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Abstract—In the current competition framework governing the
electricity sector, complex dependencies exist between electrical
and market data, which complicates the decision-making proce-
dure of energy actors. These must indeed operate within a com-
plex, uncertain environment, and consequently need to rely on
accurate multivariate, multi-step ahead probabilistic predictions.
This paper aims to take advantage of recent breakthroughs in deep
learning, while exploiting the structure of the problem to design
prediction tools with tailored architectural alterations that improve
their performance. The method can provide prediction intervals
and densities, but is here extended with the objective to gener-
ate predictive scenarios. It is achieved by sampling the predicted
multivariate distribution with a copula-based strategy so as to em-
body both temporal information and cross-variable dependencies.
The effectiveness of the proposed methodology is emphasized and
compared with several other architectures in terms of both statis-
tical performance and impact on the quality of decisions optimized
within a dedicated stochastic optimization tool of an electricity
retailer participating in short-term electricity markets.

Index Terms—Bidirectional LSTM, copula, multi-step ahead
prediction, probabilistic forecasting, scenario generation.

I. INTRODUCTION

HE deregulation of power markets, which has introduced
T competition at both generation and retail levels, associated
with a strong will to move towards decarbonisation of the overall
energy system, has facilitated the development of renewable-
based generation, typically from wind and photovoltaic (PV)
sources. The intermittent and uncertain nature of these resources
is challenging the traditional operation of electricity networks,
which gives rise to complex stochastic optimization problems,
not only for system operators but also for all the other players
in the electricity sector. In this context, the success of their
operational planning strategies, and as a corollary of the energy
transition, strongly relies on the knowledge of the system state
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(through adequate prediction tools) at time horizons which go
from quasi real-time to day-ahead [1], [2].

However, predictions over such time horizons are ineluctably
vitiated by errors, originating from noise in the explanatory vari-
ables (e.g., due to the chaotic nature of weather conditions) as
well as model misspecifications. Hence, traditional point (de-
terministic) forecasts that only predict the conditional mean of
the signal are providing very limited information to decision-
makers. Indeed, in order to ensure decisions that are robust
with regard to forecast errors and unexpected events, it is also
necessary to quantify the level of uncertainty associated with
predictions.

Specifically, techniques such as robust, interval and chance-
constrained optimization frameworks were developed to hedge
against these uncertainties by relying on probabilistic forecasts
in the form of intervals. In this way, different approaches for
obtaining such uncertainty regions (or by extrapolation densi-
ties) can be found in the literature for respectively wind power
[3]-[7], PV generation [8], load [7], [9] and electricity prices
[10], [11]. However, these optimization techniques have two
main drawbacks. Firstly, robust and interval techniques are
known to yield conservative (and thus sub-optimal) solutions
since these are intrinsically designed to be optimal with regard to
extreme scenarios [12]. Chance-constrained offers a less conser-
vative and more practical approach by considering a probability
for satisfying each constraint, but such a formulation is very
difficult to solve in practice (due to the non-convexity of the re-
sulting problem). Secondly, since probabilistic forecasts provide
no representation of the interdependencies between consecutive
time steps (i.e., no information regarding the correlation of the
variables of interest at different time points is available), the
quality of subsequent decisions may be affected.

Consequently, for time-dependent decision problems that
have to be carried out on a regular basis (e.g., daily participation
to electricity markets), scenario-based stochastic optimization
provides a practical framework that yields efficient outcomes
(less conservatives) in general [13]. But this technique, which
optimizes the expectation of some loss function (e.g., profit of
an electricity retailer) under the forecast distribution, can be
associated with tractability issues, depending on the number
of scenarios (time trajectories) used to represent uncertainties.
In this respect, implementing a methodology able to provide a
limited set of representative scenarios is highly valuable.
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This problem is tackled in [14], where an autoregressive
moving average (ARMA) model is developed for individual
wind sites, and a stationary variance-covariance matrix is there-
after used for integrating the spatial correlation among series.
However, this approach does not allow to properly take into
consideration the predictive densities, i.e., uncertainty associ-
ated with particular conditions (e.g., higher uncertainty during
strong winds). In [15]-[17], the scenarios are constructed by
computing the complex covariance matrix based on a multivari-
ate Gaussian distribution assumption. In [18], a nonparametric
neural network dedicated to quantify prediction intervals (PIs)
is firstly implemented. Then, these PIs are used to estimate an
empirical cumulative distribution function, from which scenar-
ios are generated. But, due to the independent nature of the
sampling methodology, these scenarios do not account for the
time-varying structure of forecasts errors. In [19], [20], the con-
ditional error distributions are constructed based on point fore-
casts, and a copula-based sampling method. This methodology
allows to capture the spatial dependencies among the different
variables but do not exploit the information contained in the ex-
planatory variables, which can lead to an erroneous estimation
of the uncertainty space. In this way, these techniques are unable
to differentiate different regimes such as, for instance, highest
forecast errors during windy days.

In this work, however, accurate probabilistic forecasting tools
(whose predictions properly process the variance contained in
the input vector) are combined with a copula sampling so as to
generate scenarios that comply with both the predictive distri-
bution of variables (i.e., variability of the uncertainty) and their
interdependence structure. The methodology is thus composed
of two consecutive steps:

- Determination of probabilistic forecasts for each variable
of the whole prediction horizon. It should be noted that
these intervals can directly be used as inputs for robust
optimization.

- Sampling of the resulting multivariate distribution using a
copula-based approach to obtain a set of stochastic scenar-
ios that can then be exploited in scenario-based optimiza-
tion frameworks.

Regarding probabilistic forecasts, the objective of the paper
is to exploit recent breakthrough in the field of data science by
using advanced deep learning structures, i.e., the Long Short
Term Memory (LSTM) neural networks, which is a particular
type of recurrent architecture with rich dynamics, designed to
automatically select and propagate through time the most rel-
evant contextual information. Such models have proved their
superiority in many tasks such as load forecasting [21], [22],
and are extensively used by major technology companies for
products such as Google Translate [23] or speech recognition
applications in smartphones [24].

Overall, the contributions of the paper can be summarized as
follows.

Firstly, the objective is to take advantage of the specificities
of the day-ahead operational planning to design prediction
tools with tailored architectural variations that improve their
performance. Practically, since the predictions are needed
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simultaneously for each time step of the scheduling horizon,
LSTM networks are combined with a bidirectional processing
of data. The results demonstrate that this approach infers
lower forecast errors than traditional techniques, which
allows reducing the uncertainty space of the subsequent
optimization.

Secondly, two different models for characterizing the uncer-
tainty are compared. In this way, the BLSTM network is trained
to either generate a Gaussian [25] or a non-parametric predic-
tive distribution of the dependent variables [26]. It enables to
confront the Gaussian assumption of prediction errors with an
empirical approach (that makes no assumption on the underlying
probability distribution of variables).

Thirdly, although the method can provide prediction intervals
and densities, it is here extended with the aim to provide pre-
dictive scenarios. Practically, the tool relies on a copula-based
sampling of the multivariate forecasted distribution so as to gen-
erate time trajectories (sample paths) that mimic actual time and
cross-variable dependencies. In this way, whereas most of the
literature focuses on individual variables, the proposed approach
attempts to exploit information in a multi-dimensional context
with heterogeneous data from different natures. Indeed, in the
competitive framework governing the current electricity sector,
complex dependencies between electrical and market data are
taking shape, and it is thus important to implement a strategy
that is able to capture this information.

Fourthly, the value of the methodology is compared with
other approaches not only in terms of statistical performance,
but also regarding the practical impact of the quality of scenarios
on the decisions optimized within a scenario-based stochastic
optimization tool. Here, the day-ahead multi-market scheduling
of electricity aggregators (such as energy retailers or generation
companies) is used as a case study.

Moreover, thanks to the self-learning nature of the pro-
posed methodology, minimal manual engineering or data pre-
processing is needed. Then, within the objective of quickly and
efficiently integrating the new information that is revealed each
day, the method is developed such that the models can be dynam-
ically adapted using exclusively the new data. This circumvents
the need of retraining the global architecture from scratch with
the whole set of historical data. However, an important aspect
related to this re-training is to find the extent to which it is
optimal to modify the previous optimal architecture, but this
research topic is outside the scope of this work.

The rest of the paper is structured as follows. Section II
explains and motivates the global architecture of the tool
implemented for constructing adequate predictive day-ahead
scenarios. In particular, the strategies used for the probabilistic
predictions and the subsequent sampling policy to generate
predictive multivariate scenarios are thoroughly described.
Then, the different tasks that have to be carried out in order to
maximize the predictive potential of the tool are presented in
Section III. The results illustrating the benefits of the proposed
approach with regard to traditional methods such as the mul-
tilayer perceptron are presented and discussed in Section IV.
Finally, in Section V, appropriate conclusions are reached.
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II. METHODOLOGY

The multivariate predictive scenarios are obtained by means
of a two-step procedure. Probabilistic forecasts (that consider
both the noise in explanatory variables and misspecifications of
the prediction model) are first obtained using an efficient ar-
chitecture of deep recurrent neural networks (Section II.A-B). It
should be noted that the distributions pertaining to data of differ-
ent nature can be either jointly or individually predicted (without
any impact on the rest of the methodology). Then, the result-
ing multivariate distribution (encompassing at this stage both
temporal and cross-variable information) is adequately sampled
using a statistical copula model that captures the interdepen-
dence structure of variables (Section II.C).

A. Probabilistic Forecasting Tool

It has been observed in the past decade that, due to improve-
ment in computer capabilities, data-driven methods outperform
the best physical models for prediction tasks, especially for com-
plex nonlinear time sequences when a sufficient amount of his-
torical data is available [27]. Besides, recurrent neural networks
(RNNs), i.e., advanced deep learning-based structures that are
characterized by architectural features specifically designed to
hold relevant information from past inputs, have shown high po-
tential in processing sequentially dependent data. In this regard,
they constitute the natural modeling framework for time series
prediction. These models do not rely on a mathematical model
of predefined complexity but attempt instead to find a natural
dependence between inputs and outputs through a self-learning
procedure.

However, traditional RNNs are characterized by two limita-
tions. The first problem, widely known as the vanishing gradient
problem, is that the back-propagated errors during training
either fades or blows up over time due to the multiple gradient
calculations associated with the steepest descent algorithm,
preventing the model to reliably access time dependencies
more than a few time steps long [28]. Secondly, standard RNNs
process inputs in temporal order and ignore the information
contained in the future context (resulting in an inadequate
modeling of backwards dependencies).

The first problem is here tackled by using an alternative (more
complex) neural architecture, referred to as Long Short-Term
Memory (LSTM), where the information can be propagated
through time among consecutive time step within the internal
state of the network [29]. In this way, an LSTM layer ! € [1, Ny |
is made up of NV}, recurrently connected blocks, referred to as
memory blocks (or neurons). As represented in Fig. 1, each
block has three multiplicative units, known as input, output and
forget gates, which can be seen as modules for respectively
writing, reading and resetting information. The inputs of each
layer / at time r are composed of the outputs of the same

layer at the previous time step sil_)l as well as the outputs of the

layer below S(FU. For the first hidden layer [ = 1, the bottom
layer sﬁl‘” corresponds to the network input variables x;.
At each time step, the input gate can be used to memorize

new information from either the explanatory variables or the
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Fig. 1.  Single-cell LSTM memory block (cell 4 of hidden layer / at time 7)
used in this work.

previous state of the network. The forget gate can, for its part,
discard irrelevant information from the past, whereas the out-
put gate is used to exploit useful information from the memory
content. Since the information can be either propagated or elimi-
nated simultaneously among the different LSTM blocks of each
hidden layer, the neural network is potentially able to model any
complex nonlinear signals with multiple time scales, resulting
in performance enhancement.

The composite equations associated with the LSTM architec-
ture are the following:

i =0 (Wasl™ + Wasi+ Woen) ()
fi =0 (Wiss! ™+ Wigsii + Wepern) @
¢ = fiei 1 +itanh (Wis{ ™ 4+ Wisi ) )
o =0 (Wiosilfl) + Wiosi 1 + cht) o

s; = o;tanh (¢;) (5)

where o is the logistic sigmoid function, and i;, f; and o; are
the activation vectors of the input gate, forget gate and out-
put gate respectively, whereas c; stands for the cell activation
vector. All these vectors are of similar size, equal to the one
of the hidden vector siljl (i.e., output of the hidden layer ).
The weight matrices W, (connections between LSTM memory
blocks) constitute the inner parameters of the neural network
that need to be optimized during the learning procedure.

An efficient solution to the second issue is provided by the
bidirectional topology, which exploits at each time step ¢ the
complete information about the whole temporal horizon (before
and after 7). As illustrated in Fig. 2, the principle of such bidi-
rectional RNN is to process the training sequence forwards and
backwards by two different recurrent networks, both of which
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Fig. 2.  Bidirectional recurrent neural network.

being connected to the same output vector [30]. The concept
has been developed in speech recognition (another very noisy
one-dimensional time series) where it was proved that a word
can be better recognized with the knowledge of the whole sen-
tence rather than by using only previous words [31]. The same
principle is applied here where the information contained in
the explanatory variables at each time step is fully exploited
for each point of the prediction horizon as it is likely to gener-
ate improved performance. This approach is moreover perfectly
suited for our task of offline multi-step ahead predictions for
which outputs are needed simultaneously at the end of the input
segment. Furthermore, bidirectional networks are faster to train,
and are more robust to model uncertainties and biased inputs.
Indeed, in contrast with unidirectional RNNSs, they do not rely
on a recursive strategy that iteratively fed back previous predic-
tions as inputs for the next time step, which is shown to lead to
error accumulation [32], [33].

Combing bidirectional RNNs with LSTM gives Bidirectional
LSTM (BLSTM), which has the benefits of both long-range
memory and bidirectional processing. Furthermore, it is possible
to take advantage of deep architectures, which are able to build
up progressively higher level representations of data, by piling
up RNN layers on top of each other (the output sequence of one
layer forming the inputs for the next).

B. Network Training

The objective of the BLSTM training is to use the historical
datasets (of both explanatory and dependent variables) within
a supervised learning strategy that adjusts the model parame-
ters in order to maximize the predictive capability of the tool,
while quantifying the uncertainty associated with the predic-
tions. Practically, this consists in finding the optimal weights
between neurons (LSTM blocks) so as to determine the full
conditional distribution p(y; ;1 |y; ) of outputs y; ; for each
k of the prediction horizon (for each variable i), knowing the
values from previous time steps.

In contrast with point forecasts, probabilistic predictions yield
a representation of the probability distribution of the dependent
variables. This distribution can be either obtained using a fully
parametrized model or via an empirical function.

1) Parametric Model of Prediction Errors: In order to ob-
tain this predictive probability distribution of outputs, the first
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investigated procedure is to make an assumption on the distri-
bution of the uncertainty by defining a statistical (parametric)
model of forecast errors, and to use the neural network for pre-
dicting the parameters of the specified distribution (e.g., mean,
variance, skewness, kurtosis, etc.).

The neural network is then trained to optimize a specific error
function (with the objective of enhancing the statistical prop-
erties of the output distribution of the probabilistic forecast).
Practically, the parameters of the network are adjusted to
maximize the likelihood L(#) that, given its outputs 6, the
model generates the historical observations. The maximum
likelihood estimation is equivalent to minimizing the negative
log-likelihood, and this loss function E; can be expressed as
follows:

T
Ep =- Z In L (yi,e [0 (st)) (0)
t=t
Here, the Gaussian likelihood L is employed, which is
parametrized using the mean and standard deviation of past
observations 6 = (u, 0):

2
Lo = (27T0’2)71/26Xp <_(:v—,u)> 7

202

where x is the actual measurement of the dependent variable.
The mean p of the distribution is given by an affine function
of the BLSTM output (8), whereas the standard deviation o is
determined by applying sequentially a softplus activation after
the affine transformation, in order to ensure that its value remains
strictly positive (9).

H(St) = WS¢ 8
o(st) =In(1+exp(wyst)) 9)

where w,, and w, represent the output weight vectors associated
respectively with the mean and standard deviation.

It should be emphasized that other likelihood models can be
employed, provided that the function derivatives with respect to
their parameters 6 can be obtained.

2) Non-Parametric Model of Prediction Errors: In real-life
applications, it may be difficult to know the exact distribution
of the uncertainty at hand. In this context, methods that do not
rely on a pre-defined distributional assumption are likely to be
more robust compared to other parametric methods. A solution
consists therefore in using quantile regression [34], for which
the objective is to directly predict the specified quantiles g € Q
of the target distribution:

q=P (yt+k <y, |yat)

In this framework, models are trained to minimize the quan-
tile loss (or pinball loss) since it has been proved in [35] that
minimizing this pinball loss £, yields the optimal quantiles.
The total loss is therefore the result of the sum over all specified
quantiles of interest:

Eg = Z ¢ max (O,d — y(q)> + (1 — ¢) max (O,y<q) — d)

qeqQ
(1)

(10)
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Fig. 3. Generation of predictive scenarios from multivariate distributions.

where the quantiles 3(?) are given by an affine function of the
BLSTM outputs. It is interesting to notice that, when ¢ = 0.5,
we get an estimate of the conditional median of the output
distribution.

In contrast with deterministic predictions where the neural
network has only one output (i.e., the conditional mean of the
studied variable), the prediction model is here characterized by
anumber of outputs equal to the number of quantiles of interest.
These quantiles are thus simultaneously predicted by a single
neural network architecture.

It should be noted that in case of perfect prediction, the quan-
tile loss cannot be differentiated because of the kink (sharp
change of trajectory) of the function at this particular point.
Hence, in accordance with the philosophy of the training strat-
egy, it is considered (by forcing numerically in the coded pro-
cedure) that the gradient is equal to zero when this case is
encountered.

Moreover, similarly to the parametric model previously de-
scribed, a great asset of the methodology is that the loss function
is differentiable, so that the neural network can be trained using
gradient descent. This learning procedure (contrary to meta-
heuristics such as genetic algorithm or particle swarm optimiza-
tion) allows the network to be systematically retrained each day
using only the new information that has been revealed, so that
the computational burden of this retraining task is very limited.

C. Generation of Predictive Scenarios

Once the predictive distributions (either Gaussian or under
the form of empirical quantiles) at each time step ¢ € T for
each variable i € [ are obtained (outputs of the BLSTM), the
objective is to obtain samples y;, ., from the D-dimensional
distribution (D = #T#I), where # stands for the cardinality of
the associated set. The generated scenarios therefore contains
the global dependence structure of variables (12):

Vit ~ P Vit Vi —to—15XityT) (12)

where £, stands for the start of the prediction horizon of inter-
est (data before ¢ are therefore assumed to be known for the
prediction phase).

However, the task of generating random vectors from a
high dimensional distribution is really complex, even when the
marginal distributions of each dimension are known [36]-[38].

In this work, the resulting D-dimensional space is therefore
statistically represented using a copula model. Such models al-
low substituting the difficult task of identifying a multivariate
distribution by performing two simpler tasks. The first one con-
sists in appropriately modeling the marginal distributions of
each variable (i.e., dimension) and the second is to estimate the
copula, which summarizes the whole dependence structure [39].
Hence, copulas enable generating vectors with any specific de-
pendence structure, and not only the linear correlation such as
traditional methods.

As represented in Fig. 3, sampling the multivariate distribu-
tion using a copula-based approach is composed of two sub-
steps:

- Phase I: in pre-processing (before the probabilistic predic-
tions), a copula model that encompasses the dependence
structure of the multivariate distribution is constructed. The
model is trained with all the relevant historical information.

- Phase II: after obtaining the multivariate distribution, the
copula model constructed in phase I can be used to generate
numbers u = (uq, ..., up)e0, 1]D with the dependence
structure of the original data.

The construction of the copula model (Phase I) based on

historical data can be described by the following three steps:

A) The relevant historical data are collected.

B) These data points are transformed into points u; of the unit
D-cube [0, 1] ” by using the probability integral transfor-
mation on univariate marginal distributions.

C) The density of the copula is estimated.

The copula structure (Step C) is empirically represented as

a frequency distribution of historical observations based on the
methodology presented in [40], [41]. This nonparametric es-
timation is parameter-free, thereby bypassing the need to fit
samples to a family of copulas and offering a greater general-
ity by allowing any type of dependence. Practically, the unit
D-cube is partitioned into a given number of sub-cubes, whose
granularity is fixed by the parameter K. In each sub-cube, the
density is evaluated by counting the number of historical points
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in the sub-cube, divided by the total number of observations n
and the volume of the sub-cube.

The empirical copula density, which is denoted by a small
letter c(u), is thus determined as follows:

N
c(w) = —.
n(%)

where NN; is the number of points in subcube S, je{1, . .. K}D .
Hence, in the original unit D-cube, the cumulative density is

equal to one. The marginal densities ¢;(u), d =1, ..., D-1 are
determined as follows:
c(u)dugsy ... .dup

1 1
cd(ul,...,ud):/ /
Ug+1=0 up =0
(14)

In this way, the needed conditional distribution functions are
expressed as:

.

j=01,---.Jp) 13)

'7ud71)
= Prob (U; < uq |Uy = uq,..

Uq

Cy (ug|u, ..

LU =uq1)

f Cd (ula"'uudfhu)du
= u=0 d=2,...,D (15)
Ca—1 (U1,. .., uq-1)
where U = (Uy, ...,Up) is a random vector with univariate

uniform margins restricted to the unit D-cube.

The segmentation of the D-cube into sub-cubes influences
both the accuracy of the model and the computational require-
ments associated with the copula structure. A trade-off between
those two considerations has thus to be determined in the choice
of the granularity K.

Here, the curse of dimensionality is alleviated, not by focus-
ing on architectural innovations (such as vine copulas for which
the high-dimensionality is decomposed into a cascade of bi-
variate copulas, where each pair-copula can be chosen indepen-
dently from the others), but rather by relying on an intricate data
structure for storing and accessing the needed densities of the
empirical copula. Practically, these elements are stored as sparse
arrays. Moreover, a hash-based data structure is elaborated so
as to realize the more favorable space and time complexity of
the data structure, thereby increasing the precision of the copula
model by enabling greater values of the parameter K.

Finally, the multivariate random vectors can be generated
(Phase II) using copulas in two steps:

1) Generate depend random numbers. To that end, u{"

is firstly sampled from the uniform distribution U(0,1).

Then, v, d = 2,..., D, are generated in turn using the
conditional distribution function Cy(ug|u{", ... uJ"})
given by (15).

2) Transform the generated variables of the unit D-cube into
the original variables dimension using the inverse trans-
form sampling, based on the marginal distributions com-
ing from probabilistic forecasts.

To summarize, the copula model is trained only once, and can
thereafter be used in real-time to generate uniform dependent
numbers u. Using the marginal predictive distributions obtained
with the probabilistic forecasting tool, these uniform numbers
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configurations of inputs
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network topologies
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i stopping and weight noise

" Evaluation of the performance

&:) of the network (RMSE

averaged on the validation set)

Fig.4. Two-nested loops procedure designed for the optimal model selection.

can be converted into the original dimensions thanks to the
inverse transform sampling so as to obtain the scenarios y; ; .r-
The sampled scenarios thus encompass both time and inter-
variable dependencies.

III. CONFIGURATION OF THE PREDICTION TOOL

The predictive capacity of the BLSTM tool depends on two
important conditions.

The first one is the selection of the appropriate set of explana-
tory variables. This task is essential since any missing infor-
mation will inevitably deteriorate the model ability to provide
accurate outcomes, whereas irrelevant input data will, for their
part, lead to improper temporal dependencies (due to the strong
relationship between the dynamics of the recurrent network and
its inputs).

Secondly, the model has to be sufficiently sophisticated for
capturing all hidden characteristics of historical data, but not
too complex such as to avoid overfitting (i.e., modeling error
that arises when a model has insufficient training data and so
many parameters that it begins to memorize the data instead
of learning the underlying trend, considerably reducing its pre-
dictive capacity). It should be mentioned that the complexity
of the BLSTM network can be tuned along two dimensions
(also referred to as hyperparameters): the number of hidden lay-
ers within the network architecture and the number of neurons
(LSTM blocks) within each hidden layer.

Finding the optimal architecture (in terms of both inputs se-
lection and model complexity) is task-dependent [42], and is
here achieved using to the two-nested loops approach presented
in Fig. 4.

First, different relevant configurations of the input vectors are
evaluated.

All studied variables (load, renewable generation and elec-
tricity prices) are characterized by both daily and yearly cycles
(i.e., temporal profiles hold essentially the same shape from one
day to the next and from year to year). Additionally, load and
electricity prices are also strongly related to human activity,
which results in a weekly periodicity. However, in order to opti-
mally exploit this temporal information, the input selection has
also to identify the best way to represent the variables. Indeed,
the relative importance of these time data is not easily quantified
by a numerical value. For instance, the second hour of the day
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is not 2 times more important than the first one. In this con-
text, a binary representation may provide a more natural way
of expressing such data, but at the expense of an increased di-
mensionality of the network input space. Here, different inputs
combinations were therefore tested. For instance, for describ-
ing the hourly variation within the day, the different options
were:

- Incremental indexing: a single input in the form of a con-
tinuous value within the range [0.1, 2.4].

- Incremental binary representation: 5 inputs representing a
binary Gray coding (from ‘00001’ to ‘10100°). In contrast
with the traditional binary representation, the Gray coding
is abinary numerical system in which two successive values
differ in only one bit, which allows smoother transitions
between time steps.

- Mutually exclusive binary representation: 24 binary inputs,
one for each hour of the day. With such an input repre-
sentation, when one input is equal to 1, all others are set
to 0.

Then, weather conditions can also have a significant influ-
ence on the studied variables. Here, the day-ahead predicted
features (temperature, wind speed, cloud cover and solar ra-
diation) provided by numerical weather predictions (NWP) at
a single location in Belgium are thus integrated as potential
network inputs.

Finally, past information is also provided so that the neural
network can exploit the recent dynamics of the variable.

For each of the tested input configurations, the architecture of
the network is tailored by optimizing its hyperparameters, and
the BLSTM model is trained (using online Back Propagation
Through Time [43]).

In order to increase the network robustness regarding unseen
data, two regularization techniques are used during the learn-
ing phase. First, early stopping is implemented. It consists in
dividing the historical set of data into a training set and a val-
idation set in order to stop the learning phase at the optimal
time (before the network begins to be too closely adapted to the
training dataset). The second technique is the addition of weight
noise during training so as to ensure that the network ignores
the irrelevant information (noise in the data). It should thus be
noted that other hyperparameters (such as the variance of weight
noise, or the learning rate of the gradient descent learning pro-
cedure) have to be optimized together with the complexity of
the network architecture during the optimal model selection.
Thereafter, once the optimal model is determined, the statistical
quality of its forecasts computed on the validation set can be
evaluated.

At the end of the two-nested loop procedure, the different
models (differentiated regarding both their inputs and hyperpa-
rameters) can be ranked with respect to their statistical score
on the validation set (unseen data), and the best model is then
used for practical application. It should be noted that it is also
common to rely upon an ensemble of models for actual predic-
tions. Typically, the results of models that tend to either under-
and overestimate the solution are averaged to give a more stable
outcome.
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Day-ahead Prediction horizon

12h00 00h00
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Fig. 5. Representation of the prediction horizon.

IV. CASE STUDY

In the current context of liberalized electricity markets, energy
aggregators, also referred to as Virtual Power Plants (VPPs),
need to define each day (typically at 12 h0O) their optimal bid-
ding strategy in the day-ahead wholesale market. Practically,
they have to determine the energy exchanges (sold or purchased)
in the market, which is cleared through an auction mechanism at
the end of which both clearing price and volume are obtained for
the 24 hours of the next day. The market clearing is carried out
by the market operator that aggregates demand bids and gener-
ation offers into the so-called merit order curve. Market players
must thus have accurate prediction of the stochastic variables
influencing the decision process. Predictions are performed si-
multaneously at 12 h in day-ahead for the 24 hours of the next
day. In this way, as represented in Fig. 5, the prediction hori-
zon of interest (for the day-ahead stochastic decision-making
problem) spans thus from m = 12 to 36 hours in the future.

In this work, the predictions focus on the aggregated load
and renewable generation (wind and PV) in Belgium in order
to confront such predictions with the day-ahead forecasts pub-
lished by the system operator. Indeed, the latter publishes each
day its forecasts for the purpose of promoting a transparent and
more competitive market. Although, for confidentiality reasons,
its underlying prediction tool cannot be disclosed. Within the
objective to compare results on a fair basis, it should be noted
that our predictions are therefore realized in the same conditions
(at 12 h in day-ahead).

Regarding renewable generation, the goal is to quantify the
maximum amount of energy that can be extracted at each time
step of interest. The actual generation level (after curtailment or
control strategies, e.g., to provide ancillary services) is outside
the scope of this work.

Similarly, the work focuses on the non-shiftable load. Indeed,
it is important that this part of the total consumption can be
reliably predicted (for maintaining the energy balance).

These variables (load and renewable generation) are there-
fore predicted as forcing terms for a power system (exoge-
nous variables that are not influenced by the system), and are
then integrated as explanatory variables for predicting electricity
prices. The data-driven forecasting tools are trained to automat-
ically learn the hidden market mechanism, and do not explicitly
take physical constraints into account. However, in Europe, it
has little impact since the day-ahead market is cleared without
accounting for grid constraints (congestions or voltage levels)
within the constitutive market zones [44].
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A. Benchmark

Practically, the following neural network architectures
are compared (thereafter referred by their abbreviations in
brackets):

- Multilayer perceptron (MLP), i.e., traditional static feed-
forward network, in which outputs at every time steps are
simultaneously predicted so as to avoid accumulation of
errors.

- Unidirectional LSTM (LSTM).

- Bidirectional LSTM (BLSTM).

In order to compare the different variants on a fair basis, the
same amount of effort was given in the determination of the op-
timal topology (same number of investigated configurations in
the two-nested loops procedure). Moreover, all architectures are
implemented and tested using the same simulation environment
(Matlab).

Then, for obtaining a more representative benchmark study,
other state-of-the-art forecasting approaches are analyzed.
These methods encompass autoregressive integrated moving av-
erage (ARIMA) models that assume a constant variance of the
series while time correlation are linearly represented, support
vector machine (SVR) that performs a nonlinear mapping of the
input data into a high-dimensional space where linear functions
are used for regression, and random forests (RF) where different
models with low bias and high variance are combined to obtain
a forecaster with a lower variance that still maintain a low bias.

The prediction models were trained using hourly historical
data from 2012 until 2017. The performance of the three com-
pared neural networks (final architectures at the end of the op-
timal model selection) is evaluated on a month of winter 2017
(test set composed of out-of-sample data that are not included
within the learning phase).

B. Performance of Point Forecasts

Firstly, the statistical quality of point forecast, which focuses
on the degree of correspondence between the predictions and
the actual observations, is estimated. For these deterministic
forecasts, the root mean square error (RMSE) is used as error
metric:

n
RMSE = \/31 o, ) (16)
where 7 is the number of sample data (number of time-steps T
predicted each day multiplied by the number of simulated days),
y; the output of the prediction model and d; the actual measured
value. The results are presented in Table I.

The results show that machine learning models perform better
than statistical models. This can be explained by the fact that
ARIMA models are linear forecasters, which makes them poorly
suited for modeling the nonlinear behavior with quick variations
of the electrical variables of interest. The outcomes are also
consistent with previous studies [45] that suggest that SVR and
RF constitute reliable alternatives to deep learning methods,
although their performance are slightly inferior.

Moreover, it can be seen that recurrent neural networks show
higher accuracy than all other models, including the multilayer
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TABLE I
COMPARISON OF TESTED ARCHITECTURES IN TERMS OF RMSE

Network Wind PV Load DA prices

BLSTM 101 MW | 53 MW | 236 MW 17€

LSTM 108 MW | 72 MW | 242 MW 20 €

MLP 113MW | 78 MW | 282 MW 22 €

SVR 114 MW | 80 MW | 283 MW 22 €

RF 118 MW | 81 MW | 287 MW 23 €

ARIMA 122MW | 84 MW | 311 MW 24 €

System Operator | 109 MW | 67 MW | 391 MW NA

perceptron and the tool used by the system operator. Specifically,
the best performance is given by the bidirectional architecture,
which emphasizes the importance of accurately accounting for
intricate time dependencies in the context of multi-step ahead
forecasting.

In general, it is also interesting to emphasize that the optimal
results are obtained with deep architectures (with several hid-
den layers), and that deep learning forecasters outperforms all
other models of the benchmark. In this way, the best topology
for predicting the wind generation, the total load and the day-
ahead prices is obtained with a 3-layers BLSTM, whereas the
best prediction model for the aggregated photovoltaic genera-
tion is a BLSTM network with 4 hidden layers (Section IV.C).
Furthermore, the optimal size (capacity) of the neural networks
is relatively low (10 to 20 neurons within each hidden layers,
which can be explained by the necessity to avoid overfitting with
the small number of historical data available. In this way, over
the years, the accuracy of the proposed self-learning approach
is expected to grow thanks to the amount of data that will allow
to progressively increase the network capacity (complexity).

C. Inputs and Hyperparameters Selection

The optimal model selection (Fig. 4) requires to train a large
number of different models with different architecture in order
to properly cover the design space, which is time-consuming
(around 1 minute for MLP models and 5 minutes for LSTM-
based architectures). However, the models can be trained in
parallel and this training task needs to be carried only once in
pre-processing. The resulting optimal model can then be used
in real-time for predicting the uncertain variables of interest,
which then takes less than 1 second.

Overall, the selected inputs (explanatory variables) of the
neural networks are listed below.

For all variables, the last measured values (typically the previ-
ous 6 to 24 hours) were highly important to capture the dynamics
of the time series. The accuracy of forecasts for load and elec-
tricity prices is also significantly improved with the knowledge
of the values of the same day of the previous week.

Then, for all temporal information (hours of the day, day of the
week and month of the year), the best performance was obtained
with the mutually exclusive binary representation, provided that
the network complexity was sufficiently important (with a suf-
ficient number of hidden units with each layer). Furthermore,
an additional day index is introduced to efficiently represent
occasional events such as public holidays.



TOUBEAU et al.: DEEP LEARNING-BASED MULTIVARIATE PROBABILISTIC FORECASTING FOR SHORT-TERM SCHEDULING

TABLE II
COMPARISON OF BLSTM ARCHITECTURES IN TERM OF RMSE
Predicted # layers - #epochs RMSE
variable | #neurons
1-30 59 108 MW
wind 2-20 67 109 MW
3-15 65 101 MW
4-8 59 104 MW
1-30 125 65 MW
PV 2-20 206 61 MW
3-16 196 55 MW
4-13 199 53 MW

The quality of the models is also increased with the intro-
duction of weather data (such as temperature, cloud cover, etc.)
coming from meteorological models.

Finally, it should also be noted that the electricity prices are
forecasted after the aggregated renewable generation and total
load. Indeed, these two variables are used as additional mean-
ingful explanatory variables.

Once the inputs are selected, a sensitivity analysis is con-
ducted to investigate the effect of the model complexity on the
forecasting performance of renewable generation. To that end,
different topologies of BLSTM networks are evaluated, varying
along both main dimensions: the number of hidden levels and
the number of neurons within each hidden layer. For each topol-
ogy, the number of neurons is around 10 000. The results are
illustrated in Table II and encompass the number of epochs (i.e.,
number of iterations of the gradient descent algorithm through
the training set before convergence) as well as the final error on
the test set.

The sensitivity analysis on network depth indicates that in-
creasing the number of hidden layers can enhance the accuracy,
but only up to a limit number of layers. Indeed, by increasing
the model complexity, we are facing overfitting issues due to
the lack of data diversity and network parameter redundancy. In
general, in order to improve the model performance, it is prefer-
able to increase the complexity with additional hidden layers
than with more neurons within the same recurrent layer.

It should also be noted that the hyperparameter solution is
closely related to the size of the historical database. In this way,
the models that require a large number of parameters (such a
deep learning networks with a larger amount of hidden layers)
necessitate large amount of data to accurately estimate the pa-
rameters. Consequently, if the size of current dataset is limited,
the hyperparameter optimization is likely to select a smaller
model that performs better with the available information, al-
though it is not the best model in general.

D. Performance of Gaussian and Non-Parametric Forecasts

The second objective is to compare the Gaussian assumption
of prediction errors with a non-parametric approach, and the
BLSTM architecture is used as a reference to evaluate these
(parametric and empirical) methods. The statistical accuracy of
both methods is computed using the total quantile loss, such
as defined in (11) with ¢ = 1, 5, 10, 25, 50, 75, 90, 95 and
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TABLE III
COMPARISON OF PARAMETRIC AND NON-PARAMETRIC QUANTILES

Topology Wind PV Load DA prices
BLSTM + Gaussian | 171 MW | 42 MW | 422 MW 34 €
BLSTM + quantile 147MW | 41 MW | 389 MW 28 €

99%, averaged over the 24 hourly time steps of the prediction
horizon. This error metric is evaluated on the same test set
(winter month of 2017), and the outcomes are presented in
Table III. Practically, this function allows to measure if the
intervals properly encapsulate the actual realization of uncertain
variables, while quantifying the tightness of these intervals. The
smaller is the quantile loss, the better is the performance of the
forecasting method.

Overall, the non-parametric model slightly outperforms the
outcomes obtained with the Gaussian error assumption (i.e., the
quantiles enclose more accurately the actual observations, and
are characterized by tighter intervals). These results tend thus
to support that the empirical model should be privileged, but,
for the studied variables, assuming a Gaussian distribution of
prediction errors does not lead to significant modeling errors
(especially for PV production).

For illustrating the quality of results obtained using the
BLSTM network with the (non-parametric) quantile loss func-
tion, the probabilistic forecasts associated with the four studied
variables are shown in Fig. 6. Specifically, the concatenation of
day-ahead predictions (at 12 h in day-ahead for the 24 hours
of the next day) carried out during 7 consecutive days (from
Monday to Sunday) are presented.

Generally, one can see that the predicted intervals properly
encompass the actual realizations of uncertainties (the volatility
of the studied variables is well captured). However, we observe
that the quantiles are more tightened for the aggregated load,
which indicates that the amount of uncertainty associated with
this variable is much lower than, for instance, wind generation.
Moreover, it should be mentioned that the simulated month
was characterized by a high demand (and very low renewable
generation) throughout Western Europe, which has considerably
increased the price uncertainty (volatility) during this period.

E. Importance of the Copula Model

In order to evaluate the dependencies among electrical and
market data (to validate the need of the copula model), the de-
pendence between variables is computed using two different
metrics. First, the linear correlation between pairs of variables
is measured with the Pearson coefficient. Then, the Spearman
coefficient, which is able to capture more than linear dependen-
cies, is used to assess the relationship between rankings of two
variables. The results of the correlation study are summarized
in Table IV.

As intuitively expected, the electricity prices are driven down
when the share of renewable generation increases. Indeed, due
to their very low operating costs, these technologies can bid at
low prices in the wholesale market. Likewise, the prices tend
to increase when the total demand rises. However, we can see
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TABLE IV
CORRELATION BETWEEN VARIABLES

Var. 1 | Var.2 | Pearson | Spearman
Wind | Price -0.17 0.10
Load Price 0.43 0.65
Load | Wind 0.11 0.10

that the correlation between the wind generation and the load is
quite limited.

F. Quality of Scenarios

Once these probabilistic forecasts are obtained, the distribu-
tions are sampled to obtain the time trajectories that can there-
after be used in the stochastic optimization. The 10 scenarios
generated with the independent [18] and copula-based sampling
methods for the wind generation (for a typical day) are shown
in Fig. 7 (along with the 1-99% quantiles).

It can be seen that the proposed copula-based sampling strat-
egy allows to better capture the statistical information of the
multivariate time-varying distribution of interest. Indeed, the
independent sampling leads to scenarios with numerous sharp
ramps that do not represent the smoother time profile of the
aggregated wind power.

In order to quantify the statistical accuracy of the generated
scenarios of electrical variables that are inherently correlated,
the interdependence structure of forecast errors is studied. To
that end, the autocorrelation function (ACF) of scenarios is
compared with the one associated with the original variables.
The ACF yields indeed the (linear) correlation between two
values of the same variable at times different (lagged) times.

The results are summarized in Table V, where the mean ACF
deviation (i.e., deviations between the ACF of the scenarios and
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TABLE V
TEMPORAL PROPERTIES OF GENERATED SCENARIOS (DEVIATION OF THE
AUTOCORRELATION FUNCTION ON REPRESENTATIVE LAGS)

Copula-based | Independent
sampling sampling
Wind 0.24 0.75
PV 0.17 0.92
Load 0.19 0.62
DA prices 0.09 0.63

the one of the actual data averaged on the first representative
lags of the serial correlation) are presented.

The results show that the studied variables (renewable gener-
ation, load and electricity prices in the day-ahead market) do not
come from a random processes (high values of autocorrelation
between consecutive time steps), and that the copula-based sam-
pling, contrary to the independent policy, appropriately captures
this time-dependent information.

G. Value of Probabilistic Forecasts

Finally, we analyze the practical value of generating more
accurate scenarios, by studying the benefits (e.g., economi-
cal) resulting from the use of these scenarios in the subsequent
decision-making procedure. Here, the day-ahead optimization
faced each day by an electricity retailer having its own renew-
able generation capacity is used as a case study. The portfolio is
composed of one percent of the Belgian load as well as twenty
percent of the installed (onshore) wind and PV capacity. Basi-
cally, the retailer aims to balance its portfolio on a quarter-hourly
basis (so as to avoid financial penalties in case of imbalance) by
exchanging (the surplus or deficit of energy) in the day-ahead
electricity market [46].
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Fig. 8. Procedure used to compare the quality of day-ahead decisions based
on the different techniques to characterize the forecast uncertainty.

In this context of time-dependent decisions under uncertainty,
it is interesting to estimate the value of the different techniques
to generate day-ahead scenarios, which is here realized through
the procedure depicted in Fig. 8.

The methodology is carried out for three different variants,
which differ by the way scenarios are generated (Step 1):

1) MLP + copula-based sampling

2) Probabilistic BLSTM + independent sampling

3) Probabilistic BLSTM + copula-based sampling

The practical quality of scenarios is then analyzed through a
post-hoc analysis, which consists in confronting the day-ahead
decisions (obtained at the end of the day-ahead stochastic opti-
mization of Step 2) with respect to the actual realizations (ob-
servations) of uncertainties. To that end, an economic dispatch
of the VPP (Step 3) has to be performed. The objective is to
compute the profit actually generated based on the actual trajec-
tories of uncertain variables as well as the day-ahead decisions,
i.e., energy exchanged in the day-ahead market for each of the
24 hours. This procedure is performed for each day of the stud-
ied month, and the results (daily profit for the three investigated
variants) are represented in Fig. 9.

By comparing scenarios #2 and #3, it can be concluded that
using representative scenarios in the stochastic optimization pro-
cess of step 2 (scenarios that account for the complex depen-
dence structure among variables) is an highly important factor to
take reliable decisions, which is here associated with an increase
of profit of around 4%10° Euros (i.e., relative increase of more

24
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Fig. 9. Daily profit generated by the electricity aggregator with respect to the
stochastic scenarios used to model uncertainties.

than 10%) over the simulated month. Moreover, the quality of
predictions (in our case the fact of using the BLSTM neural net-
works instead of traditional feedforward networks) plays also
an important role to improve decisions in an uncertain envi-
ronment. In this way, better predictions enable decision makers
to avoid taking overly conservative policies (so as to guarantee
their robustness towards extreme scenarios). Here, improved
predictions led the portfolio to rise its total profit throughout the
considered month by 0.5%10° Euros.

V. CONCLUSION AND PERSPECTIVES

In this work, a new approach to generate short-term multi-
variate predictive scenarios is presented. The methodology at-
tempts to address the main challenges associated with such a
task, i.e., obtaining accurate forecasts that efficiently catch the
contextual information contained in the explanatory variables
by exploiting the structure of the problem, while capturing both
temporal and cross-variable dependencies when generating sce-
narios. The results demonstrate that the proposed methodology
yields accurate, calibrated forecast distributions learned from
the historical dataset, and that the generated scenarios enable to
increase the economic profit of energy aggregators participating
in electricity markets.

An interesting perspective of this work is to combine
data-driven models with structural constraints arising from the
knowledge of the underlying environment (market rules and
constraints). Indeed, with the development of physically-based
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appliance and equipment at both generation and consumption
levels, it may become interesting to predict such new power
usage behaviors.
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