardware and software environ-
ment. Clearly, when PRs refer to configuration-dependent source code, consistency
needs to be ensured between PRs and the source code facts. This paper focuses on
source code (and thus PRs) related to a single configuration, for a Linux operating
system and Intel architecture.

uolEIoN 454

Fig. 3. C++ information extraction

To reuse already available tools, the extracted information is first represented
via an extension of an intermediate language, name Abstract Object Language
(AOL). AOL is a general-purpose design description language capable of express-
ing concepts available at the design stage of OO software. It has been extended to
represent software metrics, structures, templates and other facts such as methods or
functions calls. More details on AOL can be found #3,4,11].

Fig. 4 details the steps encompassed by theP@pProc + Compileof Fig. 3.

The second compilation relies on wrappers wrapping C and C++ compilers. This
is needed to avoid error prone activities required to modify by hand compilation
scripts and makefiles. The preprocessed files contain both application and system
information. Thus a further step may be needed to get rid of unusable information,
l.e., to remove system include files.

Summarizing, RSF information comprises:

» areverse engineered class model including inheritance, association and aggrega-
tion relationships;

« function and method level software metrics such as the number of passed param-
eters, the maximum nesting level, or the number of statements;

« details on template and structures; and
« location by site of classes, methods and functions.
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Fig. 4. C++ processing

3.3 Integrating the Information Sources

For the integration of source model and release history data, an entity common to
both information spaces has to be determined. As already stated, in the context
of this paper, we focus on source files to be the common entity because files are
subject of versioning, change and defect data as retrieved from versioning and bug
reporting systems. A finer-grained level of integration is under development and
subject of ongoing work.

In our approach, source model information is available in FAMIX conform RSF
files. Release history information is stored in a relational database and can be
queried using SQL. The key connector that links both information sources is the
unique name of files contained in both repositories. Based on these unique file
names the data integration process is performed. The process is straightforward,
and it consists of the two steps: 1) query RHDB and output results in RSF; 2)
integrate results with source model RSF files.

In the first step we query the RHDB database with respect to the dependencies
due to MR and PR data. The input to the query is a list of uniqgue names of source
files of interest. According to Figl, we query thecvsitem table to get the
file identifiers which on their own, are used to query thwsitemlog  joined
with cvsitemlogbugreport andbugreport relations to get change related
dependencies between selected source files.

Regarding both MR and PR, we introduce two new relationship typeis-
Coupled andrhdbDependent . The fundamental principle of both relationship
types is that from the point of view of changes two source file$ogyieally coupled
or dependenif they have been affected by the same source code modificdtéhn [
Consequently, if two source files have been checked into the source repository (i.e.,
CVS) at about the same time, they are logically coupled. Furthermore, if two files
are referenced by the same PR, then from the point of view of changes they are
dependent. Additionally, we compute the number of affected MRs and PRs to
determine the weight of these relationships. Results of the queries are output in the
form of RSF tuples.
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The second step of the integration process is concerned with integrating com-
puted RSF tuples to the source model data. This includes determining affected
source files in the source model database and computing the new edge identifiers
for each integratechdbCoupled andrhdbDependent relationship.

The result of the integration process comprises a source model repository en-
riched with release history data that, on its own, compribeCoupled and
rhdbDependent relationships between source file entities, as wellasight
attribute for each relationship.

4 The Case Study

To evaluate the feasibility of integrating source code level and quality related infor-
mation, several versions of Mozilla, an open source web browser, were analyzed.
The extracted key features are reported in Tdbl®ozilla was mostly developed

in C++; the C code accounts only for a small fraction of the overall size. XML,
HTML and scripting language configuration and support programs are also present.
The latest Mozilla releases include more than 10,000 source files for a size up to
3.7 MLOC located in 2,500 subdirectories. Mozilla basically consists of 90 mod-
ules maintained by 50 different module owners. The Bugzilla bug tracking system
contains more than 180,000 PRs and the CVS repository contains about 430,000
MRs.

Release| #C #h # C++ | Size | Classes| Methods | Func. | Inheri- | Associa- | Aggrega-
files files files tances tions tions
1.0 1987 | 7,519 | 3,982 | 35 4,545 50,912 | 5,737 | 5,031 6,993 3,404
1.0.1 1995 | 7,603 | 4,022 | 35 4,561 54,742 | 5,740 | 5,051 7,006 3,440
1.0.2 1987 | 7,635 | 4,049 | 35 4,572 51,198 | 5,740 | 5,065 7,029 3,461
11 1997 | 7,674 | 4,054 | 3.6 4,594 52,453 | 5,742 | 5,095 7,048 3,466
1.2a 1984 | 7,769 | 4,058 | 3.6 4,475 51,104 | 5,741 | 4,992 7,107 3,514
1.2b 1991 | 7,972 | 4,122 | 3.7 4,512 53,697 | 5,794 | 5,029 7,141 4,804
1.2 1991 | 7,981 | 4,129 | 3.7 4,526 51,689 | 6,192 | 5,044 7,155 4,817
121 1991 | 7,981 | 4,129 | 3.7 4,524 52,953 | 5,794 | 5,044 7,156 4,817
1.3a 1823 | 7,880 | 4,145 | 3.6 4,574 51,827 | 5,809 | 5,081 7,157 6,090
1.3b 1830 | 7,924 | 4,164 | 3.6 4,589 51,580 | 5,836 | 5,101 7,339 6,200
1.3 1830 | 7,911 | 4,158 | 3.6 4,577 53,106 | 5,836 | 5,088 7,323 6,181
131 1830 | 7,935 | 4,198 | 3.7 4,577 51,453 | 5,836 | 5,088 7,323 6,181

Table 1
Mozilla key features

5 The Tools

Several tools were reused, modified or developed to extract and integrate informa-
tion from the different sources.
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5.1 Compiler Wrappers

C and C++ compiler wrappers, mimicking the same compiler interface, have been
developed with Perlgcc andg++ specific options as well as linker options are

fully supported and managed. Preprocessed source code is compressed to reduce
disk space usage.

5.2 C++ Information Extraction

A tool inspired by island-driven parsindg 9] has been reused and modified to re-
verse engineer a class diagram and extract class level and method level metrics.
The island-parsing approach allowed to overcome most of the difficulties related
to parsing C++ code (intrinsic language difficulties, dialects such as the GNU di-
alect encountered when parsiktpzilla, etc.). The tool was developed in previous
projects to extract AOL. More details can be found B)3[4,11].

5.3 FAMIX Export and RSF Integration

The exporter and integration tool comprises two Perl scripts that process AOL files
and output FAMIX data in RSF, as well as integrate the data of two RSF files into
one. AOL is the format used by the C/C++ parser to output extracted facts. We
used the extension points of the FAMIX model to specify additional attributes that
hold the various metrics extracted for each source model entity. Furthermore, we
also added two new relationships between source files to store logical couplings
rhdbCoupled and hidden dependencidelbDependend .

Two steps are performed by the exporter, namely: 1) mapping AOL to RSF
data; 2) integrating RSF files into one source model data file. Basically, the parser
generates separate AOL files for storing extracted information about source files,
classes, methods and functions. In the first step each of these files are input to
the exporter that prints out plain RSF tuples of contained information. Preliminary
checks are performed that consider the data stored in a files. For example class
and inheritance relationships of the AOL class file are checked to existence of the
base and subclass. AOL records that fail the check are not printed. In the second
step the different RSF files are integrated into on file that contains the whole source
model. During this integration process, existence checks on entities of relationships
and attribute records are performed but in this step checks involve the whole data
source.

Data about logical couplings and hidden dependencies between source files are
also available in RSF format. Hence, the integration script is applied to add this
relationships and the weight attribute to the existing source model data. The output
is a RSF file that contains the integrated source model data in FAMIX conform
RSF tuples which can be handled by existing visualization tools such asAjgi [
or SHriMP [25].
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6 Lesson Learned

This section summarizes lessons learned while integrating bug reports, CVS in-
formation and data from 12 Mozilla releases. Mozilla is a large software system,
encompassing a variety of programming languages, styles and idioms. If a lan-
guage contains a feature, someone will use it regardless of the impact it could have
on understandability, portability maintainability, or evolvability. For example, C++

is a strongly typed, OO language. However, it retains C compatibility and consid-
ers astruct asaclass only containing public attributes. This means that there
may be classes inheriting from structs egjruct nsBandData andclass
nsBlockBandData . It should be noted that this is something different from
wrapping a structure with a class, since it breaks information hiding and encapsula-
tion. nsBandData is declared as a structure and there seems to be no reason why
it should not be declared as a class but allowing access from C. In fact, a C++ com-
piler, compiles C code if it does not break C++ rules e.qiew identifier causes
compilation failure. However, C and C++ compilers have different conventions and
thus the above practice may easy the task to break C++ encapsulation from C code.

Much in the same way, we observed structures containing method declarations.
For examplensID is a structure with three functions declared inside, one of which
is both declared and defined insiquals . Again, there is no obvious reason but
allowing an easier access from C code.

Templates constitute a powerful mechanism to enable for parametric code de-
velopment. However, authors believe that in certain cases it may also be abused.
While templates should be used to create adstract data typesweird uses of
templates were found in Mozilla. For example, we found examples of templates,
e.g.,nsCOMTypelnfo , used to parameterize a structure.

These latter peculiar uses abusesopened a discussion on what should be
annotated on the meta-model, if and when the meta-model should be amended.
The information is available; however it is not completely clear if and how certain
facts have to be represented. For examplesth&ct nsBandData could be
represented as a class and then flagged as an OO coding style violation or we have
to extend FAMIX so that a class may inherits from structs. On the other hand,
it should be noted that coding style violation are not usually part of source code
meta-models. All in all, it further led to the need to modify the initial integration
model for example to cope with classes derived from structures or structures with
methods.

7 Conclusions and work-in-progress

Consistently integrating different repositories of large software systems, such as
the open source software Mozilla and its CVS and Bugzilla data, is a challenging
but fruitful task. It allows a user to represent, browse and query—at different levels
of abstraction—the particular concept of interest, from the source code level to the
bug report and modifications level. In this paper, we proposed a first step toward a
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multi-level concept navigation framewadttkat represents source entities in FAMIX
meta-model compliant Rigi Standard Format (RSF).

We took the Mozilla browser as a case study and extracted its C++ sources
over 12 releases into an RSF representation. This kind of data was combined with
release history data populated from filtering related bug reports and modification
reports into a release history database (RHDB). This release data integration ven-
ture allowed us to highlight problems encountered, difficulties and pitfalls.

Work—in—progress is devoted to manage the discovered information overflow
problem, and complete the integration, ensuring a finer level of detalil (i.e., tracing
problems to classes and methods) and to ensure appropriate querying and browsing
capabilities.
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Abstract

Model-driven software engineering requires the refinement of abstract models into
more concrete, platform-specific ones. To create and verify such refinements, behav-
ioral models capturing reconfiguration or communication scenarios are presented as
instances of a dynamic meta-model, i.e., a typed graph transformation system spec-
ifying the concepts and basic operations scenarios may be composed of. Possible re-
finement relations between models can now be described based on the corresponding
meta-models.

In contrast to previous approaches, refinement relations on graph transformation
systems are not defined as fixed syntactic mappings between abstract transformation
rules and, e.g., concrete rule expressions, but allow for a more loose, semantically
defined relation between the transformation systems, resulting in a more flexible
notion of refinement.

Key words: MDA and model transformation, consistency and
co-evolution, refinement of graph transformation systems

1 Introduction

Model-driven software development is based on the idea of refining abstract
models into more concrete ones, a recent example being the Model-Driven
Architecture (MDA ) put forward by the OMG ! . Here, platform-specific details
are initially ignored at the model level to allow for maximum portability. Then
platform-independent models are refined by adding implementation details
required for the mapping to a given target platform. Thus, at each level, more
assumptions on the resources, constraints, and services of the chosen platform
are incorporated into the model.

L www.omg.org/mda/

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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The set of models conforming to a modeling language is often defined by
a meta-model, i.e., a class diagram with constraints describing the individual
elements of the model and their composition. For behavioral models, this ap-
proach is extended towards a dynamic meta-model, formalized as a typed graph
transformation system [3]. Informally, a typed graph transformation system
consists of (1) a type graph to define the vocabulary of allowed model ele-
ments and their relationships, (2) a set of constraints to further restrict the
valid models, and (3) a set of graph transformation rules. Type graph and
constraints can be seen as analogous to the classical, static meta-model.

Thus, a model that conforms to a given (static) meta-model is represented
as an instance graph of the type graph. One can think of the type graph as a
UML class diagram and of the instance graph as a corresponding UML object
diagram conforming to the types and constraints of the class diagram.

In the case of dynamic systems evolving at run-time, a single instance graph
models the system state at a certain point in time only. For also modeling sys-
tem evolutions, the dynamic meta-model provides graph transformation rules.
These are executable specifications that can be used to define local transfor-
mations on graphs. Since graphs represent system states, the transformation
rules specify, e.g., possible computation, communication, or reconfiguration
operations which can be applied to individual states yielding transitions to
new states. Based on individual transformation steps, we can explain, simu-
late, and analyze the behavioral semantics of dynamic models. In particular,
we can generate a state transition system that reflects all reachable states of
the system with transitions defined by possible transformation steps.

We provide different meta-models for different levels of abstraction. Thus,
for refining an abstract model into a more concrete one, we build on a refine-
ment relationship between the meta-models involved. Formally, this relation-
ship is defined by means of an abstraction function, as explained in Section 2.
Abstraction is a mapping associating with each concrete model a correspond-
ing abstract model, usually by some kind of projection. Based on this, we can
check if a concrete model preserves the structure of an abstract model.

In Section 3, we provide conditions for what it means to also preserve the
behavior of an abstract model. We require that the behavior of the abstract
model can be simulated at the concrete level, and we discuss how this property
can be checked by model checking at the concrete level. For this purpose, we
introduce a translation function, contravariant to abstraction, which maps
abstract model properties to the concrete level.

2 Structural refinement

A dynamic meta-model is represented as a typed graph transformation system
G = (TG, C, R) consisting of a type graph T'G, a set of structural constraints
C over TG, and a set R of graph transformation rules » : L = R over TG.
The set of valid instance graphs typed over T'G is called Graphy..
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Like in a previous paper [1], we exemplify this technique by defining archi-
tectural styles as meta-models for software architectures: Graph-based models
of a software architecture have to conform to a meta-model representing the
underlying architectural style. We consider architectural styles as conceptual
models of platforms that systems are implemented on. Graph transformation
rules specifying the dynamics of a style capture the reconfiguration and com-
munication mechanisms which allow an architecture to evolve at run-time,
supported by the respective platform. We will come back to the dynamic as-
pect in Section 3.

For now, consider a model-driven development process starting with an
abstract, business requirements-driven architecture model of a software system
which is shall be refined into a concrete, platform-specific one. In our simplified
example, we assume a component-based architectural style for the platform-
independent level where components interact through ports that can only be
connected if the provided and required interfaces match.

For the platform-specific level, we assume a style that represents service-
oriented architectures (SOA). In SOA, the functionality of components is pub-
lished as services to service requesters. Special third-party components, called
discovery agencies, realize service discovery at run-time, i.e., service provider
and requester do not need to know each other in advance. For this purpose,
the service-providing component has to publish a description of the provided
interface to the discovery agency. A service-requesting component can then
use the lookup mechanisms of the discovery agency to find suitable service
descriptions for its own requirements.

We do not present the type graphs of these two architectural styles; they
can be found in [2]. Basically, they define node and edge types for the archi-
tectural concepts summarized above. Instance graphs of these type graphs are
used to represent platform-independent or service-oriented architectures re-
spectively. For the sake of readability, we use a UML 2.0-like concrete syntax
as shown in Fig. 1. The example describes the architecture of an electronic
travel agency application. It requests airline systems to book flights for jour-
neys its clients want to purchase.

Given an abstract transformation system G = (T'G, C, R) like the platform-
independent architectural style and a concrete transformation system G’ =
(TG, C", R') like the service-oriented architectural style, structural refinement
establishes a relation between abstract instance graphs G € Graph,, and
concrete instance graphs G’ € Graphy,: We require that, in order to be a
valid refinement of abstract G, concrete G’ has to preserve the structure of
the abstract graph.

Since the two instance graphs which shall be compared are expressed over
different type graphs, this condition is expressed modulo an abstraction func-
tion abs : Graph;o — Graph, that is assumed to be given together with
the type graphs, formally: G’ is a structural refinement of G if G C abs(G’).

Figure 1 exemplifies the abstraction function applied to the concrete,
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SOA-specific model of the travel agency system (bottom) yielding the
abstract, platform-independent model (top). The abstraction removes all
platform-specific elements like the discovery component and the service
description and requirements documents. Moreover, the platform-specific
stereotype <service>> is adapted to the platform-independent vocabulary
< component>>.
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Fig. 1. Abstraction from service-oriented to platform-independent style

There is a range of possibilities for the definition of abstraction functions,
from a simple mapping between the two type graphs which can be lifted to in-
stance graphs by renaming the types of the graph elements (cf. [2]) to complex
mappings defined by transformation rules, e.g., in order to detect design pat-
terns in reverse engineering. Rather than fixing one concrete way of definition,
in this paper we will axiomatize the relevant properties of such mappings.
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3 Behavioral refinement

The behavioral part of a dynamic model is defined by the graph transformation
rules of its meta-model. For instance, for the abstract, component-based archi-
tectural style, we assume that components can dynamically bind to provided
interfaces at run-time. This can be realized by appropriate reconfiguration op-
erations for interface binding and unbinding as shown in Fig. 2. In this case,
the two transformation rules that define the desired bind and unbind operations
are symmetric.

bind

«component» Int «component» «component» Int «component»
Gy C; Cy C,

unbind

Fig. 2. Reconfiguration rules of abstract architectural style

Formally, the transformation rules are expressed by pairs of instance graphs
over the underlying type graph. However, for space reasons and for the sake
of better readability, we present them in a UML-like syntax, similar to the
instance graphs in the previous section.

Behavior is represented by transitions between instance graphs. The space
of possible behaviors is thus given by a transition system whose states are the
reachable graphs and whose transitions are generated by rule applications.
Given the initial state of the model as a start graph, one can generate and
explore the transition system by continuously applying transformation rules
to previously generated states. To give an example, Figure 3 shows the tran-
sition system for the travel agency system in the abstract architectural style.
The transitions are labeled by the names of the applied transformation rules.
Recently, the automated generation of transition systems from graph trans-
formation system is supported by tools like GROOVE [7] or CheckVML [8].

Similar to the platform-independent style, there are also graph transfor-
mation rules in the service-oriented architectural style. However, they have
to account for platform-specific restrictions. In the SOA case, for instance,
it is required to know the description of a service before it is possible to
access it. Therefore, the corresponding reconfiguration rule bind, shown in
Fig. 4, includes this additional precondition on its left-hand side. Thus, the
bind-operation can only be applied if the service description is known to the
component playing the role of the service requester. This is represented by the
UML dependency with sterotype <knows>>.

The service-oriented style contains further platform-specific transformation
rules publish and find, which enable dynamic service discovery by publishing
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Fig. 3. Transition system for the abstract travel agency architecture

service descriptions to discovery agencies and by querying suitable descriptions
that satisfy certain requirements. These operations might be required before a
bind-operation can be performed. Due to space limitations, the rules presented
in Fig. 4 form a simplified version of the SOA style presented in [1,2].

Like at the platform-independent level, we can now apply the SOA rules to
the SOA-specific variant of the travel agency architecture (see Fig. 1), yielding
another transition system which represents the platform-specific behavior.

For checking the behavioral refinement of two models (architectures), we
now have to take into account the transition systems that can be generated
within the underlying dynamic meta-model (architectural style). Formally, we
consider again an instance graph G of an abstract system G = (T'G,C, R)
and an instance graph G’ of a concrete system G’ = (T'G',C’, R'). We assume
that G’ represents a structural refinement of GG. In order to be a behavioral
refinement, the behavior of G’ must refine the behavior of GG. This is the case
if every path G = G; = ... = (), in the abstract transition system has
a correspondent path G/ = G4 == ... == G, in the concrete transition
system with G} refining G; (that is, G; C abs(G})) for all i = 1...n.

Each step in the abstract system can be matched by a sequence of steps in
the concrete system. A single transformation step G; = G4, of the abstract
path is refined by a transformation sequence G} = G'.,; at the concrete level
because it might be necessary to perform a set of consecutive concrete steps
in order to realize the abstract one (for example, additional publish and find
operations in the SOA case).

Building on the model checking approaches for graph transformation sys-
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Fig. 4. Reconfiguration rules of the service-oriented architectural style

tems mentioned above, we would like to formulate the refinement of an abstract
path as a reachability problem in the concrete transition system. However, the
condition for behavior refinement includes the structural refinement of G; by
G’ which, in general, requires to project the concrete graph to the abstract
level in order to verify the desired inclusion.

In order to express the same property solely at the level of the concrete
system, we must assume a second mapping trans : Graph;, — Graphq,
contravariant to abstraction. It translates an abstract instance graph into a
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concrete one representing the reformulation of the abstract state over the con-
crete type system. Note that the concrete graph does not necessarily represent
a complete state of the concrete model, but rather a minimal pattern which
has to be present in order for the requirements of the abstract graph to be ful-
filled. Thus, we consider a concrete instance graph as a valid refinement of an
abstract one if it contains this pattern as a subgraph, formally trans(G) C G'.

For example, Fig. 5 shows how the platform-independent model of the
travel system is translated into a pattern for the service-oriented style with ser-
vices instead of components where desired. According to the definition above,
a valid service-oriented architecture containing this pattern, e.g., the SOA
model at the bottom of Fig. 1, is a refinement of the abstract model.

Book- Book- Book- Book-

«component» | Journey  Journey | «component» | Flight  Flight | «component»
client O |[travel agency| | airline
@trans

Book- Book- Book-  Book-
«component» | Journey  Journey [ «service» Flight ~ Flight |  «service»
client O |[travel agency| | airline

Fig. 5. Translation from platform-independent to service-oriented style

To make sure that the above condition is equivalent to the original one
for structural refinement, we have to ensure the mutual consistency of the two
contravariant mappings. This is formally expressed as a satisfaction condition,
reminiscent of similar conditions in algebraic specification or logics, i.e.,

trans(G) C G" iff G C abs(G").

In this case, we say that the two mappings are compatible.
Under this assumption, refinement can be formulated as follows. Concrete
graph G’ refines abstract graph G if

e trans(G) C G’

e for every transformation step G = H in the abstract system there exists a
transformation sequence G' = H' such that H’ refines H.

It follows from the satisfaction condition that the first clause above is equiva-
lent to the original condition G C abs(G’), expressed in terms of abstraction.
However, the new condition can be verified solely at the concrete level.

The second clause is effectively a co-inductive definition of a simulation
relation. Spelled out in terms of sequences, it says that for every (possibly
infinite) path G = G; = G = ... in the abstract system there exists a path

*

G' = G" = G == ... in the concrete system with trans(G;) C G'.
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4 Related work

The use of meta-models for defining graphical languages has become very pop-
ular in the context of the Meta-Object-Facility (MOF) authored by the OMG.
They also define meta-models as type graphs with additional constraints like,
e.g., cardinalities. A model is an instance of the meta-model, if it conforms to
the type graph.

In our work, we extend the static declaration of the meta-model by graph
transformation rules which allow the definition of dynamic model evolutions as
a simulation of system evolution. The use of graph transformation techniques
to capture dynamic semantics of models has been inspired by Engels et al.
in [4]. That approach extends meta-models defining the abstract syntax of
a modeling language like UML by graph transformation rules for describing
changes to object graphs representing the states of a model.

In [2], we have already considered several levels of platform abstraction
that allow an MDA-like refinement from platform-independent architectures
to more platform-specific ones. This has brought us to the question of suitable
notions for refining graphs and graph transformation behavior: While struc-
tural refinement implies a relation between the involved type graphs, the idea
for behavioral refinement is to relate the transformation rules of the involved
graph transformation systems. In general, one can place these refinement re-
lationships in a continuum from syntactic to semantically defined relations.

GroBe-Rhode et. al. [5], for instance, propose a refinement relationship be-
tween abstract and concrete rules that can be checked syntactically. One of the
conditions requires that, e.g., the abstract rule and its refinement must have
the same pre- and post-conditions. Based on this restrictive definition they
can prove that the application of a concrete rule expression yields the same
behavior as the corresponding abstract rule. The draw-back of this approach
is that it cannot handle those cases where the refining rule expression should
have additional effects on elements of the concrete level that do not occur in
the abstract rule. And, the approach does not allow for alternative refinements
of the same abstract rule depending on the context of its application.

Similarly, the work by Heckel et. al. [6] is based on a syntactical rela-
tionship between two graph transformation systems. Although this approach
is less restrictive as it allows additional elements at the concrete level, it is
still difficult to apply if there are no direct correspondences between abstract
and concrete rules. Moreover, their objective is to project any given concrete
transformation behavior to the abstract level, and not vice versa as in our case.
Thus, refinement means a restriction of behavior rather than its extension.

In our work, we propose a more flexible, semantically defined notion of
refinement. We do not require a fixed relation between transformation rules
but only between the structural parts of the graph transformation system.
Then, we check whether selected system states in the abstract system are also
reachable at the concrete level, no matter by which sequence of transforma-
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tions. By avoiding the functional mapping between rules, we can also relate
transformation systems with completely different behavior, and we are flexible
enough to cope with alternative refinements.

5 Conclusion

We have discussed semantic conditions for the refinement of dynamic mod-
els expressed as instances of graph transformation systems. Applications of
this technique include so far the refinement of architectural models based on
corresponding relations between architectural styles.

We are planning to support the approach by a coupling of CASE tools with
editors and analysis for graph transformation systems, presently conducting
experiments with existing model checkers.
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Abstract

Refactorings are program transformations that improve the software structure while
preserving the external behaviour. In spite of this very useful property, refactorings
can still give rise to structural conflicts when parallel evolutions to the same software
are made by different developers. This paper explores this problem of structural
evolution conflicts in a formal way by using graph transformation and critical pair
analysis. Based on experiments carried out in the graph transformation tool AGG,
we show how this formalism can be exploited to detect and resolve refactoring
conflicts.
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1 Introduction

Refactoring is a commonly accepted technique to improve the structure of
object-oriented software [2]. Nevertheless, there are still a number of problems
if we want to apply this technique in a collaborative setting, where different
software developers can make changes to the software in parallel.

To illustrate these problems, consider the scenario of a large software de-
velopment team, where two developers independently decide to refactor the
same software. It is possible that these parallel refactorings are incompatible,
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in the sense that they cannot be combined together. As an example, assume
that a Move Variable refactoring and an Encapsulate Variable refactoring are
applied in parallel to the same variable in the same class. Both refactorings
are clearly in conflict since they cannot be serialised as they both affect the
same variable in different incompatible ways.

It is also possible that two parallel refactorings can only be combined in a
particular order. As an example, assume that a Rename Variable refactoring
and an Fncapsulate Variable refactoring are applied in parallel to the same
variable in the same class. One can decide to rename the variable first, and
then encapsulate it, but not the other way round. The reason is that the
encapsulation introduces an auxiliary setter and getter method whose names
rely on the variable name.

To address the problems illustrated above, we propose to take a formal
approach based on graph transformation and critical pair analysis [1,4,5]. We
will perform a feasibility study using the AGG tool. As such, the contribution
of our paper will be twofold:

e to show the feasibility of the technique of critical pair analysis for a new
practical application;

e to support refactoring tool developers with a formal means to analyse the
consistency of refactoring suites, and to allow them to identify unanticipated
dependencies between pairs of refactorings.

2 The AGG tool

We decided to use the tool AGG (see http://tfs.cs.tu-berlin.de/agg) for
our experiments. It is the only graph transformation tool we are aware of that
supports critical pair analysis, a crucial ingredient of our approach towards
the detection of refactoring conflicts.

2.1 Specifying graph transformations

To reason about object-oriented software evolution, we specify object-oriented
programs as graphs, that have to respect the constraints specified by a type
graph. This type graph acts as an object-oriented metamodel. The metamodel
we expressed in AGG is shown in Figure 1. It expresses the basic object-
oriented concepts (such as classes, methods and variables), their attributes
(such as name and visibility), and their relationships (such as inheritance,
containment and typing) with associated multiplicities. We deliberately de-
cided to use this simple metamodel instead of a full-fledged one, because our
goal was to perform a feasibility study.

Representative refactorings are expressed as graph transformations using

this metamodel. A graph transformation t : G——H is defined as a pair
p(m

consisting of a graph transformation rule p : L — R and a match m : L — G.
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Fig. 1. Type graph representing the object-oriented metamodel.

The rule p specifies how its left-hand side (LHS) L has to be transformed
into its right-hand side (RHS) R. The match m specifies an occurrence of
this LHS in the graph that needs to be transformed. Note that there may be
more than one possible match. As shown in [5], one can easily extend this
definition to come to a notion of typed graph transformations that respect the
type constraints imposed by the type graph.

As a concrete example, the transformation Encapsulate Variable in Fig-
ure 2 can be applied to a class containing a variable of a particular type.
After the transformation, a setter method and getter method are added to
the class, but the rest of the structure is preserved. This is visualised by as-
signing numbers 1 to 5 to nodes and edges in the LHS and RHS. Nodes and
edges that have the same number in the LHS and RHS are preserved by the
transformation. All nodes and edges in the RHS that do not have a number
assigned (such as the setter and getter method) are newly introduced.

Note that the graphs we use are attributed, i.e., the nodes in the graph
may contain attributes whose values may be modified by the transformation.
This is for example the case in Figure 2 with the attribute visibility of
variable node 1, whose value is modified from public to private.

Another useful feature of AGG is the possibility to specify negative applica-
tion conditions (NACs) [3] that capture the preconditions of a transformation.
These NACs can be considered as a kind of forbidden subgraphs. For example,
the NAC No Setter for transformation rule Encapsulate Variable in Figure 2
expresses that the class containing the variable to be refactored must not con-
tain a setter method for this variable, since this method will be added by the
transformation. To express this, we need to specify an attribute condition
which relates the name of the method in the NAC to the corresponding one in
the RHS. The rule Encapsulate Variable contains a second NAC that forbids
the existence of a getter method for the variable to be encapsulated.

107



) AGG V1.2.1
File Edit Mode Transform Parser Analyzer Preferences Help

7GR WX XX
Zo BB SR RN AE MBS s 0

'*" [Em]Type_Craph Node Type: - ~Edge Type
Y~ Graph [ Parameter w) | — accesses )
MoveVariable
VariableAb =
PullupVariable noSetter EncapsulateVariable of Refactorings

}@3 AbsentVariable
EncapsulateVariable
noSetter

}@I noGetter
MoveMethod

l@f MethodAbsent
PullUpMethod

l@‘.‘ AbsentMethod
CreateSuperclass

UnigueClassName

RenameVariable

l@: VariableAbsent
RenameMethod

AL MethodAbsent
RenameClass Parameters and Variables Conditions

l@: UnigueClassName In
AddLeafClass

contains (Method
name="set"+v
visibility="public” contains

Method
name="get+v

fcontaing upi

visibility="public"
v
1:Variable -
— Stype
name=v e
visibility="private”

(¢ > i+

Attribute Context  Current Attribute | Customize

ut Handler  Type Name Expression
Java Expr String v
MAYL isParentOfLeaf JavaExpr String s
AL UnigueClassName Java Expr String g v
[L*R] AddVariableinLeafCla" = = W
HEL isLeaf
}@3 variableAbsent
[L*R] AddMethodinLeafClas
HEL isLeaf 3 Tuple: Reset Member: Delete || Fvaluare Reset| Delete

K Expression oK
s.equals("set"+v)
g.equals('get"+v) @

LI o

REE,

Fig. 2. The AGG tool in action. In the left pane, all refactorings specified as graph
transformations are listed, together with their NACs. On the right of it, the speci-
fication of the Encapsulate Variable refactoring is given as a graph transformation
rule with a NAC No Setter, a left-hand side, and a right-hand side. The Attribute
Context for the Method attribute name in the bottom panes specifies the additional
relation that its value s in the NAC must be equal to "set"+v in the RHS.

2.2 Chritical pair analysis

Critical pair analysis was first introduced in term rewriting, and has been
generalized to graph rewriting later. A critical pair formalises the idea of a
minimal example of a potentially conflicting situation. Given two transforma-

tions t; : G———H; and ty, : G——— H», t; has an asymmetric conflict with
h (ml) p2(m2)
to if it can be performed before, but not after ¢5. If the two transformations

disable each other in any order, they have a symmetric conflict.
The reasons why rule applications can be conflicting are threefold:

(i) One rule application deletes a graph object which is in the match of
another rule application.

(ii) Ome rule application generates graph objects that give rise to a graph
structure that is prohibited by a NAC of another rule application.

(iii) One rule application changes attributes being in the match of another
rule application.

To find all conflicting rule applications, minimal critical graphs are com-
puted to which rules can be applied in a conflicting way. Basically we consider
all overlapping graphs of the left-hand sides of two rules with the obvious
matches and analyze these rule applications. All conflicting rule applications

108



thus found are called critical pairs. If one of the rules contains NACs, the
overlapping graphs of one LHS with a part of the NAC have to be considered
in addition.

AGG supports the critical pair analysis for typed attributed graph trans-
formations. Given a set of graph transformation rules, it computes a table
which shows the number of critical pairs for each pair of rules. The number
of detected critical pairs for transformation rules can be reduced drastically
if there is a type graph with multiplicity constraints (as in Figure 1). Up-
per bounds of the multiplicity constraints are then used to reduce the set of
critical pairs by throwing out the meaningless ones.

Fig. 3. Graph transformation rule for Move Method.
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As a concrete example, let us compute the critical pairs between the graph
transformation rules Encapsulate Variable (of Figure 2) and Move Method
(shown in Figure 3). There is a symmetric conflict between both rules, and
the number of computed critical pairs in both cases is 2. Figure 4 illustrates
this graphically.

Fig. 4. Example of a symmetric conflict between graph transformations Move
Method and Encapsulate Variable
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If we move a method to a class in which we want to encapsulate a variable
afterwards, there is a first critical pair that represents the conflict that the
name of the method that is moved coincides with the name of the setter
method that needs to be introduced by FEncapsulate Variable. The second
critical pair, which is very similar, represents a name conflict with the getter
method.

The other way around, if we first apply the Encapsulate Variable trans-
formation, we get a similar situation. Move Method cannot be applied when
the method needs to be moved to the class of the encapsulated variable, and
the method name coincides with either the name of the setter method or the
name of the getter method.

3 Specification of refactorings

To be able to detect conflicts between refactorings applied in parallel by dif-
ferent software developers, we specified some representative refactorings iden-
tified by Fowler [2] as typed attributed graph transformations. The precondi-
tions of the refactorings were directly expressed as negative application con-
ditions on the graph transformations.

* Encapsulate Variable takes a public variable in a class and replaces it by a
private variable with two public accessor methods. One for getting the value
of the variable, and one for setting its value. The graph transformation rule
for this particular refactoring is shown in Figure 2;

e Move Method moves a public method from a class to another class, not
necessarily belonging to the same inheritance hierarchy. The graph trans-
formation rule is shown in Figure 3.

e Move Variable moves a public variable from a class to another class, not
necessarily belonging to the same inheritance hierarchy. The graph trans-
formation rule is very similar to the one for Move Method.

e Pull Up Variable moves a public or protected variable from a class to a
superclass that resides one level up the inheritance hierarchy. The graph
transformation rule is shown in Figure 5.

e Pull Up Method moves a public or protected method from a class to a
superclass that resides one level up the inheritance hierarchy. The graph
transformation rule is similar to the one for Pull Up Variable.

e Create Superclass creates an intermediate abstract superclass for a given
class. The graph transformation rule is shown in Figure 6.

* Rename Method changes the name of a method in a class to a new one
which is unique within this class. The graph transformation rule is shown
in Figure 7.

e Rename Variable changes the name of a variable in a class to a new one
which is unique within this class. The graph transformation rule is similar
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to the one for Rename Method.

e Rename Class changes the name of a class to a new unique name. The
graph transformation rule is similar to the one for Rename Method.

Fig. 5. Graph transformation rule for Pull Up Variable.
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Fig. 6. Graph transformation rule for Create Superclass.
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One should note that we deliberately did not implement all details of each
refactoring in our graph transformations, since it was not our intent to build
a full-fledged refactoring tool, but rather to perform a feasibility study that
would show that the most important conflicts between parallel refactorings can
be detected by critical pair analysis. For example, we decided to restrict Create
Superclass, Pull Up Variable and Pull Up Method to a single subclass rather
than a set of subclasses. We also did not express all necessary preconditions
for each refactoring, as this would only make the analysis more difficult and
computation intensive. Although, in theory, these simplifications may lead to
false negatives during conflict detection, in practice, it turned out that all of
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Fig. 7. Graph transformation rule for Rename Method.
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the conflicts we expected to occur were actually detected, as we will show in
the next section.

4 Analysis of refactoring conflicts

We applied the critical pair analysis algorithm of AGG to our selection of 9
representative refactorings. We observed that, for many pairs of refactorings,
duplicate critical pairs were reported for the same conflict. We even found
some bugs in the initial critical pair analysis algorithm. Therefore, we im-
proved the algorithm so that it reports only those critical pairs that actually
correspond to distinct conflicts. The results of this improved algorithm are
shown in Figure 8. All critical pairs can be considered in detail on the AGG
Web page.
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first \ second 1: MoveV... 2: PullUp... 3: Encaps... 4: MoveM... 5: PullUp... 6: CreateS...7: Renam... 8: Renam... 9: Renam...
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Fig. 8. Critical pair analysis of the refactoring transformations.

The obtained results correspond to what we expected. For example, we
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expected a certain similarity between the conflicts generated by Move Method
and Pull Up Method (resp. Move Variable and Pull Up Variable) since they
both move a method (resp. variable) to another location. We also expected
similar conflicts for Move Variable and Move Method, as well as for Pull Up
Variable and Pull Up Method. Finally, we expected many similarities between
Rename Class, Rename Variable and Rename Method.

What follows is a detailed discussion of the analysis we performed on the
computed critical pairs. A first observation is that parallel applications of the
same rule are always in potential conflict. In other words, the diagonal of the
critical pair table always contains critical pairs. The reason for this is given
below:

(i) Applying Move Variable twice to the same variable means that it should
be moved to two different classes which is obviously a conflict. Also, two
different variables with the same name cannot be moved to the same class
due to the negative application condition. Applying Move Method twice
generates similar conflicts as applying Move Variable twice.

(ii) Pull Up Variable is in conflict with itself because it cannot be used to
pull up two different variables with the same name to the same class due
to the negative application condition. Applying Pull Up Method twice
generates similar conflicts as applying Pull Up Variable twice.

(iii) Applying Encapsulate Variable twice generates a conflict because one
cannot introduce the same accessor methods twice.

(iv) Create Superclass is in conflict with itself, since the generalization rela-
tion between the class for which a new superclass must be created and
its current superclass is deleted. Stated differently, the introduction of
two new superclasses would give rise to a multiple inheritance hierarchy;,
which is prohibited by the multiplicities imposed in the type graph of
Figure 1. Another conflict arises if two superclasses with the same name
are inserted.

(v) Applying Rename Class twice generates a conflict, if the name of one
and the same class is changed twice in a different way. Another conflict
occurs, if two different classes are renamed with the same name. Applying
Rename Variable or Rename Method twice generates similar conflicts as
applying Rename Class twice.

A symmetric conflict arises in the following situations:

(i) Move Variable and Pull Up Variable are in conflict if the same variable is
pulled up and moved. Furthermore, pulling up one variable and moving
another with the same name into the same class causes a conflict due to
the negative application conditions of both rules. Move Method versus
Pull Up Method gives rise to a similar symmetric conflict.

(ii) Move Variable versus Encapsulate Variable causes a symmetric conflict.
After moving a variable, it cannot be encapsulated (within the original
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class) anymore. Conversely, encapsulating a variable it is no longer pub-
lic and cannot moved anymore. Pull Up Variable versus Encapsulate
Variable gives rise to a similar symmetric conflict.

(iii) Move Method versus Encapsulate Variable generates a symmetric conflict
as explained in section 2.2. Pull Up Method versus Encapsulate Variable
gives rise to a similar symmetric conflict.

(iv) Create Superclass is in conflict with Rename Class, if both rules create a
new class with the same name.

(v) Rename Variable and Move Variable resp. Pull Up Variable are in sym-
metric conflict, since the variable to be moved or pulled up is renamed.
Otherwise, the variable to be renamed is moved (pulled up) to an-
other class. The symmetric conflicts between Rename Method and Move
Method resp. Pull Up Method are similar.

We encountered asymmetric conflicts in the following situations:

(i) Create Superclass causes an asymmetric conflict on Pull Up Variable,
since it modifies the generalization relation needed for pulling up the
variable. It causes a similar asymmetric conflict on Pull Up Method.

(ii) Rename Variable causes an asymmetric conflict on Encapsulate Variable,
since it renames the variable to be encapsulated.

(iii) Encapsulate Variable causes an asymmetric conflict on Rename Method,
since it creates new methods with names which might be used for renam-
ing.

It is important to stress here that the number of conflicts that are detected
by the algorithm relies on the chosen metamodel as well as on the specifica-
tion of the refactorings. Since we made some simplifications to both in our
feasibility study, the number of detected critical pairs is likely to increase if
we would apply it to a more realistic refactoring suite.

5 Conflict resolution

Critical pairs describe potential conflicts between different rule applications.
Often it is possible to show that this critical situation is confluent. Intuitively,
this means that the application of one conflicting rule may prohibit the appli-
cation of the other one, but further transformations may be applied to resolve
the conflicting situation. Formally, a critical pair (G — H;,G — H;) is con-
fluent if there are transformations (Hy; — X, Hy — X) that lead to the same
result graph X.

In the following, we discuss to which extent the potential conflicts found
by critical pair analysis are confluent and can thus be resolved. We performed
the conflict resolution analysis manually. It is left to future work to automate
this analysis in AGG.

We start with explaining all conflicts due to parallel applications of the
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Fig. 9. Resolving parallel evolution conflicts by analysing confluence of critical pairs.

same rule:

(i)

Moving a variable first to some class and then to another class leads to a
conflict that cannot be solved automatically. One of these moves has to
be given the priority by the developer. Trying to move different variables
with the same name to the same class also results in a critical pair. It can
be solved by renaming one of the variables, i.e., applying rule Rename
Variable to it, and moving the other variable afterwards. Applying Move
Method twice generates similar conflicts as applying Move Variable twice.
Thus, conflict solving is similar.

If two different variables with the same name (but residing in different
subclasses) need to be pulled up into the same class, this conflict can be
solved by deleting one of the two variables and pulling the other one up.
This solution is visualised in Figure 9. Applying Pull Up Method twice
generates similar conflicts as applying Pull Up Variable twice. Thus,
conflict solving is similar.

Applying Encapsulate Variable twice for the same variable needs to be
resolved by ignoring one of both rule applications.

Applying Create Superclass twice leads to conflicts that can be resolved
by ignoring one of both rule applications.

Renaming a class twice leads to a conflict that cannot be solved au-
tomatically. One of these renamings has to be given the priority by the
developer. If two different classes with different names should be renamed
using the same name, this also results in a critical pair. It can be solved
by manually choosing only one of the two classes to be renamed. Apply-
ing Rename Variable or Rename Method twice generates similar conflicts
as applying Rename Class twice. Thus, conflict solving is similar.
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Now, let us see how the symmetric conflicts can be resolved:

(i)

(i)

(iii)

(vi)

Pulling up and moving the same variable is confluent, if the variable is
moved to a class that has a superclass. In this case, the variable can still
be pulled up after moving. The other way round, the variable can always
be moved after pulling it up.

If the variable is moved to a class without superclass, the critical pair is
not confluent, because the pull up refactoring cannot be performed (due
to absence of the superclass).

A third situation, pulling up and moving two different variables with the
same name into the same class causes a confluent conflict situation. It
can be solved by renaming first one of the variables and performing the
refactoring afterwards.

Move Method versus Pull Up Method generates similar conflicts as Move
Variable and Pull Up Variable. Thus, conflict solving is similar.

Mowve Variable versus Encapsulate Variable: Moving first a variable, it
can be encapsulated within its new class, thus this situation is confluent.
Encapsulating the variable first we reach the same state of changes if af-
terwards not only the variable is moved, but also the newly created getter
and setter methods. These refactorings are only possible, if such accessor
methods do not already exist in the new class. Otherwise, additional
renamings have to be performed to make the situation confluent.

Pull Up Variable versus Encapsulate Variable: If we pull up the variable
first, it can be encapsulated within the superclass. If we encapsulate it
first, not only the variable but also its accessor methods have to be pulled
up (using Pull Up Method). Again, as in the previous case, additional
renamings may have to be performed to make the situation confluent.

Move Method versus Encapsulate Variable: If encapsulating a variable
results in the creation of a method with the same name as the method to
be moved to the same class, this conflict can be solved by first renaming
the method to be moved and then moving it and encapsulating the vari-
able.

Pull Up Method versus Encapsulate Variable generate a similar conflict
as Move Method versus Encapsulate Variable. Thus, conflict solving is
similar.

Applying Create Superclass and Rename Class leads to conflicts that
cannot be solved automatically. One of these refactorings has to be given
the priority.

Rename Variable versus Move Variable: Moving a variable first, it has to
be renamed within its new class. Renaming it first, the renamed variable
is moved.

Pull Up Variable causes a similar conflict on Rename Variable. The con-
flicts between Rename Method and Move Method resp. Pull Up Method
are also similar. Thus, conflict solving is similar in all those cases.
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Finally, we discuss resolution of the asymmetric conflicts:

(i) Applying Create Superclass first Pull Up Variable has to be applied twice
to get the same effect as pulling first up and then creating a superclass
for the subclass. A similar conflict is caused on Pull Up Method. Thus,
conflict solving is similar.

(ii) Rename Variable versus Encapsulate Variable: Renaming a variable first,
the encapsulation has to be done on the renamed variable. The same
effect is obtained by encapsulating first and renaming then not only the
variable, but also its accessor methods.

(iii) Rename Method versus Encapsulate Variable: Encapsulating a variable
first a new method is created. If a method is renamed to the name of this
new method, this causes a conflict that needs to be resolved by ignoring
one of the refactorings, or by performing an additional renaming.

6 Related work

In [5], the formalism of critical pairs was explained and related to the formal
property of confluence of typed attributed graph transformations. In [4], crit-
ical pair analysis is used to detect conflicting requirements in independently
developed use case models. In [1], critical pair analysis has been used to in-
crease the efficiency of parsing visual languages by delaying conflicting rules
as far as possible.

The problem that has been addressed in this paper is a well-known problem
in the context of version management, and is referred to as software merging
[7]. Two other approaches that rely on graph transformation to tackle the
problem of software merging were proposed by Westfechtel [13] and Mens [6].
Like our approach, they attempt to detect structural merge conflicts. The
novel contribution of the current paper, however, is the use of critical pair
analysis to address this problem.

Refactoring is also a very active research domain [9]. Formal approaches
have mainly been used to prove that refactorings preserve the behaviour of the
program. Graph transformations have also been used to express refactorings
[8,12]. To our knowledge, no formal attempt has been made to detect conflicts
between refactorings applied in parallel.

7 Discussion

In this paper, we explored the problem of detecting and resolving structural
conflicts that arise due to parallel evolution. We expressed refactorings as
typed attributed graph transformations with negative application conditions,
we used critical pair analysis to detect evolution conflicts, and confluence
analysis to resolve the conflicts. From a practical point of view, the feasibility
study we performed already provided very useful results. It allowed us to gain
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insight in the similarities of, and interactions between, different refactorings.

We believe that our approach has a lot of potential, and requires further
exploration. For example, our approach may be very beneficial for refactoring
tool developers. [11,10] proposed to combine the detection of “code smells”
with a refactoring engine that resolves these smells. For each detected smell,
there are typically many different refactorings that can be applied to resolve
them [2], and some of these refactorings may be in conflict. Hence, a critical
pair analysis of the possible choices may help the programmer to decide which
refactoring to apply.

Another interesting application would be to incorporate conflict resolution
strategies (based on confluence analysis) into refactoring tools. Suppose that
a user wants to apply two refactorings sequentially, but the second one is
not applicable due to a critical pair conflict. Rather than simply refusing to
apply the second refactoring, the tool could suggest to perform an automatic
resolution of the conflict that enables to apply the second refactoring.

During our experiments with AGG we encountered a number of limitations,
which required us to improve the critical pair analysis algorithm. In the new
version of AGG that we developed, the preparation of the critical pairs is
already quite user-friendly, but there is still a potential for improvement to
better understand the critical situations.

Another problem we have to deal with is the presence of false positives and
false negatives. In order to reduce the possibility of false negatives, one needs
to provide a more complex metamodel and more realistic refactorings. False
positives arose because our transformation rules did not take the transitive
closure of the specialization hierarchy into account. A straightforward solution
would be to add specific transformation rules that compute the transitive
closure before actually applying the refactoring rules. An alternative solution
would be to use path expressions, but this would be very difficult to implement
in AGG due to inherent limitations in the underlying formal approach.
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Abstract

The grand vision of model-driven development and model-driven architecture (MDA)
is to generate automatically an implementation from a high-level model of the ap-
plication. The primary ingredients of model-driven development are a platform-
independent model (PIM) of the application and a platform-specific model (PSM)
which is derived from the PIM for a given target platform. The transformation
from PIM to PSM could be done automatically if necessary mappings are defined.
Even if this grand vision were to be realized sometime in the future, the evolution
of applications developed in this way still poses interesting challenges. We point
out specific problems that arise when evolving an application to support different
platforms and different technologies. We then propose a supporting tool called a
”portability checker” that can help the application developer in evolving applica-
tions developed using MDA.

Key words: MDA, Model Transformation, Consistency and
Co-Evolution

1 Introduction

One goal of model-driven architecture (MDA) is to support the development
of long-lasting systems which evolve gracefully over time. The primary ingre-
dients of model-driven development are a platform-independent model (PIM)
of the application and a platform-specific model (PSM) which is derived from
the PIM for a given platform, e.g. CORBA, EJB, etc. The transformation
from PIM to PSM could be done automatically if necessary mappings are de-
fined. An application developed using this methodology can be evolved over
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time to run on different and newer platforms by defining new PSMs and new
transformations. However, this approach assumes that the PIM is abstract
enough that all concepts used in the PIM can be transformed to the new con-
crete PSMs. There are at least two problems with this assumption. First,
the design of PIMs is often the result of many tradeoffs, some of which take
into account the capabilities of the anticipated platforms and technologies (i.e.
are transactions available? Are entity beans sufficient for the task). Not all
these analyses may hold over the lifetime of a system when new platforms and
technologies are introduced. It is even possible that a new platform may not
support all the features assumed by the PIM. Second, new platforms or tech-
nologies are introduced and existing platforms are improved with new features.
It is not always a good idea for the PIM to continue using old features when
newer, better, ones are available. It is important for the transformation from
PIM to PSM to be able to take advantage of these improvements. However,
the PIM may not be designed to support such enhancements. In this position
paper, we propose a “portability” checker that supports developers in check-
ing if a source model conflicts with features supported by target platforms.
With this checker it is possible to verify which parts of a model transformation
cannot be done completely if target platforms and technologies are changed.
The portability checker marks which sets of source or target model elements
cannot be transformed in a new technology platform and provides information
which model element pairs map to outdated platform features and therefore
should be remodeled. In the following, we explain the different uses for such
a tool.

It is clear that model-driven development is still in its infancy and many
developments are needed before it becomes a practical methodology. One im-
portant requirement is the ability to combine models from different domains,
for example, one for the user interface, one for transactions, and another for
the execution platform. A model compiler [4] can then transform and com-
bine these models similar to aspect-weaving. Also in this case, the portability
checker can be a useful help.

2 Background

This section describes concepts that are important to understand the most
important concepts of MDA and the remainder of the paper.

The most important improvements in productivity in software develop-
ment have been achieved by increasing the level of abstraction[2] including
the use of assembler instructions instead of machine code, the use of higher-
level programming languages instead of assembler language, and the use of
device driver interfaces instead of manually writing device access code.

Model Driven Architecture (MDA) is the OMG’s solution to increase the
abstraction level one step further to the development of distributed systems.
MDA makes intense use of OMG’s modeling standards such as UML and MOF
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to build models that represent Enterprise Computing systems [6]. These mod-
els represent the system independently from a particular middleware platform.
Hence, these models are called Platform Independent Model (PIM). A PIM is
used to build executable code for a particular middleware system. MDA tools
generate this code by generators that use a PIM as input. Often, it is not pos-
sible to generate complete executable code directly. Instead, or additionally,
a Platform Specific Model (PSM) is generated. Mappings from PIM to PSM
will allow tools to automatically generate PSM and/or the code. However, if
the input model is incomplete, the developers have to manually modify the
PSM to have a complete implementation of the platform specific code. MDA
works very well for parts of an enterprise application where application logic is
simple and can be deduced from the models. Recently, a UML action language
has been introduced [4] that allow to specify semantics even for procedures.
Furthermore, specialized UML profiles, extensions to UML, have been defined
to describe a model, for example of a type of application (e.g. distributed com-
puting) or a type of platform (e.g. EJB or CORBA). Models that conform
to such profiles can be used as input to the code generators. Our portability
checker also makes use of these UML profiles.

It is important to note that no matter how we try to make models inde-
pendent of implementation platforms, practical considerations often impose
some implementation-dependence in the model. An example in MDA, which
is familiar to programmers with ordinary programming languages, is when
the designer knows that the code generator is not able to generate efficient
code for a particularly high-level construct in the independent model. In that
case, the designer modifies the model with implementation- (or generator-)
dependent changes to ensure an efficient transformation.

3 A portability checker and its applications

A portability (or in general compatibility) checker takes as input an input
model and one or more target models and signals any detected incompatibil-
ities. The tool also uses transformation rules that are given for transforming
source models (i.e. PIMs) to target models (i.e. PSMs). Additionally, the
checker also uses rules for which mappings are possible and considers con-
straints between source model elements (e.g. transactions) and target model
elements (e.g. events). These mappings are used for determining if a transfor-
mation leads to complete target models or complete executable target code.
These transformation rules and mapping constraints are part of the configu-
ration of the checker and are not input by the user. Due to space restrictions,
we rely on the reader’s intuitive understanding of these notions and instead
concentrate on the uses of the portability checker.

In the remainder of this section, we list some of the uses of a portability
checker in model-driven development. The purpose of these examples is to
show where the ideal of model-driven architecture runs into practical problems

122



and how the portability checker can intervene in the development process to
keep the process as close to ideal as possible.

3.1 Dewveloping portable software from scratch

The basic use of the portability checker is in developing the same software for
different target platforms. MDA allows the design of one platform-independent
model (PIM) and postulates the automatic generation of platform-specific im-
plementations. The PIM is supposed to be the basis for generating the code
for all target platforms. This generation is based on different UML profiles for
different target platforms. The reason that different UML profiles are needed
is that not all platforms support all the same features and it is not at all
guaranteed that all the features required by the PIM are supported by the
UML profiles. As a result, the automatic generation will fail. The designer
can use the portability checker at the time that the PIM is being developed to
ensure that the PIM features match the support provided by the desired tar-
get platforms described by the UML profiles. The incompatibilities detected
by the portability checker are brought to the attention of the designer and
can be handled in different ways. The designer can redesign the model to sup-
port all target platforms or accept the incompatibilities and support different
functionality on different platforms or manually implement the problematic
code parts. This approach can be used iteratively to deal with all problematic
locations. In addition to changing the source model the developer might be
able to extend and adapt the code generator to support required features in
a target platform.

Although it is unlikely that an entire distributed system is implemented for
two target platforms such as CORBA and EJB simultaneously from scratch, it
is certainly a common case for designers building components or sub-systems.

3.2 Porting an existing MDA based system

A more likely scenario in model-driven development than starting from scratch
is when an existing MDA-based system is to be ported to another platform.
This is a typical evolution scenario. In the simple case, we use the portability
checker to discover the incompatibilities of the PIM with the new platform.
Again we have the same option as before: modify the PIM and adapt the
existing implementation also or manually adjust the new platform’s imple-
mentation. A more difficult case, however, is if the new platform’s application
has to be developed in parallel with maintaining the existing application. In
this case, new functionality has to be introduced in the two platforms simulta-
neously. The development of the new enhancement must follow the process of
developing new portable software described in the previous subsection. The
combination of scenarios for developing new software and porting existing
software shows the need for iterative development of the process and the em-
bedded evolutionary software life-cycle.
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3.8 Building adaptive software for changing technologies

Clearly, it is not possible to anticipate every possible change in technology
factors, such as transaction models or security support. However, it is often
known in advance that some areas of a technology will change or are immature.
In addition, companies have sometimes policies to not allow the use of a
particular technology. The portability checker can be used to identify model
elements that use such functionalities and can lead to potential problems. In
contrast to the scenarios described above where the portability checker uses
rules that are solely based on generically available UML profiles for different
target platforms, in this situation we must modify these profiles so that they
describe which model elements do not conform with a company’s policies.

3.4 Using different MDA tools together

Working with just one MDA tool and its supported set of target platforms will
not introduce new difficulties except as mentioned above. However, domain
specific MDA tools and models will arrive. MOF based models can be incorpo-
rated in other MDA tools relatively easily with its MOF /XMI representation.
However, the integration of code generators is more difficult. It is possible
to use multiple MDA tools side-by-side. But there are some transitions in
the models that are critical for interworking in the models. The portability
checker can also be used to identify those transition elements that will need
manual implementation work.

3.5 Integration of legacy systems

Very few systems are built to work in isolation. Many systems have to build
upon already existing and running legacy systems that have to be integrated
into the new system. Often there is no UML compliant model for these legacy
systems and hence the integration has to be done manually bypassing an MDA
tool. The portability checker can be extended with rules to verify how which
interface elements of such a legacy system can be integrated automatically
with MDA methods and which elements have to be hand-coded.

3.6 Reimplementation of an existing system

It is not a rare scenario that an existing system built without using MDA
tools needs to be ported. The models for this system do not exist or are not
usable as input for MDA tools. The portability checker cannot be applied
directly on the binaries of this application. However, for certain platforms
it is relatively straightforward to build a sketchy model of such a system
by using the reflection methods of these platforms. This model is hardly
complete but shows the coarse interrelationships of classes or components.
Since this model is incomplete it cannot immediately be used as input for
MDA tools. Interestingly, the portability checker can use such a model to
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provide information on how difficult a reimplementation for a different target
platform would be.

4 Example

In this section we present a simple example that elaborates the usefulness
of the portability checker. It uses only the most simple constraint possible
between metamodels: existence of similar concepts.

PIM PSM(1) = .NET
«entity» «entity» «data» «data»
Person Book Person Book
ansforms to ——§»
«ProcessComponent» «process»
Library Library

Fig. 1. PIM to .NET

Figure 1 shows a (narrowed) architecture for the administrative software
of a library. The PIM on the left side makes use of extended UML constructs
from OMG’s Enterprise Collaboration Architecture (ECA) with its UML pro-
files for Component Collaboration Architecture (CCA) and UML profile for
Entities. These profiles add UML stereotypes that represent entity objects
such as persons or books and process objects such as the library itself. Al-
though a UML profile for .NET has yet to be defined it is rather easy to
automatically generate a .NET model and the source code from the available
PIM.

PIM PSM(2) = EJB
«entity» «entity» «Entity» «Entity»
Person Book Person Book
|—| |_I transforms to —» |—| '—I
«ProcessComponent» «Session»
Library Library

Fig. 2. PIM to EJB

The same application is later ported to Enterprise JavaBeans (see figure 2).
Again this is straight-forward since there is no problem in finding a mapping
of the PIM to a UML profile for EJB that maps entities to entity beans and
process components to session beans. Both platforms are based on the same
PIM.

A useful addition for this application is a notification mechanism that
informs persons interested in a particular book that this book has been re-
turned to the library. One way to design this is the use of an event fired by
the returned book to the interested person. Events are also proposed in the
ECA. The use of this event is shown in figure 3. The generation of the code
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for .NET can be done easily because our .NET mapping is not constrained
by any UML profile and .NET Remoting itself supports events even across
remote boundaries.

PIM PSM(1) = .NET
«event» «event»

? <oty l]'J ?4"551&;"" I?
«entity» «entity» «data» «data»
Person Book Person Book

transforms to ——§»

«ProcessComponent» «process»

Library Library

Fig. 3. PIM to .NET

However, what happens when the EJB application has to be updated to
support the notification? The EJB UML profile does not support events.
Furthermore enterprise beans do not currently support built-in callbacks. The
portability checker knows that the EJB metamodel and the associated code
generator do not support events and would return an appropriate warning.

5 Related Work

Different research areas are connected with our portability checker. When
generating the output code an error can be generated when some inconsistency
appears. Interestingly, none of the OMG specifications contain guidelines on
what to do when a PIM to PSM mapping is incomplete or how to check
this. Even the proposals for the upcoming OMG transformation standard
for Queries, Views, and Transformations [3] mention the reaction to be an
implementation issue.

In [1] the authors present a consistency-preserving approach for the evolu-
tion of UML models in real-time environments. They map UML-RT models to
CSPs and investigate how changes of the model change the consistency of pro-
tocols or the preservation of deadlock freedom. Our work in contrast involves
how the transition to a new and different target platform can be accomplished.

A framework for expressing transformations based on UML is presented
in [7]. It supports an algorithm that checks if two UML models are refactorings
of each other.

Since MOF and UML based models can be exported mechanically to XMI
representation the problems we want to address can be considered as validat-
ing consistency of XML files with respect to constraints between these files.
The xlinkit framework [5] supports checking the consistency of heterogeneous
documents that are either already represented in XML or can be converted to
XML. The constraints between these documents are described with a language
based on first order logic. It has been restricted to be decidable in polynomial
time [5]. The difference of xlinkit in contrast to other consistency checkers is
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that it takes into consideration the cause and location why an inconsistency
exists. In the future we expect to use xlinkit to support checking constraints
between PIM and PSM at a very fine-grained level.

6 Conclusions

In this position paper, we have identified some practical software evolution is-
sues that arise with MDA-based tools and transformations. We have proposed
a tool, which we call a portability checker, to help address some of these prob-
lems. The portability checker relies on MOF/UML models and UML profiles
to detect mismatches between source models and target platforms. With the
help of the portability checker, designers and developers can design portable
systems from scratch or port existing software to new platforms. The role
of the portability checker is to automatically detect incompatibilities between
features used in the model and those supported in the platform.

We are currently implementing the portability checker and plan to support
different middleware platforms such as EJB, CORBA, and .NET. It is possible
to generalize the notion of portability used here, which refers to compatibility
with an execution platform and therefore is applicable to portability, to other
areas and detect other incompatibilities. That is the subject of our current
work.
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Abstract

Change is a constant factor in Software Engineering process. Redesign of a class
structure requires transformation of the corresponding OCL constraints. In a pre-
vious paper we have shown how to use, what we call, interpretation functions for
transformation of constraints. In this paper we discuss recently obtained results
concerning proof transformations via such functions. In particular we detail the
fact that they preserve proofs in equational logic, as well as proofs in other logical
systems like propositional logic with modus ponens or proofs using resolution rule.
Those results have direct applications to redesign of UML State Machines and Se-
quence Diagrams. If states in a State Machine are interpreted by State Invariants,
then the topological relations between its states can be interpreted as logical rela-
tions between the corresponding formulas. Preservation of the consequence relation
can bee seen as preservation of the topology of State Machines. We indicate also
an unsolved problem and discuss the mining of its positive solution.

Key words: UML, Redesign, Proof Transformation, Constraint
Transformation, State Machines, Sequence Diagrams, Formal
Methods.

1 Introduction

Unified Modelling Language provides textual and diagrammatic means for
system specification (cf. [13]). Systems and their real-world environments
are modelled using abstractions such as Classes Diagrams, State Machines or
Sequence Diagrams. There are different software engineering processes which
can be applied. In the old fashioned Waterfall Model, one has to begin with
a correct requirement specification, make refinements to obtain the design
and then implement the design specification. These steps can be adequately
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described using the notion of refinement (cf. e.g. [7] and [8]). This works
correctly, if the requirements do not change and the software developers have
a clear idea regarding how to proceed. In practice however, a specification
constantly changes due to a number of factors including changed or new client
requirements, new technology enablers and so on. In such a case extensive
manual reengineering of system specification and design is needed. Today’s
software engineering processes embrace change as being a constant factor. In
this case, requirements tracing is much harder to achieve. The notion of refine-
ment with its monotonicity assumption can barely model such changes. For
example, if an interface or class signature changes, a formula or a constraint
which described a property concerning classes implementing this interface may
no longer make sense. No tool in the market allows one for an automatic
transformation of constraints. Changes have to be made to the specification
manually, which is very time consuming and error prone.

A number of approaches to redesign of UML class models exist already.
The best known is the refactoring approach [1]. It provides simple patterns for
code and class structure modification to extend and modify a system without
altering its behavior. The interpretation function, used in abstract algebra
[11], transforms a single operation into a complex term. Graph rewriting
systems may be used to transform specifications (cf. e.g. [3]).

In a previous paper [7] (see also [5]) we have studied the redesign of UML
State Invariants with OCL constraints, as well as the transformation and trac-
ing of constraints. We have introduced a new notion of interpretation function
for redesign of State Invariants which extends, in a natural way, the notion
introduced in [11]; an interpretation function is a compositional function gen-
erated by a mapping satisfying conditions analogous to orthogonality in term
rewriting systems. Our concept of redesign is more general than the concept
of refinement since we do not assume that properties are only added or refined,
but we allow for changing them in an arbitrary way. For example a number of
design level classes might be restructured or a specification level class might
be split into several design level classes. Properties, which have to be pre-
served, may concern dependencies between classes, associations, attributes or
generalization relationships. They are expressed by OCL formulas and trans-
formed. Our approach is motivated by the notion of abstraction as it is used
in UML [13]. Interestingly, our approach allows us for not only an automatic
constraint transformation but also for an automatic proof transformation. In
the technical report [6], we have shown that several kinds of entailment re-
lations are preserved by interpretation functions; in particular such functions
preserve equational proofs, proofs using propositional tautologies, resolution
rule and induction. This allows one to save the clerical work of redoing proofs
after transformation of a Class Diagram.
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In this paper we present briefly the results contained in the technical report
[5] and discuss their applications to redesign of State Machines and Sequence
Diagrams. In section 2, we present briefly the idea of interpretation functions
and the acompanying results. In section 3, we show how this idea and results
can be applied to redesign of State Machines and Sequence Diagrams. In
section 4, we conclude this paper and list some open problems.

2 Interpretation Functions

Interpretation functions proved to be very useful as a vehicle for an auto-
matic transformation of OCL constraints when changes to Class Diagrams
are performed [6] (see also [4]). For example, if an attribute a of type Inte-
ger is replaced by a path b.x, where b is an association pointing to another
class and z is an attribute of that class, then every OCL constraint or State
Invariant containing a has to be modified.

This kind of modifications can be performed using interpretation functions,
i.e. partial functions generated by mappings satisfying conditions analogous to
orthogonal term rewriting systems (cf. e.g. [12]). A domain of such a mapping
satisfies conditions valid for all domains of orthogonal term rewriting systems;
i.e. all terms in the domain are linear and non-overlapping.

Interpretation functions have several useful properties. They allow us to
transform OCL specifications. The idea is that the designer or implementer
who changes a class structure maps modified Model Elements on the target
Model Elements, the transformation of the corresponding constraints being
accomplished automatically. Such functions preserve equational proofs, proofs
using propositional tautologies, resolution rule and proofs by induction [5].
This allows one to save the clerical work of redoing proofs of this kind after
transformation of Class Diagrams.

3 Applications

Interestingly, results concerning preservation of consequence relation have also
implications for redesign of other UML diagrams. In the following three sub-
sections we consider application of our concepts to State Machines, Sequence
Diagrams, and a simple example showing how the concepts work.

3.1 State Machines

One of the most useful kind of UML diagrams are the so called State Machines
[13]. A State Machine is composed of a number of states connected by edges
corresponding to transitions. States can be structured; one state can contain
several other states called substates. In UML, ”a state is a condition during
the life of an object or an interaction during which it satisfies some condition,
performs some action, or waits for some event” [13]. Consequently States
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in a State Machine correspond to formulas; in the first case the formulas are
called State Invariants. Such formulas may describe values of object attributes
and inter-relationship between different objects; they can be expressed for
example in OCL. The topological relation between states in a State Machine
can be interpreted as logical relations between the corresponding formulas (cf
e.g. [9]). In this case, preservation of the entailment relation can be seen as
preservation of the topology of State Machines. It is natural to assume that
the invariant corresponding to a substate implies the invariant corresponding
to its superstate, since the invariant corresponding to the substate should be
more restrictive. This condition (we call it state monotonicity) can be formally
expressed as follows:

For every two states s; and sy, $; is a substate of sy if and only if the formula
corresponding to s; implies the formula corresponding to ss.

On the other hand, one can be interested, if the states of a State Ma-
chine cover all possibilities. In the case of a State Machines describing the
behavior of an object, this means that for every combination of the objects
attributes, there is a state covering this combination. When states are in-
terpreted by invariants, this covering property can be equivalently expressed
by the requirement that for every combination of attributes, there is a State
Invariant describing this combination. Formally, let F; for ¢ = 1,...,n, be
formulas corresponding to all states of a State Machine M; the states of M
cover all possibilities if and only if the formula F; V ... V F, is a tautol-
ogy. Equivalently, F} V ... V F,, can be proved without using domain specific
formulas.

A stronger property (we call it exhaustiveness) says that for every, so called,
or-state all its substates cover all possibilities. Formally, let s be an or-state,
let F' be the corresponding State Invariant, let s,..., s, be all substates of s
and let Fi, ..., F,, be the corresponding invariants. F' is exhaustive if and only
if F' is logically equivalent to the disjunction F; V ... V F,,. We say that states
in a State Machine are non-overlapping, if for every two different substates
s; and sy of an or-state s, the conjunction of the corresponding invariants
Fi N F5 is logically false.

There are several other useful properties of this kind which can be ex-
pressed by logical relations between formulas. For example that all reach-
able states are defined by non-contradictory formulas or that disjunctions of
formulas corresponding to orthogonal states are equivalent to the superstate
invariant (a condition analogous to exhaustiveness).

As explained above, transformation of a Class Diagram requires the trans-
formation of the corresponding constrains (for example OCL constraints).
Consequently, if the states of a state Machine are described by formulas, those
formulas may need to be changed. If implication in first order logic is preserved
by interpretation functions, then all properties described above are preserved
by such functions. The results presented in [5] show, that interpretation func-
tions preserve proofs using equational reasoning, resolution rule, propositional
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tautologies and induction. Consequently at the moment we can say that if the
above mentioned properties are proved using those kinds of reasoning, then
they are preserved by interpretation functions. If for example, there is a proof
of the state-monotonicity property using above mentioned ways of reasoning,
then after transformation via an interpretation function this property remains
valid after transformation.

3.2 Sequence Diagrams

UML 2.0 introduces conditions to Sequence Diagrams [14]. The previous sec-
tion contains a list of State Machines properties which can be defined in logical
terms. In a similar way one can define properties of Sequence Diagrams. For
example, one can require that conditions in a Sequence Diagram, which is
obtained using parallel composition, are non-contradictory or that Sequence
Diagrams combined by alternative composition have exclusive pre-conditions.
As in the case of State Machines, the preservation of logical consequences
would imply that such properties are preserved by interpretation functions.

3.8  Erample

In this subsection we apply our concepts to a concrete example. We consider
a refactoring of a class diagram according to so called State Pattern [2]. First
we show an implementation of a State Machine by enumeration types; then we
redesign this implementation using the State Pattern. We refer the interested
reader to [6] for the details of this pattern application. First, we implement
states using an enumeration type:

FlipFlop < flip 7)

state : enum{flip, flop} next() \L next()

next()
(o

The figure above shows a state machine diagram for the class FlipFlop with
two or-states. An object of this class can be either in the state flip or flop.
There exists an operation next(), which transposes the states. We prove that
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these states are non-overlapping by contradiction using propositional tautolo-
gies and equational reasoning:

The formula self.state = #flop A self.state = #flip implies the formula
#flop = self .state N self .state = #flip, thanks to the tautology (a = b) =
(¢ AN a= c A b)and the symmetry rule for equations x = y = y = x. The
formula #flop = self .state A self .state = #flip implies #flop = #flip, thanks
to transitivity rule for equations: * = y A y = 2z = x = 2. The elements
of enumeration type are different, therefore #flip # #flop. We apply the
tautology (p = ¢) A (¢ = r) = (p = ¢) and the tautology (p = ¢) A
- ¢ = - p and obtain formula — (self.state = #flop N self .state = #flip).
Consequently, the states flip and flop are non-overlapping.

The State Pattern application yields the following class diagram:

) InkState
‘ FlipFlop State

‘ next() %

Flip Flop

In the redesigned version, the states are implemented by objects instan-
tiating classes Flip and Flop, which subclass the class State (see the figure
above). We map the elements of the enumeration class on the corresponding
classes; i.e. flip and flop are mapped to classes Flip and Flop, respectively.
Moreover, the attribute state is mapped to the term InkState.oclType. This
mapping, defined on the level of model elements, induces an interpretation
function (cf. [6]).

We show that the property of non-overlappingness of the or-states is pre-
served by the interpretation function. The results proved in [5] guarantee,
that the interpretation function preserves proofs like the one above. Indeed,
the previous proof can be transformed; the transformed proof has the same
form as the previous one:

The formula self.InkState.oclType = Flop N self .InkState.oclType = Flip
implies the formula Flop = self.InkState.oclType N self .InkState.oclType =
Flip, thanks to the tautology (¢ = b) = (¢ A a = ¢ A b) and the
symmetry axiom for equations: z = y = y = z. The formula Flop =
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self .InkState.oclType N self .InkState.oclType = Flip implies the formula Flop =
Flip, thanks to transitivity rule for equations: * =y A y = 2 = z = z. The

classes Flip and Flop are different. We apply the tautology (p = ¢q) A (¢ =

r) = (p = ¢) and the tautology (p = ¢) A = ¢ = — p and obtain formula

= (self .InkState.oclType = Flop A self .InkState.oclType = Flip). Therefore

in this case, the states flip and flop exclude each other and consequently the

application of State Pattern preserves the property of non-overlappingness.

4 Concluding Remarks and Future Work

In this paper we show that results presented in [6] and in [5] have direct appli-
cations to transformation of UML diagrams, in particular to State Machines
and Sequence Diagrams. We show that logical relations between State Invari-
ants in a State Machine are preserved, if they can be proved using certain
kinds of proofs.

There are still several open questions. In particular, it is not known, if
interpretation functions preserve entailment relation of first order logic. This
question may seem purely theoretical, but a positive answer would have very
interesting implications for State Machines and Sequence diagrams; it would
mean, for example, that interpretation functions preserve topology of State
Machines. Even if the answer is negative, the results obtained so far prove to
be useful.

In the future, we are going to further study the properties of interpreta-
tion functions in logical terms. We are going to investigate, if the entailment
relation of first order logic is preserved by interpretation functions. In first or-
der logic there is an equivalence between semantic and syntactic consequence.
Our results obtained up to now focus mainly on the syntax. Institutions ap-
proach the problem of transformation from the model theoretic point of view
(cf. e.g. [10]). We are going to study the relation of interpretation functions
to institutions. We plan also to implement a tool supporting class redesign,
transformation and tracing of model elements. Such a tool will be very help-
ful since a purely manual transformation of complex OCL constraints is very
laborious and error prone.
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Abstract

Software co-evolution can be characterised as a way to “adjust” any given software
implementation to a change (“shift”) in the software requirements. In this paper, we
propose a formal definition of evolution complexity to precisely quantify the cost of
adjusting a particular implementation to a change (“shift”) in the requirements. As
a validation, we show that this definition formalises intuition about the evolvability
of design patterns.

Key words: software evolution, design pattern, complexity

1 Introduction

According to Lehman’s first law of software evolution, “An E-type program
that is used must be continually adapted else it becomes progressively less sat-
isfactory.” [10]. Despite growing awareness of this law, evolution of industrial
quality software systems is notoriously expensive. It is therefore paramount
to investigate the flexibility or evolvability of software and to find ways to
quantify it.

Claims about the evolvability of design patterns, architectural styles and
object-oriented programs have appeared in numerous publications. Most au-
thors, however, stop short from quantifying the benefits gained by using a par-
ticular implementation policy or qualifying the claim by the class of “shifts”
(i.e., changes in the software requirements) it best allows.
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Experience shows that flexibility is relative to the change. Every manu-
factured product is designed to accommodate to a specific class of changes,
which makes it flexible towards these changes but inflexible towards others.
Locomotives, for example, are very flexible with relation to the type of cars
they can pull but they can hardly be adapted to tracks of a different size.

The same applies to software: Every implementation policy (e.g., architec-
tural style [14], design pattern [5]) is flexible towards the class of changes it
was designed for. For example, a program designed using Layered Architec-
ture style, such as the Unix operating system, adapts easily to changes in the
uppermost layer (the application layer) but changes to the lowermost layer
(the kernel) are much more difficult to implement. As another example, the
Visitor design pattern “makes adding new operations easy” while “adding new
concrete element classes is hard” [5] (pp. 335-336).

There is a common misconception in the software engineering community,
however, that flexibility and evolvability are absolute qualities. Consider for
example the following standardised definitions:

Flexibility The ease with which a system or component can be modified
for use in applications or environments other than those for which it was
specifically designed [6]

Extendability The ease with which a system or component can be modified
to increase its storage or functional capacity [6]

Changeability The capability of the software product to enable a specified
modification to be implemented [7]

These definitions fail to observe that flexibility of a program is relative to a
particular class of changes. As a notable exception, Gamma et al. were more
precise in characterising the quality of flexibility [5] : “Fach design pattern lets
some aspect of system structure vary independently of other aspects, thereby
making a system more robust to a particular kind of change.”

In this paper we examine the relationship between shifts, i.e., changes in
the requirements, and adjustments, i.e., the respective changes in the imple-
mentation. We offer a precise definition of evolution complezity and propose
various metrics to approximate its cost. To illustrate its usefulness, we com-
pute the evolution complexity of adjusting a selected number of design pat-
terns to specific shifts and prove informal statements about how difficult is
each. For example, we prove that the “Visitor pattern makes adding new oper-
ations easy” by showing that the evolution complexity of adding an operation
is constant, and that “Adding new concrete element classes is hard” by show-
ing that the evolution complexity of adding a new concrete element is linear
in the number of visitors.

Furthermore, we use evolution complexity to show that whether one im-
plementation policy is more evolvable than another depends on the class of
changes in question. For example, given the requirements for representing a
deterministic finite-state automaton, we demonstrate that a procedural imple-
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mentation is more evolvable towards shifts in the alphabet, while an object-
oriented implementation (using the State pattern) is more evolvable towards
shifts in the set of states.

To summarise, the intended contributions of this paper are: (a) To for-
malise and prove the intuition behind flexibility and evolvability of specific im-
plementation policies, in particular of design patterns; (b) To provide means
for choosing a particular implementation policy; (¢) To provide means for
quantifying the cost of implementing specific changes;

2 Setting the scene

In this section, we clarify the terminology that will be used in the remainder
of the paper. These definitions are summarized in Table 1 and illustrated in
Figure 1.

Table 1
Key to notation

requirements Tdfsa, Tguis ---

implementations | ipefore, tafter ---

problem domain | D ={D,...,D,}

shift o=os(r,U,u)

adjustment a=(1,7)

co-evolution step | € = (0, @)

Requirements. A well-defined specification of the program’s expected be-
haviour, expressed in terms of the problem domain D. For example:

Tafsa = Implement a deterministic finite state automaton with states S
and alphabet L.

In this case, the problem domain Dy, = {5, L}.

Tqui := Implement a GUI to represent and instantiate a family of widgets
(e.g., button, window and menu) in a specified set of operating systems (e.g.,
Windows and MacOS).

In this case, the problem domain Dy,; = {W, O}, where W = { button,
window, menu } and O = { Windows, MacOS }.

Implementation. The actual program that is the subject of the evolution
effort. Each implementation is designed to satisfy a specific set of require-
ments and must be adjustable to changes therein. In this paper, we will use
the term implementation policies to reflect that fact that we abstract away
from language-specific details.

Shift. A specific change to a given set of requirements. More specifically, a
shift may add entities to, or remove entities from, the sets contained in the
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problem domain D. A shift is represented as a function os(r, D, d) where
D € D, and d is added to D if 6 =“+7, while d is removed from D if
0 =“=".

For example, the shift o (7454, L,[) adds a letter [ to the alphabet L in
Tdfsa-

Adjustment. A specific change to a given implementation, triggered by a
shift in the requirements. As shown in Figure 1, each implementation needs
to be “adjusted” in order to satisfy the changed requirements. An adjust-
ment is represented as a pair « = (4,4") where i is the old implementation
and 4’ is the new implementation.

Co-evolution step. A pair € = (0, «) consisting of a shift ¢ transforming r
into 7 and an adjustment a = (4,4’), such that implementation i satisfies
requirements r and implementation i’ satisfies requirements r’.

old realises old
requirements implementation
. |
m adjustment
old realises old
requirements implementation

Fig. 1. A co-evolution step.

3 Evolution complexity

In this section, we use the previously introduced vocabulary to define a notion
of evolution complexity. With this definition we attempt to quantify the cost
of a co-evolution step, i.e., the effort that is required to adjust a specific
implementation to a particular shift.

In order to define evolution complexity, we draw an analogy with the no-
tion of computational complexity. “The theory of computational complexity
is concerned with estimating the resources a computer needs to solve a prob-
lem.” [16] In analogy, evolution complexity is concerned with estimating the
resources required to “evolve” an implementation. Using metaprogramming
as a central metaphor, we suggest that evolution complexity, i.e., the complex-
ity of the process of adjusting the implementation to changed requirements,
can be approximated by calculating the computational complexity of a meta-
programming algorithm that actually makes these adjustments to the software
implementation. This leads us to the most general formulation of evolution
complexity:

Definition 3.1 The complexity C(¢) of a co-evolution step € is the complexity
of the meta-programming algorithm that implements it.
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Note that there are as many meta-programming algorithms (for imple-
menting the adjustment) as there are manual ways for implementing them.
We seek to approximate the manual (adjustment) process by measuring the
respective (hypothetical) metaprogramming process.

Since € = (0,) is a pair, this definition implies that the actual effort
required to “evolve” a program correlates primarily with two factors:

(i) The shift o, i.e., the distance between the old and the new requirements;

(ii) The adjustment «, i.e., the distance between the implementation before
and after the change.

The obvious question is: How can we measure these distances? In the
following section, we illustrate some of the ways to approximate evolution
complexity.

4 Case studies

In this section, we use evolution complexity to quantify the evolvability of dif-
ferent implementation policies. We do this in two different ways. To compare
the evolvability of different implementations (e.g., procedural versus object-
oriented implementation), we fix the shift and calculate the evolution com-
plexity for each implementation. To compare the difficulty of implementing
different shifts, we fix the implementation and calculate the evolution com-
plexity for each shift.

The presentation of each case study will be structured in the same way:
FExample; Requirements; Shifts; Implementation; Metric; Analysis; Discus-
sion.

4.1 Case study 1: Visitor

The Visitor design pattern [5] can be used to “Represent an operation to be
performed on the elements of an object structure.” The class of shifts that the
Visitor supports is declared from the outset: “Visitor lets you define a new
operation without changing the classes of the elements on which it operates.”
Further on in the chapter, the authors are more explicit: *“Visitor makes
adding new operations easy” and “Adding new concrete element classes is
hard”. In this case study, we prove these statements and quantify how easy
or hard is each one of these co-evolution steps.

Ezxample

Gamma et. al describe the representation of abstract syntax trees as object
structure and the collection of operations that a compiler performs on each
element in the tree. Figure 2 illustrates this example.
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| Program |<>_> Node NodeVisitor

accept(NodeVisitor) visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode)

_h N

AssignmentNode VariableRefNode TypeCheckingVisitor CodeGeneratingVisitor
accept(NodeVisitor v) | | accept(NodeVisitor v) visitAssignment(AssignmentNode) visitAssignment(AssignmentNode)
visitVariableRef(VariableRefNode) visitVariableRef(VariableRefNode)

v.visitAssignment(this) v.visitVariableRef(this)

Fig. 2. Example for the Visitor pattern.

Requirements
Tvisit ‘= Represent a set of operations O that need to be performed on a family

of elements E.
The problem domain is D,y = {O, E'}

Shifts

In this case study we will consider the following two shifts to r,;4::
04 (Tyisit, O, 0p) = add operation op to O
o4 (Tvisit, B, €) = add element e to E

Implementation
lvisit ‘= The implementation policy described by the Visitor pattern as illus-
trated in Figure 2.

By this policy, two class hierarchies, NodeVisitor and Node are used to
represent the set of operations O and the family of elements E, respectively.
Each operation op € O is represented as a class in the NodeVisitor hierarchy,
and each element e € F is represented as a class in the Node hierarchy.

Metric
Below we definite a simple metric that calculates the complexity of a co-
evolution step by counting the number of classes affected by it.

Definition 4.1 Let (0,«) be a co-evolution step such that o = (i,4"). Let
A be the symmetric set difference, ie., AAB = (A\B) U (B\A). Let
Classes(i) = the set of classes in i .

Clinsses(0, @) == |Classes(i)AClasses(i)|

In class-based languages such as C++, Smalltalk and Java, Classes(i)
yields the set of classes defined in the program. For example,
C’lasses(im-sit) = {Node, AssignmentNode, VariableRefNode, NodeVisitor,
TypeCheckingVisitor, CodeGeneratingVisitor}

Analysis

Gamma et. al recognized the class of shifts that the visitor accommodates to.
We will use the above metric to prove some of their claims about the flexibility
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of the Visitor pattern:

o “Adding new concrete element classes is hard.” ([5], p.335) To prove this
statement, consider the shift o (7, F,€). In order to adjust our imple-
mentation i, to this shift, we need to add a method to every class in the
visitors hierarchy O. Thus, the number of implementation entities affected
by this shift equals the number of operations:

Céla5555(0+<rvisit; E7 6), iUiSit) = |O|
Read: The class-level evolution complexity of adding an element to the
Visitor pattern is linear in the number of operations.

o “Visitor makes adding new operations easy.” ([5], p.336) To prove this
statement, consider the shift o (r,si, O,0p). In order to adjust our im-
plementation i,;,; to this shift, we need to add a new class to the visitors
hierarchy. Thus, the number of implementation entities affected by this
shift is 1:

Cé‘lasses (0+ (rvisih Oa Op)a ivisit) = 1

Read: The class-level evolution complexity of adding an operation to the
Visitor pattern is constant.

The results of this case study are summarized in Table 2.

Cl U+(Tvi.sita E7 6) O’+ (T’U’isit7 Oa OP)

Classes

ivisit |O| 1

Table 2
Class-level evolution complexity for shifts of 7,4t

Discussion

Our analysis proves the intuitions of Gamma et al. about the Visitor pattern,
but it also goes beyond that: The evolution complexity metric quantifies the
effort required to add a new element to the elements hierarchy. Specifically,
it indicates that effort required to add a new operation is proportional to the
number of operations.

4.2 Case study 2: Abstract Factory

The Abstract Factory pattern can be used to “Provide an interface for cre-
ating families of related or dependent objects without specifying their concrete
classes.” [5] Below, we show that Abstract Factory is only flexible towards
specific shifts, and that the adjustments necessary can also be very expensive.

Ezxample

A typical example is an object-oriented graphical user interface (GUI) for cre-
ating graphical “widgets”, such as windows, buttons and menus. Each win-
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dowing environment offers a variation on each one of these widgets. Figure 3
illustrates the “families” of widgets for three windowing environments.

A client in cross-platform implementation that needs a new button, for ex-
ample, must decide which variation of button is appropriate. The obvious way
to do this would be to use complex conditional statements that determine the
appropriate variation. The alternative, offered by the Abstract Factory design
pattern, is to offer each such client a uniform interface for generating each wid-
get, and to delegate the decision which version is appropriate to a “concrete
factory” object. The dashed lines in Figure 3 illustrate the “create” relation
between factory method, concrete factories and the products hierarchy.

Look

newWindow
newButton
newMenu
MacLook pr
newWindow ------{----
MSLook newButton MacButton
newMenu MacMenu
newWindow MSWindow Err—
MSButton

newButton
newMenu MSMenu

Fig. 3. Example for Abstract Factory.

Requirements

Teonf/prod ‘= Given a set of clients K, a family of configurations C' = {ci, ...cp },
and a family of products P = {p1,...pm}. Every client k in K needs a new
instance p in P depending on the current configuration ¢ in C.

The problem domain Deoyf/prod = { K, C, P}.

Shifts

In this case study we will consider the following two shifts to 7con f/prod:
01 (Teonf/prod: C, €) == add configuration ¢ to C
0_(Teonf fprods P, p) := remove product p from P

Implementation policies
We will compare two implementation policies to 7con f /prod:

Gabs—factory := use the Abstract Factory design pattern ([5], page 87). The
solution this pattern dictates consists of two class hierarchies, factories and
products. Each class in the factories hierarchy (“concrete factory”) is respon-
sible for creating products of a specific configuration ¢ € C. For this purpose,
each concrete factory defines a method (“factory method”) for each product
p € P. Overall, there are |C| concrete products with | P| methods each in this
implementation.
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leond .= use conditional style. Each client that needs a specific product
implements a switch statement that has a conditional branch for each config-
uration c € C.

In both implementations, we assume that there are |K| separate clients
(i.e., | K| classes in a class-based language) such that each client needs a new
instance of one or more products.

Analysis

An example of shift o_(7cons/prod, P, p) would be to remove the product Menu
in Figure 3. This requires us to remove all concrete subclasses of Menu, as well
as the methods newMenu that are implemented in each concrete factory.

Table 3
Class-level evolution complexity for shifts of 7.y, f/proa

Cé’lasses O-+(Tconf/proda C; C) (o (Tconf/proda Py p)
Z-abs—factory |P| |C| + |P|
lcond K| K|

The effect of implementation policy %aps— factory 01 the evolution complexity
is described informally in [5], pages 89 and 90: “It makes exchanging product
families easy”; “supporting new kinds of products is difficult”. Again, we will
quantify exactly how easy or difficult it is.

As shown in Table 3, the evolution complexity at class level of i4ps— factory
is linear for both shifts. For shift o (reonf/prod, Cs €), it is linear in the number
of products, since we need to add a new concrete product class for each pos-
sible product, to specify how each product needs to be addressed by the new
configuration. For shift o_(7cons/prod, P D), it is linear in the number of con-
figurations and products, since we need to remove all concrete product classes
for the considered product, and we need to remove a corresponding method
in each of the configuration classes.

For implementation ¢..,4, the evolution complexity is linear in the number
of clients for both shifts.

Discussion
The results presented in Table 3 demonstrate that the decision to use the
Abstract Factory design pattern is not straightforward. If the number of
clients is very small then the overhead in using the pattern is not justified.
Similarly, it shows that removing a product can be a labour-intensive task
even if the pattern is used.

Obviously, the evolution complexity is not the only criterion that should be
used for preferring a particular implementation policy over another. For exam-
ple, the Abstract Factory has a number of other important advantages that are
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not measured by our evolution complexity measure: “it isolates clients from
implementation classes”; “it promotes consistency among products”. Thus,
evolution complexity only captures one of many concerns that guide designers
in the choice of a particular implementation policy.

4.8 Case study 3: Procedural vs. object-oriented implementation

Object-oriented programming is hailed for promoting flexibility. Experienced
programmers, however, observe that flexibility is relative to a specific class
of changes that our implementation must specifically be designed to accom-
modate. As our analysis of the Visitor pattern demonstrated, changes to the
interface of the base class in a large inheritance class hierarchy can be very
expensive to implement, but adding a new “leaf” class is usually very easy.

In this case study, we use evolution complexity to compare the flexibility
of a procedural and an object-oriented implementation policy in the context of
a specific problem: the representation of a finite-state automaton. Our anal-
ysis will demonstrate that an object-oriented implementation is more flexible
towards changes in the set of states, while the procedural implementation is
more flexible towards changes in the alphabet.

Ezxample

Consider a digital clock with three display states Display Hour, Display Sec-
onds and Display Date and two setting states Set Hour and Set Date. The
clock accepts input from two buttons b; and by, which are used to change
between states or to perform a specific action depending on the current state.
The clock behaviour is modelled in Figure 4 as a deterministic finite state au-
tomaton with set of states S={ Display Hour, Display Seconds, Display Date,
Set Hour, Set Date} and an alphabet L={b;,b>}.

b1

v |

b1 b1
Display Display Display
Hour Seconds Date
b2

Fig. 4. State machine for a digital clock.

Requirements

Tafsa = Implement a deterministic finite state automaton (DFSA) with a set
of states S and a set of letters L (i.e., an alphabet).
The problem domain Dy, = {S, L}.
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Shifts

In this case study we will consider the following two shifts to 74f,:
04+ (Tafsa, L, 1) := add letter | to the alphabet L
04(Tafsa; S, 8) = add state s to the set of states S

Implementations
We will compare two implementation policies for the digital clock:

istate = use the State design pattern ([5], p.305). This pattern dictates that
each state s € S is represented by a separate class such that every state class
defines a method for each [ € L. In all, there are |S| classes with |L| methods
per class in this implementation. This implementation is illustrated below:

interface ClockState {
void b1(); \\ button 1 pressed
void b2(); \\ button 2 pressed

}

class DisplayHour implements ClockState {
public void b1() {\* bl pressed *\}
public void b2() {\* b2 pressed *\}

}

class DisplaySecond implements ClockState {
public void b1() {\* bl pressed *\}
public void b2() {\* b2 pressed *\}

}

class DisplayDate implements ClockState {
public void b1() {\* bl pressed *\}
public void b2() {\* b2 pressed *\}

}

class SetHour implements ClockState {
public void b1() {\* bl pressed *\}
public void b2() {\* b2 pressed *\}

}

class SetDate implements ClockState {
public void b1() {\* bl pressed *\}
public void b2() {\* b2 pressed *\}

}

Geona = use conditional style, ([5], p.307): “An alternative is to use data
values to define internal states and have context operations check the data
explicitly. But then we’d have look-alike conditional or case statement scattered
throughout the context’s implementation.” In this style of implementation, we
define one class that contains a method for each letter [ € L such that the
body of each method consists of a switch statement that contains a conditional
branch for each state s € S. This implementation is given below:

enum states = {
DisplayHour, DisplaySecond, DisplayDate,
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SetHour, SetDate} state; // Current state

void b1() { \\ button 1 pressed
switch (state) {
case DisplayHour: \x...*\;
case DisplaySecond: \*...*\;
case DisplayDate: \*...*\;
case SetHour: \*...x*\;
case SetDate: \*...x*x\; }
}
void b2() { \\ button 2 pressed
switch (state) {
case DisplayHour: \*...*\;
case DisplaySecond: \*...*\;
case DisplayDate: \*...*\;
case SetHour: \*...*\;
case SetDate: \*...*x\; }

Metric

The class-level metric of Definition 4.1 is too coarse since it assumes that all
software entities require approximately the same effort to be adjusted. Such
an approximation is useful when the number of software entities is large or
when there is insufficient detailed information about individual entities. For
example, at the design level, before the implementation is complete, we may
only have information about the classes and their variables, but not necessarily
about their methods. When the implementation is complete, however, and
when it is evident that some software entities are more difficult to adjust than
others, we may replace the class-level metric by a generalized metric that
measures the (software) evolution complexity of individual modules:

Definition 4.2 Let (o,«) be a co-evolution step such that o = (i,7).
Let A be the symmetric set difference. Let Modules(i) = the set of
modules in 7. Let p be a software complexity metric that is defined for all
x € Modules(i) U Modules(i'),

C]/Qodules(o-7 O[) = Za:eModules(i)AModules(i’) [L(l')

Let us show how the generalized metric can be used in specific cases:

Céiasses When Modules = Classes and the software complexity u(c) = 1
for all ¢ € Classes(i), the generalized metric is reduced to the class-level

evolution complexity metric of Definition 4.1.

Chiothods When Modules = Methods (the set of all methods in ¢) and the
software complexity u(m) = 1 for all m € Methods(i), we have a method-
level evolution complexity metric. This metric measures the complexity of
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a co-evolution step by counting the number of methods affected by it. It
treats all methods as equal with respect to their change effort.

Coinods When Modules = Methods and p = CC (cyclomatic complez-
ity, [12]), the metric takes into account the cyclomatic complexity of each
method such that adjustments applied to a “complicated” method (e.g., a
method with many conditional statements) are more expensive than adjust-
ments applied to a “simple” method.

Analysis

The effect of the two implementation policies 7444 and i.,,q on the evolution
complexity is described informally in [5]. For example, pages 307 and 308
mention for 7., “new states ... can be added easily”; “decentralizing the
transition logic in this way makes it easy to modify or extend the logic”. For
tcond, Page 307 mentions: “Adding a new state ... complicates maintenance.”
Our formal framework lets us precisely quantify this intuition in terms of the
entities of the problem domain Dy, = {5, L} that are affected by a particular
shift, assuming a particular implementation policy.

C]1Wodules 0+ (Tdfsaa La l) O--‘r(rdfsaa S, 5)

2.state | S| 1
Z.cond 1 ‘ L‘
Table 4

Class-level evolution complexity for shifts of rgsg,

Analysing the evolution complexity at the class level (Table 4), we observe
for shift o4 (rgfsa, L, 1) that implementation policy isie is more difficult to
evolve than implementation policy i..nq. Indeed, the State design pattern
requires us to add a new method (corresponding to the new letter to be added)
to each of the |S| state classes. Hence, the evolution complexity for ig g, is
linear in the number of states, whereas it is constant for i.nq-

cc
C]Wethods Oy (Tdfsm S? 5)

Z.stLOLte | L|

icond ‘S| X |L|

Table 5
Method-level evolution complexity for shifts of 744

Focussing on the method level (Table 5) shows us two other impor-
tant results. At this level of abstraction, the evolution complexity for shift
04+ (Tdfsas L, 1) is the same for both implementation policies (linear in the num-
ber of states). Shift o4 (r4sq,S,s), on the other hand, is more difficult to
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evolve for implementation policy icong than for igee (complexity |S x L| and
|L|, respectively). These results were obtained by using the cyclomatic com-
plexity metric C'C' for each affected method. It reflects the intuition that an
implementation policy with lots of conditional statements is more difficult to
evolve than one with few conditionals.

Discussion

While Table 4 shows that adding a state is constant in the number of states,
removing a state with implementation policy igqe is potentially linear in the
number of states, since we need to modify the state transition function, which
is embedded in, and dispersed over, all state classes. As an alternative im-
plementation policy, we could opt for a variant of the State design pattern,
where state transitions are implemented in the context. Needless to say, this
implementation policy will yield different results for the evolution complexity
when compared to tsqte and ieong.

5 Related work

Despite its importance, cost estimation in the context of software maintenance
and software evolution remains relatively unexplored. Jgrgensen [8] used sev-
eral models to predict the effort of randomly selected software maintenance
tasks. The size of individual maintenance tasks was measured in LOC. Sneed
[15] proposed a number of ways to extend existing cost estimation methods
to the estimation of maintenance costs. Ramil et al. [13] provided and vali-
dated six different models that predict software evolution effort as a function
of software evolution metrics.

All of the above approaches rely make use of software metrics, and can
rely on experimentally validated results of the software metrics community
[3,4,12,17]. While our definition can also incorporate existing software com-
plexity metrics (e.g., cyclomatic complexity) easily, an important distinction
is that our approach goes beyond existing attempts to measure the “evolvabil-
ity” of implementations, since we have shown that it is not possible to give
an absolute measure of the evolvability of a particular program. Instead, the
evolvability depends on the chosen implementation policy and on the changes
in the requirements that are likely to be performed.

Perhaps a better (i.e., less absolute) way to measure the changeability of a
software system relies on algorithms or measures that compute the impact of
changes [11]. For example, Chaumun et al. [2] report on experimental results
with a change-impact model for object-oriented systems.

Because the cost and complexity of software evolution may depend on the
type of evolution activity, we also require a more objective and finer granularity
recognition of types of software evolution activities. An attempt to make such
an objective classification of evolution activities was carried out in [1].
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6 Conclusion

In this paper we proposed a formal definition of evolution complexity to quan-
tify the cost of adjusting a particular implementation policy to a change
(“shift”) in the requirements. As a case study, we used our formalism to
formally validate the intuition that design patterns improve the evolvability
of programs. We were able to determine precisely to which extent, and for
which changes in the requirements, a particular design pattern is “more evolv-
able” than another implementation policy. Despite all this evidence, a more
scientific empirical validation of our proposed evolution complexity metric re-
mains to be done.

In general terms, our formalism allows us to precisely quantify the cost of
implementing particular changes in the requirements, and to choose the most
flexible implementation policy to implement these changes. Our formalism
can be used at various levels of granularity (e.g., class level and method level).
This implies that it can also be used during the design phase, when not all
implementation details are known yet.

In the future we even plan to apply our ideas at an architectural level (as
opposed to a design level), by considering changes to architectural styles [14]
instead of design patterns. This will allow us to adapt existing architectural
cost estimation models [9] to an evolution context.
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Abstract

One of the possible scenarios in a system evolution cycle, is to translate an emergent
set of new requirements into software architecture design and subsequently to up-
date the system implementation. In this paper, we argue that this form of forward
engineering, even though addresses the new system requirements, tends to overlook
the implementation constraints. An architect must also reverse-engineer the system,
in order to make these constraints explicit. Thus, we propose an approach where
we reconcile two architectural models, one that is forward-engineered from the re-
quirements and another that is reverse-engineered from the implementation. The
final reconciled model is optimally adapted to the emergent set of requirements and
to the actual system implementation. The contribution of this paper is twofold: the
application of architectural reconciliation in the context of software evolution and
the formalization of both the specification and transformation of the architectural
models. The architectural modeling is based upon the UML 2.0 standard, while the
formalization of the architectural models and their transformation are based on set
theory and first-order logic.
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1 Introduction

It is nowadays well-established that evolution of software should not be taken
lightly, as it may correspond up to 90% of the total lifecycle costs. As a re-
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sult, software evolution has emerged as a new and promising field of software
engineering, which tackles the problems of software change and software main-
tenance [17,39]. Even though research on software evolution, has been taking
place for more than thirty years, it is only recently that concrete results have
started to appear and the research community began to grasp the significance
of the field [16]. Over the past years, some of the most important advances
include: the eight laws of evolution [15], a phenomenology of software evolu-
tion [5,13,17], theories and practices on formalizing software evolution [16,23],
tools that analyze and depict evolution of systems [39,30,34].

Research in software evolution strives to answer either the ‘how’ or the ‘what’
and ‘why’ [16,17,28]. The ‘how’ concerns the methods, practices and tools for
evolving a system, in particular for synchronizing three distinct entities: 1) a
model of the real world that is constantly changing, e.g. a domain model for
an e-business system, 2) a specification of the system, e.g. the system’s soft-
ware architecture, and 3) the system implementation. The ‘what’ and ‘why’
observe the phenomenon of software evolution, trying to identify its causes
and its internal workings.

This paper deals with the ‘how’ of software evolution, and in specific with keep-
ing the system implementation in synchronization with the real-world model
through a system specification. The real-world model might potentially range
from a full domain model or business model of the entire business system to
a minimal requirements specification for the software system under develop-
ment. However, for the purposes of this paper we are only interested in the
software requirements specification and consider that requirements are indeed
well-defined. As far as the system specification is concerned, it is a key factor
in evolution, since it formalizes the description of the system to be built and
bridges the abstract real-world domain model and the system implementation
[16,28]. In our approach we adopt software architecture as a form of system
specification, since it has been proposed as an ideal abstraction to support
system evolution [3,11,12,33].

A typical scenario of architecture-based evolution is to design the system’s
architecture in order to address the new set of requirements, and then real-
ize this architecture into the system implementation [3]. The problem with
this forward engineering approach is that the architectural design takes into
account only the set of requirements and not the existing system implemen-
tation. As a consequence, implementation constraints are overlooked in the
architecture, which in turn cannot be properly implemented into code. Appar-
ently the system implementation contains implicitly a large numbers of design
decisions that are ‘hidden’ in the code and can potentially contradict the new
set of design decisions that emerge in the architecture. Even if we do look at
the system and try to identify implementation constraints, we will probably
fail to identify everything unless we reverse-engineer the system. This paper
proposes an approach to tackle this problem by applying architectural recon-
ciliation. In particular, the architectural model that is used to develop the
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next system release, is derived from reconciling two architectural models, one
that is forward engineered from the requirements specification and a second
that is reverse-engineered from the system implementation. In this sense, the
reconciled architecture will not only address the new requirements, but it will
also take under consideration the implementation constraints. The documen-
tation of software architectures is based on the UML 2.0 standard and formal
methods.

The rest of the paper is organized as follows: Section 2 provides the de-
tails of the proposed approach for evolution through architectural reconcilia-
tion, including the informal and the formal technique used for architectural
description. Section 3 illustrates the application of the approach through a
case study while Section 4 presents some related research work with respect to
architectural reconciliation. Finally Section 5 wraps up with some conclusions.

2 Architectural Reconciliation

2.1 The Process of Reconciliation

At the beginning of an evolution cycle we have an existing system implemen-
tation as well as a new set of requirements. The process of their reconciliation
is comprised of three steps and is graphically illustrated in Figure 1.

update requirements I implement next version >

ey

1 2 2 1

Requirements forward reverse Implemented
architecting FAM JAM transform | RAM architecting system

Fig. 1. Architectural Reconciliation for One Evolution Cycle

At the first phase we inspect the implementation code, and reverse-architect
the implemented system in order to recover its architecture, which we name
the Reverse Architectural Model or RAM. We do not prescribe a spe-
cific reverse-architecting approach, though there are a few such techniques
and tools proposed, such as those in [10,24,30,34,38,39]. The RAM is mainly
focused on identifying implementation constraints that may play a significant
role during the system evolution. These constraints are usually expressed in
the form of natural language and accompany the UML diagrams or the for-
mal models. At the same phase, we use the new Requirements specification
to design the ideal architecture of the system, which we name the Forward
Architectural Model or FAM. This forward-engineering design of the ar-
chitecture can be performed by following any architecture-driven software de-
velopment process. It is important to stress that the FAM derives clearly from
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the requirements side and strives to ideally satisfy the new requirements. The
implementation constraints are not given much attention here, since they will
be dealt with during the reconciliation in the next phase.

The second and most crucial phase is to bridge the RAM and the FAM into
the Joint Architectural Model or JAM, which must satisfy both the new
set of requirements and the implementation constraints. This is achieved by
performing a transformation, that accepts the RAM and the FAM as inputs
and produces the JAM as the output. In specific, the architect must go
through the following steps:

(i) Identify the implementation constraints that contradict the RAM.
These implementation constraints derive from the design decisions that
the architect took during the previous evolution cycle and contradict the
new design decisions taken in the FAM. The constraints may appear in
any form, though we simply propose the use of natural language in com-
bination with UML or formal models. This is because the software ar-
chitecture community is still trying to tackle the problem of representing
precisely local or global architectural constraints [21].

(ii) Resolve the problems caused by the implementation constraints.
In order to resolve each such problem, the architect needs to decide be-
tween one, or a combination of the following actions:

(a) Keep the part of the FAM and delete the part of the RAM that causes
the problem.

(b) Keep the part of the RAM and delete the part of the FAM that causes
the problem.

(¢) Come up with a compromising solution that mixes both parts. In this
case some of the elements from both models may be deleted, others
may be retained, while more elements may be added.

(iii) Complete the JAM. The resolution of the problems will probably have
consequences to other architectural elements that were not themselves
part of the problem. Therefore, the architect needs to take some last
decisions with respect to keeping, deleting or modifying FAM and RAM
elements that were affected by the reconciliation actions.

The final phase in this process concerns with building the new version of the
system according to the JAM, and also updating the requirements so as they
reflect the reconciliation results. Figure 2 depicts the proposed approach over
several evolution cycles, and also shows the rest of the details of the evolution
process. It is of paramount importance to emphasize that there is always
feedback from the JAM to the next evolution cycle. Firstly, as aforementioned,
the JAM is not only used to develop the next implementation version of the
system but it is also used to update the requirements according to the results of
the reconciliation. Secondly, the JAM, as the only valid architectural model
of the system, is used as the starting point for the FAM and RAM of the
next iteration: FAM; and RAM,; are designed starting from JAM; ; and

155



Stakeholders

Requirements R, R, R,
FAM FAM, /FAM2 %Ms
JAM JAM1\ JAM,

RAM RAM, RAM, RAM,

Implementation |4 =, ——= |

Fig. 2. Architectural Reconciliation over Several Evolution Cycles

by considering the new set of requirements R; and the implementation I;
respectively.

The next two subsections propose two different ways for describing the
architectural models: informally in UML 2.0, and formally using set theory
and first-order logic.

2.2 Description of the Architectural Models in UML

An architectural description is comprised of multiple views [7,11,12,14]. In
order to reduce the complexity of reconciliating two complex multiple-view
architectural models, we have focused on the view that is considered to contain
the most significant architectural information: the component-and-connector
view [7]. This view deals with the system run-time by showing the components,
which are units of run-time computation or data-storage, and the connectors
which are the interaction mechanisms between components. However the same
theory of reconciliation can equally well apply to the rest of the views.

The documentation of software architectures has been performed with the
aid of Architecture Description Languages (ADLs), which aim at for-
mally representing software architectures [22]. Unfortunately these languages
have never been broadly used in the industry and most of them lack support
by appropriate tools. However the recent trend is the use of the widely ac-
cepted Unified Modeling Language as an ADL, which has become the ‘lingua
franca’ of software design. We have adopted this approach and we have been
working on the emergent UML 2.0 standard [27], which claims to provide large
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support for modeling software architectures.

Our approach suggests therefore to model the component and connector view
using UML 2.0 elements and especially those from the Composite Structures
and Components packages. In specific the elements used for the component
and connector view are:

(i) Components, which are specializations of classes and therefore have
attributes and operations, but are also associated with provided and
required interfaces. Components are also allowed to have an internal
structure comprised of properties that in turn describe sets of instances
of particular classes. Finally components may own ports that formalize
their interactions points,

(ii) Connectors, which are either assembly connectors that connect the re-
quired interface of one component to the provided interface of a second,
or delegation connectors that link the ports of a component to its internal
parts,

(iii) Interfaces, which serve as contracts that components must comply with.
An interface is either provided that describes a set of functionalities offered
by a component, or required that describes a set of functionalities that a
component expects from its environment.

(iv) Ports, which specify a distinct interaction point between the component
that owns it and its environment or between the (behavior of the) com-
ponent and its internal parts. Ports may specify required and provided
interfaces of the component that owns them. A behavior port is a special
case of a port, which sends all the incoming requests to the classifier that
owns the port, rather than to its internal parts.

(v) Classes, that represent the constituents which realize the internal struc-
ture of components. These are not used in general-purpose class dia-
grams, but in composite structure diagrams, showing how the required
and provided interfaces of a component delegate to or from its internal
parts via the corresponding ports. Usually the composite structure dia-
grams do not contain the classes themselves, but sets of their instances
in the form of properties.

Figure 3 illustrates the metamodel for the component-and-connector view,
which is a subset of the UML 2.0 metamodel, and specifically the Components
and Composite Structures packages. For reasons of simplicity some elements
and other details have been omitted.

2.3  Formal Description of the Architectural Models

The syntax and semantics of UML are only semi-formally defined through a
four layer meta-modeling architecture [26,27], that uses UML, natural lan-
guage and OCL. The trend to formally specify the semantics of the language
stems from the need to provide rigorous analysis and automatic transforma-
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Fig. 3. UML 2.0 Metamodel for the Component and Connector View Elements
(adapted from [27])

tions of UML models [18,35]. Different aspects of UML (e.g. class/component
diagrams for modeling system structure, activity /statechart diagrams for mod-
eling system behavior) require different forms of formalization. Process alge-
bras [25] and Petri-Nets [2] allow for the formalization of system behavior while
logic, sets and algebraic specifications [6,4,9] are used to formalize structural
models. Graph grammars techniques [32] are also being used to formalize
UML class and component diagrams [36,8].

We have concentrated on formalizing the component and connector view,
that was described in the previous section, and makes use of UML 2.0 struc-
tural models. In specific we have defined a formal metamodel using set theory
and first order logic, that specifies the semantics of models in the compo-
nent and connector view. This formal metamodel is based upon a similar
work by Richters [31], that provides a non-ambiguous definition of an ob-
ject model (classes, attributes, operations, associations and a generalization
hierarchy) and defines the semantics of OCL. We have extended that meta-
model in order to define the elements of the component-and-connector view,
namely components, ports, connectors, interfaces and properties, and spec-
ify their semantics. We therefore use this formal metamodel to formalize the
reconciliation Re as a relation between three UML models satisfying a set
of logical formulas ¢ that are inferred from the architect’s tradeoff decisions:
Re = {m,m = (FAM, RAM, JAM)|m = ¢}. The entire formal metamodel
can’t be included due to space restrictions, but a sample of these formulas are
given both in logic and OCL in the next section.

3 A Case Study

The system that was chosen for this case study, is a popular open-source
Learning Management System, named Ganesha [http://www.anemalab.org/g
aneshal, that supports e-learning in higher education and training institutes.
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This system was chosen for two reasons: a) being an open-source project,
its code can be inspected at will without the copyright issues of commercial
systems; b) its simple PHP-based and medium-sized code makes it manageable
and suitable for this kind of experiment.

component chat J

pTi1
:title.php class
O port
pin2 pin pFo1 )
chat :index.php — 0 prowded
i ; :footer.php interf
O r (connexion ID) Interface
pCChat2
mySQL —C lrequwed
query :list.php interface
[ ] (connexion ID, [ }
pLi1 line numbers)
pCChath) K—| pLi2 —— connector

pCh1 pCh2
DB mgt {1 :chatphp [}

Fig. 4. The Reverse Architectural Model of the Chat Component

We have designed both the FAM and the RAM, as analytically described
in [1]. For illustrative purposes, this section focuses on the reconciliation of
a particular component of this system, the chat component, which allows for
basic chat functionality, such as sending and receiving messages, and viewing
the list of connected users. The reverse-engineered architectural model of
this component was designed, based on the JAM of the previous iteration
and the existing system implementation. As shown on Figure 4, the chat
component is implemented through a number of PHP files, communicating
through connectors, which are merely calls between them. These components
“hide” design decisions that may serve as implementation constraints during
evolution. In particular:

(i) index.php creates the overall frameset consisting of frames for displaying
the messages, information about connected users and GUI elements for
entering and formatting messages.

(i) title.php checks which browser is used and calls list.php with the correct
browser details.

(iii) footer.php is the frame at the bottom of the frameset which displays
all the GUI elements for changing font colors and style, and notifies in-
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put.php when such changes take place.

(iv) list.php updates the database for a new connected user and displays who
has arrived and the set of currently connected members.

(v) input.php displays the GUI elements for entering messages, transforms
these messages into the correct format according to footer.php and calls
chat.php to display the messages.

(vi) chat.php is called by input.php if a message has been written in the text
box, and displays that message along with information on who posted it.
It also stores the messages to the database.

In the current evolution cycle, new requirements mandated the implemen-
tation of multiple chat rooms, that correspond to different topics of conver-
sation, as well as the ability to exchange files between users. The architect
therefore designed the FAM that satisfies these new requirements, starting
from the JAM of the previous iteration. The forward architectural model,
which is depicted on Figure 5, is naturally quite similar to the RAM, except
for two new added components:

(i) file.php that implements the functionality for file management through
an appropriate Graphical User Interface.

(ii) room.php that implements the functionality for changing rooms and
displaying users’ location. It is called by index.php and it also accesses
the database to retrieve and store information about the room.

In order to perform the reconciliation we need to look at the two models,
and try to resolve the potential problems, caused by implementation con-
straints. In this particular case, there were three implementation constraints
that caused problems with the FAM and the architect needed to tradeoff on
how to best resolve them. We describe the architect’s decisions in three forms:
natural language, logic formulas and OCL. For the OCL part we consider a
model composed of the package “evol” with three sub-packages containing
model elements from FAM, RAM and JAM. The three implementation con-
straints and the corresponding reconciliation actions, which resulted to the
joint model (Figure 6), are the following:

(i) The GUI for entering text already exists and is included in input.php.
Ideally we would want to put the GUI for changing rooms in the same
place. Therefore the code for GUI in room.php should be moved to
input.php, which should forward this information to the former for im-
plementing the application logic. So these two components are modified
into input2.php and room2.php, while they are also connected through a
connector for the information exchange.

Logic: room.php € Compsgang, input.php € Compsgray = room2.php
A input2.php € Compsyay N dc € Connsjapy with connends(c) =
{input2.php, room2.php}

OCL:
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Fig. 5. The Forward Architectural Model of the Chat Component

context evol inv:

let pjam : Package = self.containedElements->select(Package)->
select(plp.name=’JAM’)

in

self.containedElements->select (Package)->select(p|p.name="FAM’)
.allContainedElements (Component)->exists(p|p.name=’room.php’)

and

self.containedElements->select (Package)->select(p|p.name="RAM’)
.allContainedElements (Component)->exists(p| p.name=’input.php’)
implies

pjam.allContainedElements (Component)->exists(p|p.name=’room?2.php’
and p.Feature.Port->includes(pRo3))

and

pjam.allContainedElements (Component)->exists(p|p.name=’input2.php’
and p.Feature.Port->includes(pIn2))

and

pjam.allContainedElements (Connector)->exists(c|c->ConnectorEnd.
role->size()=2 and c->connectorEnd.role->includesAll({pIn2,pRo3})
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(ii) List.php displays the currently connected users in the right frame and
that is where we also want to display information about what room the
users are into. Thus room2.php needs to pass this information to list.php
through a connector.
logic: 3¢ € Connsjan N connends(c) = {room2.php, list.php}
OCL:
context evol inv:
self.containedElements->select (Package)->select(p|p.name=’JAM’)
.allContainedElements (Connector)->exists(c|c->ConnectorEnd.
role->size()=2 and c->connectorEnd.role->includesAll({pLi3,pRo4})

(iii) There is already a component in Ganesha that provides file management

such as uploading and downloading files. This is not visible in the RAM

for the chat component but in the RAM for the entire system. In this

sense, file.php should reuse this component through its file management

interface rather than implement this functionality from scratch. There-

fore this component is slightly modified into file2.php and requires inter-

face file mgt to operate, which is added as a required interface of the chat

component.

logic: file.php € Compspan = file2.php € CompsjapNIc € Connsjan,
connends(c) = { file2.php, chat} A file mgt € Intfsjan A file mgt €
requires(chat)
OCL:

context evol inv:
let pjam : Package = self.containedElements->select(Package)->
select(plp.name=’JAM’)
in
self.containedElements->select (Package)->select(p|p.name="FAM’)
.allContainedElements (Component)->select(p|p.name="file.php’)
implies
pjam.allContainedElements (Component)->exists(p|p.name=’file2.php’
and p.Feature.Port->includes (\{pFi2\}))
and pjam.chat.Feature.Port->includes(\{pCChat3\})
and pjam.allContainedElements (Connector)->exists(c| (c->ConnectorEnd.
role->size()=2 and c->connectorEnd.role->includesAll ({pFi2,pCChat3})
and
pjam.chat.required->includes(file mgt)

4 Related Work

The approach described in this paper has been based on research work with
respect to bridging the gap between the system implementation and its re-
quirements.

Perry and Wolf in [29] first introduced the architectural problems of erosion
and drift, which express the phenomenon of having the implementation ar-
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Fig. 6. The Joint Architectural Model of the Chat Component

mySQL
query

chitecture driven away from the ideal architecture, either on purpose or due
to indifference. In [37], Tran et al. introduced an architecture ‘repair’ tech-
nique for fixing this gap, by discovering and further eliminating the differences
between the ideal architecture and the implementation architecture. They
distinguish between forward repair where the implementation architecture is
altered to match the conceptual, and reverse repair where the opposite takes
place. Even though they have been mostly working with Open Source Soft-
ware, where architectural drift is more likely to happen, they claim that their
results can be generalized in commercial systems as well. They do not propose
an approach for performing the design of the conceptual architecture but they
do suggest tools such as those in [30,34] for reverse-architecting.

Roughly, the same problem has been dealt with in [19], where Medvidovic
et al. propose the introduction of two intermediate steps: a) designing the
‘discovered’ architecture from the requirements and b) designing the ‘recov-
ered’ architecture from the implementation. These two architectural models
are then much easier bridged into the actual Architecture of the system. The
‘discovery’ of the architecture is performed using the CBSP method [20] that
transforms the requirements into a handful of simple architectural elements
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that are something between requirements and architecture. The ‘recovery’ of
the architecture is performed using a blend of techniques that reverse-engineer
the code and package the derived classes into architectural elements. The final
bridging is performed manually by applying architectural styles to one of the
two models and then mapping the second model to the outcome, or by first
integrating the two models and then applying architectural styles.

Our own approach has been influenced by both of the aforementioned ap-
proaches since we have adopted the intermediate steps of FAM and RAM that
[19] proposes and we have devised actions for the architectural reconciliation
that are similar to those for forward and reverse repair [37]. Our work extends
these approaches in the sense that we provide formalisms for the definition of
the architectural models and subsequently their transformations in order to
derive the final model. This formal transformation-based process is only part
of our philosophy which states that everything can be considered as transfor-
mations between different artifacts, as will be explained in the final section.

5 Conclusions

In this paper we have argued that the evolution of a system cannot be per-
formed effectively in a forward engineering style, e.g. transforming new sys-
tem requirements into architecture and then into code. The problem is that
the existing system implementation may place significant constraints to the
new requirements and therefore must be taken under account. These im-
plicit implementation constraints cannot be made explicit unless they are
reverse-engineered. We have thus proposed to design two architectural mod-
els, the first based on the requirements and the second based on the existing
implementation, and then reconciling these two models through logic-based
transformations. The added value of our approach concerns two issues: the
adoption of architectural reconciliation in the context of software evolution in
order to overcome the problems of forward engineering and the formalization
of both the architectural models and the transformations required to perform
the reconciliation.

This approach constitutes a representative part of our holistic view on
model-based software engineering. In particular we believe that transforma-
tion is a key mechanism during the entire development lifecycle and everything
can be placed in the context of transforming artifacts into other artifacts.
These transformations can take place: a) at a different level of abstraction,
e.g. from design to code: b) at the same level of abstraction, e.g. from an
architectural model to another architectural model that refines the former.
The transformations are of paramount importance since they provide an asso-
ciation between the artifacts created; they are the conceptual ‘glue’ that binds
everything together in a coherent set. This binding mechanism can provide
the rationale for the decisions taken during the development process by trac-
ing forward or backwards to the various artifacts.
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We are currently elaborating other kinds of such transformations of the various
artifacts, and we intend to end up with a fairly complete set of transforma-
tions that cover the entire process. We also intend to work on providing tool
support for specifying and subsequently analyzing the formal models.
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Information about the evolution of a software architecture can be found in the
source basis of a project and in the release history data such as modification and
problem reports. Existing approaches deal with these two data sources separately
and do not exploit the integration of their analyses. In this paper, we present an
architecture analysis approach that provides an integration of both kinds of evo-
lution data. The analysis applies fact extraction and generates specific directed
attributed graphs; nodes represent source code entities and edges represent rela-
tionships such as accesses, includes, inherits, invokes, and coupling between certain
architectural elements. The integration of data is then performed on a meta-model
level to enable the generation of architectural views using binary relational alge-
bra. These integrated architectural views show intended and unintended couplings
between architectural elements, hence pointing software engineers to locations in
the system that may be critical for on-going and future maintenance activities. We
demonstrate our analysis approach using a large open source software system.
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1 Introduction

Higher-level views on the architecture of software systems aid engineers in
evolving and maintaining software systems. Typically, these views are de-
picted as graphs whereas nodes represent the architectural elements and edges
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the relationships between them. In particular, relationships represent depen-
dencies between architectural elements that lead to coupling between these
elements. In theory, strongly coupled architectural elements are more likely
to be modified together than are loosely coupled elements. Therefore, ar-
chitectural designs concentrate on encapsulating common behavior within an
architectural element, consequently increasing cohesion and lower coupling [2].

An architectural element in the context of our work is a software module
that results from the decomposition of a software system into implementation
units. According to Clements et al. [6] we refer to a software module as an
implementation unit of software that provides a coherent unit of functionality.
Modules present a code-based way of considering the system [2].

However, in practice evolution often draws a different picture revealing
couplings between architectural elements that were not intended by the ar-
chitectural design. Reasons for this are manifold: shortcomings in the initial
design; the architecture has not been implemented in the way it was designed;
or architecture drift due to frequent modifications to the implementation.
In fact, these dependencies—for example constant changes crossing module
boundaries—hinder the effective maintenance and evolution of software sys-
tems. Therefore, locating them in the current implementation to facilitate
the application of directed refactorings to resolve these couplings would be
beneficial.

In this paper we focus on analyzing dependencies between architectural
elements and introduce the architecture analysis approach ArchFEvo. ArchEvo
enriches source code models extracted from source code and execution traces
with logical coupling data obtained from configuration management systems
[11,12]. We refer to logical coupling as: Two source code entities (e.g. files) are
logically coupled if a modification to the implementation affected both source
code entities over a significant number of releases.

The data sources are integrated into a common directed attributed graph
from which ArchEvo abstracts higher-level views using architecture recov-
ery [15]. In the analysis of the dependencies between architectural elements
ArchEvo correlates both types of abstracted coupling relationships and shows
strongly coupled elements as-implemented but also verifies these couplings
by release history data. Consequently, the architectural views computed by
ArchEvo provide an integrated view on the architecture and its evolution that
points software architects and engineers to shortcomings in the design and
implementation that should undergo directed refactorings.

The remainder of this paper is organized as follows: In Section 2 we in-
troduce the architecture analysis approach ArchEvo and describe the building
of the integrated fact repository and the abstraction of higher-level views.
Section 3 describes our findings concerning the coupling relationships with a
selected set of software modules and features of the open source web browser
Mozilla. In Section 4 we present related work and Section 5 draws some con-
clusions and indicates future work.
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2 ArchEvo Approach

Analyzing the dependencies between architectural elements is a key issue when
analyzing the architecture of software systems. Recent research in analyzing
these dependencies (i.e. coupling) concentrated on information obtained from
source code and the running system. Briand et al. reported on the different
measurements and described a framework of coupling measurements between
classes and objects [3]. In our recent research we concentrated on investigating
configuration management data including version, change, and defect data to
obtain information about logical couplings (i.e. hidden dependencies) between
source code units [10,12].

The ArchEvo approach presented in this paper is a combination of both
approaches mentioned before and extends them by analyzing coupling rela-
tionships on the architectural level. Figure 1 depicts the process followed by
ArchEvo. The process steps are described in the following subsections.

Source Code Facts Fact Graphs Views

4. Analysis

Y

) '
1. Extraction [—®| 2.Integration Views

ArchEvoDB

Execution Traces

Views 5. Visualization

3. View Abstraction
Configuration Fact Graphs
Management Data

Fig. 1. ArchEvo architecture evolution analysis process.

2.1 Fact Extraction

Implementation specific data (i.e. facts) is obtained by applying static and
dynamic analysis techniques including parsing and profiling. Parsing delivers
static source code models that contain the source code specific entities such as
files, packages, classes, methods, and attributes and the dependencies between
them. Dependencies are file includes, class inherits and aggregates, method
calls and overrides, and variable accesses. Profiling delivers run-time data
(i.e. method call sequences) for an executed scenario and complements static
source code models.

Release history data of a software project is obtained from configuration
management systems in the form of modification reports. They are generated
by versioning systems such as cvs [5] or Subversion [7] and deliver data about
changes made to source files. These reports are parsed for relevant data used
to identify logical coupling relationships. Following our definition of logical
coupling we establish a logical coupling relationship between two entities if
there is a modification report that references both entities [11]. Currently,
logical coupling is detected on the level of source files which is sufficient for
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our current approach. However, the integration of logical coupling on a more
fine-grained level would be beneficial and is subject to future work.

As mentioned before different tools are used to obtain facts from a software
system each using its own output format. For instance, static source code
models and execution traces are stored in an ASCII file as directed attributed
graphs (fact graphs in Figure 1). ArchEvo uses the Rigi Standard Format
(RSF) for storing these graphs. Nodes represent extracted source code entities
(e.g. files, classes, methods, attributes) and edges represent the relationships
between them (e.g. includes, inherits, invokes, accesses).

Facts obtained from configuration management systems are stored to a
relational database. To facilitate a common access of both data sources they
have to be integrated into a common repository which is the ArchEvoDB. Be-
cause the ArchEvo abstraction approach needs directed attributed graphs the
configuration management data stored in the relational database is converted
to a fact graph. Nodes of this graph represent source files and modification
reports and edges represent established couples relationships between source
files. Next, these fact graphs are integrated into the ArchEvoDB that is a fact
graph containing the source code, run-time and logical coupling data.

2.2 Data Integration

The two basic requirements for integrating the extracted heterogeneous fact
graphs are: (a) facilities for extending the meta model to integrate new entity
and relationship types; and (b) algorithms to map local to unique identifiers.
Concerning the first requirement we use the FAMIX meta model for object-
oriented programming languages [1] and extend it towards the inclusion of
configuration management data, architectural views and metric data. Latter
data is computed by the ArchEvo view abstraction algorithm described in the
next subsection. The second requirement is fulfilled by our integration tool
that maps locally unique identifiers (within a data file) to identifiers unique
within the repository (ArchEvoDB).

Each fact graph is read by the integration tool that for each entity and
relationship contained in the fact graph finds out about its identifier in the
repository and if not exists computes a new one. Using the unique identi-
fiers the new facts (nodes, edges, and attribute records) are added to the
ArchEvoDB. The result is a common repository containing the integrated fact
graph that forms the basis for the on-going abstraction and analysis tasks.

2.8 View Abstraction

In this step architectural views are abstracted from the integrated fact graph.
ArchEvo supports abstraction to different levels of abstraction whereas the
level is specified by the user. The abstraction algorithm used by ArchEvo
is based on the approach presented by Holt et al. in [13], but extends it by
computing measures for abstracted elements and relationships. An approach
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similar to Holt’s also has been described by Feijs et al. in [9].

Relationships between architectural elements and abstraction measures are
computed using binary relational algebra. Currently, we use the grok tool [8]
for calculating the binary relations because grok is able to handle extracted
and integrated fact graphs in RSF format. However, the abstraction of at-
tributes of relationships is not straight forward with grok, hence we imple-
mented a workaround to handle this problem: For instance, the attribute
values of lower-level relationships that form an abstracted relationship are
summed up. Ongoing work is concerned with storing fact graphs in a rela-
tional database and use the standard query language SQL instead of grok.

Algorithm 1 defines the ArchEvo abstraction algorithm that is applied to
the directed attributed fact graph.

Algorithm 1 ArchEvo abstraction algorithm

1: foreach entity pair (A,B) do

2 setA := entities contained by A

3 setB := entities contained by B

4: relsAB := relationships of type T between setA and setB
5: if #relsAB >0 then

6: rel := create relationship of type T between A and B
7: measures := compute abstraction measures of rel

8§ end if

9

end foreach

Having selected a relationship type to be abstracted the algorithm pro-
cesses each pair of higher-level entities and first computes the two sets of
entities (e.g. methods) contained in A and B (line 2,3). Next, the relationships
of type T between the entities of set A and set B are queried (line 4) from the
graph. If there is at least one relationship between any two lower-level entities
of set A and B then an abstracted relationship between A and B is established
(line 6). Measures concerning the number of affected lower-level relationships
and entities are computed and stored in attributes of the new relationship
(line 7). For instance, the number of modification reports making up a logical
coupling is summed up and stored in the refcount attribute of the abstracted
coupling relationship. Table 1 lists the measures computed for abstracted re-
lationships (these measures also apply to other levels of abstraction).

Basically, ArchEvo distinguishes between direct and indirect dependencies
whereas indirect stands for transitive. For both kinds of dependencies the
number of involved source code entities are computed. Resulting measures
reflect the weight of abstracted relationships and consequently quantify the
coupling between architectural elements. They are used in the analysis of the
dependencies between architectural elements.
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Table 1. Measures computed for relationships abstracted to the module-level.

Measurement Description

nrRelsDirect # of abstracted direct lower-level relationships

nrRelsIndirect | # of abstracted indirect lower-level relationships

nrAdirectB # of source code entities of direct relationships in module A
nrAindirectB # of source code entities of indirect relationships in module A
nrBdirectByA | # of source code entities of direct relationships in module B

nrBindirectByA| # of source code entities of indirect relationships in module B

refcount # of modification reports of a logical coupling relationship

2.4 Analysis

The goal of the analysis step is to indicate strongly coupled elements and
to provide clues why these elements have such a strong coupling. The data
used for this analysis is stored in the abstracted views. They contain the
architectural elements (nodes), the coupling relationships (edges), and the
coupling measures (attributes).

Coupling measures are stored in attributes of (abstracted) relationships.
For instance, the number of method calls is stored in the nrRelsDirect at-
tribute of an abstracted invokes relationship. For an abstracted couples
relationship the number of modification reports is stored in the refcount at-
tribute. Based on these attributes ArchEvo uses graph queries to determine
the relationships of interest and the corresponding architectural elements.

Graph queries are implemented using a combination of binary relational
algebra and Perl scripts. For example, to determine the elements with the
strongest logical coupling ArchEvo applies a query to the refcount attribute
of couples relationships that have a value greater than a given threshold.

For the correlation of source code coupling with logical coupling relation-
ships ArchEvo ranks each relationship with respect to the computed average
or maximum of a given relationship attribute (e.g. refcount). The ranking
values are represented in matrices one per attribute. Using statistical methods
on the matrices the correlation between the different relationships is computed
providing users with quantitative measures about the dependencies.

The result of the quantitative analysis are refined architectural views that
facilitate an assessment of the current architecture and its evolution, as well
as the identification of design shortcomings. They also provide good starting
points for a more detailed analysis of architectural dependencies, for instance,
by selecting two modules that are strongly coupled.

The detailed analysis that qualifies and verifies quantitative measures is
performed on a finer-grained level of abstraction such as the file-level. Consid-
ering the reduced set of files of the selected higher-level entities (i.e. modules)
the logical coupling relationships are qualified with respect to the source code
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coupling that caused it. Next the results of the qualification are reflected back
to the higher-level views to enrich them with more details. They direct to lo-
cations of design shortcomings that should be resolved to smoothen evolution
and maintenance.

In the next section we describe our analysis of the open source web browser
Mozilla [18].

3 ArchEvo Views

The outcome of the ArchEvo architecture analysis process are views that can
be used by the user to identify starting points for minor changes on lower
level or major re-design phases. To demonstrate our ArchEvo approach we
applied it to the open source web browser Mozilla version 1.3a (released De-
cember 2002). At this time the Mozilla application suite comprised more than
10.400 source files in C/C++ containing about 3.700.000 source text lines dis-
tributed over 2.500 directories and more than 90 software modules. Starting
from Mozilla’s design documentation we focused our analysis on a selected
set of software modules as architectural elements that implement the internal
representation (i.e. content) and the layout of web pages. Table 2 lists the
selected software modules together with corresponding source code directories
containing their implementation. The mapping between modules and source
code directories has been taken from Mozilla’s design documentation.

Table 2. Selected Mozilla modules and their source code directories

Module Source Directories

MathML layout/mathml

New Layout Engine layout/base, layout/build, layout/html

XPToolkit content /xul, layout/xul

Document Object Model | content/base, content/events, content/html/content,
(DOM) content/html/document, dom

New HTML Style System content/html/style, content/shared

XML content/xml, expat, extensions/xmlextras

XSLT content/xsl, extensions/transformiix

Subgoals in our analysis were: (a) abstraction from the low-level infor-
mation to the level of software modules; and (b) correlating the abstracted
implementation specific relationships with the modification specific ones. The
objective was to obtain measurements (sizes, weights) of different coupling de-
pendencies between the selected software modules including source code but
also logical couplings as listed in Table 1

Based on these views and measurements we analyzed the as-implemented
architecture of these modules with respect to their maintainability and evolv-
ability. These two related quality attributes of software systems are influenced
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by the coupling between software modules. Basically, the stronger the coupling
is the more effort has to be spent for maintaining and evolving the system [3].

The following sections report on our findings about the selected modules
listed in Table 2.

3.1 Module View

The module view reflects the as-implemented design together with the release
history information. The elements of the representation are software modules,
their source code and logical coupling relationships.

The resulting graphs—different types of relationships can be selected for
the graph generation—gives a first quantitative feedback about inter-module
coupling. Figure 2 depicts invocations—represented as red/solid arcs—between
the selected modules which are represented as gray boxes. Width and height
of the boxes indicate the size of software modules in terms of number of global
functions and methods (width) and global variables and attributes (height) of
a module. The distance between two modules is determined by the number of
logical couplings (i.e., pairwise changes) between these modules and indicated
as straight, cyan/solid line. Since all modules are coupled with each other
through “administrative noise”, weaker couplings are omitted. As threshold
we used 10% of the maxium coupling (DOM — New Layout Engine) which in
turn comprises more than 48.000 pairwise modifications. The “administrative
noise” mentioned above typically involves several hundred files. Messages left
in the description field of these administrative modifications are for instance
“license foo” (with 7.961 referenced files), “printfs and console window info

invokes

box size:

T D aggregates

#methoés

#attributes

Fig. 2. Invokes, inherits and aggregates between selected modules
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needs to be boiled away for release builds” (1.135 files), or “Clean up SDK
includes” (888 files).

With this view one can easily spot the strong coupling between the three
modules in the center of the graph (New Layout Engine, DOM, XPToolkit).
Interesting to see is the high number of mutual calls between these modules.
Consequently, when modifying one of these modules it is very likely that the
other modules have to be touched.

The two small graphs in Figure 2 on the right side show the same coupling
graph but the inherits and aggregates relationships. The strongest edges in-
dicate a high correlation with the strong couplings between the modules. In
both views the mutual dependencies can be observed as well.

As a result, abstracted module views pointed out locations of strong cou-
plings that caused pairwise modifications of software modules. Directed refac-
torings can be applied to these locations to improve the design and reduce the
pairwise modifications in the future. However, module views are abstract rep-
resentations of underlying source code data. Therefore, deeper insights into
the coupling dependencies are mandatory to refactor them.

3.2 A Detailed Module View

For a detailed evaluation of the coupling between software modules we selected
the modules New Layout Engine and XPToolkit. The focus was on the source
files of both modules that have the strongest coupling. These files represent
the design critical source code entities. The resulting graph comprises six files
and is depicted in Figure 3. It shows method invocations (red/solid arcs)
gathered from the runtime data and the logical couplings between source files
(straight cyan/solid lines).

The layout, i.e., the relative position of the boxes to each other, is defined
by the number of logical couplings found between files. Actually, the highest
coupling crossing the module boundaries exists between nsPresShell.cpp and
nsXULDocument.cpp with 81 problem reports. The flags with the numbers
of invocations attached to the arcs are always pointing from the caller and
indicate the actual number of dynamic invokes found. For example, there are
4 calls from nsXULFElement.cpp to nsPresShell.cpp and 3 calls in the other
direction.

The central position of nsCSSFrameConstructor.cpp indicates a high de-
gree of coupling with other files. This strong logical coupling is further
strengthened by the method invoke relationships which cover all other files
in this view. Therefore, this file is the most critical entity concerning evolving
or maintaining the two modules.

Summarized, the case study showed the bottom-up abstraction of lower-
level information to architectural views (i.e. module view). These views
are mandatory to point out the modules that are most involved in pairwise
changes. Next going top-down from architectural views to lower-level views
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Fig. 3. Invocations between files (Modules XPToolkit and New Layout Engine)

the details making up and causing these logical couplings in the implementa-
tion are revealed. Knowing the critical source code entities the user can direct
his refactoring activities to these entities to improve the as-implemented de-
sign of the system under study.

4 Related Work

Related work ranges from evolution analysis to architecture recovery and cou-
pling analysis approaches. Concerning evolution analysis Zimmermann et al.
inspected release history data of several software systems for logical coupling
between source code entities [20]. They drew the conclusion that augmen-
tation of architectural data with evolutionary information could reveal new
otherwise hidden dependencies between source code entities. Even though a
number of other work used release history data as well, a detailed evaluation
of the correlation between source model entities and the properties of logical
coupling is still missing.

Hsi and Potts [14] studied the evolution of user-level structures and oper-
ations of a large commercial text processing software package over three re-
leases. Based on user interface observations they derived three primary views
describing the user interface elements (morphological view), the operations a
user can call (functional view), and the static relationships between objects
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in the problem domain (object view). As this approach does not consider a
thorough code analysis, user interface issues are usually not taken into ac-
count during code analysis, a fusion with methods regarding code and release
history data would yield good results in feature evolution analysis.

In [12] we examined the structure of a Telecommunications Switching Soft-
ware (TSS) over more than 20 releases to identify logical coupling between
system and subsystems. As step towards combination of abstract concepts
such as feature information and logical coupling we investigated in [10] the
reflection of qualified release history data onto different source code model
entities. Release history data comprised modification report plus problem
tracking data. The source code model data representing different features
were derived from source code using runtime information. The verification of
properties of the underlying source code model such as aggregation etc. were
beyond the scope of this work.

In [3] Briand et al. discussed a unified framework for coupling measure-
ment in object-oriented systems based on source model entities. Based on
this metrics they verified in [4] the coupling measurements on file level using
statistical methods and logical coupling information based on “ripple effects”
[19]. A classification of logical coupling information to verify the properties of
coupling measurement has been omitted. In our approach we go further and
use file level information to abstract onto higher architectural views such as
module view as well.

Wilkie and Kitchenham investigated the correlation of coupling between
objects (CBO) and change ripples of a C++ application [16,17]. Their work
was focused on class level properties in contrast to our work which is primarily
focused on higher, more abstract architectural views.

Concerning architecture recovery several related approaches exists such
as, for example, described by Holt et al. in [13] and Feijs et al. in [9].
Both approaches deal with abstracting lower-level source code information.
The abstraction algorithm used by ArchEvo is based on them. However, in
extension to these approaches ArchEvo takes into account modification and
problem report data. Further, ArchEvo concentrates on the computation of
measures for abstracted elements and relationships.

5 Conclusions and Future Work

The ArchEvo approach combines information gained from static and dynamic
analyses of the source code with release history data into specific views on
different abstraction levels. The analysis applies fact extraction and gener-
ates specific directed attributed graphs; nodes represent source code entities
and edges represent relationships such as accesses, includes, inherits, invokes,
and coupling between certain architectural elements. The integration of data
is then performed on a meta-model level to enable the generation of archi-
tectural views using binary relational algebra. These integrated architectural
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views show intended and unintended couplings between architectural elements,
hence pointing software architects to locations in the system that may be
critical for on-going and future maintenance activities. Thus, ArchEvo’s con-
tribution is the abstraction of detailed source code model data and evolu-
tionary information onto more abstract levels. This supports the reflection
of the concrete implementation at its design level with focus on the coupling
dependencies between architectural elements. Details of selected coupling de-
pendencies are obtained by decreasing the level of abstraction. Consequently,
the benefits of ArchEvo are in (1) graphically highlighting locations of design
erosion in the as-implemented architecture that led to logical couplings; and
(2) revealing the implementation details potentially causing them.

Further benefits of the ArchEvo approach are: (a) compact graphical rep-
resentation of architectural data together with evolutionary information; (b)
location of areas with frequent modifications; (c) providing good views onto
dependencies between different elements of the source code model; (d) support
for different views on arbitrary abstraction levels such as file-, component-, or
module-level; and (e) quick identification of tightly coupled files or modules
through their placement in the graphical representation. Finally, our approach
has been validated using the large open source software project of Mozilla.

Interesting areas for future work are qualitative and quantitative analy-
sis of the properties of logical and architectural coupling such as inter- and
intra-module coupling, evaluation of properties of transitive dependencies,
i.e., logical coupling but no direct architectural dependency between different
source code model entities, extending this methodology to support change im-
pact analysis of large scale software, integration of source code model deltas
between different releases to automatically classify the type of modification
such as interface changes, add/remove invocation relationship, aggregation
etc. (statement level analysis). Another perspective is the integration of
problem report data into the analysis process to deliver further hints for the
search of error prone entities within the abstracted views.
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Abstract

Fresco is a methodology that allows for the dynamic adaptation of component-
oriented applications. Fresco aims to support the developer in the realization of
dynamic adaptation throughout the entire life cycle of a component. At design time,
a tool (DeepCompare) assists the programmer in the preparation of a component
with live update functionality. At runtime, a middleware environment called Draco
guides the replacement process itself and ensures that a component replacement is
executed correctly.

In this position paper, the focus is on the design time support and the tool
DeepCompare. After the functional development of a component, DeepCompare
constructs a meta-model from both the old and the new component versions. These
models are compared and equivalent data-structures are identified. This informa-
tion is subsequently used to partially generate state transition functions. Possible
benefits include the verification of the correctness of an update using component in-
variants and the estimation of the complexity of the upgrade in order to flag certain
problem scenarios to the developer.

Key words: Software Evolution, Change Detection, Live
Updates, State Transfer

1 Introduction

Research shows that over 80% of the cost of a software product is caused by
maintenance, and more than 20% of the initial specifications of a product are
considered outdated within a year after deployment ([15]). Keeping software
up-to-date is a major problem that affects developers and users alike. The last
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few years, the tendency arose to address this issue by modularising software
with component-oriented methodologies. Applications are constructed by cre-
ating compositions of loosely coupled units of functionality: Components.

Reusing components shortens development time and increases robustness.
For the user, however, the problem remains. Updating the software requires
shutting it down and installing a new version, which can be a risky and ex-
pensive operation. A possible solution for this problem can be found in live
updates: modifying the software at runtime. In practice however, these tech-
niques are seldom used due to their high complexity and cost. A large portion
of this complexity is caused by the state transfer between the old and the
new version of the software. The transfer and conversion of the state of a
component must be manually implemented. This is a tedious and error-prone
task.

In this paper we present Fresco, which provides a practical approach for
live updates. We begin with a general overview of the methodology in sec-
tion 2. Since the focus of this position paper is on the design time aspect,
the second part of this paper elaborates on the tool DeepCompare. The gen-
eral architecture and functionality of the tool are presented in section 3. We
illustrate the potential of our approach by processing a small example with
DeepCompare. The example and its results are shown in section 4. Future
work is discussed in section 5. References to important related work are given
in section 6. We conclude this paper in section 7.

2 Adapting Component-based Applications

Fresco’s main goal is to increase the applicability of live updates. It achieves
this goal as follows:

Limited manual preparation: Fresco requires very little intervention of
the programmer during the development of the component. A preprocessor
is used to add an interface that can be used to access the internal structure
of the component by a later version. This is accomplished by adding getter
methods if these are not yet available and is fully automatic.

Tool support for component instrumentation: One of the most diffi-
cult issues during a component replacement is the transfer of state between
the old and the new version of a component. The Fresco methodology
places the responsibility of this transfer with the new component version.
During the update, a reference to the old version is given to the newly
created instance which interprets internal structures of its predecessor and
subsequently imports its state. This functionality is far from trivial and the
instrumentation of the new component is usually left to the programmer.
Fresco is innovative in its ability to generate large portions of this transfer
code (see sections 3 and 4).

Advanced Runtime Support: Fresco provides support for live updates at
runtime. This aspect is implemented as an extension to the Draco middle-
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ware environment. This dynamic update module (DUM) is responsible for
the correct execution of the update at runtime. It puts the active component
in an inactive® state and then loads and instantiates the new component
version. The DUM subsequently passes on the old version to the new in-
stance, which allows it to initialize itself with the state information from its
predecessor (the methods for this functionality were added by DeepCompare
in the instrumentation phase). Finally, the DUM reroutes connections from
the old to the new component. Since the Draco middleware system and the
dynamic update module are not the focus of this paper we refer to [19,20]
for more information on the dynamic aspects of the Fresco methodology.

3 Design-time support

3.1 Direct vs. Indirect State Transfer

The Fresco evolution system is based on components that are designed accord-
ing to the Cocones component methodology ([3,17]). These components are
implemented as a group of tightly coupled Java-objects. The runtime system
guarantees that a component is in an inactive state during the update (no
methods are active). Therefore the state of the component is contained in the
instance variables of the objects that make up its structure. In literature, two
approaches exist to transfer state between versions:

Direct State Transfer: The implementation of the old version is used di-
rectly. It is the responsibility of the new version to interpret and convert
the state from the previous version.

Indirect State Transfer: The old version exports its state in an abstract
representation which is later used by the new version.

While the latter approach has the benefit that it allows easy upgrading when
many different versions are involved, the technique strongly depends on the
ability to construct an ontology that defines the abstract form. Therefore, this
method is only used in specific and well defined fields such as protocol stacks
(see [10]). Furthermore, the functionality to export its state in an abstract
form must be implemented by each component, even if it is unsure whether it
will ever be dynamically replaced.

Therefore, the first approach was used in the Fresco methodology. Since
the instrumentation of the new component is complex and depends on the
previous version, tool support is provided for this activity: DeepCompare.

3.2 DeepCompare

The generation of state transition functionality consists of two steps. First,
equivalent data-structures must be identified. This information is then used

4 More accurately: a quiescent state (see [11]).
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to generate state transition functions.

Identification of Similarities

DeepCompare starts by parsing both versions of a component, and buiding a
meta-model. It then compares all types of the two projects and constructs a
similarity model. This model consists of a change-description for each couple
of types. The similarity model is then used and updated by a chain of har-
vesters. Each harvester retrieves information from both component versions
and updates the similarity model by adding semantic links to this model. As
such, the similarity model represents all known similarities at each stage of the
comparison proces. Each harvester encapsulates a different algorithm. Next
to trivial matches (e.g. variables with identical name and type in the same
class are considered equivalent), more complex matches can be derived. For
instance, the current tool is capable of detecting added encapsulation, type
renaming and variable movements between types (see section 4). Three types
of algorithms are currently investigated:

(i) Structural Algoritms will identify new similarities given known similari-
ties and the structure of both components. This principle is used in the
context of Database scheme evolution by Lerner ([12]). An example of a
harvester that uses a structural algorithm is a harvester that will search
for class variables that have been moved up or down a class hierarchy.

(ii) Techniques from Plagiarism Detectors ([14,21]) can be used to identify
similar structures between different programs. The resulting similarities
can either be directly exploited (e.g. similar variable names or comments
used in the same context), or be used indirectly by other harvesters (e.g.
by identifying similar methods — information that can be exploited by
structural algorithms).

(iii) Refactoring Detectors (e.g. [5]) exploit the principle that software evolves
gradually. Due to the popularity of Extreme Programming ([2]), refac-
toring has gained much in importance in the field of reengineering. After
a refactoring is found between different versions, underlying structure
similarities can be identified. Detecting the encapsulation of variables in
composite types is an example of refactoring detection.

While it is theoretically possible to implement DeepCompare using ab-
stract syntax trees, we consider such representations too low-level. A meta-
model is used to verify the correctness of the underlying code and to allow
for easy inspection and manipulation of the underlying source code. As our
components are implemented in Java, existing Java-based meta-models can
be used. A number of meta-models exist in literature, each with a different
philosophy and complexity. At the time of writing, JNome ([6]) is used as
the underlying meta-model. However, since it is conceivable that other mod-
els may later appear to be more suitable, the actual meta-model used by the
harvesters is abstracted using the adaptor pattern [7]).
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Generation of state transition code

In a second phase, DeepCompare will generate the transition function between
two versions. The basic building block of this process is the type transformer.
Each transformer converts a structure of a given type into another type (e.g.
a transformer may convert an array into a Vector or vice versa). Type Trans-
formers are implemented manually and added to a repository. DeepCompare
will construct the state transition functionality by selecting the appropriate
type transformers based on information contained in the similarity model.
Composite types are transformed by recursively applying known transformers
to the type. Newly added variables for which no equivalent is found in the
previous version are by default initiated to the types default value. This be-
haviour can be altered by the user. The type transformation functionality of
the tool is not yet fully implemented.

4 DeepCompare at work: a simple example

In general, it is impossible to correctly identify semantically equivalent struc-
tures between different versions of a component since not all semantic infor-
mation is contained in source code. A typical example is the representation of
a triangle. In version n, three points may be used while version n+ 1 uses two
edges and an angle. Therefore, identification of similarities is in essence an in-
teractive and semi-automatic process. At all times, the user of DeepCompare
can guide the tool by adding or removing semantic links between types.

However, it is our belief that the majority of structures that make up
the state of a component has sufficient similarity between versions that it
can be detected by a tool. A small example is shown in figure 2. On this
figure, rectangles represent the objects that make up the component. Ovals
connected with these rectangles are instance variables associated with these
objects. Blue and red items are part of the original /new version of the program
respectively. Yellow types are part of the JDK and are considered to be fixed.
Orange refers to primitive types.

The example consists of a Line with some associated methods. In the
original, four instance variables are present representing the coordinates of
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Fig. 2. DeepCompare at work. Additional detected similarities between JDK types
are not shown for clarity.

two points of this line. In the new version, a new type (Point) was introduced
and used by the Line object. In addition, the object was renamed. In this
case, DeepCompare succesfully identified all equivalent types and members
between two versions. In a first step, the types Line and LineRenamed were
found to represent the same type, based on similar implemented functionality.
A harvester further down the chain later detected the use of an encapsulation
and succesfully associated the variables that represent the coordinates of the
points that define our line.

While an example of this size hardly proves the general applicability of
DeepCompare, experiments with larger projects have been executed and have
shown promising results. A thorough description of a larger example is outside
the scope of this position paper.

5 Future Work

Large portions of the Fresco methodology (e.g. the entire runtime platform:
Draco and its dynamic update extension) are near completion. The design
time tool DeepCompare is under very active development. Currently, the tool
is functional with simple algorithms. In the near future, focus will be on the
implementation of more complex harvesters in order to improve the recognition
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of equivalent structures. The tool will be tested against larger projects and
both success and failure scenarious will be investigated to further improve the
tool. Future work also includes a full implementation of the code generator and
extending it with an invariant checker. This will allow DeepCompare to verify
the correctness of the proposed transformations. Future work also includes
flagging possible problematic structures to the programmer (e.g. structures
that would take too long to convert during a live update, complex conversions
that require manual verification, ... ).

6 Related Work

Most work in the field of live updates concentrates on the dynamic aspects. For
procedural systems, Hicks ([9]) uses dynamic patches that consist of verifiable
native code. With CONUS, the programmer can replace a component using
a declarative specification of the desired changes ([11]). For object-oriented
applications written in Java, systems were proposed that use a variety of
methods in order to modify a running application. Technologies used include
modifications to the Java Virtual Machine ([1,13]), language extensions ([4,8])
and meta-architectures ([16]). To give an exhaustive overview of existing
systems is beyond the scope of this paper, and we refer to [9,18] for more
complete surveys.

The problem of state transfer is usually left to the programmer, or ignored
completely. Although certain systems include some tool support ([1,9]), this
is often limited to the generation of a framework in which the user can im-
plement the transition. The system developed by Hicks even automatically
generates transfer code for variables whose names remain unchanged. In gen-
eral however, little intelligent support is offered to transfer the state itself.
For some systems, such as the delegation based approach by Kniesel (see [8]),
state transfer is not relevant.

7 Conclusion

In this position paper we introduce the Fresco methodology for runtime evo-
lution of component-oriented applications. At design time, components are
instrumented with state transfer functionality. The developer is aided in this
task by a tool: DeepCompare. This tool searches for equivalent data struc-
tures in two versions of a component and uses this information to partially
generate the transition code. At runtime, a middleware platform takes care
of all the details of the update itself.

References

[1] Andersson, J. and T. Ritzau, Dynamic code update in Jorums, in: Workshop
on Software Engineering for Wearable and Pervasive Computing, 2000.

188



[2] Beck, K., “Extreme Programming Explained: Embrace Change,” 1999.

[3] Berbers, Y., P. Rigole, S. V. Baelen and Y. Vandewoude, Components and
contracts in software development for embedded systems, in: Proc. of the first
ECUMIS, 2004, pp. 219-226.

[4] Costanza, P., Dynamic object replacement and implementation-only classes, in:
Proc. of Workshop on Component-Oriented Programming at ECOOP, 2001.

[5] Demeyer, S., S. Ducasse and O. Nierstrasz, Finding refactorings via change
metrics, in: Proc. of OOPSLA, 2000, pp. 166-177.

[6] Dockx, J., N. Smeets, K. Mertens and E. Steegmans, jnome: A java meta-model
in detail, Technical Report CW323, KULeuven Department of Computerscience
(2001).

[7] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements
of Reusable Object-Oriented Software,” Addison Wesley, 1994.

[8] Giinter Kniesel, Type-safe delegation for run-time component adaptation, in:
Proc. of ECOOP 99, Lisbon, Portugal, 1999.

[9] Hicks, M., “Dynamic Software Updating,” Ph.D. thesis, Department of
Computer and Information Science, University of Pennsylvania (2001).

[10] Janssens, N., S. Michiels, T. Mahieu and P. Verbaeten, Towards transparent hot-
swapping support for producer-consumer components, in: Second Int. Workshop
on Unanticipated Software Evolution, Warshau, 2003, pp. 9-16.

[11] Kramer, J. and J. Magee, The evolving philosophers problem: Dynamic change
management, IEEE Transactions on Software Engineering 16, pp. 1293-1306.

[12] Lerner, B. S., A model for compound type changes encountered in schema
evolution, ACM Transactions on Database Systems 25 (2000), pp. 83-127.

[13] Malabarba, S., R. Pandey, J. Gragg, E. Barr and J. F. Barnes, Runtime support
for type-safe dynamic java classes, in: Proc. of ECOOP, 2000.

[14] Malpohl, G., J. Hunt and W. Tichy, Renaming detection, in: Proc. of the 15th
International Conference on Automated Software Engineering, 2000.

[15] Rausch, A., Software evolution in componentware - a practical approach, in:
Proc. of the Australian Software Engineering Conference, 2000.

[16] Redmond, B. and V. Cahill, Iguana/j: Towards a dynamic and efficient
reflective architecture for java., in: Workshop on Reflection and Meta-Level

Architectures at 14th Furopean Conference on Object-Oriented Programming,
2000.

[17] Urting, D., T. Holvoet, P. Rigole, Y. Vandewoude and Y. Berbers, A tool for
component based design of embedded software, in: Proc. of Tools Pacific 2002.

189



[18] Vandewoude, Y. and Y. Berbers, An overview and assessment of dynamic
update methods for component-oriented embedded systems, in: Proc. of Software
Engineering Research and Practice, 2002, pp. 521-527.

[19] Vandewoude, Y. and Y. Berbers, Supporting runtime evolution in seescoa,
Journal of Design & Process science 8 (2004), pp. 77-89.

[20] Vandewoude, Y., P. Rigole, D. Urting and Y. Berbers, Draco : An adaptive
runtime environment for components, Technical Report CW372, Department
of Computer Science, Katholieke Universiteit Leuven, Belgium (2003).

[21] Wise, M. J., Improved detection of similarities in computer program and other
texts, in: Twenty-Seventh SIGCSE Technical Symposium, Philadelphia, 1996.

190



SETra 2004 Preliminary Version

Dynamic software assembly for automatic
deployment-oriented adaptation

Anthony Savidis
Institute of Computer Science, as@ics.forth.gr

Foundation for Research and Technology — Hellas (FORTH)

Abstract

The notion of software adaptation considered in this paper relates to the capability of
making software systems adjustable to varying deployment requirements. In this
context we seek for the necessary runtime infrastructure to allow software systems
adapt on the fly to the particular execution requirements. The primary assumption is
that the constituent components of a software system may have to be provided with
alternative incarnations, each potentially addressing varying deployment needs. In this
context, adaptation is treated as a runtime function of the system itself, realising a
component selection and assembly process, since the deployment-specific parameters
are only known upon execution start-up.

Key words: software adaptability, dynamic software assembly,
deployment-oriented adaptation

1 Introduction

The need for software adaptability has been identified in [1], mainly emphasizing
static software properties such as extensibility, flexibility and performance tunability,
without negotiating the automatic and dynamic software assembly. Similarly, in [2],
adaptability is also considered a key static property of software components, which
can be pursued through aspectual decomposition, i.e., by employing aspect-oriented
programming methods. In this paper, we are targeted in the engineering of software
systems capable to dynamically activate alternative implementation versions of
embedded software components through a runtime decision process, which relies on
deployment-oriented decision parameters. To provide a more precise idea regarding
dynamic software assembly based on deployment requirements, the application of the
reported work in the context of dynamic User Interface assembly will be supplied. In
this context, deployment parameters concerned individual user profiles, including
abilities, preferences, expertise, etc. The dynamically assembled software artifacts
concerned User Interface components.

In Figure 1, an excerpt from the Use Interface component structure of the
AVANTI web browser [3] is shown; arrows indicate interface components whose
activation and graphical embedding takes place at start-up conditionally, depending
on the individual user profile (the deployment parameters for User Interfaces were

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs
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actually user profile parameters). The adaptation-oriented decision logic for the cases
of Figure 1 where alternative implementations exist is provided in Figure 2.

"5] | %
Empty I

Cin Cat wew Go Doskmans Hem

-8 ® @ o

Toolbar 1

Browser

(1LY LTS

Figure 1: The hierarchical User Interface component structure of an adaptable browser; arrows indicate
alternative implementations of components (empty indicates a component can be entirely omitted).

Component identifier | Decision logic

if (user.”CanUseUpperLimbs” == false) then
“Toolbar 1” activate “ScanningToolbar”;
else
activate “Empty”;
if (user.”WebExpertise” in {“Naive”, “Casual”}) then
“IJhlkS” e activate “LinksAsButtons”;

activate “LinksAsUnderlinedText”;

if (user.”WebExpertise” in {“Naive”, “Casual”}) then

“View” activate “EmbeddedScrollbars”;
else
activate “ScrollWindow”;
if (user.”WebExpertise” in {“Naive”, “Casual”}) then
“All links” e activate “LinkEnumeration”;

activate “Empty”;

Figure 2: The decision logic engaging user profile parameters (deployment profile) for adapted User
Interface component selection and activation.

Following Figure 2, the decision logic engages user attributes (variables)
within if-then-else rules that encompass activation statements. For example, “Links”
is a component family with two alternative implementations, each associated uniquely
with a descriptive identifier, e.g. “LinksAsButtons” and “LinksAsUnderlinedText”.
This implies that the container of the “Links” family is capable to physically embed
either of the alternatives, while the choice as to which “Links” instantiation is to be
activated 1s taken by executing the decision logic upon application start-up. In this
context, because of the fact that the “Links” component may have multiple alternative
realisations it is called a polymorphic component, meaning it can be met in different
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executions of the same interactive application with different forms. The software
engineering approach for dynamic User Interface adaptation according to user profiles
is extensively described in [4]. In this paper, the generalisation of dynamic User
Interface assembly is reported, targeted in the implementation of software systems
with the following properties: (a) they encapsulate alternative component
implementations reflecting varying deployment requirements; (b) they are
architecturally organized in ways enabling alternative implementations of
polymorphic architectural components to be easily accommodated; (c) they
encapsulate decision making driven by deployment parameter values; and (d) they
perform a runtime software assembly process bringing together the necessary
constituent components that bets-fit the particular deployment profile.

2 Architectural polymorphic decomposition

The key architectural implication due to the functional requirement for dynamic
adaptation-oriented software assembly is the need for organization of implemented
software components so as to enable dynamic architectural containment hierarchies. It
should be noted that since containment concerns architectural decomposition
relationships, i.e. components that logically encompass other components,
containment always reflects a hierarchical structure. Other architectural views also
exist, like dependency (or call) graphs, data exchange, etc., but those are not
employed for the software assembly problem in our context. Overall, every software
system has a hierarchical architectural view of its constituent components, which is
actually of key importance when targeted in dynamic software assembly from runtime
selected constituent components.

>,

“’ e

PL(Al) = PL(A11) * PL(A12) * PL(A13)
PL(All)=3
PL(AI2) =...
PL(AI3)=....

PL(A2) = PL(A21) * PL(A22)
PL(A21) =4
PL(A22) =...

sample @
O
(29)

PL(A3) = PL(A31) * PL(A32)
PL(A31)=2
PL(A32) =5

Figure 3: Illustration of polymorphic architectural containment for software components, showing the
potential for multiple implementation instantiations of embedded components; it should be noted that
the hierarchical architectural containment view is only of importance for dynamic software assembly.

In non-adaptable monomorphic software applications, developers typically
program the hierarchical (containment) structure of architectural components through
hard-coded associations that are determined during development time. However, in
the context of adapted software delivery, the component containment hierarchies
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should support two key features: (a) parent-child associations are always decided and
applied during runtime; and (b) multiple alternatively candidate contained-instances
are expected for composite components. The component organization method of
dynamic polymorphic containment hierarchies is illustrated in the Figure 3. Following
Figure 3, PL indicates the polymorphism factor, which provides the total number of
all potential different run-time incarnations of a software component, recursively
defined as the product of the polymorphic factors of constituent component classes.
Practically, the actual number of plausible distinct software versions is less than PL,
while it can be extracted by analysing the “diversity” of the deployment parameters.
But since the deployment requirements may differentiate even per a component basis,
the PL number does not only serve as a theoretical upper bound.

3 Dynamic assembly process

Since the hierarchical component-containment structure engages components,
which can have alternative incarnations, it is implied that either the contained or the
container components may vary. As a result, this hierarchical structure is not
monomorphic, but reflects also a polymorphic discipline. In this context, the dynamic
assembly process reflects the hierarchical traversal in the polymorphic containment
hierarchy (see Figure 4), starting from the root component, to decide, locate,
instantiate and initiate appropriately every target contained component. This process
primarily concerns the architectural components that are actually polymorphic, i.e.
architectural container components designed with alternative deployment-oriented
decompositions.

.................................... e cide
> 2. locate

3. instantiate
4. initiate

Figure 4: The traversal of the hierarchical containment architectural structure to: decide, locate,
instantiate and initiate software components.

From the implementation point of view, the following software design decisions
can be made:

» The containment-oriented architecture-component hierarchy has been
implemented as a tree data structure, with polymorphic nodes triggering decision
making sessions;

» Software components have been implemented as distinct independent software
modules, implementing architecture-role generic Application Programming
Interfaces (APIs), while exposing a singleton control-API for dynamic
instantiation and name-based lookup;
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» The software assembly procedure is actually carried out via two successive
hierarchical passes:

= Execution of decision sessions, to identify the specific selections for

polymorphic architectural contexts, that will be part of the eventually
delivered software;

= Software assembly and start-up, through instantiation and initiation of all

decided components.

Although the previous process is only conceptually illustrated under Figure 4, its
implementation is quite straightforward when concerning component that are
singleton classes: each alternative singleton derives from the basic base-class API
(component-specific), while all singleton pointers are populated in a hash-map; the
initial selection is simply made via name-based look-up. The implementation of
dynamic assembly becomes much harder when polymorphic components concern
normal program classes, instances of which are made explicitly via statements within
the program source-code. More specifically:
= Let A be a programmer-defined class.
®= A a; and new A(...); are two example statements for explicit instantiation of class

A in the program source code.
= LetAj...,A, be alternative deployment-oriented implementations of A; we need to

allow instantiations to concern A;, assuming A; implementation is chosen upon

decision making.
=  We want to provide a generic instantiation style of the form: A::Construct(“A;”),
thus supporting parameterization of the specific class name.

The previous required style signifies a departure from the traditional style of hard-
coded class instantiations in the program source code to parameterized instantiations,
enabling the class identifier to be supplied as a string argument. In other words,
instead of new Ai, we want to support A::Construct(A::GetDecidedClassld()), where
GetDecidedClassld is a static function returning the decided A version from
{A},...,A,}. This represents a radically different perspective in class deployment,
enabling orthogonal expansion of mutually exclusive class versions, while
emphasizing deployment according to the base class API. The implementation of this
technique is illustrated in the source code pattern of Figure 5. As shown in Figure 5,
every class version implements a constructor functor class that is registered upon
static class initialization in the class—specific dispatch table; this functor class, named
Constructor, is responsible for dynamic class instantiation by calling the appropriate
overloaded class constructor. This technique is a variation of double / dual
dispatching. At the bottom of Figure 5, the parameterized deployment style is shown,
with the traditional style of hard-coded class use put in comments. Clearly, the new
style requires a little more code typing, however, it emphasizes far better deployment
based on the basic class API, i.e. Base*, while completely hiding the different class
versions.

Additionally, it supports orthogonal extension of class versions, since the
implementation of the dispatching method within the Base class is not dependent on
derived classes; hence, once new derived classes are implemented according to the
suggested pattern, those become automatically engaged in the adaptation process.
This technique is easier to implement once classes become available over a
component-ware technology, as they are already delivered over proxy APIs. Also, in
cases of languages enabling dynamic class loading, like Java or Action Script,
dynamic loading of class versions is straightforward.
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class Base {
public:
struct CtorArgs_string {
std::string arg;
CtorArgs_string (const std::string& s) : arg(s){}
}i
struct CtorArgs_int {

int arg;
CtorArgs_int (int 1) : arg(i) {}
}i
struct CtorArgs_void { CtorArgs_void (void) {} };
class Ctor {
public:
virtual Base* operator () (CtorArgs_string&) = 0;
virtual Base* operator () (CtorArgs_inté&) = 0;
virtual Base* operator () (CtorArgs_void&) = 0;

bi
static const std::string GetDecidedClassId (void);

template <class Args> static Base* Construct (Argsé& args) {
std: :map<std::string, Ctor*>::iterator i;
i = ctorMap.find(GetDecidedClassId());
assert (i !'= ctorMap.end());
return (*i->second) (args);

}

protected:
static std::map<std::string, Ctor*> ctorMap;

}i

class Derived : public Base {
class Constructor;
friend class Constructor;
Derived (const std::stringé&);
Derived (int);
Derived (void);
public:
class Constructor : public Base::Ctor {
public:
Base* operator () (CtorArgs_stringé& a)
{ return new Derived(a.arg); }
Base* operator() (CtorArgs_inté& a)
{ return new Derived(a.arg); }
Base* operator () (CtorArgs_voidé& a)
{ return new Derived; }
bi
static void Initialise (void)
{ ctorMap["Derived"] = new Constructor; }

}i

Base* b = Base::Construct (Base: :CtorArgs_void());
// Derived* d = new Derived;

Figure 5: Implementing virtual destructors through runtime dispatching of class instantiations relying
on class and argument type dispatching.

4 Key architectural ingredients

As it has been previously mentioned, the adopted notion of software adaptability
reflects the functional properties of automatic software assembly, through decision-
making that relies upon runtime software adaptation parameters. It should be noted
that this is a fundamentally different target from formal methods related to software
evolution, which focus on the automated transformation and evolution of software
structures at development-time, according to diverse software requirements. The key
architectural elements towards dynamic software assembly are:
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= Hierarchical architectural view (component containment)

= Architectural context (sub-architecture that is subject to adaptation)

= Software component

= Software deployment parameters

= Software deployment scenarios

= Polymorphic architectural components

= Alternative encapsulated components

=  Architectural decomposition

= Architectural role component indexing

=  Architectural containment

= Functional-role abstraction APIs

= Mutually exclusive class versions

Those lead to an augmented vocabulary for the software architecture domain,
mainly introducing the meta-elements necessary to accommodate runtime software
assembly driven by decision-making for deployment adaptation, as illustrated in
Figure 6.

Architectural Architectural context Architectural Functionality
decomposition (sub-architecture) containment abstraction

N JN0TET000,
i ISA ‘M
pr
€ 1 l
\ T

abstract concrete
API API

Architectural

Architectural Architectural polymorphism

components role indexing

Deployment
parameters

Figure 6: The key architecture meta-elements for dynamic software assembly, emphasizing the
capability to accommodate alternative mutually exclusive implementation of components and classes
within the same architecture.

S Dynamic content delivery

In the context of the PALIO project [5], the software engineering method for
dynamic software assembly has been effectively employed for adaptable information
delivery over mobile devices to tourist users. The decision-making process was based
on parameters such as nationality, age, location, interests or hobbies, time of day, visit
history, and group information (i.e. family, friends, couple, colleagues, etc.). The
information model reflected a typical relational database structure, while content
retrieval was carried out using SQL queries in XML. In this context, in order to
enable adapted information delivery, instead of implementing hard-coded SQL
queries, query patterns have been designed, with specific polymorphic placeholders
filled in by dynamically decided concrete sub-query patterns. For instance, as shown
in Figure 7, particular data categories or even query operations may be left “open”,
with multiple alternatives, depending on runtime content-adaptation decision making.
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query
pattern

e.g. celebrity
magazines

e.g. scientific _4&""
documents

) e.g. deciding
“gossip category”
e.g. computer
science e.g. deciding
e.g. deciding ‘awards category”

“recent achievements category”

e.g. The (5 e.g. Youth

Oscars e.g. Golden Movie
Globe

Figure 7: Polymorphic query patterns for adaptable query formulation.

6 Conclusions

This paper negotiates the software engineering of systems capable to realize a
dynamic assembly behavior, from a pool of fully implemented software components,
according to decision-making that is based on deployment-oriented requirements (in
contrast to design-time decisions). During execution, the system reflects a runtime
transformation behavior, in the sense that is capable to set-up itself on the fly
according to the particular deployment requirements. To accomplish this behavior
with design-time transformations, all plausible system versions, as combinations of
the desirable components, need to be produced and delivered together. Clearly, this is
an impractical method, while it does not allow the system to dynamically extend, e.g.
by enabling downloading and installing new component versions addressing
additional deployment needs.
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