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Chapter 1

Introduction

1.1 Context

Nowadays, more and more applications refer to active vibration control or suppression.
Vibrations are mostly undesired, for many reasons : perturbation to delicate devices, loss
of comfort for people, deterioration of structures and maybe destruction of these ones. The
energy being born from vibration can be dissipated either by passive or active devices. The
passive damping is known for a long time, and had been extensively studied. It allows to
decrease the level of vibration thanks to some physical modifications of the system (tuned
mass), but one of the most important drawbacks is that the active bandwidth suppression
is limited. Moreover, such absorbers are only effective if the excitation is nearly periodic.
Finally, the addition of the absorber can also cause two resonant conditions to arise in
place of the original single resonant condition [1]. These problems have been solved by
adding an active element in parallel with the spring-damper system of the passive damping
device [2]. In this work, we want to actively damp a rectangular plate by means of a loudspeaker.

Figure 1.1: Definition of mechatronics

The active damping is considered like a mechatronic system, because of the high coupling
between mechanics, electronics and data-processing (Fig.1.1). Mechatronics is defined in
the following way : ”...combination of mechanical engineering (”mecha” for mechanisms),

8



Introduction 9

electronic engineering (”tronics” for electronics), and software engineering. The purpose of this
interdisciplinary engineering field is the study of automata from an engineering perspective
and serves the purpose of controlling advanced hybrid systems” [3]. This work will be an
introduction to this part of engineering.

1.2 Objective

The main aim of this work is to develop an active damping device, composed by a plate and
a loudspeaker. In other words, the vibrations of the plate are going to be reduced thanks to
the movement of the mass of the speaker. This system consists of a state feedback control, as
represented in Fig.1.2. Because we want the damping of the plate, we will develop a regulator
(command reference null, r = 0). The voltage applied to the actuator is simply the output of
the plant multiplied by a gain, influencing performances of the system.

-

+ System 
   H(s)

g

yr ε=r-gy

Figure 1.2: State feedback control

Two main aspects are identified in the following document :

• Equations of motion of the plate and the actuator, and the experimental identification of
the parameters

• Control of the system thanks to a ”simple feedback”, and by means of state space feedback
approach

As far as the state space approach is concerned, we first apply the theory to a simple system
(inverted pendulum) in order to illustrate some notions like the observer or the Kalman’s filter.
Finally, we will apply it to our problem.

1.3 State of the art

1.3.1 Actuators

The actuator is an essential element, conditioning a good working of the active damping system.
Many parameters must be investigated, in order to make the good choice :

• mass : a shift of the natural frequencies can arise when the mass of the system increases.
Heavier the structure is, less this effect will be marked on the studied system;

• force generated : an order of magnitude of the force acting in the system has to be known;

• command aspect : a command in current or in voltage has to be considered;

• cost : beside the price of the actuator, the whole measuring chain must be considered to
estimate the cost of such a control.
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(a) Representation of the loudspeaker (b) Actuator glued on the plate

Figure 1.3: Proof-mass actuator

In section this section, the proof-mass actuators will be presented, which are well-adapted
for our active damping problem. Of course, a lot of actuators exist nowadays, more and more
efficient. The family of the actuators can be divided into three groups : electrical, mechanical
and pneumatic and hydraulic actuators ([4], [5]). The first group is undoubtedly the most spread
in mechatronic systems. The advantage of this kind of actuator is that the control is relatively
simple and cheap, and the range of power covered is important, from nano-actuators to many
kW of power are available. The last two categories are maybe more used for large structure
control, or systems where the space requirement is not a dominating criterion.

Proof-mass actuator A reaction mass is attached to a current magnetic coil moving in
a magnetic field created by a permanent magnet (Fig.1.3(a)). The moving part is linked to
the chassis thanks to a spring of stiffness k and a damper of constant c. A loudspeaker is a
typical (and cheap!) proof-mass actuator. Ours will be described in section 2. In this work,
the diaphragm is glued on the plate (Fig.1.3(b)), and the proof-mass is the magnet. The
performance of such actuators are closely linked to the electromechanical constant φ, which
gives the ratio between the force and the current going through the coil. Typical bode plots
of this system can be found in Fig.1.4. We can see that, after the natural frequency of the ac-
tuator, this one behaves like an ideal force generator, with a large bandwidth and a no phase lag.

180˚

0˚

f

g

ffc

|F/U|

fc

Figure 1.4: Bode plots of a proof-mass actuator

”Professional” proof-mass actuator can be found in [6] and [7]. Several criteria are taken
into account for the conception, like avoiding a shift of natural frequencies of the structure
(light weight), an important bandwidth and a high value for constant φ. The reference [8]
gives informations about the design parameters of a lightweight proof-mass actuator, from an
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electrodynamic and mechanical point of view.

As far as the ratio φ is concerned, if the current is sinusoidal, we have :

|F | = φi = mmagnetẍ = mmagnetω
2d (1.1)

where ω is the pulsation of the current, m the mass of the permanent magnet (approximately
those of the speaker) and d the stroke of the actuator. We just mention here that a lot of
problem can arise because of this stroke limitation, and that the performances and the control
of this actuator can be degraded at low frequency (see [9] and [10]).

1.3.2 Collocated systems

By definition, a system is called collocated if the sensor and the actuator are at the same location
(see Ref. [11]). Consider the simple case in Fig.1.5 :

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

x
x
x
x

x
x
x
x
x

sensor (i)

actuator (j)

Figure 1.5: Cantilever beam with actuator (j) and sensor (i)

The transfer function between the excitation j and the response i can be written :

Hij(ω) =
∑

k

Bijk
ω2

0k − ω2 + j2ξkω0kω
(1.2)

where ω0k is the natural pulsation of the structure, ξk is the damping ratio and Bijk is the modal

compliance, defined by Bijk = ψikψ
j
k with ψik representing the modal amplitude at node i for the

mode k. If we pose assume collocation, Bijk will always be positive because i = j, and thus

dHii(ω)

dω
≥ 0 (1.3)

Relation 1.3 shows us that the plot of the transfer function with respect to the frequency
will lead to a monotonous growing function, which goes to ±∞ for the natural frequencies and
is worth 0 for the anti-resonance. In all cases, there will be one and only one anti-resonance
between two consecutive resonances, and consequently the system will be minimum phase due
to pole-zero interlacing property (Fig.1.6 and 1.7).

We can emphasize here the advantage of collocation for active damping : the phase oscillates
always between 0 and −180◦, which gives a minimum-phase system. A brief overview about
the research history in collocation system is given in [12], but we will retain only the fact that
vibration control systems using collocated direct velocity feedback have an infinite gain margin,
and so an unconditional stability. Let us remember that the instability is provoked by a gain
> 0dB and a phase lower than −180◦. Thus, with a velocity feedback, the feedback gain can be
very important without a destabilization of the close loop, because we never go under −180◦ (see
1.7). The performances reached are thus higher in collocated system than in non-collocated ones.

A second notion must be introduced at this point, in order to complete this introduction : the
duality sensor-actuator pair. Duality means energetically conjugated, like force and displacement
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or velocity, or torque and angle. Sun in [13] shows us that there is not always unconditional
stability for collocated sensors-actuators if they are not dual. Furthermore, he emphasizes that
dual pairs are more robust if there is a de-collocation, which is very appreciable in case where
perfect collocation is not possible.
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Figure 1.6: Alternating pole and zero
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Chapter 2

Equations of motion

y1 y2y1

F=φ*i

c

k

m2

p
la

te

Fsp/pl

m1

Fpl/sp

y

z

x

Figure 2.1: Modeling of the complete system

Fig.2.1 represents the modeling of Fig.1.3(b). The speaker is modeled by a two-mass system,
from which mass m1 is glued on the plate. m2 represents the mass of the magnet. Equations
of the plate and the loudspeaker are detailed below, while those of the coupled system are
developed in section 2.3.

2.1 Plate

We are going to characterize the plate in the modal field, so as to have decoupled equations
(Ref. [14]). If we suppose the equation of non-damped motion of the plate, we have :

[M ]~̈x+ [K]~x = ~F (2.1)

The conversion to the modal field is realized by introduction of ~x = [φ]~r and by left multi-
plying 2.3 by [φ]T . The columns of the modal matrix [φ] corresponds to the mode shapes, while
vector ~r gathers the modal amplitudes.

[M ][φ]~̈r + [K][φ]~r = ~F (2.2)

[φ]T [M ][φ]~̈r + [φ]T [K][φ]~r = [φ]T ~F (2.3)

mir̈i + kiri = ψiFsp/pl (2.4)

14



Equations of motion 15

Finally we have a system of n decoupled equations, where subscript i refers to the considered
mode. In chapter 4, we first develop the whole control for one mode, and extend it to several
modes. With state-space approach in chapter 6, we will use two modes.

We assume here that the eigen vectors are normalized with respect to the modal mass, so
mi = 1 and ki = w2

i . The value of ψi corresponds to the modal deformation of the plate at
the loudspeaker, for the considered natural frequency. Fsp/pl represents the force applied by the
loudspeaker on the plate, on the location where it is glued.

2.2 Loudspeaker

Fig.2.2 shows us the electromagnetical components of the loudspeaker. It is modeled by three
elements in parallel : a spring, a damper (both composing the diaphragm) and an actuator.

R

L

U~

k

c

m

  F    = φ. i(t)

m

act/m1

y y
1

1 2

2

Figure 2.2: Modeling of the loudspeaker

We have two equations because of the two translational degrees of freedom y1 and y2 . The
actuator of the speaker can be described by these equations :

U = E +Ri+ L
di

dt
(2.5)

E = φ(ẏ1 − ẏ2) (2.6)

F = φi (2.7)

where U is the voltage applied on the loudspeaker, E the induced electrodynamic force, R
and L the resistance and inductance of the loudspeaker respectively, φ is the electromechanical
constant, and F the actuator force. If we neglect the influence of the inductance, which is very
low (see section 3.2), we can rewrite the actuator force in terms of the force acting on m1 : this
is the force which will be applied on our plate:

Fact/m1
=
φU

R
− φ2(ẏ1 − ẏ2)

R
(2.8)
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2.3 Coupled equations of motion

Following Fig.2.1, and considering only one mode, equation of the plate in the modal field is
given by :

[M ]~̈r + [K]~r = ~ψFsp/pl (2.9)

with mii = 1 and kii = ω2 because of the mass normalization of the eigen vectors. ~ψ is the
vector gathering the deformed shapes. Equations of motion of mass m1 and m2 are (with m1

neglected because the mass is very low):

Fpl/sp − k(y1 − y2) − c(ẏ1 − ẏ2) +
φU

R
− φ2(ẏ1 − ẏ2)

R
= 0 (2.10)

−k(y2 − y1) − c(ẏ2 − ẏ1) − (
φU

R
− φ2(ẏ1 − ẏ2)

R
) −m2ÿ2 = 0 (2.11)

If one mode is considered, 2.9 and 2.10 give :

r̈ + ω2r = ψ(−k(y1 − y2) − c(ẏ1 − ẏ2) +
φU

R
− φ2(ẏ1 − ẏ2)

R
) (2.12)

Rearranging Eq. 2.12 and 2.11, and assuming we have ẏ1 =
∑n

i=1 ψiṙi = ψṙ :

r̈ + ψc(ψṙ − ẏ2) +
ψφ2

R
(ψṙ − ẏ2) + ω2r + ψk(ψr − y2) =

ψφU

R
(2.13)

m2ÿ2 + c(ẏ2 − ψr) − ψφ2

R
(ψṙ − ẏ2) + k(y2 − ψr) = −φU

R
(2.14)

For clearer notation, m2 and y2 are simply called m and y in the continuation of the docu-
ment. Next, we rearrange the system to obtain the two equations of the motion:

r̈ + (ψ2c+
φ2ψ2

R
)ṙ + (ω2 + ψ2k)r − (ψc+

ψφ2

R
)ẏ − ψky = ψφU

R (2.15)

ÿ +
c+ φ2

R

m
ẏ +

k

m
y − ψc+ ψφ2

R

m
ṙ − ψk

m
r = −φU

mR (2.16)

We write the full system under the usual form [M ]~̈q+ [C]q̇+ [K]~q = [F ]U , with ~q = {r y}T :

[M ] =

[

1 0
0 1

]

[C] =

[

ψ2c+ φ2ψ2

R −(ψc+ ψφ2

R )

−ψc+ψφ2

R

m

c+φ2

R

m

]

[K] =

[

ω2 + ψ2k −ψk
−ψk
m

k
m

]

[F ] =

[ ψφ
R
−φ
mR

]



Chapter 3

Identification

This section presents the identification of the components composing our active damping device.
It is an important part of the work, and it could be avoided if we used well-known components
available on the market. But the identification is anyway interesting in its own.

3.1 Modal analysis of the plate

3.1.1 Physical properties and geometry

1

8

7

70

7
7

10

730

6
3

0

60 (5234)

9 (5233)

34 (5230)

6
0

100

t=0.0021

x

y

     55

16 

Figure 3.1: Instrumentation of the plate (sensor represented in blue)

The plate is in aluminum. Here are some mechanical properties :

• E = 69 GPa

• ν = 0.33

• ρ = 2700 kg/m3

Dimensions are given in Fig.3.1. The hole in the center of the plate has no special reason of
existence. The two little ones, although they are represented, are not taken into account in our
analysis.

17
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• L = 0.73 m

• l = 0.63 m

• t = 0.0021 m

• φ = 0.077 m

3.1.2 Experimental setup

Modal analysis is made by placing the plate on two little blocks of foam (see Fig.3.2), and
without the loudspeaker. The plate is divided into 70 points. The numbering can be found in
Fig.3.1. Three Dytran 3100B accelerometers are used; they all have a sensibility of 100mV/g
(max. 3% of error). The weight of the accelerometers is about 0.067kg. In experimental modal
analysis, it is recommanded that the weight of the sensor does not exceed the weight of the
structure of 1%. Here we reach 7%. But we will see in paragraph 3.1.6 that experimental and
numerical approach agree well, so we consider that the influence of the sensors is very weak in
our modal analysis.

Figure 3.2: Plate placed on foam

The system is excited by a hammer. The force sensor incorporated inside this one is an
IEPE Dytran 5850A with a sensibility of 44.48 N/V .

The modal analysis methods generally consider Hij transmittances rather than Hji
1.

Therefore, thanks to the reciprocity theorem of Betti-Maxwell (Hij = Hji), we can displace the
hammer and stay fix the accelerometers, which is more convenient.

Parameters of the acquisition are summarized in Table 3.1. To perform the analysis, we use
the LMS Scadas system.

1with i relative to the acceleration and j to the excitation
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Sampling frequency 400 Hz

Number of samples per measure 2048

Period of sampling 5, 12 s

Resolution 0, 19 Hz

Observable frequency range [0 Hz; 200 Hz]

Input windows Force-Exponential (Cut-off 1, 22%)

Output windows Exponential (Exponential decay 100%)

Average 3 acquisitions

Excitation Hammer, mid-soft nozzle

Table 3.1: Parameters of acquisition

mode fLMS (Hz) ξLMS(%) fAnsys (Hz) Deformed Shape

1 6 3.05 - rigid body
2 10.0 1.82 14.69 -
3 21.1 3.33 19.87 -
4 31.6 1.41 28.87 first longitudinal bending
5 38.4 1.11 36.64 bending-torsion
6 45.1 1.43 40.80 bending-torsion
7 54.1 2.37 59.30 -
8 73.7 0.79 72.67 -
9 78.9 0.61 79.06 second longitudinal bending
10 93.2 0.97 91.85 -
11 114.7 0.35 115.05 third lateral bending
12 122.8 0.76 121.53 -
13 130.1 0.82 132.21 -
14 146.5 0.24 155.05 third longitudinal bending
15 158.4 0.70 165.92 -
16 164.9 0.56 170.58 -
17 174.7 1.05 171.30 -
18 193.0 0.35 191.89 -
19 194.4 0.28 199.94 -

Table 3.2: Natural frequencies

3.1.3 Results

Fig.3.3 shows the sum of all the frequency responses. We can identify different modes, summa-
rized in table 3.2.
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Figure 3.3: Sum of FRF

3.1.4 Finite element model

The natural frequencies can be determined thanks to experimental modal analysis (3.1.3). How-
ever, the mass and stiffness matrices needed in equation 2.1 of section 2 are not available. A
finite element model allows us to access theses data. But an updating procedure on the mechani-
cal parameters is recommanded to match the experimental and numerical frequencies. However,
in our case, the chosen modes seems to be close enough to avoid it (see Table 3.2). The model
of the plate is built from shell elements (SHELL63) and does not consider any damping.

3.1.5 Choice of the modes and location of the loudspeaker

In the first approach of active damping (simple feedback), all the modes can be theoretically
damped (see section 4). On the other hand, the state space feedback approach needs to know
what are the modes to damp. As far as the choice of modes is concerned, several criteria are
defined :

• experimental and finite element model must agree. This is the case, we will speak about
it in section 3.1.6;

• they must be far away from natural frequency of the loudspeaker (we develop that point
in section 3.2), where the phase shift and the gain of its bode curves are considered as
constant;

• in order to avoid the 50Hz noise, we will choose higher natural frequencies than this value;

• it seems natural that active damping will have its best efficiency only if the loudspeaker is
located at a maximum of vibration : in other words, the modes must have their maximum
amplitude at the same node;
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• number of modes is not infinite : in section 6.1.2, we will show that, in our case, only two
modes can be damped (controllability limitation);

• the anti-aliasing filter in the measurement chain leads to an unavoidable phase lag (see
section 6.3). In order to limit it, sampling frequency must be chosen between 20 to 100
times faster than observed phenomenas. So, it seems obvious that control high frequency
leads to prohibited sample rate, and is very greedy in terms of computational resources;

Our choice goes to the two ”higher” modes represented in Fig.3.5 (114 and 146Hz).
Frequency shifts between the two models are not important, and deformed shape agrees, but
not perfectly. Let us remark that original plate is slightly folded, which can modify its stiffness.
On the other hand, free-free assumption is not really respected, because the plate lies on some
foam as detailed earlier.

Loudspeaker is glued on the plate at coordinates (0.2, 0.1685, 0) with respect to considered
axis of Fig.3.1 (node 55). This location represents a maximum of amplitude for the considered
modes.

Figure 3.4: Loudspeaker located on node 55

3.1.6 Modal assurance criterion

This criterion allows us to verify the good agreement between the deformed shapes of the ex-
perimental and numerical analyses. The element MACij (ith row and jth column) of the MAC
matrix is given by

MACij =

[

{

~ψi
num

}T
·
{

~ψj
exp

}

]2

∣

∣

∣

~ψi
num

∣

∣

∣

2
·
∣

∣

∣

~ψj
exp

∣

∣

∣

2 (3.1)

Table 3.3 shows us the agreement between experimental analysis and numerical simulation,
for chosen modes : thus, we can expect a good accuracy by taking the mass and stiffness matrices
in our model in section 2.
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(a) Second longitudinal bending
mode (Ansys-78.8Hz)

(b) Second longitudinal bending mode
(Lms-79.9Hz)

(c) Third lateral bending mode
(Ansys-114.7Hz)

(d) Third lateral bending mode
(Lms-115.1Hz)

(e) Third longitudinal bending
mode (Ansys-146.5Hz)

(f) Third longitudinal bending mode
(Lms-155.1Hz)

Figure 3.5: Experimental and analytical deformed shape
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Mode LMS 1 2 3

Ansys Frequency 78.9 Hz 114.7 Hz 146.5 Hz

1 79.1 Hz 67 1 0

2 115.1 Hz 0 62 2

3 155.1 Hz 0 6 64

Table 3.3: MAC (%) for the chosen natural frequencies

3.2 Modal analysis of the loudspeaker

Our actuator is totally unknown : in order to compare numerical and experimental approaches,
it is necessary to find its different mechanical and electrical characteristics. The model of the
loudspeaker is represented in Fig.3.6

accelerometer

magnet
base

fastening surface

glued plastic part

speaker

k c

R

L

M+m

U~

diaphragm

  F(t)

   =

φ.i(t)

x(t)

Figure 3.6: Identification of the speaker

The total mass M + m (speaker and accelerometer) is excited by the vibration of the di-
aphragm when a sinusöıdal voltage is applied to the speaker. In this model, we have a coupling
between an electrical circuit and a mechanical system. If we fix the fastening surface, here is
the equation of the mechanical system :

(m+M)ẍ(t) + cẋ(t) + kx(t) = F (t) = φ · i(t) (3.2)

where x is the displacement of the mass, c and k the damping and the stiffness coefficients, and
F the actuator force. This one is coupled with the current in the electrical circuit, thanks to an
a priori unknown constant φ. The behaviour of the electrical circuit is given by :

U(t) = φẋ(t) + L
di(t)

dt
+Ri(t) (3.3)

These equations can be compared to those of the DC motor. The voltage applied to the
speaker is divided into a part counterbalancing the electromotive force (φẋ), and a ”useful”
voltage which can activate the speaker. It is due to the Faraday’s law : ”The inducted current

tends to oppose itself to the cause which gave its existence”. It explains why an increasing
velocity lowers the mechanical force. (E = φẋ and F = φi).

If we use the Laplace’s transform, and for initial conditions null, equations 3.2 and 3.3 become
:

((M +m)s2 + cs+ k)X(s) = φI(s) (3.4)

U(s) = sφX(s) + (R+ sL)I(p) (3.5)
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From this relation, we can find

I(s) =
U − sφX(s)

R+ pL
=

U(s)

R+ sL
− sφX(s)

R+ sL
(3.6)

Finally, if the inductance of the speaker is neglected (because L is very low, see section 3.2.1),
the transfer function between the displacement and the voltage applied to the speaker is:

X(s)

U(s)
=

φ
R

((M +m)s2 + (c+ φ2

R )s+ k)
=

φ
R(M+m)

(s2 + 2ξω0s+ ω2
0)

(3.7)

3.2.1 Informations available

M is the mass of the speaker and m is the one of the accelerometer. R and L can be estimated
thanks to a multimeter and a selfmeter. The stiffness k, the damping c and the constant φ are
going to be estimated thanks to the experimental FRF.

So, we have :

• M = 400 gr (speaker)

• m = 67 gr (accelerometer)

• R = 5 Ω

• L = 90 µH

• τe = L/R = 18e− 6 s

We see that the electrical time constant is not important in our problem : it gives a pole
over 5 kHz.

Acquisition

The following material has been used for the measurement of the FRF :

• Accelerometer : DYTRAN 3100B ICP, sensibility of 100 mV/g (S/N 5234)

• SCADAS, type SC305, 16 bits

• Power Amplifier VELLEMAN K8040

The acquisition principle is represented in Fig.3.7.

LMS Scadas
xxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxx

Power amplifier
       (x22)

excitation 
generation

accelerometer
U

X
..

loudspeaker

Figure 3.7: Acquisition setup

Characteristics of the acquisition are summarized in table 3.4
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1st, 3rd and 5th acquisition

Bandwidth [0 Hz; 320 Hz]

Resolution 0.15 Hz (2048 spectral lines)

Windows Uniform

Average on 3 acquisitions

Estimator H1

Excitation
Level : 0.1 V

Log (1) and Lin (3-5) Periodic chirp
[0.001 → 120 %] of the acquisition bandwith

Added mass 0.067 kg (2,4) and 0.167 kg (6)

2nd, 4th and 6th acquisition

Bandwidth [0 Hz; 640 Hz]

Resolution 0.15 Hz (4096 spectral lines)

Windows Uniform

Average on 3 acquisitions

Estimator H1

Excitation
Level : 0.1 V

Log (2) and Lin (4-6) Periodic chirp
[0.001 → 120 %] of the acquisition bandwith

Added mass 0.067 kg (2,4) and 0.167 kg (6)

Table 3.4: Parameters of the acquisition

3.2.2 Analysis

In Fig.3.8, we represent the FRF ( Ẍ(f)
U(f) ) of the system for different acquisitions. The resonance

frequency can be taken at f0 = 15.87 Hz (so the stiffness k is about 4720 N/m), the peak being
about 8.5 g/V (Gmax). To have an estimation of the reduced damping coefficient, we may use
the peak picking method. On Fig.3.8, the frequency band at −3 dB corresponds to those at
Gmax/

√
2. Thus :

∆f |Gmax√

2

≃ 2ξf0 (3.8)

So we have a mean of ξ = 0.08.

The last parameter, φ, which represents the relation between the current and the force
applied to the speaker, can be determined. We can write (if we take the infinite at 320 Hz and
after):

lim
f→∞

Ẍ(f)

U(f)
≃ lim

f→∞

s2 φ
(M+m)R

s2 + 2ξω0s+ ω2
0

≃ lim
s→∞

s2 φ
(M+m)R

s2 + 2ξω0s+ ω2
0

(3.9)

And so
φ

(M +m)R
≃ 1.2 g/V ≃ φ

0.467kg · 5Ω
(3.10)

Equation 3.10 gives us φ = 28 N/A. It must be said that this value is computed by the
SCADAS for an input value of 0.1 V . In reality, the input signal of the speaker comes from
an amplifier (×22!) and so the value obtained must be divided by this ratio. We have thus
φ = 1.4 N/A.
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Figure 3.8: Frequency response function of the speaker (Acquisition bandwidth : 320 Hz)

3.2.3 And finally...

Table 3.5 resumes the characteristics of the speaker.

Electrical characteristics

Resistance R 5 Ω

Inductance L 90 µH

Constant φ 1.4 N/A

Mechanical characteristics

Mass M 0.400 kg

Mass (M+m) 0.467 kg

Natural frequency f0 (ω0) 16 Hz (100.5 rad/s)

Damping ratio ξ 8 %

Damping c 7.5 Ns/m

Stiffness k 4720 N/m

Table 3.5: Characteristic of the speaker
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3.3 Conclusion

An experimental modal analysis and a complementary finite element modal have been used
to identify the modes of the plate. In section 3.1.5, we give several argument concerning the
choice of the modes, as well as the location of the actuator.

As said in the paragraph 1.3.1, the loudspeaker can be considered like as an ideal generator
force, without phase lag, assuming that we are far enough of the mechanical natural frequency.
It is a very low-cost actuator, and certainly powerful enough to achieve the development of an
active damping device.

To conclude this section, it is interesting to note the that the performances are not driven by
the mass ratio between the structure and the actuator such as with a tuned mass damper ([6]).
Impressive damping ratio has been achieved by Micromega Dynamics on a 400kg structure with
a 20gr actuator.
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Damping in SISO case : root locus

approach

4.1 Theory

This section is a simplified approach of the control loop, allowing to understand more physically
the concept of active damping before entering in more complex theory (state space feedback).
We assume that the output of the plant is the velocity of the plate. We have one speaker on
it, and we create the active damping on one mode (the third longitudinal bending mode at
±155 Hz). We can make a feedback loop on velocity, multiply it by a gain and so we have an
opposite velocity of the loudspeaker (see Fig.1.2). The efficiency of the damping is depending
on the gain feedback, and the location of the loudspeaker. If, for the considered mode, the
loudspeaker is at a vibration node, it is evident that the active damping will be inefficient. The
location of the loudspeaker has been considered in paragraph 3.1.5.

For a simple velocity feedback, the voltage command of the system becomes

U = −gẏ1 = −gψṙ (4.1)

Combining Eq. 4.1, 2.15 and 2.16, we find a new damping matrix C, expressed in the
following way :

[C] =

[

ψ2c+ φ2ψ2

R + ψ2φg
R −(ψc+ ψφ2

R )

−ψc+ψφ2

R

m + ψφg
mR

c+φ2

R

m

]

Now,the representation of the root locus allows us to see the performances of the loop by
varying the gain g (Fig.4.2). Remember that the root locus is the evolution of the system poles
with respect to the variation of the feedback gain, and that the curve are beginning at pole in
open loop (g = 0) and are going to the zeros in open loop (g = ∞). We recall in Fig.4.1 how to
find the damping ratio and the frequency of the pole.

The big loop of Fig.4.2 represents the evolution of the pole for the plate, and the small one
for the loudspeaker. We see clearly that the system is not always stable. Beyond a critical
value, the system becomes unstable because of the loop concerning the loudspeaker. Here, with
a feedback gain of 116, we reach a damping ratio of 1.5%, while without closing the loop, the
damping ratio is only due to the loudspeaker and is about 0.5% (no damping is assumed for the
plate). The damping enhancement is computed by (if ξdamp is the damping ratio with active
damping, and ξ the initial damping ratio):

28
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Figure 4.1: Gauss plane and representation of the poles
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Figure 4.2: Root locus for the damping of one mode (output=ẏ1)

20log10(
1

2ξ
) − 20log10(

1

2ξdamp
) = 20log10(

ξdamp

ξ
) (4.2)

Here, the gain of damping is about 10dB.

There is obviously a trade off between the efficiency of the active damping, and the safety
of the loudspeaker. For commercial inertial actuators ([6]), the electromagnetic constant φ can
reach 20 N/A (here it is 1, 4 N/A). So, with lower current we could have better efficiency.
However, we are far from the destruction. More important feedback gain have been used in
section 6, and performances of the active damping device are very good.

We mentioned earlier that velocity feedback on collocated system are unconditionally stable.
However it is not the case in Fig.4.2, because the poles have a positive part if the gain is too
important. To be entirely collocated, we must make a loop on the relative velocity ẏ1 − ẏ2 and
not on ẏ1 only. As detailed earlier, ẏ1 is the velocity of the plate and ẏ2 those of the loudspeaker.
So Eq. 4.1 becomes

U = −g(ẏ1 − ẏ2) = −g(ψṙ − ẏ2) (4.3)

and the damping matrix C of section 2.3 becomes

[C] =

[

ψ2c+ φ2ψ2

R + ψ2φg
R −(ψc+ ψφ2

R ) − ψφg
R

−ψc+ψφ2

R

m + ψφg
mR

c+φ2

R

m + φg
mR

]

(4.4)
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Figure 4.3: With and without state feedback
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Figure 4.4: Root locus for the damping of one mode at 155Hz (output=ẏ1 − ẏ2)

Root locus is represented in Fig.4.4. In [11], this kind of root locus is typical for velocity
state feedback. If we represent the same root locus for differents modes (here 59, 79, 115 and
155Hz), we can see (Fig. 4.5) that for all the loop in the root locus, we have an infinite gain
margin and so an unconditional stability. We can also emphasize the fact that, even if the gain
is very important, the damping is not always better. There is a critical value of g which gives
the maximum damping. In our application, we can not reach this critical value, because the
voltage would be too important and so the loudspeaker could suffer...

To conclude this section, let us remember that theoretically, the collocation guarantees sta-
bility for any value of g, and that for all the modes inside a given bandwidth. However, the
damping ratio is the same for low value of g, whatever the feedback (ẏ1 or ẏ1 − ẏ2) . This is
emphasized in Fig.4.2 and 4.4 : for a gain g = 116, damping is worth 1.5% for ẏ1 feedback, and
1.51% for ẏ1 − ẏ2 feedback.
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Figure 4.5: Root locus for the damping of several modes at 59, 79, 115 and 155Hz (output=ẏ1−
ẏ2)

4.2 Experimental validation

At the opposite of control made by state space feedback (section 6), the simple feedback allows
theoretically a damping for all the modes. The location of the actuator has been discussed
earlier at section 3.1.5.

4.2.1 Measurement system

Fig.4.6 and 4.7 presents the setup used during the experimental campaign. The plate is located
on two small little pieces of foam. With a plate in an horizontal position, it is easier to connect
the actuator. One B&K accelerometer is put on the plate, and the other on the magnet of the
loudspeaker (both B&K 4393). We use the associated charge amplifier B&K 2635 because they
allow to measure a velocity, and to use a high pass filter with a cut-off frequency of 10Hz,
avoiding the feedthrough component (the DC component) which could be fatal for the actuator!
The sensibility is of 1V/(m/s) when it is used in velocity.

We choose a sampling frequency of 10000Hz for our application. This choice could seems
too important, because the maximum controlled frequency is about 150Hz : we will comment
it in the section 6.3. To avoid the aliasing effect, an analogical lowpass filter KEMO is adjusted
to 5000Hz (Shannon’s theorem, see [15] or [16]).

Calculations will be made by means of a computer and an acquisition card NI PCI-6035E.
It is commanded by a c++ program, given in appendices (simpleloop.cpp in section A). The
difference between the two sensors is made by the computer, then multiplied by a constant gain
g and sent to the loudspeaker under voltage form. This command enters a Velleman power
amplifier of constant gain, fixed to 22.

All the dynamics of the different parts of the loop are given in Appendix B.
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Figure 4.6: Experimental setup (Photography)
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Figure 4.7: Experimental setup (Principle)

4.2.2 Results

Figure 4.8 shows us the efficiency of this simple method, for two different gain. All the modes
are damped, more or less efficiently. If the loudspeaker is not located in a maximum amplitude
of vibration, the effect is less efficient (like 165Hz). At the opposite, 120Hz and 150Hz
(which are 115 and 155Hz modes from the Ansys modeling) are well damped (7dB and 11dB
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respectively, for g = 110).

Low frequencies are not examined in this work, because the behavior of the speaker is not
linear, filter of pre-amplifier B&K has a cut-off frequency of 10Hz, and modes of the plate
are not well emphasized below 70Hz. The last reason is the 50Hz noise, unavoidable in our
application.

The amplification that we can see at Fig.4.9 is due to the phase lag inherent to the
measuring chain, especially the KEMO filter. Section 6.3 explain in detail this problem. Because
of this phase lag, the closed loop is not unconditionally stable, so the gain margin is not infinite
anymore. A phase lead controller could be implemented into the closed loop, to enhance the
closed loop bandwidth. However, we must keep in mind that there is always a trade-off between
gain and phase margin in the design of such controllers (see [11]). Their design depends on the
application : here we do not implent them.
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Figure 4.8: Effect of simple collocation on FRF (plate:55 - hammer:16)
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Figure 4.9: Zoom of Fig.4.8

4.2.3 Conclusion

To conclude, the simple feedback is a good approach in active damping system. All the modes
are damped, no modeling of the loop is needed, and unconditionally stability can be reached
thanks to collocation of the sensors and the actuator. However, a limitation in gain feedback
exists because of the presence of unavoidable phase lags, due to the measuring chain. So a
high sampling frequency is recommended, which could lead to some problems for high frequency
applications.
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State space feedback approach

State space feedback approach is a convenient formulation for control in case of MIMO control
loop. At each time, we find the value of a state vector, representing the physical characteristics
of the system. This approach is very powerful : we will see later that, with pole placement
method, we can fix the eigenvalue of the system where we want, and so its dynamics, under
certain assumptions. This theory is developed in [17] and [18]. The first step of this method is
to rewrite the whole system under a first order form : this is made in section 5.1.

5.1 State representation

The equation of motion of a linear mechanical system can be written

M~̈q + C~̇q +K~q = ~F (5.1)

where M , C and K are the mass, damping and stiffness matrices of the system. ~q is a vector
containing all the degrees of freedom of the system, and F is a column vector representing the
applied forces. In state space feedback approach, these equations are rearranged as a first order
system :

~̇x = A~x+B~u (5.2)

~y = C~x+D~u (5.3)

Vector ~x represents now [~q ~̇q]T , and is called the state vector (dimension n× 1). In our case,
it is composed of the displacement and the velocity of the considered output. u contains the
command of the system (dimension m × 1, where m is the number of actuators). ~y represents
measurements of the system, and its dimension are p × 1 if we have p measures for the plant.
A is the system matrix (n× n), B the command matrix (n×m), C the output matrix (p×m)
and D the feedthrough matrix (p×m) . Matrices A and B are depend on the system, while C
and D are function of the measurement system, in other words of what can be measured from
the plant. In most cases, D is 0 and C is composed of 0 and 1, or other constants. We have :

[A] =

[

0 I
−M−1K −M−1C

]

[B] =

[

0
M−1F

]

A more visual expression of this system of equations is given in Fig.5.1. The control law is
simply given by u = −K~x, where K is a line matrix in the case of a single-input multi-output
system.

The dynamics of the system is fixed by the eigenvalue of the matrix (sI − A) in Laplace’s
domain (see Ref. [18]). By using a state feedback of gain K, we modify these eigenvalues so

35
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Figure 5.1: State feedback approach

that the state matrix of the system can be rewritten as (sI − A + BK). So, by choosing a
well-adapted matrix K, we can place the eigenvalue of the system where we want, to obtain
good transient performances.

5.2 Control in state space approach

In a general way, two methods are used in MIMO control. The first on consists in a pole

placement, i.e. that pole of the closed loop system can be located anywhere, especially with
a chosen damping ratio. The second regulator is called Linear Quadratic Regulator is more
complex, and takes into account a ponderation of the different states. They are briefly detailed
in section 5.2.1 and 5.2.2. Let us note that the vectors are not written anymore, and consider
that all the equations are vectorial ones.

5.2.1 Pole placement method

Placement pole method is used to modify algebraically the place of the pole in the Re-Im plane.
If the system is controllable, then the poles pi can be placed arbitrary. It is well-known that, in
the Gauss plane (Fig.4.1), we have theses relations :

p = −ξω0 ± jω0

√

1 − ξ2 (5.4)

ω0 = |p| (5.5)

ξ = arcsin(θ) (5.6)

It means that, in our active damping application, the choice of the eigenvalue of the matrix
(sI − A+ BK) allows us to fix the damping ratio of the plate, for the considered mode! With
this reasoning, it would be easy to reach the ideal ξ = 0.7... However, and we emphasize that
in section 4, the feedback gain can reach prohibited value! In this concrete case, we will have to
choose the eigenvalues in function of the dynamic characteristics of the loudspeaker.

5.2.2 Linear Quadratic Regulator

A cost function is minimized, taking into account the output vector y (sensor measurement in
section 5.1) and the command vector u. This function is the following

J =

∫

∞

0
(yTW1y + ρuTW2u) dt (5.7)
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Using relation 5.3 and assuming that matrix D is null, Eq. 5.7 can be rewritten in this way,
using state variables x

J =

∫

∞

0
(xTCTW1Cx+ ρuTW2u) dt (5.8)

In a general way, CTW1C = Q and ρW2 = R. The Q matrix is semi positive definite, which
implies that some of the states may be irrelevant. R is strictly positive definite, which means
that any control has a cost (see Ref. [17]). The resolution of this problem is mathematically
complex, and needs the solution of the algebraic Riccati equation. Details can be found in the
previous reference, or in Ref. [19].

The practical interpretation of LQR method is that, the more Q matrix is important, the
more the state variable are going to stay close of their equilibrium. But the bad side of the
compromise is that the command must increase to satisfy this condition. In other words,
the ratio between Q and R gives a priority either to the command cost (qii/rii >> means
an actuator more solicitated), or to the system reaction cost (qii/rii << means low actuator
control, and large oscillations of the state variable around their equilibrium).

5.3 Observer problem

In a real plant, only some state variables can be actually measured. So, it is necessary to
estimate the other ones. It is possible to reconstruct the state vector by means of a so called
state estimator or observer. The idea is to build the state vector from input data (u) and
output data (y). Before examining the equation of the observer, we can remark on Fig.5.2(a)
its insertion in the control loop. The state feedback gain is then applied on the reconstructed
vector (u = −Kxe, with xe the estimated states). Let us remark that an observability condition
is required to make this state reconstruction. Details are given in section 5.4.

The equation of the estimate state are (5.9) :

ẋe = Axe +Bu; ye = Cxe (5.9)

Because of process noise and modeling errors, the reliability of ẋe should decrease unless
on-line corrections are made, based on incoming measurement y. This is the idea developed by
the equation 5.10 (called the observer equation):

ẋe = Axe +Bu+ L(y − ye) (5.10)

L is an n × p matrix, weighting the difference between the real output of the plant and its
estimation by the observer. When the estimated state is available, we can use it in the state
feedback as in Fig.5.2(b). Then, if n is the dimension of the system, we must add n equations
due to the state estimator.

In [17], one shows that for such a loop, the separation principle can be applied, and so the
eigenvalue of the estimator have to be placed in a proper way. A rule of thumb is to design
observer poles to be somehow faster than regulator ones (3 or 4 times faster, see [17]). Physically,
it means that the estimated vector must be reconstructed faster than the dynamic of the system.
Two methods allow to find values of matrix L. Once again we can use a pole placement method,
or a Kalman’s filter developed in 5.5.2. The combination of a linear quadratic regulator and a
Kalman’s filter is called Linear Quadratic Gaussian control method.
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Figure 5.2: State estimator in the closed loop

5.4 Controllability and observability

A system is said controllable if it is possible to create a command u able to modify the system
from an initial state xi to a final state xf in a finite time. In the same way, a system is said fully
observable if the output of the plant y and the input u allow the determination of the state x, in
a finite time. These two conditions (controllability 5.11 and observability 5.12) must be satisfied
to develop the feedback of the system (n being the dimension of the state space representation).

rank [B AB A2B ... An−1B] = n (5.11)

rank [CT ATCT AT
2
CT ... AT

(n−1)
CT ] = n (5.12)
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5.5 Application to an inverted pendulum

This example is an introduction to the different concepts detailed in the previous section. The
aim of the exercise is to create a regulator, i.e. to bring back the state variable to zero. The
first step is the development of a regulator, without observer. The second step, more realistic,
takes into account that all the state variables can not be observed, and illustrates the tuning of
an observer.

5.5.1 Without observer

The two control methods have been implemented on the example of the inverted pendulum,
composed by a rolling base and a rod which must stay in a vertical position (Fig.5.3). We must
apply the correct force u allowing this vertical position. There is no damping assumed in the
problem, and no modeling of the actuator.

 θ

x

M

(m,i,l)

u

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Figure 5.3: Model of the inverted pendulum

Here are the physical data of the problem :

• g=9.81 m/s

• mrod=0.1 kg

• M=2 kg

• Irod=m · i2=0.025 kg.m

• lrod=0.5 m

In order to simplify the writing of the equations, we pose the following constant :

• Mt=M +mrod=2.1 kg

• L=
Irod+mrod·l

2
rod

lrod·mrod
= 1 m

• α = 1

1−
mrod·lrod
Mt·L

= 1.0244
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This two degrees of freedom system is governed by two equations (5.13 and 5.14):

(1 − ml

MtL
cos(θ)2)Ẍ +

ml

MtL
gsin(θ)cos(θ) − ml

MtL
sin(θ)(θ̇)2 =

1

Mt
u (5.13)

(1 − ml

MtL
cos(θ)2)θ̈ − g

L
sin(θ) +

ml

MtL
sin(θ)cos(θ)(θ̇)2 = − 1

MtL
cos(θ)u (5.14)

Theory of state space feedback is correct for linear systems; however, we see clearly with Eq.
5.13 and 5.14 that this problem is highly non-linear. So the first step is to linearize around the
desired position θ = 0. The previous equations become

(1 − ml

MtL
)Ẍ − mlg

MtL
θ =

1

Mt
u (5.15)

(1 − ml

MtL
)θ̈ − g

L
θ = − 1

MtL
u (5.16)

State variables are gathered in the vector x (pay attention to X which is the translational
degree of freedom, and ~x which represents the state variables)

~x =









X
θ

Ẋ

θ̇









and matrices A, B, C and D are represented below :

[A] =









0 0 1 0
0 0 0 1

0 −α ml
MtL

g 0 0

0 α g
L 0 0









[B] =









0
0
α
Mt

− α
LMt









[C] =
[

1 0 0 0
]

[D] = [0]

The matrix C means that the output of the system corresponds to the state variable X. We
compute the initial poles of the system :

poles =

0

0

3.1701e+000

-3.1701e+000

That shows clearly the instability of the initial system.

LQ regulator

The main parameters to fix are the Q and R matrices, which give an idea about the severity of
the control. In order to illustrate this matter, we consider three matrices Q :

Q1 =















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1















Q2 =















100 0 0 0
0 1 0 0
0 0 100 0
0 0 0 1















Q3 =















1 0 0 0
0 100 0 0
0 0 1 0
0 0 0 100















R is supposed to be a unit matrix (scalar in our case because there is one command). Q1

corresponds to the same weighting of all the states, one privileges none of it. Q2 corresponds



State space feedback approach 41

to a more important severity on the x and ẋ states : in other words, we want a faster return to
equilibrium position for these states. Q3 is the same but for states θ and θ̇. Fig.5.4 represents
the evolution of different states for an initial condition of θ = 1rad, and for linearized equations
of motion. In section 5.5.2, we implement this regulator (and its observer) for the non-linearized
equations of motion.

With the Matlab function LQR, we can find the three state feedback gains (Ki is related to
Qi):

K1 = -1 -57.4 -2.9 -18.2

K2 = -10 -135.4 -18.3 -43.1

K3 = -1 -62.04 -3.07 -21.82

We see that with the Q2 matrix (Fig.5.4(c)), the state x and its derivative must stay close to
the equilibrium position, more than with Q1 (Fig.5.4(a)) and Q3 (Fig.5.4(e)). The consequence
is that the force, acting in the x direction, becomes more important (Fig.5.4(d)).

On the other hand, there are not big differences in the behavior of the system in using Q1

and Q3 matrices. It seems obvious because there is no action on θ, so a weightening of this
state is not determinant on the control process.

Now a word about the coefficient R. With LQ regulator, only the ratio qii/rii (diagonals
elements of the Q and R matrices) is important.

• qii/rii << means a weak actuator, so the control is lower

• qii/rii >> means a strong actuator, so the control is faster

This is represented in Fig.5.5(a), where R = 0.1 and Q1 is used. Because the command can
have higher value due to a weak weighting (Fig.5.5(b)), reaction of the system is faster than in
Fig.5.4(a).

As expected an high weighting on the state variables forces them to stay close to the equi-
librium position, and a weak weighting on the command allows large forces coming from the
actuator.
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Figure 5.4: Evolution of x, θ et u for different Q matrices (R=1)
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Figure 5.5: Evolution of x, θ and u with Q1 and R=0.1

Pole placement control

As said earlier, we can impose the poles of the system, and thus its dynamics, if the controllability
is verified. Reference [20] gives a solved example of the inverted pendulum, and the choice of the
eigenvalue is the result of a compromise. Frequency of the poles influences the robustness of the
system : if it is too weak, it is more robust but time to reach the set point is more important.
At the opposite, a too high frequency increases dynamics of the system but gives some stability
problems in practice, because noise effects are amplified. The last point is that a too weak
damping conducts to an impossible convergence. We choose frequencies of 0.18 and 0.53Hz for
the first simulation (superscript 1), and 0.1 and 0.4Hz for the second one (superscript 2). The
damping ratio is equal to 0.9 in both cases. Our poles are thus :

p1
1,2 = −1.0179 ± 0.4930i

p1
3,4 = −2.9971 ± 1.4516i

p2
1,2 = −0.5655 ± 0.2739i

p2
3,4 = −2.2619 ± 1.0955i

The state feedback gains are computed thanks to the place command of Matlab :

KPP1 = -2.9642 -73.9361 -6.3198 -22.7811; %(0.18 and 0.53 Hz)

KPP2 = -0.5 -45.37 -1.87 -13.46; %(0.1 and 0.4 Hz)

Without surprise, the first choice gives a faster reaction (Fig.5.6(a)) and consequently and
higher command (Fig.5.6(b)).
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Figure 5.6: Evolution of x, θ and u for different poles
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5.5.2 With observer

The development of the regulator is divided into two stages. First, the assumption that all the
states are available is made and the research of the gain matrix K is made. For the same values
of the system poles, we compute matrix K (Klqr for the linear quadratic method and Kpp for
pole placement) which gives :

KLQR = -1.0000 -57.3616 -2.9145 -18.1816

KPP = -2.9642 -73.9361 -6.3198 -22.7811

The second step is to obtain the L matrix of the observer (see Eq. 5.10). Kalman filter
allows a minimum sensitivity to disturbances. The considered equations of the system are

ẋ = Ax+Bu+Gw (5.17)

y = Cx+Du+Hw + v (5.18)

where w is the process noise, v the measurement noise. They are specified in terms of their
variance matrices (defined by E {ww′} = QN, E {vv′} = RN, E {wv′} = NN,). Most of the
time, NN = 0 because process and measurement noise are assumed to be uncorrelated. Kalman

observer leads to an optimal observer, so that xe it the best prediction of x in a statistical
sense. In our example, H = 0, G = [1 1 1 1]T (noise on the command) and QN = RN = 0.01,
which could represent a real value. We will not go further in the details of the Kalman method.

For the placement pole method, we chose the following values for the observer :

p1,2 = −4.5239 ± 2.1910i

p3,4 = −5.0894 ± 2.4649i

This poles corresponds to a frequency of 0.8 and 0.9Hz, with a damping ratio ξ = 0.9. Even
if the observer poles must be chosen with a frequency 3 to 4 times faster than 0.18 Hz and
0.53 Hz (design without observer), we can see in Fig.5.7(b) that the state are well estimated.
This choice was made in a didactic goal, in order to remark the light delay of the observer
before reaching the real states (Fig.5.7(b)).

The coefficients of the L matrix are :

LLQR = 7.3 26.8 360 1144 % Kalman’s observer

LPP = 19 159 3092 10071 % Observer designed by pole placement

The choice of the pole is maybe not possible in a real application : we notice the extremely
high value of L matrices for the pole placement method. The equilibrium position is reached
faster, but the command (not represented here) is disproportionate with respect to the LQR

method.

The complete regulator (observer+regulator) was implemented and simulated for non-
linearized equations of motion. The initial condition is now θ = 0.1rad, 1rad being too far
from the equilibrium position : consequently the regulator can not work properly, leading to a
divergence in the simulation.

Fig.5.7(a) and 5.7(b) illustrates the response of X and θ state, as well as their estimation.
We notice that faster the poles, faster the estimated variables reach the real state : thus better is
the estimator. But pay attention that high coefficient of the L matrix can lead to amplification
of the system noise. The system becomes less robust, so it can diverge more quickly.
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Figure 5.7: Evolution of the state variables and their estimation



Chapter 6

Application to the damped plate

6.1 Theory

6.1.1 Equations of motion

We assume that two modes are going to be controlled (one sensor and one actuator lead to a
limited controllability and observability). The displacement of the plate can be expressed in
modal coordinates, as y1 = ψ1r1 + ψ2r2. Displacement of the loudspeaker is denoted by y.
Equations of motion for two controlled modes gives (see details for one mode in section 2.3) :
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U (6.1)

with ψi related to the deformed shape at considered node, for the mode i; m, c and k the mass,
the damping and the stiffness of the loudspeaker respectively. ri is the modal weighting (in
terms of displacement), and y is the displacement of the loudspeaker. Because of the unity
mass normalization of Ansys, we have directly a diagonal stiffness matrix, gathering the square
of natural pulsations.

For the first order arrangement, A and B matrices are created like in section 5.1, while D = 0
and C is representing the difference of velocities ẏ1 − ẏ :

C =
[

0 0 0 ψ1 ψ2 −1
]

(6.2)

6.1.2 Controllability and observability

We will restrict our study to two modes for controllability and observability reasons. A system
is controllable if

rank [B AB A2B ... An−1B] = n (6.3)

and observable if
rank [CT ATCT AT

2
CT ... AT

(n−1)
CT ] = n (6.4)

47
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where n is the dimension of the first order system : in our case, n = 6 .

With a modeling of the loudspeaker and with two modes of the plate, the system observes
these two conditions. However, if we had only one velocity sensor, the observability would be
not verified for two modes, and the estimation of the state vector would be impossible. The
same reasoning can be made for the controllability : it is obvious that a higher number of
actuators leads to a more controllable system.

6.1.3 Poles of the undamped system

The poles of the system allows us to verify our equations :

sysCT=ss(A,B,C,D,’statename’, states,’inputname’, inputs,’outputname’, outputs);

f=abs(pole(sysCT)/2/pi)

xi=-real(pole(sysCT))./abs(pole(sysCT))

which gives the original frequencies of the considered modes, as well as the damping ratio
associated. Let us remember that there is no damping on the plate : those obtained here are
caused by the loudspeaker.

f =

1.5550e+002 % modes of the plate

1.1536e+002

1.5936e+001 % naturak frequency of the loudspeaker

xi =

2.9944e-003 % dampind due to the glued loudspeaker

2.8386e-003

8.3013e-002 % damping ration of the loudspeaker

6.1.4 Sampling frequency

Before creating observer and regulator, we must convert the state-space model into a discrete
form, using c2d command (under Matlab), and specifying the sampling frequency of the A/D
converter (NI 6035E). For reasons that we detail in section 6.3, we choose a sampling frequency
of 10kHz.

6.1.5 Equation in discrete time

One can demonstrate that, in DT, the matrices A and B are depending on the sampling period
Te. System of equation 5.2 and 5.3, like those of the observer 5.10 are written in tho following
form :

xk+1 = Gxk +Huk (6.5)

yk = Cxk +Duk (6.6)

xek+1 = Gxe +Huk + L(yk − yek) (6.7)

yek = Cxek +Duk (6.8)

where xe refers to the estimated state, and xk to the sample of the state vector, at time t = kTe.
C and D matrices are unchanged, while A and B are recomputed according to the sampling
period. Details are given in [18].
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6.1.6 Observer and regulator design

Observer

As mentioned earlier (section 5.3), an observer is needed to have an estimation of the state
vector. Two observers have been designed :

1. The first one, by pole placement : in the literature ([21],[17],...) it is advised to have
poles at least three times faster than the poles of the system. We chose poles of the
observer at frequencies of 466, 482 and 497Hz. The damping ratios are the same as
before. It can appear weak, but after some simulations, we remark that this value induces
the minimum settling time of the closed-loop system; in other words the system reach its
static equilibrium faster.

2. The second observer is developed as a Kalman’s filter : parameters were detailed in section
5.5.2 : we take G = B in Eq. 5.17 and H = 0 in Eq. 5.18. As for the linear quadratic
regulator, the important parameter for the filter is the ratio between diagonal element of
matrices QN and RN : if it is important, it means that the system is very noisy, and so
the filter allows a few informations : consequently it is ”lower”. At the opposite, a high
ratio gives a faster filter, but the noise is amplified. We choose QN = 100 and RN = 1
because noise is very present in our application.

In the experimental part, we remark that pole placement method were not efficient, because
the noise of the system is very present. Kalman’s filter gives best estimations of the states, so
we consider this observer in the following.

The dlqe command allows us to find the L matrix of the observer, called here Lkalm.

Lkalm =

-1.7111e-10

2.0311e-10

5.8445e-10

1.9290e-01

-2.2895e-01

-6.5894e-01

Poles of the observer are the following (poles PKalm given in discrete time):

Pkalm =

0.0093

0.9957 + 0.0895i

0.9957 - 0.0895i

0.9976 + 0.0641i

0.9976 - 0.0641i

0.9999

The design of the observer allows a few information from the process. The filter is ”low” :
frequency of the above poles are 0.14, 102, 142 and 7445Hz. We see here that their frequencies
is not 3 − 4 times faster : at the opposite, the first three poles are under those of the system!

Experimentally, we will see that noise is so present that a quick observer gives us back states
which are flooded into the noise, so the observation seems to be a white noise : the control is
thus impossible. The Kalman’s filter, lower, can estimate the two modes. In section 6.2.2, we
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will check this Kalman’s observer.

Theoretically, both of the observers are working properly, with a light advantage to those
designed by pole placement, because it is faster. And a better estimation allows a better control
of the closed loop. However, we will show only the results of the simulation for the closed loop
with a Kalman’s obeserver.

Regulator

We fix the damping ratio of the two modes at 2%, and at 50% for the loudspeaker. Using the
place command of Matlab, we find the feedback gain matrix KregDT . (Poles are created in
continuous time, and transformed in numerical poles by the relation zi = epiTe)

KregDT =

5.3628e+03

-2.0516e+04

1.2252e+02

1.2217e+02

-1.3436e+02

-1.3001e+02

The last step is to close the system, including the observer and the regulator. The following
command lines are used :

regDT=reg(sysDT,KregDT,Lkalm);

%reg() to insert the regulator and the observer in the plant

clDT=feedback(sysDT,regDT,1);

%feedback() to close the loop, 1 for negative feedback

All the poles of the system are, of course, inside the unit circle, as represented in Fig.6.1.
The damping increases when the poles are close to the origin of the plane, and their frequency
is higher if the argument of the pole is important. A pole located in (1, 0) means that we have
an integrator in the system. Here we do not have any integrators.

We can have a simulation of an unit impulse on the input of the plant, and analyze the
behavior of both output (ẏ1 concerning the plate and ẏ the loudspeaker). Fig.6.2 shows us the
initial system (blue) and the damped one (green). We see that the damping works properly :
the settling time is 0.152s for the closed loop, while it is 1.14s for the open loop. Corresponding
Bode curve is represented at 6.3, where we can see the damping efficiency (16dB for the design
of this section, and 20dB for a damping ratio of 3% for the modes). The file control.m in
Appendices A gives the command used to design the regulator and the observer.
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Figure 6.1: Poles and zeros of the closed loop system
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6.2 Experimental campaign

6.2.1 Parameters

Setup is the same as in Fig.4.7. Equations implemented in the computer are the following, and
are deduced from 6.7 and 6.8 :

xek+1 = (G− LC)xek +Huk + Lyk (6.9)

The Table 6.1 summarize parameters used in our experiments. The first experiment will
be made with an observer designed by Kalman’s filter and a regulator by pole placement, with
ξmodes = 0.02. The second one will be the same, with ξmodes = 0.03.

Observer parameters Regulator parameters

First experiment QN = 100, RN = 1 pole placement
G = B ξmodes = 0.02

ξspeaker = 0.5

Second experiment QN = 100, RN = 1 linear quadratic
G = B ξmodes = 0.03

ξspeaker = 0.5

Table 6.1: Parameters for active damping

With the choice that we made in Table 6.1, we suppose that the system is very noisy, so a
few informations can pass through the filter.

6.2.2 Checking the observer

The observer is supposed being able to reconstitute an unknown state. Our estimated state
vector is given by

xe =

















re1
re2

yespeaker
ṙe1
ṙe2

ẏespeaker

















(6.10)

where rei is the modal weighting, and y is the displacement of the loudspeaker.

In order to check the observer, an impact hammer is made on the plate. Sensibility of B&K
accelerometers is 1V/(m/s), with a pre-filtering at 10Hz, and cut off frequency of 10kHz.
Fig.6.4 shows us that states 4 and 5 of xe (i.e. the modes at 120 and 150Hz, in terms of
velocity) are observed, and that Kalman’s observer acts like a pass-band filter.

The second mode (fifth state variable in Eq.6.2.2) is very well observed. Nevertheless,
several parasitic modes are detected for the 120Hz mode (the fourth state in Eq.6.2.2).
These modes are very close of the desired one, and so it is impossible to filter them. It
seems clear that an enhancement of the state estimator would lead to a better efficiency
of the active damping. However, the effect is beneficial, because others modes are going to
be damped, while the observability and controllability matrix allow only two modes in the design.

The choice of a Kalman’s filter is not innocent : an estimator has been designed with pole
placement method in the previous section. As mentioned in the literature, we take the poles of
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Figure 6.4: Observed state with Kalman’s designed observer (estimated modes circled in green)

this observer three times higher than the higher pole of the system. Damping ratios were chosen
similar to those of the system. Unfortunately, with such an observer, the peaks of Fig.6.4 were
drowned into the noise.

6.2.3 Closing the loop

Conditions of the experiment are the following :

• sensibility of accelerometers (integration made by the pre-amplifier) : 1V/(m/s);

• pre-filtering : 10Hz;

• cut-off frequency of the amplifier B&K : 10kHz;

• cut-off frequency of the Anti-aliasing filter : 5kHz;

• hammer impact on node 16, and measured velocity at node 55;

• we perform a mean on four frequency response for each curve presented in this section.

As the power amplifier used is not adjustable, it is wiser to set a saturation at the output of
the acquisition card, and so avoid that an instability leads to the destruction of the actuator.
We suppose a maximum at 0.2V , so the output of the amplifier can not go over 4.5V .

In Fig.6.5 and Fig.6.6, we use the regulator designed by pole placement. Fig.6.5 gives an
overview of the general level of damping in the frequency band 0 − 400Hz. Ideally, if the
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observer was correctly designed, only theses modes would be damped.

Fig. 6.6 is a zoom of the considered modes. The damping seems very efficient for the
considered modes. A verification of our modeling ca be made by comparing the attenuation
obtained in the simulation and experimentally (see Eq. 4.2). Table 6.2 gives the comparison.
As far as the experimental part is concerned, estimation of ξ without active damping is made
thanks to a peak picking method.

Simulation Experiment
120Hz 150Hz 120Hz 150Hz

ξmodes = 0.02 16 16 11 15

ξmodes = 0.03 20 20 13 23

Table 6.2: Attenuation (in dB) with state feedback

The simulation seems sometimes far from the reality. Many errors of modeling are in cause
: foam while Ansys gives the results for free-free conditions, the plate is slightly folded, inaccu-
racy in the dynamics modeling of the loudspeaker, no damping assumed in theoretical approach.
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Figure 6.5: Active damping (regulator designed by pole placement - observer by Kalman’s filter)
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6.3 Delays in the loop

The last chapter of this work will be consecrated to the delays in the control loop. In a
general way, an analogical filter is required to avoid aliasing effect, and to allow a correct A/D
conversion. The KEMO filter used is very efficient in terms of roll-off (order 8!) but it has a
cost in terms of phase lag. As illustrated in Appendix B (Fig. 2), the phase is decreasing very
quickly. At the beginning of the experimental campaign, we choose a sampling frequency of
2000Hz, and a cut-off frequency of 200Hz for the KEMO filter. It means that for the 120Hz
mode, we were not far of a 180◦ phase lag, which leads to an unstable system. With a sampling
frequency of 10kHz, we have a phase lag of about 5 − 6◦.

Fig. 6.7 illustrates this phenomena. The control is made by a simple return, as in section
4. The gain is fixed to g = 77 for the two acquisitions. We can see that mode at 190Hz is
amplified if the anti-aliasing filter is set to 2kHz, while the active damping stay efficient up to
377Hz (not represented). However, the phase lag is only about 10 − 11◦ at this frequency, so
the system would be stable up to an higher frequency, maybe 1000 or 2000Hz. In fact, the
pre-amplifier B&K also has a phase lag, due to its pass band filter (10Hz-10kHz), so as the
power amplifier and the acquisition card.

Appendix B shows the bode curve (amplitude only) of the pre-amplifier. We have a slope of
+40dB/dec before the cut-off frequency of 10Hz, and a roll-off of −20dB/dec after it. So, we
can imagine the corresponding phase lag happening between the bandwidth 100− 1000Hz, and
conclude that this phase lag is certainly not negligible.
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Conclusion

An active damping device composed by a plate and a loudspeaker has been developed in this
work. Starting with totally unknown components, the first step was to identify the natural
frequencies of the plate, as well as the deformed shapes. As far as the loudspeaker is concerned,
we have identified its electromechanical characteristics, assimilated it to a two degrees of
freedom system composed by a spring, a damper and an active electrical element.

The second step was to describe the equations of motion for the coupled system, and to
theoretically study the effect of a sensor-actuator collocation thanks to a root locus. We verified
the unconditional stability for all the considered modes of the plate. This kind of control is
very simple, because no model of the structure is necessary. All the modes are damped, as far
as the actuator is not located at a node of vibration.

As third step, we developed a more complex method of control, based on the state space
feedback approach. This method can be very powerful as the pole placement method allows us
to set the pole of the closed loop system anywhere (of course taking into account the limits of
the actuator). The main drawback is due to controllability and observability : to control a lot
of modes, an important number of sensors and actuators is needed. This method is also less
easy to implement than the previous one, because we need a complete model of the system.
Interest of this method for our active damping application can seem limited but it allowed us
to have a better understanding of different concepts such as the Kalman’s filter, the state space
representation or the LQG method.

Finally, we have implemented these two methods on the actual system. Both have met the
same limitations : not an infinite gain margin, while it must be the case for collocation. This is
mainly due to the different phase lags of elements in the experimental chain, principally because
of the anti-aliasing filter (order 8 means good roll-off, but important phase lag). Having control
of the acquisition card requires time. Implementing the control loop demands stringency :
forgetting a gain or bad-typing an element of the matrix can lead to prohibited voltage on the
speaker and destroy it.

The results obtained between experimental and numerical approaches agree well, with
an attenuation of 20dB for the 150Hz mode. But the control loop could be improved. The
first enhancement concerns the modeling of the plate : our active damping does not involve
of low and high frequency modes. They can be modeled by adding a term in the transfer
function between the plate and the speaker. The second enhancement affects a modeling of
the experimental chain, especially the anti-aliasing filter. It would allow us to identify the real
controllable bandwidth. Moreover, we could have an idea of the real phase and gain margins.
Finally, the last enhancement is the development of an accurate observer : experience has

58
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shown that the mode at 120Hz was not properly reconstructed.

The purpose of this very interesting work was to illustrate a basic introduction on active
damping. Many aspects have been explored, as mechanics, electronics, control systems and data
processing. All these aspects are deeply close to mechatronics, and emphasize the variety of
applications proposed to modern engineers.
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File simpleloop.cpp

C++ file executing the simple loop feedback. Sampling frequency is 10kHz

1 #include "nidaqex.h"

#include "fstream.h"

#include "iostream.h"

/*

* Main:

*/

10 void main(void)

{

/*

* Local Variable Declarations:

*/

i16 iStatus = 0;

i16 iRetVal = 0;

i16 iDevice = 1;

i16 iChan = 0;

20 i16 iGain = 1;

f64 dSampRate = 100000.0;

f64 dScanRate = 20000.0; //(two times the sampling) because double buffer

u32 ulCount = 8; // length of the buffer

f64 dGainAdjust = 1.0;

f64 dOffset = 0.0;

i16 iUnits = 0;

i16 iSampTB = 0;

u16 uSampInt = 0;

i16 iScanTB = 0;

30 u16 uScanInt = 0;

static i16 piBuffer[2000] = {0};

static f64 Y[2000] = {0.0};

static i16 piHalfBuffer[1000] = {0};

i16 iHalfReady = 0;

i16 iDAQstopped = 0;

u32 ulPtsTfr = 0;

u32 ulRetrieved = 0;

i16 iNumMUXBrds = 0;

i16 iNumChans = 2;

40 static i16 piChanVect[2] = {0, 1};

static i16 piGainVect[2] = {1, 1};

i16 iIgnoreWarning = 0;

i32 lTimeout = 180;

i16 iYieldON = 1;

f64 output = 0.0;

i16 i=0;

iStatus = Timeout_Config(iDevice, lTimeout);

iRetVal = NIDAQErrorHandler(iStatus, "Timeout_Config",iIgnoreWarning);

50
// Config Double Buffer

DAQ_Config (iDevice, 0, 0); /* internal trigger & timing */

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Config", iIgnoreWarning);
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DAQ_DB_Config (iDevice, TRUE); /* enable double buffering */

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_DB_Config", iIgnoreWarning);

// Config Rates

60
iStatus = DAQ_Rate(dSampRate, iUnits, &iSampTB, &uSampInt);

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Rate",iIgnoreWarning);

iStatus = DAQ_Rate(dScanRate, iUnits, &iScanTB, &uScanInt);

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Rate",iIgnoreWarning);

// Config Channel

iStatus = SCAN_Setup(iDevice, iNumChans, piChanVect, piGainVect);

70
iRetVal = NIDAQErrorHandler(iStatus, "SCAN_Setup", iIgnoreWarning);

// Start Acquisition

iStatus = SCAN_Start(iDevice, piBuffer, ulCount, iSampTB,

uSampInt, iScanTB, uScanInt);

iRetVal = NIDAQErrorHandler(iStatus, "SCAN_Start",

iIgnoreWarning);

80

while (TRUE) {

iStatus = DAQ_DB_HalfReady(iDevice, &iHalfReady,&iDAQstopped);

if ((iHalfReady == 1))

{

iStatus = DAQ_DB_Transfer(iDevice, piHalfBuffer,

90 &ulPtsTfr, &iDAQstopped);

iStatus = DAQ_VScale(iDevice, iChan, iGain, dGainAdjust,

dOffset, 2, piHalfBuffer, Y);

// Y[0] for plate velocity

// Y[1] for speaker velocity

Y[0]=-Y[0]; // the accelerometers is glued upside down

output=-10*(Y[0]-Y[1]); // here we adjust the feedback gain

100
// Saturation : don’t forget the Velleman x22!! (0.2x22=4.4V)

// important because if the system is cabled in the wrong way...

// loudspeaker could be destroyed

f64 sat=0.2;

if (output>sat)

{

output=sat;

110 }

else if (output<-sat)

{

output=-sat;

}

iStatus = AO_VWrite(iDevice, 0,output);
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// Writing the output value, in Volts, on the board

120 }

}

}

/* End of program */
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File statefeedback.cpp

C++ file for the state space feedback. Sampling frequency is 10kHz

1 #include "nidaqex.h"

#include "fstream.h"

#include "iostream.h"

/*

* Main:

*/

10 void main(void)

{

/*

* Local Variable Declarations:

*/

i16 iStatus = 0;

i16 iRetVal = 0;

i16 iDevice = 1;

i16 iChan = 0;

20 i16 iGain = 1;

f64 dSampRate = 100000.0;

f64 dScanRate = 20000.0;

u32 ulCount = 12;

// size of the complete buffer : we have 3 data : Y[0],Y[1] and Y[2]. Buffer is composed by

// 4 packs of theses 3 data, classed in this way :

// Y[0]|Y[1]|Y[2]|Y[0]|Y[1]|Y[2]||Y[0]|Y[1]|Y[2]|Y[0]|Y[1]|Y[2]|

// (two half buffer)

// we have a scanning frequency of 20000, and we take not all the packs, but one on two. So

// the sampling rate is divided by two ==> 20000/2=10000Hz!

30 f64 dGainAdjust = 1.0;

f64 dOffset = 0.0;

i16 iUnits = 0;

i16 iSampTB = 0;

u16 uSampInt = 0;

i16 iScanTB = 0;

u16 uScanInt = 0;

static i16 piBuffer[2000] = {0};

static f64 Y[2000] = {0.0};

static i16 piHalfBuffer[1000] = {0};

40 i16 iHalfReady = 0;

i16 iDAQstopped = 0;

u32 ulPtsTfr = 0;

u32 ulRetrieved = 0;

i16 iNumMUXBrds = 0;

i16 iNumChans = 3;

static i16 piChanVect[3] = {0, 1, 2};

static i16 piGainVect[3] = {1, 1, 1};

i16 iIgnoreWarning = 0;

i32 lTimeout = 180;

50 i16 iYieldON = 1;

f64 output = 0.0;

f64 input = 0.0;

iStatus = Timeout_Config(iDevice, lTimeout);
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iRetVal = NIDAQErrorHandler(iStatus, "Timeout_Config",iIgnoreWarning);

// Config Double Buffer

60 DAQ_Config (iDevice, 0, 0); /* internal trigger & timing */

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Config", iIgnoreWarning);

DAQ_DB_Config (iDevice, TRUE); /* enable double buffering */

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_DB_Config", iIgnoreWarning);

// Config Rates

iStatus = DAQ_Rate(dSampRate, iUnits, &iSampTB, &uSampInt);

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Rate",iIgnoreWarning);

70
iStatus = DAQ_Rate(dScanRate, iUnits, &iScanTB, &uScanInt);

iRetVal = NIDAQErrorHandler(iStatus, "DAQ_Rate",iIgnoreWarning);

// Config Channel

iStatus = SCAN_Setup(iDevice, iNumChans, piChanVect, piGainVect);

iRetVal = NIDAQErrorHandler(iStatus, "SCAN_Setup", iIgnoreWarning);

80 // Observability matrix C of the model

f64 C[6]={0, 0, 0, 7.1400e-001 ,-8.4746e-001, -1};

// Matrices for Fe=10000Hz

// ------------------------

// State matrix A of the model

f64 G[6][6]={{ 9.9737e-001, 1.3492e-005, 1.6827e-005, 9.9892e-005, 2.4299e-008, 2.8696e-008},

{ 1.3833e-005, 9.9523e-001, -1.9965e-005, 2.4299e-008, 9.9813e-005, -3.4047e-008},

90 { 3.9844e-005, -4.6111e-005, 9.9994e-001, 6.9989e-008, -8.3042e-008, 9.9902e-005},

{-5.2479e+001, 2.6181e-001, 3.3622e-001, 9.9697e-001, 4.8990e-004, 5.7899e-004},

{ 2.7202e-001, -9.5293e+001, -3.9878e-001, 4.8990e-004, 9.9467e-001, -6.8673e-004},

{ 7.8415e-001, -8.9517e-001, -1.1495e+000, 1.4122e-003, -1.6750e-003, 9.9802e-001}};

// Command matrix B of the model

f64 H[6]={ 9.9818e-010,

-1.1843e-009,

-3.4113e-009,

1.9945e-005,

100 -2.3656e-005,

-6.8192e-005};

// Observer matrix

// Q=100, R=1, Gnoise=B

f64 L[6]={-1.7095e-010,

2.0306e-010,

5.8526e-010,

1.9290e-001,

-2.2895e-001,

110 -6.5894e-001};

// xi_modes=0.02, xi_speaker=0.5, gains /22 (because of power amplifier!)

/*f64 K[6]={2.4376e+002,

-9.3256e+002,

5.5689e+000,

5.5534e+000,

-6.1074e+000,

-5.9098e+000};*/
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// xi_modes=0.03, xi_speaker=0.5, gains /22 (because of power amplifier!)

120 f64 K[6]={ 1.2849e+002,

-1.7412e+003,

6.8614e+000,

8.8628e+000,

-9.6984e+000,

-5.9340e+000};

f64 GLC[6][6]={0.0}; // Matrix G-LC computed in one times and not at each time step

f64 Xest[6][2]={0.0}; // Estimate states : column 0 for time k, and column 1 for time k+1

130
ofstream file("result.dat"); // Just a verification of the good computation of G-LC

for (i16 i=0;i<6;i++)

{

for (i16 j=0;j<6;j++)

{

GLC[i][j]=G[i][j]-L[i]*C[j];

file << " " << GLC[i][j] << "\n";

}

140 }

file.close();

// Start Acquisition

iStatus = SCAN_Start(iDevice, piBuffer, ulCount, iSampTB,

uSampInt, iScanTB, uScanInt);

iRetVal = NIDAQErrorHandler(iStatus, "SCAN_Start",

iIgnoreWarning);

150

while (TRUE) {

iStatus = DAQ_DB_HalfReady(iDevice, &iHalfReady, &iDAQstopped);

if ((iHalfReady == 1)) // && (iStatus == 0)

{

160 iStatus = DAQ_DB_Transfer(iDevice, piHalfBuffer, &ulPtsTfr, &iDAQstopped);

iStatus = DAQ_VScale(iDevice, iChan, iGain, dGainAdjust,

dOffset, 3, piHalfBuffer, Y);

// Y[0] for the plate

// Y[1] for the speaker

// Y[2] for the command U

Xest[0][0]=Xest[0][1];

Xest[1][0]=Xest[1][1];

170 Xest[2][0]=Xest[2][1]; // instant k+1 becomes instant k

Xest[3][0]=Xest[3][1];

Xest[4][0]=Xest[4][1];

Xest[5][0]=Xest[5][1];

Xest[0][1]=0.0;

Xest[1][1]=0.0;

Xest[2][1]=0.0;

Xest[3][1]=0.0; // initialization of time k+1 for a new computation

Xest[4][1]=0.0;

Xest[5][1]=0.0;

180 output = 0.0; // output is set to zero at the beginning of the cycle
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Y[0]=-Y[0]; // because the accelerometer is upside down on the plate

input=(Y[0]-Y[1]); // sensibility = 1V/m/s

for(i16 i=0;i<6;i++)

{

190 for(i16 j=0;j<6;j++)

{

Xest[i][1]+=GLC[i][j]*Xest[j][0];

}

Xest[i][1]+=H[i]*Y[2]+L[i]*input;

//Xest[i][1]+=L[i]*input;

// this line to verify the observer, without command

output+=-(K[i]*Xest[i][1]); // state space feedback

200 }

// Saturation

if (output>sat)

{

output=sat;

}

else if (output<-sat)

210 {

output=-sat;

}

iStatus = AO_VWrite(iDevice, 0,output);

// writing on the PCI board the value of the command in voltage

}

}

220

}

/* End of program */
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File control.m

Design of the controller and observer

1 clear all

close all

clc

load K % complete matrices for modes between 0 and 200Hz

load M

load modal

load psi % deformed shape for all the nodes, at considered modes

load freq % natural frequencies

10 freq’

mode=[];

dim=input(’How many modes ?’);

for ii=1:1:dim

num(ii)=input(’Which mode ?’);

end

n=0;

20 while (n<1||n>70)

n=input(’On which node do you want to place the speaker ? (1-70)’);

%n2=input(’Second measure on the plate at node ?’);

end

speaker=[];

mode=[];

30 for index=1:length(num)

speaker=[speaker psi(n,num(index))];

mode=[mode freq(num(index))];

for jndex=1:1:length(num)

temp1(index,jndex)=M(num(index),num(jndex));

temp2(index,jndex)=K(num(index),num(jndex));

end

end

freq=mode;

40 M=temp1;

K=temp2;

w=freq*2*pi;

% --------------------------- %

% Speaker characterization %

% --------------------------- %

50 f0=16;

m=0.410;

R=5;

L=90e-6;

c=7.5;

k=4720;
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w=2*pi*f0;

phi=1.4;

xi=0.08;

60
% ------------------------------ %

% Equations of the system %

% ------------------------------ %

a=speaker; % contains modal amplitudes at considered node and considered mode

d=c+phi^2/R;

MM=[[M zeros(dim,1)];zeros(1,dim) 1];

70 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Building CC, KK %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for ii=1:1:length(freq)

for jj=1:1:length(freq)

CC(ii,jj)=a(ii)*a(jj)*d;

KKpetit(ii,jj)=a(ii)*a(jj)*k;

end

end

80
for ii=1:1:length(freq)

CCcol(ii)=-a(ii)*d;

CClin(ii)=-a(ii)*d/m;

KKcol(ii)=-a(ii)*k;

KKlin(ii)=-a(ii)*k/m;

end

CC1=[CC CCcol’];

CC2=[CClin d/m];

90 CC=[CC1;CC2]

KK1=[temp2+KKpetit KKcol’];

KK2=[KKlin k/m];

KK=[KK1;KK2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Building FF %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

100 for ii=1:1:length(freq)

FF(ii)=a(ii)*phi/R;

end

FF=[FF -phi/m/R]’;

%[lambda,vect] = poleMCK (MM,CC,KK); % Verification of the system

A=[zeros(dim+1) eye(dim+1);-inv(MM)*KK -inv(MM)*CC];

110 B=[zeros(dim+1,1);inv(MM)*FF];

%C=[zeros(1,dim+1) a 0;zeros(1,length(A)-1) 1];

%D=[zeros(1,1);zeros(1,1)];

C=[zeros(1,dim+1) a -1];

D=0;
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% --------------------------------------------------------- %

% Commandability and observability : system without control %

120 % --------------------------------------------------------- %

disp(’%%%%%%%%%% Commandability %%%%%%%%%%%%%’)

comm=[];

obs=[];

for i=1:length(A)

comm=[comm A^(i-1)*B];

obs=[obs (A’)^(i-1)*C’];

end

comm=rank(comm);

obs=rank(obs);

130
disp(’your commandability rank is’)

disp(comm)

disp(’and must be’)

disp(length(A))

disp(’%%%%%%%%%% Observability %%%%%%%%%%%%%’)

disp(’your observability rank is’)

disp(obs)

disp(’and must be’)

140 disp(length(A))

if (comm==length(A) && obs==length(A))

disp(’Good...’)

end

%------------------------------------------------------

%------------------------------------------------------

150 states= {’r1’ ’r2’ ’y’ ’rd1’ ’rd2’ ’yd’};

inputs= ’U’;

outputs= {’yd1-yd2’};

sysCT=ss(A,B,C,D,’statename’, states,’inputname’, inputs,’outputname’, outputs);

disp(’%%%%%%%%% Poles of the open loop system %%%%%%%%’)

disp(’%%%%%%%%% Frequency %%%%%%%%%%’)

f=abs(pole(sysCT)/2/pi)

f=sort(f);

f=f(1:2:2*(dim+1));

160 disp(’%%%%%%%%% Damping %%%%%%%%%%’)

xi=-real(pole(sysCT))./abs(pole(sysCT))

% ------------------------------------ %

% Continous to discrete transformation %

% ------------------------------------ %

fech=input(’Which sample frequency ?’); % max 200000kS/s

% Advice : fe must be 10 to 20 times greater than the observable phenomenom

% in discrete time system (R. Longchamp)

170 Te=1/fech;

sysDT=c2d(sysCT,Te);

% ---------------------------------------- %

% Design of the estimator by Kalman Filter %

% ---------------------------------------- %

Gnoise=B;
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180 Q=100; % covariance noise of the system // q/r << quick

R=1*eye(1); % covariance noise of the measurement // q/r >> low

[Lkalm,Pkalm,Zkalm,Ekalm] = dlqe(sysDT.a,Gnoise,sysDT.c,Q,R);

% Ekalm = poles of the observer

Lkalm;

display(’%%%%% Choice of the regulator %%%%%’)

display(’1) Pole placement, 2) Linear quadratic regulator’);

choice=0;

190 while((choice<1)||(choice>2))

choice=input(’Choice?’)

end

% ----------------------------------%

% Pole placement for state feedback %

% --------------------------------- %

if(choice==1)

polereg=createpole(f*2*pi,[0.5 0.02*ones(1,dim)]);

% taking the same frequency for the pole, but with different damping

200 poleregDT=exp(polereg*Te);

KregDT=place(sysDT.a,sysDT.b,poleregDT);

regDT=reg(sysDT,KregDT,Lkalm’);

clDT=feedback(sysDT,regDT,1);

end

% ------------- %

% LQR regulator %

% ------------- %

210 if(choice==2)

Q=eye(6);

R=0.0001; % we are strength on the state, and allow large command if Q/R >>

[KregDT,Slqg,Elqg]=DLQR(sysDT.a,sysDT.b,Q,R);

regDT=reg(sysDT,KregDT,Lkalm);

clDT=feedback(sysDT,regDT,1);

end

figure(1)

pzmap(clDT)

220

figure(2)

impulse(sysDT,2);

hold on

impulse(clDT,2);

[Y,t]=impulse(sysDT,5);

[Ycorr,tcorr]=impulse(clDT,5);

230 figure(3)

[fr,sg]=TFDr(t,Y(:,1));

[frcorr,sgcorr]=TFDr(tcorr,Ycorr(:,1));

subplot(2,1,1)

semilogx(fr,20*log10(abs(sg)),frcorr,20*log10(abs(sgcorr)))

xlabel(’Frequency [Hz]’)

ylabel(’Gain [dB]’)

title(’Bode curve of the Velocity at node 55, for a unit impulse at the input’)

grid on

subplot(2,1,2)

240 %semilogx(fr,atan(imag(sg)./real(sg))*180/pi,fr,atan(imag(sg)./real(sgcorr))*180/pi)



Appendix B

Materials

• B&K amplifier

• KEMO filter

• PCI-6035E National Instrument card

• Velleman K8040 power amplifier
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