
A Trichotomy in the Data Complexity of Certain Query
Answering for Conjunctive Queries

Paraschos Koutris1 and Jef Wijsen2

1University of Washington, Seattle, USA
2University of Mons, Belgium

Abstract

A relational database is said to be uncertain if primary key constraints can possibly be violated. A repair
(or possible world) of an uncertain database is obtained by selecting a maximal number of tuples without ever
selecting two distinct tuples with the same primary key value. For any Boolean query q, CERTAINTY(q) is the
problem that takes an uncertain database db on input, and asks whether q is true in every repair of db. The
complexity of this problem has been particularly studied for q ranging over the class of self-join-free Boolean
conjunctive queries. A research challenge is to determine, given q, whether CERTAINTY(q) belongs to com-
plexity classes FO, P, or coNP-complete. In this paper, we combine existing techniques for studying the
above complexity classification task. We show that for any self-join-free Boolean conjunctive query q, it can be
decided whether or not CERTAINTY(q) is in FO. Further, for any self-join-free Boolean conjunctive query q,
CERTAINTY(q) is either in P or coNP-complete, and the complexity dichotomy is effective. This settles a
research question that has been open for ten years, since [9].

1 Introduction

Primary key violations provide an elementary means for capturing uncertainty in the relational data model. A
block is a maximal set of tuples of the same relation that agree on the primary key of the relation. Tuples in the
same block are mutually exclusive: exactly one tuple is true, but we are uncertain about which one. We will refer
to databases as “uncertain databases” to stress that they can violate primary key constraints.

A repair (or possible world) of an uncertain database is obtained by selecting exactly one tuple from each block. In
general, the number of repairs of an uncertain database can be exponential in its size. For instance, if an uncertain
database contains n blocks with two tuples each, then it contains 2n tuples and has 2n repairs.

There are two natural semantics for answering Boolean queries q on an uncertain database. Under the possibility
semantics, the question is whether the query evaluates to true on some repair. Under the certainty semantics,
which is adopted in this paper, the question is whether the query evaluates to true on every repair. The certainty
semantics adheres to the paradigm of consistent query answering [2, 5], which introduces the notion of database
repairs with respect to general integrity constraints. In this work, repairing is exclusively with respect to primary
key constraints, one per relation.

For any Boolean query q, the decision problem CERTAINTY(q) is the following.

PROBLEM: CERTAINTY(q)
INPUT: uncertain database db
QUESTION: Does every repair of db satisfy q?

Three comments are in place. First, the Boolean query q is not part of the input. Every Boolean query q gives
thus rise to a new problem. Since the input to CERTAINTY(q) is an uncertain database, we consider the data
complexity of the problem. Second, we will assume that every relation name in q or db has a fixed known arity
and primary key. The primary key constraints are thus implicitly present in all problems. Third, all the complexity
results obtained in this paper can be carried over to non-Boolean queries; the restriction to Boolean queries eases
the technical treatment, but is not fundamental.

1

ar
X

iv
:1

50
1.

07
86

4v
1

 [
cs

.D
B

]
 3

0
Ja

n
20

15

The complexity of CERTAINTY(q) has gained considerable research attention in recent years, especially for q
ranging over the set of self-join-free conjunctive queries. A challenging question is to distinguish queries q for
which the problem CERTAINTY(q) is tractable from queries for which the problem is intractable. Further, if
CERTAINTY(q) is tractable, one may ask whether it is first-order expressible. We will refer to these questions as
the complexity classification task of CERTAINTY(q).

In the past decade, a variety of tools and techniques have been used in the complexity classification task of
CERTAINTY(q) for self-join-free conjunctive queries q. In their pioneering work, Fuxman and Miller [9] intro-
duced the notion of join graph (not to be confused with the classical notion of join tree). Later on, Wijsen [14]
introduced the notion of attack graph. Kolaitis and Pema [10] applied Minty’s algorithm [13] to the task. Koutris
and Suciu [11] introduced the notion of query graph and the distinction between consistent and possibly inconsis-
tent relations. All these techniques have limited applicability: join graphs seem too rudimentary to obtain general
complexity dichotomies; attack graphs enable to characterize first-order expressibility of CERTAINTY(q), but
only for acyclic (in the sense of [4]) queries q; Minty’s algorithm has been used to establish a P-coNP-complete
dichotomy in the complexity of CERTAINTY(q), but only for queries q with exactly two atoms; the framework
of Koutris and Suciu has also resulted in a P-coNP-complete dichotomy, but only when all primary keys consist
of a single attribute. On top of the limited applicability of each individual technique, there is the difficulty that
complexity classifications expressed in terms of different techniques cannot be easily compared.

In this paper, we make significant progress in the complexity classification task of CERTAINTY(q) for q rang-
ing over the set of self-join-free conjunctive queries, by establishing the following effective complexity tri-
chotomy:

• Given a self-join-free Boolean conjunctive query q, it is decidable whether CERTAINTY(q) is in FO.
In [14], this was only shown under the assumption that queries are acyclic (in the sense of [4]).

• Given a self-join-free Boolean conjunctive query q, if CERTAINTY(q) is not in FO, then it is Ł-hard. In
previous works [14, 16], Hanf locality was used to show first-order inexpressibility, resulting in involved
proofs. The current paper takes a complexity-theoretic approach to first-order inexpressibility, which results
in an easier proof of a stronger result.

• For every self-join-free Boolean conjunctive query, CERTAINTY(q) is either in P or coNP-complete, and
the dichotomy is effective. In [11], this was only shown under the assumption that all primary keys are
simple (i.e., consist of a single attribute).

The established complexity trichotomy solves a problem that has been open since 2005 [9].

Organization This paper is organized as follows. Section 2 discusses related work. Section 3 introduces our
data and query model. Section 4 defines attack graphs for Boolean conjunctive queries, extending an older notion
of attack graph [16] that was defined exclusively for acyclic Boolean conjunctive queries. The section also states
the main result of the paper, Theorem 2. Section 5 establishes an effective procedure that takes in a self-join-free
Boolean conjunctive query q, and decides whether CERTAINTY(q) is in FO. Section 6 provides a sufficient
condition for coNP-hardness of CERTAINTY(q), for any self-join-free Boolean conjunctive query q. Section 7
shows that if the condition is not satisfied, then CERTAINTY(q) is in P. The appendix contains the proofs of
some non-trivial results.

2 Related Work

Consistent query answering (CQA) goes back to the seminal work by Arenas, Bertossi, and Chomicki [2]. Fuxman
and Miller [9] were the first ones to focus on CQA under the restrictions that consistency is only with respect to
primary keys and that queries are self-join-free conjunctive. The term CERTAINTY(q) was coined in [14]. A
recent and comprehensive survey on CERTAINTY(q) is [18].

Little is known about CERTAINTY(q) beyond self-join-free conjunctive queries. An interesting recent result
by Fontaine [8] goes as follows. Let UCQ be the class of Boolean first-order queries that can be expressed
as disjunctions of Boolean conjunctive queries (possibly with constants and self-joins). A daring conjecture is
that for every query q in UCQ, CERTAINTY(q) is either in P or coNP-complete. Fontaine showed that this

2

conjecture implies Bulatov’s dichotomy theorem for conservative CSP [6], the proof of which is highly involved
(the full paper contains 66 pages).

3 Preliminaries

We assume disjoint sets of variables and constants. If ~x is a sequence containing variables and constants, then
vars(~x) denotes the set of variables that occur in ~x. A valuation over a set U of variables is a total mapping θ from
U to the set of constants. At several places, it is implicitly understood that such a valuation θ is extended to be the
identity on constants and on variables not in U . If V ⊆ U , then θ[V] denotes the restriction of θ to V .

If θ is a valuation over a set U of variables, x is a variable, and a is a constant, then θ[x 7→a] is the valuation over
U ∪ {x} such that θ[x 7→a](x) = a and for every variable y such that y 6= x, θ[x 7→a](y) = θ(y). Notice that x ∈ U
is allowed.

Atoms and key-equal facts Each relation name R of arity n, n ≥ 1, has a unique primary key which is a set
{1, 2, . . . , k} where 1 ≤ k ≤ n. We say that R has signature [n, k] if R has arity n and primary key {1, 2, . . . , k}.
We say that R is simple-key if k = 1. Elements of the primary key are called primary-key positions, while k + 1,
k + 2, . . . , n are non-primary-key positions. For all positive integers n, k such that 1 ≤ k ≤ n, we assume
denumerably many relation names with signature [n, k].

If R is a relation name with signature [n, k], then R(s1, . . . , sn) is called an R-atom (or simply atom), where each
si is either a constant or a variable (1 ≤ i ≤ n). Such an atom is commonly written as R(~x, ~y) where the primary
key value ~x = s1, . . . , sk is underlined and ~y = sk+1, . . . , sn. An R-fact (or simply fact) is an R-atom in which
no variable occurs. Two facts R1(~a1,~b1), R2(~a2,~b2) are key-equal if R1 = R2 and ~a1 = ~a2. An R-atom or an
R-fact is simple-key if R is simple-key.

We will use letters F,G,H for atoms. For an atom F = R(~x, ~y), we denote by key(F) the set of variables
that occur in ~x, and by vars(F) the set of variables that occur in F , that is, key(F) = vars(~x) and vars(F) =
vars(~x) ∪ vars(~y).

Uncertain database, blocks, and repairs A database schema is a finite set of relation names. All constructs
that follow are defined relative to a fixed database schema.

An uncertain database is a finite set db of facts using only the relation names of the schema. We refer to databases
as “uncertain databases” to stress that such databases can violate primary key constraints.

We write adom(db) for the active domain of db (i.e., the set of constants that occur in db). A block of db is
a maximal set of key-equal facts of db. The term R-block refers to a block of R-facts, i.e., facts with relation
name R. If A is a fact of db, then block(A,db) denotes the block of db that contains A. An uncertain database
db is consistent if no two distinct facts are key-equal (i.e., if every block of db is a singleton). A repair of db is
a maximal (with respect to set containment) consistent subset of db. We write rset(db) for the set of repairs of
db.

Boolean conjunctive queries A Boolean query is a mapping q that associates a Boolean (true or false) to each
uncertain database, such that q is closed under isomorphism [12]. We write db |= q to denote that q associates
true to db, in which case db is said to satisfy q. A Boolean first-order query is a Boolean query that can be defined
in first-order logic. A Boolean conjunctive query is a finite set q = {R1(~x1, ~y1), . . . , Rn(~xn, ~yn)} of atoms. We
denote by vars(q) the set of variables that occur in q. The set q represents the first-order sentence

∃u1 · · · ∃uk
(
R1(~x1, ~y1) ∧ · · · ∧Rn(~xn, ~yn)

)
,

where {u1, . . . , uk} = vars(q). This query q is satisfied by uncertain database db if there exists a valuation θ over
vars(q) such that for each i ∈ {1, . . . , n}, Ri(~a,~b) ∈ db with ~a = θ(~xi) and~b = θ(~yi).

3

We say that a Boolean conjunctive query q has a self-join if some relation name occurs more than once in q. If
q has no self-join, then it is called self-join-free. By a little abuse of notation, we may confuse atoms with their
relation names in a self-join-free Boolean conjunctive query q. That is, if we use a relation name R at places
where an atom is expected, then we mean the (unique) R-atom of q.

If q is a Boolean conjunctive query, ~x = 〈x1, . . . , x`〉 is a sequence of distinct variables that occur in q, and
~a = 〈a1, . . . , a`〉 is a sequence of constants, then q[~x7→~a] denotes the query obtained from q by replacing all
occurrences of xi with ai, for all 1 ≤ i ≤ `.

Typed uncertain databases For every variable x, we assume an infinite set of constants, denoted type(x), such
that x 6= y implies type(x) ∩ type(y) = ∅. Let q be a self-join-free Boolean conjunctive query, and let db
be an uncertain database. We say that db is typed relative to q if for every atom R(x1, . . . , xn) in q, for every
i ∈ {1, . . . , n}, if xi is a variable, then for every fact R(a1, . . . , an) in db, ai ∈ type(xi) and the constant ai does
not occur in q. Significantly, since q is self-join-free, the assumption that uncertain databases are typed is without
loss of generality.

Purified uncertain databases Let q be a Boolean conjunctive query, and let db be an uncertain database. We
say that a fact A ∈ db is relevant for q in db if for some valuation θ over vars(q), A ∈ θ(q) ⊆ db. We say that
db is purified relative to q if every fact A ∈ db is relevant for q in db.

Frugal repairs For every uncertain database db, Boolean conjunctive query q, and X ⊆ vars(q), we define a
preorder �Xq on rset(db), as follows. For every two repairs r1, r2, we define r1 �Xq r2 if for every valuation θ
overX , r1 |= θ(q) implies r2 |= θ(q). Here, θ(q) is the query obtained from q by replacing all occurrences of each
x ∈ X with θ(x); variables not in X remain unaffected (i.e., θ is understood to be the identity on variables not in
X). Clearly, �Xq is a preorder (i.e., it is reflexive and transitive), and its minimal elements are called �Xq -frugal
repairs.1

Functional dependencies Let q be a Boolean conjunctive query. A functional dependency for q is an expression
X → Y where X,Y ⊆ vars(q). We say that an uncertain database db satisfies X → Y for q, denoted db �q
X → Y , if for all valuations θ, µ over vars(q) such that θ(q), µ(q) ⊆ db, if θ[X] = µ[X], then θ[Y] =
µ[Y].

Example 1 The relation R shown next does not satisfy the standard functional dependency 2 → 3, because its
tuples agree on the second position, but disagree on the third position. Nevertheless, for q = ∃y∃zR(a, y, z), we
have R �q y → z. The second tuple of R is not relevant for the query, because a and d are distinct constants; the
relation R′ is purified relative to q.

R 1 2 3
a b c
d b f

R′ 1 2 3
a b c

�

Certain query answering For every Boolean conjunctive query q, the decision problem CERTAINTY(q) takes
on input an uncertain database db, and asks whether q is satisfied by every repair of db.

It is easy to show the following upper bound on the complexity of CERTAINTY(q).

Theorem 1 For every Boolean first-order query q, CERTAINTY(q) is in coNP.

The following two lemmas are useful in the study of the complexity of CERTAINTY(q).

Lemma 1 ([17]) Let q be a Boolean conjunctive query. Let db be an uncertain database. It is possible to compute
in polynomial time an uncertain database db′ that is purified relative to q such that every repair of db satisfies q
if and only if every repair of db′ satisfies q.

1r1 is minimal if for all r2, if r2 �X
q r1 then r1 �X

q r2.

4

R(x, y)

S(y, z)T (z, x)

U(x, u)

V (x, u, v)

Figure 1: Attack graph of the query in Example 2.

Lemma 2 Let q be a self-join-free Boolean conjunctive query, and X ⊆ vars(q). Let db be an uncertain data-
base. Then, every repair of db satisfies q if and only if every �Xq -frugal repair of db satisfies q.

4 Attack Graphs

Attack graphs were introduced in [14] for studying first-order expressibility of CERTAINTY(q) for acyclic (in
the sense of [4]) self-join-free conjunctive queries q. Here, we extend the notion of attack graph to all (cyclic or
acyclic) self-join-free conjunctive queries.

Let q be a self-join-free Boolean conjunctive query. We define K(q) as the following set of functional dependen-
cies:

K(q) := {key(F)→ vars(F) | F ∈ q}
For every atom F ∈ q, we define F+,q and F�,q as the following sets of variables.

F+,q := {x ∈ vars(q) | K(q \ {F}) |= key(F)→ x}
F�,q := {x ∈ vars(q) | K(q) |= key(F)→ x}

The attack graph of q is a directed graph whose vertices are the atoms of q. There is a directed edge from F to G
(F 6= G) if there exists a sequence

F0, F1, . . . , Fn (1)

of (not necessarily distinct) atoms of q such that

• F0 = F and Fn = G; and

• for all i ∈ {0, . . . , n− 1}, vars(Fi) ∩ vars(Fi+1) * F+,q .

A directed edge from F to G in the attack graph of q is also called an attack from F to G, denoted by F
q
 G.

The sequence (1) is called a witness for the attack F
q
 G. We will often add variables to a witness: if we write

F0

z1
a F1

z2
a F2 . . .

zn
a Fn, then it is understood that for i ∈ {1, . . . , n}, zi ∈ vars(Fi−1)∩vars(Fi) and zi 6∈ F0

+,q .
If F

q
 G, then we also say that F attacks G (or that G is attacked by F).

An attack from F to G is called weak if K(q) |= key(F)→ key(G); otherwise it is strong. A directed cycle in the
attack graph of of q is called weak if all attacks in the cycle are weak; otherwise the cycle is called strong.

Example 2 Let q = {R(x, y), S(y, z), T (z, x), U(x, u), V (x, u, v)}. By a little abuse of notation, we denote
each atom by its relation name (e.g., R is used to denote the atom R(x, y)). We have R+,q = {x, u, v}. A witness

for R
q
 T is R

y

a S
z

a T . The complete attack graph is shown in Fig. 1. All attacks are weak. �

The above notion of attack graph is purely syntactic. Semantically, an attack from an R-atom to an S-atom in the
attack graph of q means that there exists an uncertain database db such that every repair of db satisfies q, and
such that two R-facts of a same R-block join exclusively with two S-facts belonging to distinct S-blocks. For

5

the query of Example 2, such a database could be db = {R(1, a), R(1, b), S(a, α), S(b, β), . . . }, in which the
two R-facts belong to the same R-block, and R(1, a) joins exclusively with S(a, α), and R(1, b) joins exclusively
with S(b, β), and the two S-facts belong to distinct S-blocks. Therefore, the attack graph of Fig. 1 contains a
directed edge from the R-atom to the S-atom.

Equipped with the notion of attack graph, we can now present the effective complexity trichotomy in the set
{CERTAINTY(q) | q is a self-join-free Boolean conjunctive query}.
Theorem 2 (Trichotomy Theorem) Let q be a self-join-free Boolean conjunctive query.

1. If the attack graph of q is acyclic, then CERTAINTY(q) is in FO.

2. If the attack graph of q is cyclic but contains no strong cycle, then CERTAINTY(q) is in P and is Ł-hard.

3. If the attack graph of q contains a strong cycle, then CERTAINTY(q) is coNP-complete.

The rest of the paper presents the proof of Theorem 2. We first present some properties of attack graphs that will
be useful in subsequent sections.

Lemma 3 Let q be a self-join-free Boolean conjunctive query. If F
q
 G and G

q
 H , then either F

q
 H or

G
q
 F (or both).

Lemma 4 Let q be a self-join-free Boolean conjunctive query.

1. If the attack graph of q contains a cycle, then it contains a cycle of size two.

2. If the attack graph of q contains a strong cycle, then it contains a strong cycle of size two.

Lemma 5 Let q be a self-join-free Boolean conjunctive query. Let x ∈ vars(q) and let a be an arbitrary constant.

1. If the attack graph of q is acyclic, then the attack graph of q[x 7→a] is acyclic.

2. If the attack graph of q contains no strong cycle, then the attack graph of q[x 7→a] contains no strong cycle.

We conclude this section with three definitions. The following definition is taken from [3] and applies to directed
graphs in general.

Definition 1 A directed graph is strongly connected if there is a directed path from any vertex to any other. The
maximal strongly connected subgraphs of a graph are vertex-disjoint and are called its strong components. If S1

and S2 are strong components such that an edge leads from a vertex in S1 to a vertex in S2, then S1 is a predecessor
of S2 and S2 is a successor of S1. A strong component is called initial if it has no predecessor. �

Strong components in the attack graph should not be confused with strong attacks.

Example 3 In the attack graph of Fig. 1, the atoms R(x, y), S(y, z), and T (z, x) together constitute an initial
strong component. �

So far we have defined an attack from an atom to another atom. The following definition introduces attacks from
an atom to a variable.

Definition 2 Let q be a self-join-free Boolean conjunctive query. Let R be a relation name with signature [1, 1]

such thatR does not occur in q. For F ∈ q and z ∈ vars(q), we say that F attacks z, denoted F
q
 z, if F

q′

 R(z)
where q′ = q ∪ {R(z)}. �

Example 4 Clearly, if F0

z1
a F1 . . .

zn
a Fn is a witness for F0

q
 Fn, then F0

q
 zi for every i ∈ {1, . . . , n}.

Notice also that if q = {R(x, y)}, then the attack graph of q contains no edge, yet R
q
 y. �

Finally, we introduce the notion of sequential proof , which mimics an algorithm for testing logical implication for
functional dependencies [1, Algorithm 8.2.7].

Definition 3 Let q be a self-join free Boolean conjunctive query. Let X ⊆ vars(q) and y ∈ vars(q). A sequential
proof of K(q) |= X → y is a sequence H0, H1, . . . ,H` of atoms of q such that

• y ∈ X ∪⋃`i=1 vars(Hi); and

• for i ∈ {0, . . . , `}, key(Hi) ⊆ X ∪
⋃i−1
j=0 vars(Hj).

6

Notice that if y ∈ X , then the empty sequence is a sequential proof of K(q) |= X → y. �

5 First-Order Expressibility

In this section, we prove the first item in the statement of Theorem 2, as well as the Ł-hard lower complexity
bound stated in the second item.

Theorem 3 Let q be a self-join-free Boolean conjunctive query. Then the following are equivalent:

1. CERTAINTY(q) is in FO;

2. the attack graph of q is acyclic.

That is, acyclicity of the attack graph of q is both a necessary and sufficient condition for first-order expressibility
of CERTAINTY(q). In Section 5.1, we show the contrapositive of the implication 1 =⇒ 2. In Section 5.2, we
show the implication 2 =⇒ 1.

5.1 Necessary Condition

Let q0 = {R0(x, y), S0(y, x)}. In [15], it was shown that CERTAINTY(q0) is not in FO. The following lemma
shows a stronger result.

Lemma 6 Let q0 = {R0(x, y), S0(y, x)}. Then CERTAINTY(q0) is Ł-hard.

Lemma 7 Let q be a self-join-free Boolean conjunctive query. If the attack graph of q is cyclic, then CERTAINTY(q)
is Ł-hard (and hence not in FO).

Proof Assume that the attack graph of q is cyclic. We show hereinafter that there exists a first-order many-one
reduction from CERTAINTY(q0) to CERTAINTY(q). The desired result then follows from Lemma 6.

By Lemma 4, we can assume two distinct atoms F,G ∈ q such that F
q
 G

q
 F is an attack cycle of size two.

We will assume hereinafter that the relation names in F and G are R and S respectively.

For all constants a, b we define the valuation Θa
b over vars(q) as follows. Let ⊥ be a fixed constant not occurring

elsewhere. For every variable u ∈ vars(q),

1. if u ∈ F+,q \G+,q , then Θa
b (u) = a;

2. if u ∈ G+,q \ F+,q , then Θa
b (u) = b;

3. if u ∈ F+,q ∩G+,q , then Θa
b (u) = ⊥;

4. if u ∈ vars(q) \ (F+,q ∪G+,q), then Θa
b (u) = 〈a, b〉.

Sublemma 1 For all constants a, b, a′, b′, if H ∈ q \ {F,G}, then {Θa
b (H),Θa′

b′ (H)} is consistent.

Proof of Sublemma 1 Assume that for all u ∈ key(H), Θa
b (u) = Θa′

b′ (u). We distinguish four cases.

Case a = a′ and b = b′. Then Θa
b (H) = Θa′

b′ (H).

Case a = a′ and b 6= b′. Then key(H) ⊆ F+,q , hence vars(H) ⊆ F+,q . Then Θa
b (H) = Θa′

b′ (H).

Case a 6= a′ and b = b′. Then key(H) ⊆ G+,q , hence vars(H) ⊆ G+,q . Then Θa
b (H) = Θa′

b′ (H).

Case a 6= a′ and b 6= b′. Then key(H) ⊆ F+,q∩G+,q , hence vars(H) ⊆ F+,q∩G+,q . Then Θa
b (H) = Θa′

b′ (H).

a

Sublemma 2 For all constants a, b, a′, b′,

1. Θa
b (F) and Θa′

b′ (F) are key-equal if and only if a = a′.

2. Θa
b (F) = Θa′

b′ (F) if and only if a = a′ and b = b′.

7

3. Θa
b (G) and Θa′

b′ (G) are key-equal if and only if b = b′.

4. Θa
b (G) = Θa′

b′ (G) if and only if a = a′ and b = b′.

Proof of Sublemma 2

1. =⇒ Consequence of key(F) * G+,q (becauseG
q
 F). 1. ⇐= Consequence of key(F) ⊆ F+,q .

2. =⇒ Consequence of vars(F) * F+,q (because F
q
 G). 2. ⇐= Trivial.

The proof of the remaining items is analogous. a

For every uncertain database db with R0-facts and S0-facts, we define f(db) as the following uncertain data-
base:

1. for every R0(a, b) in db, f(db) contains Θa
b (q \ {G}); and

2. for every S0(b, a) in db, f(db) contains Θa
b (q \ {F}).

It is easy to see that f is computable in FO.

In what follows, we assume that db is typed, as explained in Section 3. It will be understood that a, a1, a2, . . .
belong to type(x), and that b, b1, b2, . . . belong to type(y).

Let us define g(db) as follows:

g(db) := f(db) \ ({Θa
b (F) | R0(a, b) ∈ db} ∪ {Θa

b (G) | S0(b, a) ∈ db}) .

That is, g(db) contains all facts of f(db) that are neither R-facts nor S-facts.

By Sublemmas 1 and 2,
rset(f(db)) = {f(r) ∪ g(db) | r ∈ rset(db)}. (2)

Let db be an arbitrary database with R0-facts and S0-facts. It suffices to show that the following are equivalent
for every repair r of db:

1. r satisfies q0;

2. f(r) ∪ g(db) satisfies q.

1 =⇒ 2 This is the easier part.

2 =⇒ 1 Let θ be a substitution over vars(q) such that θ(q) ⊆ f(r) ∪ g(db).

By our construction, we can assume R0(a, b) ∈ r such that θ(F) ∈ Θa
b (q \ {G}). Likewise, we can assume

S0(b′, a′) ∈ r such that θ(G) ∈ Θa′

b′ (q \ {F}).

It suffices to show that a = a′ and b = b′.

Before giving the proof, we provide some intuition. For every fact A ∈ f(db), we can assume an atom in q,
denoted HA, such that A = Θa

b (HA) for some constant a ∈ type(x) and some constant b ∈ type(y). Then, for
all z ∈ vars(HA), Θa

b (z) ∈ {⊥, a, b, 〈a, b〉}. The constants in the latter set allow to “trace back” A to some facts
R0(a, b) or S0(b, a) in db.

With this intuition in mind, it is easy to show b = b′ (the proof of a = a′ is symmetrical). Since F
q
 G, there

exists a sequence F0, F1, . . . , Fn of atoms of q such that

• F0 = F and Fn = G; and

• for all i ∈ {0, . . . , n− 1}, we can assume ui ∈ vars(Fi) ∩ vars(Fi+1) such that ui 6∈ F+,q .

We show by induction on increasing i that for all i ∈ {0, . . . , n − 1}, there exists constant ai such that for all
wi ∈ vars(Fi), we have θ(wi) ∈ {⊥, ai, b, 〈ai, b〉}.
Basis i = 0. Since θ(F) ∈ Θa

b (q \ {G}), for all w0 ∈ vars(F0), we have θ(w0) ∈ {⊥, a, b, 〈a, b〉}.

8

Step i→ i+ 1. By the induction hypothesis, there exists constant ai such that for all wi ∈ vars(Fi), we have
θ(wi) ∈ {⊥, ai, b, 〈ai, b〉}.
From ui 6∈ F+,q , it follows that θ(ui) ∈ {b, 〈ai, b〉}.
Since ui ∈ vars(Fi+1), it follows that there exists constant ai+1 such that for all wi+1 ∈ vars(Fi+1), we
have θ(wi+1) ∈ {⊥, ai+1, b, 〈ai+1, b〉}.

It follows that for un−1 ∈ vars(G), there exists constant an−1 such that θ(un−1) ∈ {b, 〈an−1, b〉}. From
θ(G) ∈ Θa′

b′ (q \ {F}), it follows θ(un−1) ∈ {b′, 〈a′, b′〉}. Consequently, b = b′. 2

5.2 Sufficient Condition

In this section, we show that CERTAINTY(q) is in FO if the attack graph of q is acyclic.

Lemma 8 Let q be a self-join-free Boolean conjunctive query. Let F be an atom of q such that in the attack graph
of q, the indegree of F is zero. Let k = |key(F)| and let ~x = (x1, . . . , xk) be a sequence containing (exactly once)
each variable of key(F). Then the following are equivalent for every uncertain database db:

1. q is true in every repair of db;

2. for some ~a ∈ (adom(db))
k, it is the case that q[~x7→~a] is true in every repair of db.

Lemma 8 immediately leads to the following result.

Lemma 9 Let q be a self-join-free Boolean conjunctive query. If the attack graph of q is acyclic, then CERTAINTY(q)
is in FO.

Proof Assume that the attack graph of q is acyclic.

The proof runs by induction on |q|. If |q| = 0, then CERTAINTY(q) is obviously in FO.

Let db be an instance of CERTAINTY(q). Since the attack graph of q is acyclic, we can assume an atom R(~x, ~y)
that is not attacked in the attack graph of q. By Lemma 8, the following are equivalent:

1. q is true in every repair of db.

2. For some fact R(~a,~b) ∈ db, there exists of a valuation θ over vars(~x) such that θ(~x) = ~a and such that for
all key-equal facts R(~a,~b′) in db, the valuation θ can be extended to a valuation θ+ over vars(~x) ∪ vars(~y)

such that θ+(~y) = ~b and θ+(q′) is true in every repair of db, where q′ = q \ {R(~x, ~y)}.
From Lemma 5, it follows that the attack graph of θ+(q′) is acyclic, and hence CERTAINTY(θ+(q′)) is in FO
by the induction hypothesis. It is then clear that the latter condition (2) can be checked in FO. 2

For a self-join-free Boolean conjunctive query q, the problem CERTAINTY(q) can be equivalently defined as
the set containing every uncertain database db such that every repair of db satisfies q. If CERTAINTY(q) is in
FO, then the set CERTAINTY(q) is definable in first-order logic (by definition of the complexity class FO). If
CERTAINTY(q) is in FO, then its first-order definition is commonly called first-order rewriting. Such a first-
order rewriting is actually an implementation, in first-order logic, of the algorithm in the proof of Lemma 9. This
is illustrated next.

Example 5 Let q = {R(x, y), S(y, b)}, where b is a constant. The attack graph of q contains a single directed
edge, from the R-atom to the S-atom. The first-order definition of CERTAINTY(q) is as follows:

∃x∃y(R(x, y)∧
∀y
(
R(x, y)→

(
S(y, b) ∧ ∀z

(
S(y, z)→ z = b

))))
.

�

9

F+,q G+,q

F⊞,q

a

b

〈b, c〉〈a, b〉 ‘⊥’

〈a, b, c〉

vars(q)

Figure 2: Help for the proof of Theorem 4.

6 Intractability Result

In this section, we prove the coNP-hard lower complexity bound stated in the third item of Theorem 2.

Theorem 4 Let q be a self-join-free Boolean conjunctive query. If the attack graph of q contains a strong cycle,
then CERTAINTY(q) is coNP-hard.

Proof Assume that the attack graph of q contains a strong cycle. By Lemma 4, we can assume F,G ∈ q such that
F

q
 G

q
 F and the attack F

q
 G is strong. We will assume hereinafter that the relation names in F and G are

R and S respectively.

Let q1 = {R1(x, y), S1(y, z, x)}. We show hereinafter that there exists a polynomial-time (and even first-order)
many-one reduction from CERTAINTY(q1) to CERTAINTY(q). Since it is known [10] that CERTAINTY(q1) is
coNP-hard, it follows that CERTAINTY(q) is coNP-hard.

For all constants a, b, c, we define Θa
b,c as the following valuation over vars(q) (see Fig. 2 for a mnemonic). Let ⊥

be some fixed constant.

1. If u ∈ F+,q ∩G+,q , then Θa
b,c(u) = ⊥;

2. if u ∈ F+,q \G+,q , then Θa
b,c(u) = a;

3. if u ∈ G+,q \ F�,q , then Θa
b,c(u) = 〈b, c〉;

4. if u ∈
(
G+,q ∩ F�,q) \ F+,q , then Θa

b,c(u) = b;

5. if u ∈ F�,q \ (F+,q ∪G+,q), then Θa
b,c(u) = 〈a, b〉; and

6. if u 6∈ F�,q ∪G+,q , then Θa
b,c(u) = 〈a, b, c〉.

Sublemma 3 For all constants a, b, c, a′, b′, c′, if H ∈ q \ {F,G}, then {Θa
b,c(H),Θa′

b′,c′(H)} is consistent.

Proof of Sublemma 1 Assume that for all u ∈ key(H),

Θa
b,c(u) = Θa′

b′,c′(u). (3)

We distinguish four cases.

10

Case a = a′ and b = b′. If c = c′, then Θa
b,c(H) = Θa′

b′,c′(H). Assume next c 6= c′. From (3), it follows
key(H) ⊆ F�,q . Consequently, vars(H) ⊆ F�,q . Since c does not occur inside F�,q in the Venn diagram
of Fig. 2, we have Θa

b,c(H) = Θa′

b′,c′(H).

Case a = a′ and b 6= b′. From (3), it follows key(H) ⊆ F+,q , hence vars(H) ⊆ F+,q . Since b and c do not
occur inside F+,q in the Venn diagram, Θa

b,c(H) = Θa′

b′,c′(H).

Case a 6= a′ and b = b′. First assume c = c′. From (3), it follows key(H) ⊆ G+,q , hence vars(H) ⊆ G+,q .
Since c does not occur inside G+,q in the Venn diagram, Θa

b,c(H) = Θa′

b′,c′(H).

Next assume c 6= c′. From (3), it follows key(H) ⊆ F�,q ∩G+,q , hence vars(H) ⊆ F�,q ∩G+,q . Since a
and c do not occur inside F�,q ∩G+,q in the Venn diagram, Θa

b,c(H) = Θa′

b′,c′(H).

Case a 6= a′ and b 6= b′. From (3), it follows key(H) ⊆ F+,q ∩ G+,q , hence vars(H) ⊆ F+,q ∩ G+,q . Since
a, b, c do not occur inside F+,q ∩G+,q in the Venn diagram, Θa

b,c(H) = Θa′

b′,c′(H).

a

Sublemma 4 For all constants a, b, c, a′, b′, c′,

1. Θa
b,c(F) and Θa′

b′,c′(F) are key-equal iff a = a′.

2. Θa
b,c(F) = Θa′

b′,c′(F) iff a = a′ and b = b′.

3. Θa
b,c(G) and Θa′

b′,c′(G) are key-equal iff b = b′ and c = c′.

4. Θa
b,c(G) = Θa′

b′,c′(G) iff a = a′ and b = b′ and c = c′.

Proof of Sublemma 4

1. =⇒ Consequence of key(F) * G+,q (becauseG
q
 F). 1. ⇐= Consequence of key(F) ⊆ F+,q .

2. =⇒ Consequence of vars(F) * F+,q (becauseF
q
 G). 2. ⇐= Consequence of vars(F) ⊆ F�,q .

3. =⇒ Consequence of key(G) * F�,q (because F
q
 G is a strong attack). 3. ⇐= Consequence of

key(G) ⊆ G+,q .

4. =⇒ Consequence of item 3 and vars(G) * G+,q (because G
q
 F). 4. ⇐= Trivial. a

Let db be uncertain database with R1-facts and S1-facts. In what follows, we assume that db is typed, as
explained in Section 3. It will be understood that a, a1, a2, . . . belong to type(x), that b, b1, b2, . . . belong to
type(y), and that c, c1, c2, . . . belong to type(z).

Let h(db) be the subset of db such that

1. h(db)contains all S1-facts of db; and

2. h(db) contains every R1-block b of db such that for every fact R1(a, b) in b, there exists some constant c
such that S1(b, c, a) is in db.

Clearly, the computation of h(db) from db is in FO, and the following are equivalent:

1. every repair of db satisfies q1;

2. every repair of h(db) satisfies q1.

We define f(db) as the following uncertain database:

1. for every pair {R1(a, b), S1(b, c, a)} contained in h(db), f(db) contains Θa
b,c(q \ {G}); and

2. for every S1(b, c, a) in h(db), f(db) contains Θa
b,c(q \ {F}).

It is easy to see that f is computable in FO.

Let g(db) be the subset of f(db) containing all facts of f(db) that are neither R-facts nor S-facts.

11

By Sublemmas 3 and 4,
rset(f(db)) = {f(r) ∪ g(db) | r ∈ rset(db)}. (4)

Let db be an arbitrary database with R1-facts and S1-facts. It suffices to show that the following are equivalent
for every repair r of db:

1. r satisfies q1;

2. f(r) ∪ g(db) satisfies q.

1 =⇒ 2 This is the easier part.

2 =⇒ 1 Let θ be a substitution over vars(q) such that θ(q) ⊆ f(r)∪g(db). By our construction, we can assume
R1(a, b) ∈ r and some constant c such that θ(F) ∈ Θa

b,c(q \ {G}). Likewise, we can assume S1(b′, c′, a′) ∈ r

such that θ(G) ∈ Θa′

b′,c′(q \ {F}). It suffices to show that a = a′ and b = b′.

b = b′ Since F
q
 G, there exists a sequence F0, F1, . . . , Fn of distinct atoms of q such that

• F0 = F and Fn = G; and

• for all i ∈ {0, . . . , n− 1}, we can assume ui ∈ vars(Fi) ∩ vars(Fi+1) such that ui 6∈ F+,q .

We show by induction on increasing i that for all i ∈ {0, . . . , n− 1}, there exist constants ai and ci such that for
all wi ∈ vars(Fi), we have θ(wi) ∈ {⊥, ai, b, 〈ai, b〉, 〈b, ci〉, 〈ai, b, ci〉}.
Basis i = 0. Since θ(F) ∈ Θa

b,c(q \ {G}), for all w0 ∈ vars(F0), we have θ(w0) ∈ {⊥, a, b, 〈a, b〉, 〈b, c〉,
〈a, b, c〉}.

Step i→ i+ 1. By the induction hypothesis, there exist constants ai and ci such that for all wi ∈ vars(Fi), we
have θ(wi) ∈ {⊥, ai, b, 〈ai, b〉, 〈b, ci〉, 〈ai, b, ci〉}.
From ui 6∈ F+,q , it follows that θ(ui) ∈ {b, 〈ai, b〉, 〈b, ci〉, 〈ai, b, ci〉}.
Since ui ∈ vars(Fi+1), it follows that there exist constants ai+1 and ci+1 such that for all wi+1 ∈
vars(Fi+1), we have θ(wi+1) ∈ {⊥, ai+1, b, 〈ai+1, b〉, 〈b, ci+1〉, 〈ai+1, b, ci+1〉}.

It follows that for un−1 ∈ vars(G), there exist constants an−1 and cn−1 such that θ(un−1) ∈ {b, 〈an−1, b〉,
〈b, cn−1〉, 〈an−1, b, cn−1〉}. From θ(G) ∈ Θa′

b′,c′(q \ {F}), it follows θ(un−1) ∈ {b′, 〈a′, b′〉, 〈b′, c′〉, 〈a′, b′, c′〉}.
Consequently, b = b′.

a = a′ Analogous. 2

7 Polynomial Tractability

In this section, we prove the P upper complexity bound stated in the second item of Theorem 2.

Theorem 5 Let q be a self-join-free Boolean conjunctive query. If the attack graph of q contains no strong cycle,
then CERTAINTY(q) is in P.

Road map The proof of Theorem 5 is technically involved. We start by introducing in Section 7.1 an extension
of the data model that allows some syntactic simplifications, expressed in Section 7.2. In Section 7.3, we introduce
the notion of Markov cycle, and show how the “dissolution” of Markov cycles is helpful in the proof of Theorem 5,
which is given in Section 7.4. The dissolution of Markov cycles is explained in detail in Section 7.5.

7.1 Relations Known to Be Consistent

We conservatively extend our data model. We first distinguish between two kinds of relation names: those that
can be inconsistent, and those that cannot.

12

Relations known to be consistent Every relation name has a unique and fixed mode, which is an element in
{i, c}. It will come in handy to think of i and c as inconsistent and consistent respectively. We often write Rc to
denote that R is a relation name with mode c. If q is a self-join-free Boolean conjunctive query, then [[q]] denotes
the subset of q containing each atom whose relation name has mode c. The inconsistency count of q, denoted
incnt(q), is the number of relation names with mode i in q. Modes carry over to atoms and facts: the mode of an
atom R(~x, ~y) or a fact R(~a,~b) is the mode of R.

The intended semantics is that if a relation name R has mode c, then the set of R-facts of an uncertain database
will always be consistent.

Certain query answering with consistent and inconsistent relations The problem CERTAINTY(q) now takes
as input an uncertain database db such that for every relation nameR in q, ifR has mode c, then the set ofR-facts
of db is consistent. The problem is to determine whether every repair of db satisfies q.

All results shown in previous sections carry over to the new setting, by assuming that all relation names used so far
had mode i. Furthermore, as stated by Proposition 1 (which has an easy proof), relation names with mode c can
be simulated by means exclusively of relation names with mode i. Therefore, having relation names with mode c
will be convenient, but is not fundamental.

Proposition 1 Let q be a self-join free Boolean conjunctive query. Let Rc(~x, ~y) be an atom with mode c in q. Let
R1 and R2 be two relation names, both with mode i and with the same signature as R, such that neither R1 nor
R2 occurs in q. Let q′ = (q \ {Rc(~x, ~y)}) ∪ {R1(~x, ~y), R2(~x, ~y)}. Then CERTAINTY(q) and CERTAINTY(q′)
are equivalent under first-order reductions.

If relation names with mode c are allowed for syntactic convenience, the definition ofF+,q needs slight change:

F+,q := {x ∈ vars(q) | K((q \ F) ∪ [[q]]) |= key(F)→ x}

Modulo this redefinition, the notion of attack graph remains unchanged.

Proposition 1 explains how to replace atoms with mode c. Conversely, the following lemma states that in pursuing
a proof for Theorem 5, there are cases where a self-join-free Boolean conjunctive query can be extended with
atoms of mode c.

Lemma 10 Let q be a self-join-free Boolean conjunctive query. Let x, z ∈ vars(q) such that K(q) |= x→ z and

for every F ∈ q, if K(q) |= x → key(F), then F
q

6 x and F
q

6 z. Let q′ = q ∪ {T c(x, z)}, where T is a fresh
relation name with mode c. Then,

1. there exists a polynomial-time many-one reduction from CERTAINTY(q) to CERTAINTY(q′); and

2. if the attack graph of q contains no strong cycle, then the attack graph of q′ contains no strong cycle either.

Saturated queries Given a self-join-free Boolean conjunctive query, the reduction of Lemma 10 can be repeated
until it can no longer be applied. The query so obtained will be called saturated.

Definition 4 Let q be a self-join-free Boolean conjunctive query. We say that q is saturated if whenever x, z ∈
vars(q) such thatK(q) |= x→ z andK([[q]]) 6|= x→ z, then there exists an atom F ∈ q withK(q) |= x→ key(F)

such that F
q
 x or F

q
 z. �

Example 6 Consider the query q = {R(x, y), S1(y, z), S2(y, z), T c(x, z, w), U(w, x)}. We haveK(q) |= y → z

and K([[q]]) 6|= y → z. The set {F ∈ q | K(q) |= y → key(F)} equals {S1, S2}. We have neither S1
q
 y nor

S1
q
 z. Likewise, neither S2

q
 y nor S2

q
 z. Hence, q is not saturated. By Lemma 10, there exists a

polynomial-time many-one reduction from CERTAINTY(q) to CERTAINTY(q′) with q′ = q∪{Sc(y, z)}, where
S is a fresh relation name with mode c. It can be verified that the query q′ is saturated. �

13

7.2 Syntactic Simplifications

The following lemma shows that any proof of Theorem 5 can assume some syntactic simplifications without loss
of generality.

Lemma 11 Let q be a self-join-free Boolean conjunctive query. There exists a polynomial-time many-one re-
duction from CERTAINTY(q) to CERTAINTY(q′) for some self-join-free Boolean conjunctive query q′ with the
following properties:

• incnt(q′) ≤ incnt(q);

• no atom in q′ contains two occurrences of the same variable;

• constants occur in q′ exclusively at the primary-key position of simple-key atoms;

• every atom with mode i in q′ is simple-key;

• q′ is saturated; and

• if the the attack graph of q contains no strong cycle, then the attack graph of q′ contains no strong cycle
either.

7.3 Dissolving Markov Cycles

The following definition introduces Markov graphs.

Definition 5 Let q be a self-join-free Boolean conjunctive query such that every atom with mode i in q is simple-
key. For every x ∈ vars(q), we define

Cq(x) := {F ∈ q | F has mode i and key(F) = {x}}.

Notice that Cq(x) can be empty.

The Markov graph of q is a directed graph whose vertex set is vars(q). There is a directed edge from x to y,
denoted x

q,M−→ y, if x 6= y and K(Cq(x) ∪ [[q]]) |= x → y. If the query q is clear from the context, then x
q,M−→ y

can be shortened into x M−→ y. We write x
q,M∗−→ y (or x M∗−→ y if q is clear from the context) if the Markov graph

of q contains a directed path from x to y.2 Notice that for every x ∈ vars(q), x
q,M∗−→ x.

An elementary directed cycle C in the Markov graph of q is said to be premier if there exists a variable x ∈ vars(q)
such that

1. {x} = key(F0) for some atom F0 with mode i that belongs to an initial strong component of the attack
graph of q; and

2. for some y in C, we have x
q,M∗−→ y and K(q) |= y → x.

The term Markov edge is used for an edge in the Markov graph; likewise for Markov path and Markov cycle. �

Example 7 Let q = {R(x, y, v), S(y, x), V c1 (v, w), W (w, v) V c2 (w, y)}. All atoms in q are simple-key. Then,
[[q]] = {V c1 (v, w), V c2 (w, y)}.
We have Cq(x) = {R(x, v, y)}. SinceK(Cq(x) ∪ [[q]]) |= x→ {y, v, w}, the Markov graph of q contains directed
edges from x to each of y, v, and w.

We have Cq(v) = ∅. Since K(Cq(v) ∪ [[q]]) |= v → {y, w}, the Markov graph of q contains directed edges from
v to both y and w. The complete Markov graph of q is shown in Fig. 3 (right).

The attack graph of q is shown in Fig. 3 (left). The atoms R(x, y, v) and S(y, x) together constitute an initial
strong component of the attack graph. It is then straightforward that each cycle in the Markov graph of q that
contains x or y, must be premier. Further, the cycle v, w, v in the Markov graph of q is also premier, because there
is a Markov path from x to v, and K(q) |= v → x. �

2The term Markov refers to the intuition that in a Markov path, each variable functionally determines the next variable in the path,
independently of preceding variables.

14

R(x, y, v) S(y, x)

V c
1 (v, w)

W (w, v)

V c
2 (w, y)

x

w
v

y

Figure 3: Attack graph (left) and Markov graph (right) of the query {R(x, y, v), S(y, x), V c1 (v, w), W (w, v)
V c2 (w, y)}.

Let q be like in Definition 5 and assume that the Markov graph of q contains an elementary directed cycle C.
Lemma 12 states that CERTAINTY(q) can be reduced in polynomial time to CERTAINTY(q∗), where q∗ is ob-
tained from q by “dissolving” the Markov cycle C as defined in Definition 6. Moreover, we will show (Lemma 13)
that if C is premier and the attack graph of q contains no strong cycle, then the attack graph of q∗ will contain no
strong cycle either. The reduction that “dissolves” Markov cycles will be the central idea in our polynomial-time
algorithm for CERTAINTY(q) when the attack graph of q contains no strong cycle.

Definition 6 Let q be a self-join-free Boolean conjunctive query such that every atom with mode i in q is simple-
key. Let C be an elementary directed cycle of length k ≥ 2 in the Markov graph of q. Then, dissolve(C, q) denotes
the self-join-free Boolean conjunctive query defined next. Let x0, . . . , xk−1 be the variables in C, and let q0 =⋃k−1
i=0 Cq(xi). Let ~y be a sequence of variables containing exactly once each variable of vars(q0)\{x0, . . . , xk−1}.

Let q1 = {T (u, x0, . . . , xk−1, ~y)} ∪ {U ci (xi, u)}k−1i=0 , where u is a fresh variable, T is a fresh relation name with
mode i, and U1, . . . , Uk−1 are fresh relation names with mode c. Then, we define

dissolve(C, q) := (q \ q0) ∪ q1.

Notice that dissolve(C, q) is unique up to a renaming of the variable u and the relation names in q1. �

Example 8 Let q be the query of Fig. 3. Let C be the cycle x,w, y, x in the Markov graph of q. Using the notation
of Definition 6, we have

q0 = {R(x, y, v), S(y, x),W (w, v)}
q1 = {T (u, x, w, y, v), U c1 (x, u), U c2 (w, u), U c3 (y, u)}

Hence, dissolve(C, q) = {V c1 (v, w), V c2 (w, y), T (u, x, w, y, v), U c1 (x, u), U c2 (w, u), U c3 (y, u)}. �

Lemma 12 Let q be a self-join-free Boolean conjunctive query such that every atom with mode i in q is simple-
key. Let C be an elementary directed cycle in the Markov graph of q, and let q∗ = dissolve(C, q). Then, there
exists a polynomial-time many-one reduction from CERTAINTY(q) to CERTAINTY(q∗).

The reduction of Lemma 12 will be explained in Section 7.5. To use the reduction in a proof of Theorem 5, two
more results are needed:

• First, we need to show that the “dissolution” of Markov cycles can be done while keeping the attack graph
free of strong cycles (this is Lemma 13). This turns out to be true only for Markov cycles that are premier
(as defined in Definition 5).

• Second, we need to show the existence of premier Markov cycles that can be “dissolved” (this is Lemma 14).

Lemma 13 Let q be a self-join-free Boolean conjunctive query such that every atom with mode i in q is simple-key.
Let C be an elementary directed cycle in the Markov graph of q such that C is premier, and let q∗ = dissolve(C, q).
If the attack graph of q contains no strong cycle, then the attack graph of q∗ contains no strong cycle either.

15

Lemma 14 Let q be a self-join-free Boolean conjunctive query such that

• for every atom F ∈ q, if F has mode i, then F is simple-key and key(F) 6= ∅;
• q is saturated;

• the attack graph of q contains no strong cycle; and

• the attack graph of q contains an initial strong component with two or more atoms.

Then, the Markov graph of q contains an elementary directed cycle that is premier and such that for every y in C,
Cq(y) 6= ∅.
The condition Cq(y) 6= ∅ , for every y in C, guarantees that dissolve(C, q) will contain strictly less atoms of mode
i than q. This condition will be used in the proof of Theorem 5 which runs by induction on the number of atoms
with mode i. The following example shows that Lemma 14 is no longer true if q is not saturated.

Example 9 Continuing Example 6. The query q of Example 6 is not saturated, but satisfies all other conditions in
the statement of Lemma 14. In particular, the attack graph of q contains a weak cycle R

q
 U

q
 R, which is part

of an initial strong component. The Markov graph of q consists of a single path w
q,M−→ x

q,M−→ y
q,M−→ z, and hence

is acyclic.

The query q′ of Example 6 is saturated, and we have x
q′,M−→ w

q′,M−→ x, a Markov cycle which can be shown to be
premier. �

7.4 The Proof of Theorem 5

Proof of Theorem 5 Assume that the attack graph of q contains no strong cycle. The proof runs by induction on
increasing incnt(q). The desired result is obvious if incnt(q) = 0. Assume that incnt(q) > 0 in the remainder of
the proof. Let db be an uncertain database that is input to CERTAINTY(q).

First, we reduce in polynomial time CERTAINTY(q) to CERTAINTY(q′) with q′ like in Lemma 11. We now
distinguish two cases.

Case q′ contains an atom F with mode i that has zero indegree in the attack graph of q. We can assume
either F = R(x, ~y) or F = R(a, ~y), where ~y is a sequence of distinct variables. In the remainder, we treat the
case F = R(x, ~y) (the case F = R(a, ~y) is even simpler).

Let q′′ = q′ \ {R(x, ~y)}. By Lemma 8, every repair of db satisfies q′ if and only if db includes an R-block
b (there are only polynomially many such blocks) such for every R(a,~b) ∈ b, every repair of db satisfies
q′′[x,~y 7→a,~b]. By Lemma 5, the attack graph of q′′[x,~y 7→a,~b] contains no strong cycle. From incnt(q′′[x,~y 7→a,~b]) =

incnt(q′)− 1 < incnt(q), it follows that CERTAINTY(q′′[x,~y 7→a,~b]) is in P by the induction hypothesis. It follows
that CERTAINTY(q) is in P as well.

Case every atom F with mode i in q′ has an incoming attack in the attack graph of q′. It will be the case
that no constant occurs in an atom of mode i in q′.

Then, the attack graph of q′ must contain an initial strong component with two or more atoms. By Lemma 14,
the Markov graph of q′ contains an elementary directed cycle C that is premier and such that for every y in C,
Cq′(y) 6= ∅. By Lemma 12, we can reduce in polynomial time CERTAINTY(q′) to CERTAINTY(q∗) where
q∗ = dissolve(C, q′). Since the attack graph of q′ contains no strong cycle, it follows by Lemma 13 that the attack
graph of q∗ contains no strong cycle either.

Let k ≥ 2 be the size of C. It can be easily verified that incnt(q∗) ≤ (incnt(q′)− k)+1 < incnt(q′). By the induc-
tion hypothesis, CERTAINTY(q∗) is in P. Since there exists a polynomial-time reduction from CERTAINTY(q)
to CERTAINTY(q∗), we conclude that CERTAINTY(q) is in P as well. 2

16

7.5 The Reduction of Lemma 12

This section first describes the reduction of Lemma 12, and then proves the lemma.

Relevance of subsets of repairs In Section 3, we distinguished database facts that are relevant for a query from
those that are not. This notion is extended next.

Definition 7 Let q be a self-join-free Boolean conjunctive query, and let db be an uncertain database. A consistent
subset s of db is said to be grelevant for q in db (generalized relevant) if it can be extended into a repair r of db
such that some fact of s is relevant for q in r. �

It can be seen thatA ∈ db is relevant for q in db if and only if {A} is grelevant for q in db. Therefore, “grelevant”
is a notion that generalises “relevant.”

Lemma 15 Let q be a self-join-free Boolean conjunctive query, and let db be an uncertain database. Let s be
a consistent subset of db that is not grelevant for q in db. Let db0 =

⋃{block(A,db) | A ∈ s}. Then, the
following are equivalent:

1. every repair of db satisfies q;

2. every repair of db \ db0 satisfies q.

Proof 1 =⇒ 2 By contraposition. Let r be a repair of db \ db0 that falsifies q. Then, r ∪ s is a repair of db. If
r ∪ s |= q, then it must be the case that s is grelevant for q in db, a contradiction. We conclude by contradiction
that r ∪ s 6|= q. 2 =⇒ 1 Trivial. 2

Introductory example The following example illustrates the main ideas behind the reduction of Lemma 12.

Example 10 Let q be a self-join-free Boolean conjunctive query. Assume that q includes q0 = {R(x, y), S(y, z),
V (z, x)}. Then, the Markov graph of q contains a cycle x M−→ y M−→ z M−→ x. Let db be an uncertain database
that is purified relative to q. Let db0 be the subset of db containing all R-facts, S-facts, and V -facts of db.
Assume that the following three tables represent all facts of db0 (for convenience, we use variables as attribute
names, and we blur the distinction between a relation name R and a table representing a set of R-facts).

R x y
1 a

2 b
2 c

3 d
3 e
4 e
4 f

S y z
a α
a κ

b β
c γ

d δ
e ε
e δ
f φ

V z x
α 1
κ 1

β 2
γ 2

δ 3
ε 3
δ 4
φ 4

}
db01}
db02db03

As indicated, we can partition db0 into three subsets db01, db02, and db03 whose active domains have, pairwise,
no constants in common. Consider each of these three subsets in turn.

1. db01 has two repairs, each of which satisfies q0. For every repair r of db, either r |= q0[x,y,z 7→1,a,α] or
r |= q0[x,y,z 7→1,a,κ].

2. db02 has two repairs, each of which satisfies q0. For every repair r of db, either r |= q0[x,y,z 7→2,b,β] or
r |= q0[x,y,z 7→2,c,γ].

3. db03 has 16 repairs, and for s := {R(3, d), S(d, δ), V (δ, 4), R(4, e), S(e, ε), V (ε, 3), S(f, φ), V (φ, 4)},
we have that s is a repair of db03 that falsifies q0. It can be seen that s is not grelevant for q in db. Then, by
Lemma 15, every repair of db satisfies q if and only if every repair of db \ db03 satisfies q. That is, db03

can henceforth be ignored.

17

The following table T summarizes our findings. In the first column (named with a fresh variable u), the values 01
and 02 refer to db01 and db02 respectively. The table includes two blocks (separated by a dashed line for clarity).
The first block indicates that for every repair r of db, either r |= q0[x,y,z 7→1,a,α] or r |= q0[x,y,z 7→1,a,κ]. Likewise
for the second block.

T u x y z

01 1 a α

01 1 a κ

02 2 b β

02 2 c γ

The table Ux shown below is the projection of T on attributes x and u. This table must be consistent, because by
construction, the active domains of db01 and db02 are disjoint. Likewise for Uy and Uz .

Ux x u
1 01
2 02

Uy y u
a 01
b 02
c 02

Uz z u
α 01
κ 01
β 02
γ 02

Let db′ be the database that extends db with all the facts shown in the tables T , Ux, Uy , and Uz .3 Let q∗ =
(q \ q0)∪ {T (u, x, y, z), U cx(x, u), U cy(y, u), U cz (z, u)}. From our construction, it follows that every repair of db
satisfies q if and only if every repair of db′ satisfies q∗. �

Gblocks and gpurification The following definition strengthens the notion of purification introduced earlier in
Section 3.

Definition 8 Let q be a self-join-free Boolean conjunctive query such that all atoms with mode i in q are simple-
key. Let db be an uncertain database that is purified and typed relative to q. A gblock (generalized block) of db
relative to q is a maximal (with respect to⊆) subset g of db such that all facts in g have mode i and agree on their
primary-key position (but may disagree on their relation name). Notice that a gblock has at most polynomially
many repairs (in the size of db).4 We say that db is gpurified relative to q if for every gblock g of db, every
repair of g is grelevant for q in db. �

Clearly, every gblock is the union of one or more blocks. Two facts of the same gblock have the same primary-key
value, but can have distinct relation names.

Example 11 Let q = {R(x, y), S(x, y)}. Let db = {R(a, 1), R(a, 2), S(a, 1), S(a, 2)}. Then, db is purified
and typed relative to q. All facts of db together constitute a gblock. The uncertain database db is not gpurified,
since s = {R(a, 1), S(a, 2)} is a repair of the gblock, and also a repair of db. However, neither R(a, 1) nor
S(a, 2)} is relevant for q in s. �

Example 12 Let q = {R1(x, y), R2(x, z), S(y, z)}, where the signature of S is [2, 2]. Let db be the uncertain
database containing the following facts.

R1 x y
a 1
a 2

R2 x z
a 3
a 4

S y z
1 3
2 4

Then, db is purified and typed relative to q. All R1-facts and R2-facts together constitute a gblock. A repair of
this gblock is s = {R1(a, 1), R2(a, 4)}. The uncertain database db is not gpurified. Indeed, the only repair of db
that extends s is {R1(a, 1), R2(a, 4), S(1, 3), S(2, 4)} (call it r). Neither R1(a, 1) nor R2(a, 4) is relevant for q
in r. �

3Facts of db0 can be omitted from db′, but that is not important.
4Indeed, since db is purified relative to q, every gblock of db contains at most |q| distinct relation names, and hence has at most |db||q|

distinct repairs.

18

The following lemma is similar to Lemma 1 and has an easy proof.

Lemma 16 Let q be a self-join-free Boolean conjunctive query such that all atoms with mode i in q are simple-key.
Let db be an uncertain database that is purified and typed relative to q. It is possible to compute in polynomial
time an uncertain database db′ that is gpurified relative to q such that every repair of db satisfies q if and only if
every repair of db′ satisfies q.

Specification of the reduction of Lemma 12 Let q and C be as in the statement of Lemma 12. Assume that
the elementary directed cycle C in the Markov graph of q is x0

M−→ x1 · · · M−→ xk−1
M−→ x0. In what follows,

let dissolve(C, q) be as in Definition 6, with q0, q1, ~y, u, T , and U0, . . . , Uk−1 as defined there. Moreover, we
write ⊕ for addition modulo k, and 	 for subtraction modulo k. For every i ∈ {0, . . . , k − 1}, we define Xi as
follows:

Xi := vars(Cq(xi)).

The reduction of Lemma 12 will be described under the following simplifying assumptions which can be made
without loss of generality:

• every uncertain database db that is input to CERTAINTY(q) is typed, purified, and gpurified relative to q.
This assumption is without loss of generality as argued in Section 3, and by Lemmas 1 and 16; and

• for every i ∈ {0, . . . , k − 1}, no atom of Cq(xi) contains constants or double occurrences of the same
variable. This assumption is without loss of generality by Lemma 11.

Under these notations and assumptions, we describe the reduction of Lemma 12. Let db be an uncertain database
that is input to CERTAINTY(q). Define a directed k-partite graph, denoted G(db), as follows:

1. the vertex set of G(db) is
⋃k−1
i=0 type(xi); and

2. there is a directed edge from a ∈ type(xi) to b ∈ type(xi⊕1) if for some valuation θ over vars(q), we have
that θ(q) ⊆ db and θ(xi) = a and θ(xi⊕1) = b. In this case, we say that θ[Xi] realizes the edge (a, b),
where θ[Xi] denotes the restriction of θ on Xi.

Notice that distinct valuations can realize the same edge of G(db) (but if db is consistent, then every edge in
G(db) is realized at most once).

Example 13 Let q = {R1(x0, y1), R2(x0, y2), Sc(y1, y2, x1), R3(x0, y3), V (x1, x0)}. Then, x0
M−→ x1 and

X0 = {x0, y1, y2, y3}. Assume an uncertain database db containing, among others, the following facts.

R1 x0 y1
a c1

R2 x0 y2
a c2
a c3

S y1 y2 x1
c1 c2 1
c1 c3 1

R3 x0 y3
a β
a γ

The graph G(db) contains a directed edge (a, 1), which is realized by {x0 7→ a, y1 7→ c1, y2 7→ c2, y3 7→ β}.
The edge (a, 1) is also realized by {x0 7→ a, y1 7→ c1, y2 7→ c3, y3 7→ γ}. �

Let [[db]] be the subset of db that contains all facts with mode c. Significantly, the edges in G(db) outgoing from
some constant a ∈ type(xj) (for some j ∈ {0, . . . , k − 1}) are fully determined by [[db]] and the gblock of db
containing all facts whose relation name is in Cq(xj) and whose primary-key position contains the constant a (call
this gblock ga). Since db is gpurified, for every repair s of ga, there exists a unique constant b ∈ type(xj⊕1) such
that

s ∪ [[db]] |= (Cq(xj) ∪ [[q]])[xj ,xj⊕1 7→a,b],

in which case G(db) will contain a directed edge from a to b. Uniqueness of b follows from K(Cq(xj) ∪ [[q]]) |=
xj → xj⊕1 and [16, Lemma 4.3].

Since db is gpurified, G(db) is a vertex-disjoint union of strong components such that no edge leads from one
strong component to another strong component (i.e., all strong components are initial).5 In what follows, let D be
a strong component of G(db). Since G(db) is k-partite, the length of any cycle in G(db) must be a multiple of
k, i.e., must be in {k, 2k, 3k, . . . }. Let dbD be the subset of db that contains R(a,~b) whenever R is of mode i

5Strong components are defined by Definition 1.

19

and the constant a is a vertex in D (and ~b is any sequence of constants). Obviously, every block of db is either
included in dbD or disjoint with dbD.

Clearly, D must contain a cycle. Among the cycles in D of length exactly k, we now distinguish the cycles that
support q from those that do not, as defined next. Let such cycle in D be

a0, a1, . . . , ak−1, a0 (5)

where for i ∈ {0, . . . , k − 1}, ai ∈ type(xi). For i ∈ {0, . . . , k − 1}, let ∆i be the set of all valuations over Xi

that realize (ai, ai⊕1). We say that the cycle (5) supports q if for for all i, j ∈ {0, . . . , k − 1}, for all µi ∈ ∆i

and µj ∈ ∆j , it is the case that µi and µj agree on all variables in Xi ∩Xj . Notice that Xi ∩Xj can be empty.
The cycle (5) may not support q, because µi and µj can disagree on variables in Xi ∩Xj ∩ vars(~y), as illustrated
next.

Example 14 Let q = {R(x0, x1, y), S(x1, x0, y)}. We have x0
M−→ x1

M−→ x0. Let db be the uncertain database
containing the following facts.

R x0 x1 y
a 1 α
a 1 β

S x1 x0 y
1 a α
1 a β

The edge set of G(db) is {(a, 1), (1, a)}. Both (a, 1) and (1, a) are realized by the valuations {x0 7→ a, x1 7→ 1,
y 7→ α} and {x0 7→ a, x1 7→ 1, y 7→ β}, which disagree on y. Hence, the cycle a, 1, a does not support q. �

On the other hand, we can assume without loss of generality that µi and µj agree on all variables in Xi ∩ Xj ∩
{x0, . . . , xk−1}. In particular, if xi ∈ Xj , then µj(xi) = µi(xi) = ai. To see why this is the case, assume that
xi ∈ Xj , where i, j ∈ {0, . . . , k − 1} and i 6= j. Then, it must be that xj

M−→ xi. Two cases can occur:

• if j = i	 1, then µj realizes the edge (ai	1, ai) and µj(xi) = ai; and

• if j 6= i	 1, then xj
M−→ xi

M−→ xi⊕1 · · · M−→ xj	1
M−→ xj is a shorter Markov cycle.

The second case can be avoided by picking C to be the shorter cycle, as illustrated by Example 15. It can be seen
that such choice of C is without loss of generality. In particular, in Lemma 14, if C was premier, then the shorter
cycle will also be premier.

Example 15 Let q = {R(x0, x1), S(x1, x2, x0), V (x2, x0)}. Then, x0
M−→ x1

M−→ x2
M−→ x0. We have

X0 = {x0, x1}, X1 = {x1, x2, x0}, and X2 = {x2, x0}. Assume an uncertain database db with the following
facts.

R x0 x1
a 1
b 1

S x1 x2 x0
1 β a
1 β b

V x2 x0
β a
β b

The graph G(db) contains an elementary directed cycle a, 1, β, a. The edge (a, 1) is realized by µ0 = {x0 7→ a,
x1 7→ 1}. The edge (1, β) is realized, among others, by µ1 = {x1 7→ 1, x2 7→ β, x0 7→ b}. Notice that µ0 and µ1

disagree on x0. Although it is easy to deal with this situation where two valuations disagree on a variable in the
Markov cycle, it is even easier to avoid this situation by working with the shorter Markov cycle x0

M−→ x1
M−→ x0.

�

We now distinguish two cases.

Case D contains either an elementary directed cycle of size k that does not support q, or an elementary
directed cycle of size strictly greater than k. We show in the next paragraph how to construct a repair s of
dbD such that s is not grelevant for q in db. Then, by Lemma 15, every repair of db satisfies q if and only if
every repair of db \ dbD satisfies q. In this case, the reduction deletes from db all facts of dbD.

The construction of s proceeds as follows. Pick an elementary cycle in D that has size strictly greater than k, or
that has size k but does not support q. The cycle picked will henceforth be denoted by E . Construct a maximal
sequence

(V0, E0), b1, (V1, E1), b2, (V2, E2), . . . , bn, (Vn, En)

where

20

1. V0 is the set of vertices in E , and E0 is the set of directed edges in E ; and

2. for every i ∈ {1, . . . , n},
(a) bi 6∈ Vi−1 and for some c ∈ Vi−1, (bi, c) is a directed edge in G(db); and

(b) Vi = Vi−1 ∪ {bi} and Ei = Ei−1 ∪ {(bi, c)}.
The resulting graph (Vn, En) is such that Vn is equal to the vertex set of D, and En contains exactly one outgoing
edge for each vertex in Vn. The graph (Vn, En) contains no directed cycle other than E . To construct s, for each
j ∈ {0, . . . , k − 1}, for each vertex a ∈ Vn ∩ type(xj), select some valuation µ that realizes the edge in En
outgoing from a, and add µ(Cq(xj)) to s. If E has size k, then the valuations µ should be selected such that for
some vertices a, b in E , the valuations chosen for a and b disagree on some variable of vars(~y). It is not hard to
see that the set s so obtained is a repair of dbD that is not grelevant for q in db.

We illustrate the above construction by two examples.

Example 16 In Example 14, one can choose s = {R(a, 1, α), S(1, a, β)}. The treatment of a directed cycle of
size strictly greater than k is illustrated by db03 in Example 10. �

Example 17 Let q = {R(x0, y1, y2), V (x1, y2), Sc1(y1, y2, x1), Sc2(y2, x0)}. We have x0
M−→ x1

M−→ x0,
X0 = {x0, y1, y2}, and X1 = {x1, y2}. Let db be an uncertain database with the following facts.

R x0 y1 y2
a 1 2
a 3 4
a 1 6

V x1 y2
γ 2
γ 4
β 6

Sc1 y1 y2 x1
1 2 γ
3 4 γ
1 6 β

Sc2 y2 x0
2 a
4 a
6 a

The following table lists the edges in G(db), by type, along with the valuations that realize each edge.

Edges in type(x0)× type(x1)
Edge Realized by
(a, γ) {x0 7→ a, y1 7→ 1, y2 7→ 2}=µ1

{x0 7→ a, y1 7→ 3, y2 7→ 4}=µ2

(a, β) {x0 7→ a, y1 7→ 1, y2 7→ 6}=µ3

Edges in type(x1)× type(x0)
Edge Realized by
(γ, a) {x1 7→ γ, y2 7→ 2} =µ4

{x1 7→ γ, y2 7→ 4} =µ5

(β, a) {x1 7→ β, y2 7→ 6} =µ6

Then, G(db) contains two elementary cycles, a, γ, a and a, β, a, both of length 2. The cycle a, β, a supports q.
The cycle a, γ, a does not support q, because µ1 and µ5 disagree on y2. Therefore, the edges (a, γ) and (γ, a),
along with µ1 and µ5, will be used in the construction of a consistent set s that is not grelevant for q in db. For the
remaining vertex β, we add the edge (β, a), which is only realized by µ6. Then, s contains the R-fact R(a, 1, 2)
(because of µ1), and the V -facts V (γ, 4) and V (β, 6) (because of µ5 and µ6 respectively). In this example, there
is only one repair that contains s, and this repair falsifies q. �

Case every elementary directed cycle inD has length k and supports q. In this case, we will encode each cy-
cle of D as a set of T -facts, as follows. Consider any cycle of the form (5) in D, and take the cross product

∆0 ×∆2 × · · · ×∆k−1, (6)

which is of polynomial size (in the size of db). Since we are in the case where any cycle of the form (5) supports
q, for every tuple (µ0, µ1, . . . , µk−1) in the cross product (6), the set µ :=

⋃k−1
i=0 µi is a well defined valuation over

{x0, . . . , xk−1} ∪ vars(~y). In this case, for each such tuple, the reduction adds the following k + 1 facts:

T (D, a0, . . . , ak−1, µ(~y))
U c0 (a0, D)

...
U ck−1(ak−1, D)

in which D is used as a constant. Recall that ai = µ(xi) for i ∈ {0, . . . , k − 1}. Notice that if the sequence ~y
is empty, then the reduction will add exactly one T -fact for every cycle of the form (5). Otherwise, the reduction
may add multiple T -facts for the same cycle, as illustrated next.

21

Example 18 Let q = {R(x0, x1, y), S(x1, x0)}. We have x0
M−→ x1

M−→ x0, X0 = {x0, x1, y} and X1 =
{x0, x1}. Let db be the uncertain database containing the following facts.

R x0 x1 y
a 1 α
a 1 β

S x1 x0
1 a

The edge set of G(db) is {(a, 1), (1, a)}. The edge (a, 1) is realized by both {x0 7→ a, x1 7→ 1, y 7→ α} and
{x0 7→ a, x1 7→ 1, y 7→ β}. The edge (1, a) is realized only by {x0 7→ a, x1 7→ 1}. The cycle a, 1, a in G(db)
supports q. The reduction will add the following T -facts (for some identifier D):

T u x0 x1 y
D a 1 α
D a 1 β

�

Example 19 Take the query q of Example 17, with the following uncertain database db.

R x0 y1 y2
a 1 2
a 1 6
a 3 6

V x1 y2
γ 2
β 6

Sc1 y1 y2 x1
1 2 γ
1 6 β
3 6 β

Sc2 y2 x0
2 a
6 a

Then, G(db) contains two elementary cycles, a, γ, a and a, β, a, both of length 2 and both supporting q. The
reduction will add the following T -facts (for some identifier D):

T u x0 x1 y1 y2
D a γ 1 2
D a β 1 6
D a β 3 6

�

Each relation U ci encodes that each constant in type(xi) ∩ adom(db) occurs in a unique strong component of
G(db). The meaning of the T -facts is as follows. Let V = {x0, . . . , xk−1} ∪ vars(~y). Let ΘD be the set of all
valuations over V such that

T (D,µ(x1), . . . , µ(xk−1), µ(~y))

has been added by the reduction. Then the following hold (recall q0 =
⋃k−1
i=0 Cq(xi)):

• for every repair r of db, there exists µ ∈ ΘD such that r |= µ(q0); and

• for every µ ∈ ΘD, there exists a repair r of db such that

1. r |= µ(q0); and

2. for each µ′ ∈ ΘD, if µ′ 6= µ, then r 6|= µ′(q0).

The cycles inD can be found in polynomial time by solving reachability problems, as explained in [17, Theorem 4]
and [11]. The crux is that the number of cycles in G(db) of length exactly k is polynomially bounded. Any longer
cycle consists of an elementary path a0, a1, . . . , ak−1, a′0 of length k (a0 6= a′0), concatenated with an elementary
path from a′0 to a0 that contains no vertex in {a1, . . . , ak−1}. Notice incidentally that the reduction needs to know
the existence (or not) of cycles of size strictly greater than k in any strong component D, but the vertices on such
cycle need not be remembered.

It can now be seen that, in general, the above reduction results in a database db′ that is as in the following
lemma.

Lemma 17 Let q and C be as in the statement of Lemma 12. Let q∗ = dissolve(q, C), and let the variable u be as
in Definition 6. Let db be an uncertain database that is input to CERTAINTY(q). We can compute in polynomial
time an uncertain database db′ that is a legal input to CERTAINTY(q∗) such that the following hold:

22

1. for every repair r of db, there exists a repair r′ of db′ such that for every valuation θ over vars(q∗), if
θ(q∗) ⊆ r′, then θ(q) ⊆ r; and

2. for every repair r′ of db′, there exists a repair r of db such that for every valuation θ over vars(q), if
θ(q) ⊆ r, then there exists a constant D such that θ[u7→D](q

∗) ⊆ r′.

We can now prove Lemma 12.

Proof of Lemma 12 Let db be an uncertain database that is input to CERTAINTY(q). By Lemma 17, we can
compute in polynomial time an uncertain database db′ that is a legal input to CERTAINTY(q∗) such that db′ sat-
isfies conditions 1 and 2 in the statement of Lemma 17. It suffices to show that the following are equivalent.

1. Every repair of db satisfies q.

2. Every repair of db′ satisfies q∗.

1 =⇒ 2 Proof by contraposition. Assume a repair r′ of db′ such that r′ 6|= q∗. By item 2 in the statement of
Lemma 17, we can assume a repair r of db such that for every valuation θ over vars(q), if θ(q) ⊆ r, then there
exists a constantD such that θ[u7→D](q

∗) ⊆ r′. Obviously, if r |= q, then r′ |= q∗, a contradiction. We conclude by
contradiction that r 6|= q. 2 =⇒ 1 Proof by contraposition. Assume a repair r of db such that r 6|= q. By item 1
in the statement of Lemma 17, we can assume a repair r′ of db′ such that for every valuation θ over vars(q∗), if
θ(q∗) ⊆ r′, then θ(q) ⊆ r. Obviously, r′ 6|= q∗. 2

8 Conclusion

This paper settles a long-standing open question in certain query answering, by establishing an effective com-
plexity trichotomy in the set containing CERTAINTY(q) for each self-join-free Boolean conjunctive query q. In
particular, we show that, given q, there exists a procedure that looks at the structure of the attack graph of q and
decides whether CERTAINTY(q) is in FO, in P \ FO, or coNP-complete.

The exciting question that still remains open is whether the above trichotomy can be extended beyond self-join-
free conjunctive queries, to conjunctive queries with self-joins and unions of conjunctive queries.

References

[1] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley, 1995.

[2] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. Consistent query answers in inconsistent data-
bases. In PODS, pages 68–79. ACM Press, 1999.

[3] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing the truth of
certain quantified boolean formulas. Inf. Process. Lett., 8(3):121–123, 1979.

[4] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the desirability of acyclic database
schemes. J. ACM, 30(3):479–513, 1983.

[5] Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Synthesis Lectures on Data
Management. Morgan & Claypool Publishers, 2011.

[6] Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Log.,
12(4):24, 2011.

[7] Stephen A. Cook and Pierre McKenzie. Problems complete for deterministic logarithmic space. J. Algo-
rithms, 8(3):385–394, 1987.

[8] Gaëlle Fontaine. Why is it hard to obtain a dichotomy for consistent query answering? In LICS, pages
550–559. IEEE Computer Society, 2013.

23

[9] Ariel Fuxman and Renée J. Miller. First-order query rewriting for inconsistent databases. In Thomas Eiter
and Leonid Libkin, editors, ICDT, volume 3363 of Lecture Notes in Computer Science, pages 337–351.
Springer, 2005.

[10] Phokion G. Kolaitis and Enela Pema. A dichotomy in the complexity of consistent query answering for
queries with two atoms. Inf. Process. Lett., 112(3):77–85, 2012.

[11] Paraschos Koutris and Dan Suciu. A dichotomy on the complexity of consistent query answering for atoms
with simple keys. In Nicole Schweikardt, Vassilis Christophides, and Vincent Leroy, editors, ICDT, pages
165–176. OpenProceedings.org, 2014.

[12] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

[13] George J. Minty. On maximal independent sets of vertices in claw-free graphs. J. Comb. Theory, Ser. B,
28(3):284–304, 1980.

[14] Jef Wijsen. On the first-order expressibility of computing certain answers to conjunctive queries over uncer-
tain databases. In Jan Paredaens and Dirk Van Gucht, editors, PODS, pages 179–190. ACM, 2010.

[15] Jef Wijsen. A remark on the complexity of consistent conjunctive query answering under primary key
violations. Inf. Process. Lett., 110(21):950–955, 2010.

[16] Jef Wijsen. Certain conjunctive query answering in first-order logic. ACM Trans. Database Syst., 37(2):9,
2012.

[17] Jef Wijsen. Charting the tractability frontier of certain conjunctive query answering. In Richard Hull and
Wenfei Fan, editors, PODS, pages 189–200. ACM, 2013.

[18] Jef Wijsen. A survey of the data complexity of consistent query answering under key constraints. In
Christoph Beierle and Carlo Meghini, editors, Foundations of Information and Knowledge Systems - 8th
International Symposium, FoIKS 2014, Bordeaux, France, March 3-7, 2014. Proceedings, volume 8367 of
Lecture Notes in Computer Science, pages 62–78. Springer, 2014.

A Proofs for Section 4

A.1 Proof of Lemma 3

We use the following helping lemma.

Lemma 18 Let q be a self-join-free Boolean conjunctive query. Let F,G ∈ q such that F
q
 G. Then, for every

x ∈ F+,q \G+,q , there exists a sequence F0, F1, . . . , Fn of atoms of q such that

• F0 = F ;

• for all i ∈ {0, . . . , n− 1}, vars(Fi) ∩ vars(Fi+1) * G+,q; and

• x ∈ vars(Fn).

Proof Consider a maximal sequence
key(F) = S0 H1

S1 H2

...
...

Sk−1 Hk

Sk

where

1. S0 (S1 (· · · (Sk−1 (Sk; and

2. for every i ∈ {1, 2, . . . , k},
(a) Hi ∈ q \ {F}. Thus, K(q \ {F}) contains the functional dependency key(Hi)→ vars(Hi).

24

(b) key(Hi) ⊆ Si−1 and Si = Si−1 ∪ vars(Hi).

Then, Sk = F+,q . From F
q
 G, it follows G 6∈ {H1, . . . ,Hk}. For every v ∈ Sk, define d(v) as the smallest

integer i such that v ∈ Si. Let x ∈ F+,q \G+,q . We define the desired result by induction on d(x).

Basis: d(x) = 0. Then the desired sequence is F .

Step: d(x) = i. Hence, x ∈ Si and x 6∈ Si−1. Then, x 6∈ key(Hi) ⊆ Si−1 and x ∈ vars(Hi). Since
Hi 6= G, we have key(Hi) * G+,q , or else x ∈ G+,q , a contradiction. Therefore, we can assume some variable
y ∈ key(Hi) \G+,q . Since y ∈ Si−1, we have d(y) < d(x). By the induction hypothesis, there exists a sequence
F0, F1, . . . , Fn of atoms of q such that

• F0 = F ;

• for all i ∈ {0, . . . , n− 1}, vars(Fi) ∩ vars(Fi+1) * G+,q; and

• y ∈ Fn.

The desired sequence is F0, F1, . . . , Fn, Hi. 2

The proof of Lemma 3 is given next.

Proof of Lemma 3 Assume F
q
 G, G

q
 H , and F

q

6 H .

Since F
q
 G, there exists a sequence F0, F1, . . . , Fn of atoms of q such that

• F0 = F and Fn = G; and

• for all i ∈ {0, . . . , n− 1}, vars(Fi) ∩ vars(Fi+1) * F+,q .

Since G
q
 H , there exists a sequence G0, G1, . . . , Gm of atoms of q such that

• G0 = G and Gm = H; and

• for all i ∈ {0, . . . ,m− 1}, vars(Gi) ∩ vars(Gi+1) * G+,q .

Consider the path
F0, F1, . . . , Fn, G1, G2, . . . , Gm

where F0 = F , Fn = G = G0, and Gm = H . Since F
q

6 H , we can assume j ∈ {0, . . . ,m − 1} such that
vars(Gj)∩vars(Gj+1) ⊆ F+,q . Since vars(Gj)∩vars(Gj+1) * G+,q , we can assume x ∈ vars(Gj)∩vars(Gj+1)
such that x ∈ F+,q \G+,q .

By Lemma 18, there exists a sequence H0, H1, . . . ,Hk of atoms of q such that

• H0 = F ;

• for all i ∈ {0, . . . , k − 1}, vars(Hi) ∩ vars(Hi+1) * G+,q; and

• x ∈ Hk.

Consider the sequence
G0, G1, . . . , Gj , Hk, Hk−1, . . . ,H0,

where G0 = G and H0 = F . Every two consecutive atoms in this sequence share a variable not in G+,q . In
particular, Gj and Hk share the variable x. It follows G

q
 F . 2

25

A.2 Proof of Lemma 4

Proof of Lemma 4 The first item is an immediate consequence of Lemma 3. In what follows, we show the second
item.

We show that if the attack graph of q contains a strong cycle of length n with n ≥ 3, then it contains a strong cycle
of some length m with m < n.

Let H0
q
 H1

q
 H2

q
 · · · q

 Hn−1
q
 H0 be a strong cycle of length n (n ≥ 3) in the attack graph of q,

where i 6= j implies Hi 6= Hj . Assume without loss of generality that the attack H0
q
 H1 is strong. Thus,

K(q) 6|= key(H0)→ key(H1).

We write i⊕ j as shorthand for for (i+ j) mod n. If H1
q
 H1⊕2, then H0

q
 H1

q
 H1⊕2

q
 · · · q Hn−1

q

H0 is a strong cycle of length n − 1, and the desired result holds. Assume next H1

q

6 H1⊕2. By Lemma 3,
H2

q
 H1. We distinguish two cases.

Case H2
q
 H1 is a strong attack. Then H1

q
 H2

q
 H1 is a strong cycle of length 2 < n.

Case H2
q
 H1 is a weak attack. If H1

q
 H0, then H0

q
 H1

q
 H0 is a strong cycle of length 2 < n.

Assume next H1

q

6 H0. Then, from H0
q
 H1

q
 H2 and Lemma 3, it follows H0

q
 H2. The cycle

H0
q
 H2

q
 H2⊕1

q
 · · · q

 Hn−1
q
 H0 has length n − 1. It suffices to show that the attack H0

q
 H2 is

strong. Assume towards a contradiction that the attack H0
q
 H2 is weak. Then, K(q) |= key(H0) → key(H2).

Since H2
q
 H1 is a weak attack, K(q) |= key(H2)→ key(H1). By transitivity, K(q) |= key(H0)→ key(H1), a

contradiction. This concludes the proof. 2

A.3 Proof of Lemma 5

Proof of Lemma 5 Let q′ = q[x 7→a]. For every F ∈ q′, there exists a (unique) atom F̂ ∈ q such that F = F̂[x 7→a].
It can be easily shown that for every F ∈ q′, we have F̂+,q \ {x} ⊆ F+,q′ .

Assume F
q′

 G. Then, there exists a witness F0

z1
a F1

z2
a F2 . . .

zn
a Fn for F

q′

 G where F0 = F and Fn = G.

It can now be easily seen that F̂0

z1
a F̂1

z2
a F̂2 . . .

zn
a F̂n is a witness for F̂

q
 Ĝ. Therefore, if the attack graph of

q′ is cyclic, then the attack graph of q is cyclic.

The second item in the statement of Lemma 5 follows from the observation that for all F,G ∈ q′, if K(q) |=
key(F̂)→ key(Ĝ), then K(q′) |= key(F)→ key(G). 2

B Proofs for Section 5

B.1 Proof of Lemma 6

Proof of Lemma 6 We show a first-order reduction from the problem UFA (Undirected Forest Accessibility) [7]
to CERTAINTY(q0). In UFA, we are given an acyclic undirected graph, and nodes u, v. The problem is to
determine whether there is a path between u and v. The problem is Ł-complete, and remains Ł-complete when
the given graph has exactly two connected components. Moreover, we can assume in the reduction that the two
connected components each contain at least one edge.

Given an acyclic undirected graph G = (V,E) with exactly two connected components, and two nodes u, v, we
construct an uncertain database db as follows:

26

1. for every edge {a, b} in E, the uncertain database db contains the facts R0(a, {a, b}), R0(b, {a, b}),
S0({a, b}, a), and S0({a, b}, b), in which {a, b} is treated as a constant; and

2. db contains R0(u, t) and R0(v, t), where t is a new value not occurring elsewhere.

Clearly, the computation of db from G is in FO.

We next show that there exists a path between u and v in G if and only if every repair of db satisfies q0.

Assume first that u, v belong to the same connected component. Let db′ be the uncertain database that is con-
structed from the connected component not containing u, v. Let a0, b0, a1, b1, . . . , an−1, bn−1, an be a sequence
of distinct constants such that

1. a0 = an and for 0 ≤ i < j ≤ n− 1, ai 6= aj and bi 6= bj ; and

2. for i ∈ {0, . . . , n− 1}, db′ contains R0(ai, bi) and S0(bi, ai+1).

Since G is acyclic, any such sequence satisfies n = 1. An existing algorithm for CERTAINTY(q0) [17, 11] will
return that every repair of db′ satisfies q0. Consequently, every repair of db satisfies q0.

For the opposite implication, assume that one connected component contains u, and the other contains v. By
Lemma 1, there exists an uncertain database db′ that is purified relative to q0 such that q0 is true in every repair
of db′ if and only if q0 is true in every repair of db. It is easy to see that if u and v belong to distinct connected
components, then this purified uncertain database db′ will be the empty database, whose only repair is the empty
repair which falsifies q0. It follows that q0 is not true in every repair of db. 2

B.2 Proof of Lemma 8

We first show two helping lemmas.

Lemma 19 Let q be a self-join-free Boolean conjunctive query. Let X ⊆ vars(q) and let G ∈ q be an R-atom

such for every x ∈ X , G
q

6 x. Let r be a repair of some database such that r |= q. Let A ∈ r be an R-fact that
is relevant for q in r. Let B be key-equal to A and rB = (r \ {A}) ∪ {B}. Then, for every valuation ζ over X , if
rB |= ζ(q), then r |= ζ(q).

Proof Let ζ be a valuation over X such that rB |= ζ(q). We can assume a valuation ζ+ over vars(q) such that
ζ+[X] = ζ[X] and ζ+(q) ⊆ rB . Thus, ζ+ extends ζ to vars(q). We need to show r |= ζ(q), which is obvious if
B 6∈ ζ+(q). Assume nextB ∈ ζ+(q). SinceA is relevant for q in r, we can assume a valuation µ over vars(q) such
that A ∈ µ(q) ⊆ r. Let q′ = q \ {G}. Let r′ = rB \ {B} = r \ {A}. Since q′ contains no R-atom (no self-join),
ζ+(q′) ⊆ r′ and µ(q′) ⊆ r′. Moreover, ζ+[key(G)] = µ[key(G)], because A and B are key-equal.

From K(q′) |= key(G)→ G+,q and [16, Lemma 4.3], it follows ζ+[G+,q] = µ[G+,q].

Let τ be the complete edge-labeled undirected graph whose vertices are the atoms of q; an edge between H and
H ′ is labeled by vars(H) ∩ vars(H ′).

Let τ ′ be the graph obtained from τ by cutting every edge whose label is included in G+,q . Let qG be the subset
of q containing all atoms that are in τ ′’s strong component that contains G. Let qX = q \ qG.

Let κ be the valuation over vars(q) such that for every x ∈ vars(q),

κ(x) =

{
µ(x) if x ∈ vars(qG)
ζ+(x) if x ∈ vars(qX)

We show that κ is well defined. Assume x ∈ vars(qX) ∩ vars(qG). Then, there exist atoms F ′ ∈ qX and
G′ ∈ qG such that x ∈ vars(F ′) ∩ vars(G′). Since F ′ and G′ belong to distinct strong components of τ ′, it
follows vars(F ′) ∩ vars(G′) ⊆ G+,q . Consequently, x ∈ G+,q . Since ζ+[G+,q] = µ[G+,q], it follows that
µ(x) = ζ+(x).

Obviously, κ(q) ⊆ r. Finally, we show that for every u ∈ X , κ(u) = ζ(u). This is obvious if u ∈ X ∩ G+,q .

Assume next that u ∈ X \ G+,q . Since G
q

6 u by the assumption in the statement of Lemma 19, it must be the

27

case u ∈ vars(qX), hence κ(u) = ζ+(u) = ζ(u). It follows r |= ζ(q). This concludes the proof. 2

The following helping lemma extends [16, Lemma B.1].

Lemma 20 Let q be a self-join-free Boolean conjunctive query. Let F ∈ q such that F has zero indegree in the
attack graph of q. Let r be a repair of some database. Let A ∈ r such that A is relevant for q in r.6 Let B be
key-equal toA and rB = (r \ {A})∪{B}. Then, for every valuation ζ over key(F), if rB |= ζ(q), then r |= ζ(q).

Proof The proof is obvious if A has the same relation name as F . Assume next that relation names in A and F

are distinct. We can assume some atom G ∈ q \ {F} such that A has the same relation name as G. Since G
q

6 F ,

we have that for each x ∈ key(F), G
q

6 x. The desired result then follows by Lemma 19. 2

Assume that a query q contains an R-atom that has no incoming attack in the attack graph of q. Paraphrasing
Lemma 20, if one replaces, in a repair r, some relevant fact A with another fact B that belongs to the same block
as A, then every R-fact of r that was not relevant in r, will remain non-relevant in (r \ {A}) ∪ {B}. Notice,
however, that the fact B may be non-relevant in the new repair (r \ {A}) ∪ {B}.
The proof of Lemma 8 can now be given.

Proof of Lemma 8 Let X = key(F). Let db be an uncertain database. Let r be a repair of db that is �Xq -frugal.
Let s be any repair of db. Construct a maximal sequence

(r0, s0), (r1, s1), . . . , (rn, sn) (7)

where

1. r0 = r and s0 = s;

2. for every i ∈ {1, . . . , n}, one of the following holds:

(a) ri = ri−1 and si = (si−1 \ {A}) ∪ {B} for distinct, key-equal facts A,B such that A ∈ si−1,
B ∈ ri−1, and A is relevant for q in si−1; or

(b) si = si−1 and ri = (ri−1 \ {A}) ∪ {B} for distinct, key-equal facts A,B such that A ∈ ri−1,
B ∈ si−1, and A is relevant for q in ri−1.

That is, the construction repeatedly replaces a fact that is relevant in one repair with its distinct, key-equal fact in
the other repair. The sequence (7) is finite, since the total number of distinct relevant facts distinguishes at each
step. For the last element (rn, sn), it holds that the set of facts that are relevant for q in rn is equal the set of facts
that are relevant for q in sn. It follows that for every valuation θ over X ,

rn |= θ(q) ⇐⇒ sn |= θ(q). (8)

By Lemma 20, for every valuation θ over X ,

rn |= θ(q) =⇒ r |= θ(q) (9)
sn |= θ(q) =⇒ s |= θ(q) (10)

From (9) and since r is �Xq -frugal, it follows that for every valuation θ over X ,

rn |= θ(q) ⇐⇒ r |= θ(q) (11)

From (11), (10), and (8), it follows that for every valuation θ over X ,

r |= θ(q) =⇒ s |= θ(q)

Since s is an arbitrary repair, the desired result follows. 2

6Recall from Section 3 that A ∈ r is relevant for q in r if A ∈ θ(q) ⊆ r for some valuation θ over vars(q).

28

C Proofs for Section 7

This section contains helping lemmas and proofs that are used in the proof of Theorem 5.

C.1 Helping Lemmas

Lemma 21 Let q be a self-join-free Boolean conjunctive query. Let G ∈ q and x, y ∈ vars(q) such that
K(q \ {G}) |= x → y and y 6∈ G+,q . Then, there exists a sequence G1, . . . , Gn of distinct atoms in q such
that x ∈ vars(G1), y ∈ vars(Gn), and for every i ∈ {1, . . . , n− 1}, vars(Gi) ∩ vars(Gi+1) * G+,q .

Proof If x = y, then the desired sequence that proves the lemma is any atom that contains x. In the remainder,
we treat the case x 6= y.

Since K(q \ {G}) |= x → y, we can assume a shortest sequence F1, F2, . . . , Fm (call it π) that is a sequential
proof of K(q \ {G}) |= x → y, as defined by Definition 3. Note that G 6∈ {F1, . . . , Fm}. It will be the case that
y occurs at a non-primary-key position in Fm.

The proof runs by induction on the length m of the proof.

Basis If m = 1, then the sequential proof π is F1 with key(F1) = {x}. Notice that key(F1) 6= ∅, or else
y ∈ G+,q , a contradiction. The desired sequence that proves the lemma is F1.

Induction Assumem > 1. Consider the last atom Fm in π. We have key(Fm) * G+,q , or else y ∈ G+,q , a con-
tradiction. If x ∈ vars(Fm), then the desired sequence is Fm. In the remainder, we treat the case x 6∈ vars(Fm).
We can assume a variable u ∈ key(Fm) such that u 6∈ G+,q . There exists an integer k < m such that u occurs
at a non-primary-key position in Fk. Then, F1, F2, . . . , Fk contains a shortest subsequence that is a sequen-
tial proof of K(q \ {G}) |= x → u, where u 6∈ G+,q . By the induction hypothesis, there exists a sequence
G1, . . . , G` of distinct atoms in q such that x ∈ vars(G1), u ∈ vars(G`), and for every i ∈ {1, . . . , ` − 1},
vars(Gi) ∩ vars(Gi+1) * G+,q . The desired sequence that proves the lemma is G1, . . . , G`, Fm. Notice that
u ∈ vars(G`) ∩ vars(Fm) and u 6∈ G+,q . 2

The following two lemmas are important tools for inferring attacks.

Lemma 22 Let q be a self-join-free Boolean conjunctive query. Let G ∈ q and y ∈ vars(q) such that G
q
 y. Let

x ∈ vars(q) such that K(q \ {G}) |= x→ y. Then, G
q
 x.

Proof From G
q
 y, it follows y /∈ G+,q . A witness for G

q
 x can be obtained by concatenating the sequence

G1, . . . , Gn like in the statement of Lemma 21, where y ∈ vars(Gn), with a witness of G
q
 y. 2

Lemma 23 Let q be a self-join-free Boolean conjunctive query. Let G ∈ q and y ∈ vars(q) such that G
q
 y and

K(q) 6|= key(G)→ y. If K(q) |= x→ y, then G
q
 x.

Proof The desired result is obvious in case x = y. In the remainder of the proof, we treat the case x 6= y.
Assume K(q) |= x → y. Then, we can assume a shortest sequence F1, F2, . . . , Fn that is a sequential proof of
K(q) |= x→ y as defined by Definition 3.

Let V =
(⋃n

j=1 vars(Fj)
)
∪ {x}. For every u ∈ V \ {x}, we define the depth of u, denoted d(u), as the smallest

integer j such that u ∈ vars(Fj). Furthermore, we define d(x) = 0. Clearly, d(y) = n.

We show next that if G attacks some variable u ∈ V with d(u) > 0 and K(q) 6|= key(G)→ u, then also G attacks
some variable u′ ∈ V with d(u′) < d(u) and K(q) 6|= key(G)→ u′.

Assume G
q
 u with d(u) = k > 0 and K(q) 6|= key(G) → u. It must be the case that u ∈ vars(Fk) \ key(Fk).

Also, K(q) 6|= key(G) → key(Fk) (otherwise, K(q) |= key(G) → u, a contradiction). Then, there must be some
w ∈ key(Fk) such that K(q) 6|= key(G)→ w, which implies w 6∈ G+,q . Clearly, d(w) < k and G

q
 w.

29

It follows G
q
 x. 2

C.2 Proof of Lemma 10

Proof of Lemma 10 Item 1 Let π = H1, H2, . . . ,Hn be a shortest sequence that is a sequential proof of

K(q) |= x→ z. Clearly, for i ∈ {1, . . . , n}, we have K(q) |= x→ key(Hi), hence Hi

q

6 x and Hi

q

6 z, by the
assumption in the statement of Lemma 10.

Let db be an uncertain database that is the input to CERTAINTY(q).

Sublemma 5 Let a, b be constants. If some �{x,z}q -frugal repair of db satisfies q[x,z 7→a,b], then for every repair
rB of db, for every valuation θ over vars(q) such that θ(q) ⊆ rB , if θ(x) = a, then θ(z) = b.

Proof Let rA be a �{x,z}q -frugal repair of db. Let θA be a valuation over vars(q) such that θA(q) ⊆ rA, and
θA(x) = a and θA(z) = b. That is, rA |= q[x,z 7→a,b]. Let rB be a repair of db such that for some valuation θB
over vars(q), we have θB(q) ⊆ rB and θB(x) = a. We need to show θB(z) = b.

We show how to inductively construct a maximal sequence

(p0, r0, ζ0), (p1, r1, ζ1), . . . , (pm, rm, ζm)

where for every j ≥ 0,

1. rj is a �{x,z}q -frugal repair of db;

2. ζj is a valuation over vars(q) such that ζj(q) ⊆ rj ;

3. ζj(x) = a and ζj(z) = b, i.e., rj |= q[x,z 7→a,b];

4. pj ∈ {0, 1, . . . , n} and for all i ∈ {1, . . . , pj}, ζj(Hi) = θB(Hi);

5. p0 < p1 < · · · < pj .

Intuitively, one can think of pj as an index in π indicating that ζj and θB agree on all variables inH1, H2, . . . ,Hpj .

For the basis of the induction, we choose (p0, r0, ζ0) = (0, rA, θA). In this way, the above conditions are obviously
satisfied for j = 0.

For the induction step j → j+ 1, let pj+1 be be the smallest integer k such that ζj(Hk) 6= θB(Hk). It can be seen
that ζj(Hk) and θB(Hk) must be key-equal. Let rj+1 = (rj \ {ζj(Hk)}) ∪ {θB(Hk)}. By Lemma 19 and since
rj is�{x,z}q -frugal, it follows rj+1 |= q[x,z 7→a,b]. So there exists a valuation µ over vars(q) such that µ(q) ⊆ rj+1,
and µ(x) = a and µ(z) = b. From rj \ {ζj(Hk)} = rj+1 \ {θB(Hk)} and µ(x) = ζj(x), it will be that case that
µ(Hi) = ζj(Hi) for all i ∈ {1, . . . , pj}. By the condition 4, µ(Hi) = θB(Hi) for all i ∈ {1, . . . , pj}. Then by
our choice of pj+1 and our construction of rj+1, we have µ(Hi) = θB(Hi) for all i ∈ {1, . . . , pj+1}. We choose
ζj+1 = µ. With these choices, the above conditions 1–5 are satisfied for j + 1.

For j = m, we will have that ζm and θB agree on all variables in
⋃n
i=1 vars(Hi). Since ζm(z) = b, it follows

θB(z) = b. This concludes the proof of Sublemma 5. a

Sublemma 6 Let a, b1, b2 be constants such that b1 6= b2. If db |= q[x,z 7→a,b1] and db |= q[x,z 7→a,b2], then for

every �{x,z}q -frugal repair rf of db, rf 6|= q[x 7→a].

Proof Assume the existence of two valuations θ1, θ2 over vars(q) such that θ1(q) ⊆ db, θ2(q) ⊆ db, θ1(x) =
θ2(x) = a, and b1 = θ1(z) 6= θ2(z) = b2. Then, there exist two repairs r1, r2 such that θ1(q) ⊆ r1 and
θ2(q) ⊆ r2.

Assume towards a contradiction the existence of a �{x,z}q -frugal repair rf of db such that rf |= q[x 7→a]. Then,
we can assume a valuation µ over vars(q) such that µ(q) ⊆ rf and µ(x) = a. By Sublemma 5, θ1(z) = µ(z) and
θ2(z) = µ(z), hence θ1(z) = θ2(z), a contradiction. This concludes the proof of Sublemma 6. a

30

Construct a maximal sequence
db0, a1,db1, a2,db2, . . . , a`,db` (12)

where db0 = db and for i ∈ {1, . . . , `},
1. there exist two constants bi, ci such that bi 6= ci, dbi−1 |= q[x,z 7→ai,bi], and dbi−1 |= q[x,z 7→ai,ci]; and

2. dbi = dbi−1 \ d̂bi−1, where d̂bi−1 is the smallest subset of dbi−1 that includes every block b of dbi−1
such that ai occurs in some fact of b. Recall from Section 3 that we assume uncertain databases to be typed.

Then, the following are equivalent:

1. every repair of db satisfies q;

2. every �{x,z}q -frugal repair of db satisfies q; and

3. every �{x,z}q -frugal repair of db` satisfies q.

Equivalence of items 1 and 2 follows from Lemma 2. Equivalence of items 2 and 3 follows from Sublemma 6,
using induction on increasing i ∈ {0, . . . , `}.
Since the sequence (12) is maximal, it must be that db` �q x → z. Let db′ be the database that includes db`
and such that for every valuation θ, if θ(q) ⊆ db`, then db′ contains T c(θ(x), θ(z)). Clearly, the set of T -facts
of db′ is consistent, and the following are equivalent:

1. every �{x,z}q -frugal repair of db` satisfies q;

2. every �{x,z}q -frugal repair of db′ satisfies q ∪ {T c(x, z)}; and

3. every repair of db′ satisfies q ∪ {T c(x, z)}.
Finally, it can be easily seen that db′ can be computed from db in polynomial time. This concludes the proof of
the first item.

Item 2 Define q′ = q ∪ {T c(x, z)}. We show that for all F,G ∈ q, if F
q′

 G, then F
q
 G. For every attack

F
q′

 G, we distinguish two cases depending on F .

Case K(q \ {F}) |= x → z. Then clearly, F+,q = F+,q′ . The only hard case is where a witness for the attack

F
q′

 G contains the atom T c(x, z). Then, z /∈ F+,q′ , hence z /∈ F+,q . From Lemma 21, it follows that there
exists a witness for F

q
 G.

Case K(q \ {F}) 6|= x → z. Since K(q) |= x → z, it must be the case that every sequential proof of K(q) |=
x → z contains F . Then K(q) |= x → key(F). By the assumption in the statement of Lemma 10, F

q

6 x and

F
q

6 z. Assume towards a contradiction that a witness of F
q′

 G contains T c(x, z). Then, since F+,q ⊆ F+,q′ ,
it must be the case that F

q
 x or F

q
 z, a contradiction. We conclude by contradiction that no witness of

F
q′

 G contains T c(x, z). Since F+,q ⊆ F+,q′ , it follows F
q
 G.

Assume that the attack graph of q′ contains a strong cycle C. Since the atom T c(x, z) cannot be in C (since it has
no outgoing attacks), the attack graph of q contains the same cycle C. It can be easily seen that C is strong in the
attack graph of q. 2

C.3 Proof of Lemma 11

We first show two helping lemmas.

Lemma 24 Let q be a self-join-free Boolean conjunctive query. Let F be an atom of q. Let G be an atom with a
fresh relation name such that key(G) = key(F) and vars(G) = vars(F). Let q′ = (q \ {F}) ∪ {G}. Then,

31

1. there exists a polynomial-time many-one reduction from CERTAINTY(q) to CERTAINTY(q′); and7

2. if the attack graph of q contains no strong cycle, then the attack graph of q′ contains no strong cycle either.

Proof The proof of the second item is straightforward.

For the first item, let db be an uncertain database that is input to CERTAINTY(q). By Lemma 1, we can compute
in polynomial time a database dbp such that dbp is purified relative to q and such that every repair of db satisfies
q if and only if every repair of dbp satisfies q.

Let db′ be the uncertain database that includes dbp and such that whenever dbp contains θ(F) for some valuation
θ over vars(F), then db′ contains θ(G). Notice here that vars(F) = vars(G) and, since dbp is purified, whenever
A ∈ dbp has the same relation name as F , then there exists a valuation θ over vars(F) such that A = θ(F). It
can now be easily verified that every repair of dbp satisfies q if and only if every repair of db′ satisfies q′. 2

Notice that the roles of F and G can be switched in the statement of Lemma 24, showing that CERTAINTY(q)
and CERTAINTY(q′) are polynomially equivalent.

Example 20 If F = R(a, x, x, y, y, z, z, b, u) and G = S(x, y, z, u), then key(F) = key(G) and vars(F) =
vars(G). So Lemma 24 implies that we can replace F with G in the study of CERTAINTY(q). �

Lemma 25 Let q be a self-join-free Boolean conjunctive query. Let R(~x, ~y) be an atom of q with mode i. Let
q0 = {Rc1(~x,w) Rc2(w, ~x), S(w, ~y)}, where R1, R2 are fresh relation names of mode c, S is a fresh relation name
of mode i, and w is a variable such that w 6∈ vars(q). Let q′ = (q \ {R(~x, ~y)}) ∪ q0. Then,

1. there exists a polynomial-time many-one reduction from CERTAINTY(q) to CERTAINTY(q′); and

2. if the attack graph of q contains no strong cycle, then the attack graph of q′ contains no strong cycle either.

Proof Item 1 Assume that the signature of R is [n, k]. Let db be an uncertain database that is input to
CERTAINTY(q). Define an injective function h that maps every element in (adom(db))

k to a fresh constant not
occurring elsewhere. Let db′ be the database obtained from db by replacing each fact R(~a,~b) with the following
three facts:

Rc1(~a, h(~a)), Rc2(h(~a),~a), and S(h(~a),~b).

Since the function h is injective, the set of R1-facts and R2-facts of db′ is consistent. Hence, db′ is a legal input
to CERTAINTY(q′). Intuitively, R1-facts encode the function h, and R2-facts affirm that h is injective. It remains
to be shown that every repair of db satisfies q if and only if every repair of db′ satisfies q′.

Define f : rset(db)→ rset(db′) such that for every r ∈ rset(db),

• if r contains R(~a,~b), then f(r) contains S(h(~a),~b);

• f(r) contains all R1-facts and all R2-facts of db′; and

• if T is a relation name in q such that T 6= R, then f(r) contains exactly the same T -facts as r.

The following can be easily verified for every r ∈ rset(db):

• f(r) is indeed a repair of db′; and

• q is true in r if and only if q′ is true in f(r).

The desired result follows from the easy observation that f is bijective.

Item 2 By a little abuse of notation, we will denote atoms by their relation name. First, observe that K([[q′]]) |=
w → vars(~x) and K([[q′]]) |= vars(~x) → w. This implies that for any atom F ∈ q \ {R}, we have F+,q =
F+,q′ \ {w}. Furthermore, R+,q = S+,q′ \ {w}.
Notice that atoms R1 and R2 have mode c, and hence have no outgoing attacks in the attack graph of q′. We will
now show that for all F,G ∈ q \ {R},

• if S
q′

 G, then R
q
 G;

7We know that there exists such a first-order reduction. However, polynomial-time is sufficient here and allows for an easier proof.

32

• if F
q′

 S, then F
q
 R; and

• if F
q′

 G, then F
q
 G.

To this extent, assume an attack F
q′

 G where F,G ∈ (q \ {R}) ∪ {S}. We can assume a witness

F0

z1
a F1

z2
a F2 . . .

zn
a Fn (13)

for F
q′

 G where F0 = F and Fn = G. We can assume without loss of generality that 1 ≤ i < j ≤ n implies
zi 6= zj , and that 0 ≤ i < j ≤ n implies Fi 6= Fj . Moreover, since vars(R1) = vars(R2), we can assume that R2

does not occur in (13). We distinguish two cases.

Case F0 = S. Since {w} ∪ vars(~x) ⊆ S+,q′ , we have that R1 and R2 do not occur in the sequence (13), and that

w 6∈ {z1, . . . , zn}. Then, R
z1
a F1

z2
a F2 . . .

zn
a Fn is a witness for R

q
 Fn.

Case Fn = S. It may be the case that w ∈ {z1, . . . , zn}. Then, by the form of q0, we can assume a smallest

integer i such that zi ∈ vars(~x) ∪ vars(~y). Then, F0

z1
a F1

z2
a F2 . . .

zi
a R is a witness for F0

q
 R.

Case F0 6= S 6= Fn. The only hard case is when the sequence (13) is of one of the following forms:

F0 . . .
x

a Rc1
w

a S
y

a . . . Fn, or

F0 . . .
y

a S
w

a Rc1
x

a . . . Fn,

where x ∈ vars(~x) and y ∈ vars(~y). Then, y /∈ F0
+,q′ and x /∈ F0

+,q′ . It follows y /∈ F0
+,q and x /∈ F0

+,q ,

which implies that we can replace the subsequence Rc1
w

a S (or S
w

a Rc1) with R to obtain a witness for
F0

q
 Fn.

It follows that every cycle in the attack graph of q′ is present in the attack graph of q modulo a replacement of S
with R.

Assume that the attack graph of q contains no strong cycle. Let C ′ be an elementary directed cycle in the attack
graph of q′. Let C be the directed cycle in the attack graph of q obtained from C ′ by replacing S with R. The
attack cycle C must be weak. Then, the attack cycle C ′ will be weak, because for every F,G ∈ q \ {R},
• if K(q) |= key(F)→ key(G), then K(q′) |= key(F)→ key(G);

• if K(q) |= key(F)→ key(R), then K(q′) |= key(F)→ key(S); and

• if K(q) |= key(R)→ key(G), then K(q′) |= key(S)→ key(G).

This concludes the proof. 2

The proof of Lemma 11 is now straightforward.

Proof of Lemma 11 Apply the reductions of Lemmas 24 and 25. Then repeatedly apply the reduction of
Lemma 10 until it can no longer be applied. Notice that the reduction of Lemma 10 consists in adding atoms
of the form T c(x, z). 2

C.4 Proof of Lemma 13

Proof of Lemma 13 Assume that k, x0, . . . , xk−1, ~y, q0, q1 are as in Definition 6. LetK = T (u, x0, . . . , xk−1, ~y).

Since the Markov cycle C is premier, we can assume an atom F0 ∈ q with mode i and x ∈ vars(q) such that
key(F0) = {x} and x

q,M∗−→ x0 and K(q) |= x0 → x.

Assume that the attack graph of q contains no strong cycle.

Sublemma 7 K(q0 ∪ [[q]]) ∪ {u→ x0, x0 → u} |= K(q1).

33

Proof K(q1) is logically equivalent to {u→ z | z ∈ vars(q0)} ∪ {xi → u | 0 ≤ i ≤ k − 1}.
Let z ∈ vars(q0). Clearly, for all i, j ∈ {0, . . . , k − 1}, K(q0 ∪ [[q]]) |= xi → xj . It is then obvious that
K(q0 ∪ [[q]]) |= x0 → z. Hence, K(q0 ∪ [[q]]) ∪ {u→ x0, x0 → u} |= u→ z.

Let i ∈ {0, . . . , k − 1}. As argued before, K(q0 ∪ [[q]]) |= xi → x0. Hence, K(q0 ∪ [[q]]) ∪ {u→ x0, x0 → u} |=
xi → u.

It follows that every functional dependency of K(q1) is logically implied by K(q0 ∪ [[q]])∪ {u→ x0, x0 → u}. a

Sublemma 8 K(q1) |= K(q0) ∪ {u→ x0, x0 → u}.
Proof Obviously,K(q1) |= u→ x0,K(q1) |= x0 → u, and for every i ∈ {0, . . . , k−1},K(q1) |= xi → vars(q0).
Every atom of q0 is of the form R(xi, ~z) where i ∈ {0, . . . , k − 1} and vars(~z) ⊆ vars(q0). Since K(q1) |= xi →
vars(q0), we have K(q1) |= xi → vars(~z). a

Sublemmas 7 and 8 immediately lead to the following results.

Sublemma 9 K(q∗) ≡ K(q) ∪ {u→ x0, x0 → u}.
Sublemma 10 For every F ∈ q \ q0 such that F has mode i, we have K(q∗ \ {F}) ≡ K(q \ {F}) ∪ {x0 → u,
u→ x0}.
Sublemma 11 For every F ∈ q \ q0 such that F has mode i, we have F+,q = F+,q∗ \ {u}.
Proof Let F ∈ q \ q0 such that the mode of F is i. From Sublemma 10, it follows that F+,q ⊆ F+,q∗ . Since
u 6∈ vars(q), it follows F+,q ⊆ F+,q∗ \ {u}.
The inclusion F+,q∗ \ {u} ⊆ F+,q follows from Sublemma 10 and the observation that in the computation of
F+,q∗ , the functional dependencies x0 → u and u → x0 are useless, except for inferring u ∈ F+,q∗ from
x0 ∈ F+,q∗ . a

All Ui-atoms have mode c and hence have no outgoing attacks in the attack graph of q∗. The following lemma
states that all attacks among atoms of q\q0 in the attack graph of q∗ are also present in the attack graph of q.

Sublemma 12 For all F,G ∈ q \ q0, if F
q∗

 G, then F
q
 G.

Proof Let F,G ∈ q \ q0 such that F
q∗

 G. Then, we can assume a witness for F
q∗

 G of the following
form:

H0

z1
a H1

z2
a H2 . . .

zn
a Hn, (14)

where H0 = F and Hn = G. We can assume without loss of generality that 1 ≤ i < j ≤ n implies zi 6=
zj , and that 0 ≤ i < j ≤ n implies Hi 6= Hj . Since H0

+,q ⊆ H0
+,q∗ by Sublemma 11, it follows that

{z1, . . . , zn} ∩H0
+,q = ∅.

If the sequence (14) contains no atom of q1, then it is also a witness for F
q
 G, and the desired result holds.

In the remainder, assume that the sequence (14) contains an atom of q1. Because of the structure of q1, we can
assume without loss of generality thatK is the only atom of q1 that occurs in the sequence (14). So we can assume
` ∈ {1, . . . , n−1} such thatH` = K. Clearly, z`, z`+1 ∈ vars(q0) and by Sublemma 11, z`, z`+1 6∈ F+,q .

For the variable z`+1, there exists some i ∈ {0, . . . , k − 1} such that either z`+1 = xi or the atom R(xi, z`+1)
belongs to q0. Since K(q0 ∪ [[q]]) |= xi → xj for all i, j ∈ {0, . . . , k − 1}, it follows K(q \ {F}) |= xi → z`.
From F

q
 z`, it follows F

q
 xi by Lemma 22, and hence F

q
 z`+1. It can then be easily seen that there exists

a witness for F
q
 G. a

We finally focus on attacks in the attack graph of q∗ that involve the atom K.

Sublemma 13 For every H ∈ q∗, if H
q∗

 K, then H ∈ q \ q0, and both K(q) |= key(F0) → key(H) and
K(q) |= key(H)→ key(F0).

34

Proof Let H ∈ q∗ such that H
q∗

 K. Since Ui-atoms have no outgoing attacks in the attack graph of q∗, it must
be the case that H ∈ q \ q0. The Markov graph of q contains a directed path from x to x0 (recall {x} = key(F0));
let M be the set of variables on this path. We now distinguish two cases.

• If key(H) ⊆ M , then clearly K(q) |= key(F0) → key(H). Since K(q) |= key(H) → x0 and K(q) |=
x0 → key(F0), we obtain K(q) |= key(H)→ key(F0).

• Otherwise, K(q \ {H}) |= key(F0)→ z for every z ∈ vars(q0). Since H
q∗

 K, it must be that H
q
 z for

some z ∈ vars(q0). Then, H
q
 x by Lemma 22, and consequently H

q
 F0. Then, it must be the case that

H belongs to the initial strong component of the attack graph of q that also contains F0. Since the attack
graph of q contains no strong cycle, we have K(q) |= key(F0)→ key(H) and K(q) |= key(H)→ key(F0).

This concludes the proof of Sublemma 13. a

We can now complete the proof of Lemma 13. Assume towards a contradiction that the attack graph of q∗ contains
a strong cycle. By Lemma 4, the attack graph of q∗ contains a strong cycle of size 2. So we can assume atoms

H0, H1 ∈ q∗ such that H0
q∗

 H1
q∗

 H0, and at least one of the attacks is strong.

Case H0, H1 ∈ q \ q0. By Sublemma 12, H0
q
 H1

q
 H0. Since the attack graph of q contains no strong attack

cycles, we have K(q) |= key(H0) → key(H1) and K(q) |= key(H0) → key(H1). From Sublemma 9,

it follows K(q∗) |= key(H0) → key(H1) and K(q∗) |= key(H0) → key(H1), contradicting that H0
q∗

H1
q∗

 H0 is a strong attack cycle.

Case H0 = K (the case H1 = K is symmetrical). Then, key(H0) = {u}. By Sublemma 13, H1 ∈ q \ q0, and
both K(q) |= key(F0) → key(H1) and K(q) |= key(H1) → key(F0). From Sublemma 9 and K(q) |=
x0 → key(F0), it follows K(q∗) |= u→ key(H1). From Sublemma 9 and K(q) |= key(F0)→ x0 (because

there is a Markov path from x to x0), it follows K(q∗) |= key(H1) → u. But then H0
q∗

 H1
q∗

 H0 is a
weak attack cycle, a contradiction.

In both cases, we conclude by contradiction that the attack graph of q∗ contains no strong attack cycle. 2

C.5 Proof of Lemma 14

We use the following helping lemma.

Lemma 26 Let q be a self-join-free Boolean conjunctive query such that

• for every atom F ∈ q, if F has mode i, then F is simple-key and key(F) 6= ∅;
• q is saturated; and

• the attack graph of q contains no strong cycle.

Let F0 be an atom of q that belongs to an initial strong component of the attack graph of q, and let key(F0) = {y}.
Let x ∈ vars(q) such that K(q) |= x→ y and K(q) |= y → x. Then, there exists z ∈ vars(q) with Cq(z) 6= ∅ such
that x M−→ z and K(q) |= z → y.

Proof If x M−→ y, then the desired result holds for z = y. In the remainder of the proof, we treat the case
x 6 M−→ y.

Let q0 be a minimal (with respect to ⊆) subset of q such that K(Cq(x) ∪ [[q]] ∪ q0) |= x → y. Obviously,
q0 ∩ Cq(x) = ∅ and q0 ∩ [[q]] = ∅. Let p be a minimal (with respect to ⊆) subset of Cq(x) ∪ [[q]] ∪ q0 such that
the atoms of p can be sequentially ordered into a sequential proof (call it π) of K(q) |= x → y. Clearly, π must
contain all atoms of q0.

From x 6 M−→ y, it follows K(Cq(x) ∪ [[q]]) 6|= x → y. Hence, q0 6= ∅. Let G be the leftmost atom in π such that
G ∈ q0. Notice that key(G) 6= ∅ by the premise in the statement of Lemma 26. We can assume z ∈ vars(q) such

35

that G ∈ Cq(z). Since G is chosen leftmost, K(Cq(x) ∪ [[q]]) |= x→ z, hence x M−→ z and Cq(z) 6= ∅. It remains
to be shown that K(q) |= z → y.

Assume towards a contradiction that K(q) 6|= z → y. In the next paragraph, we show that π contains an atom H
such that for some w1, w2 ∈ key(H),

1. K(q) |= z → w1 but K([[q]]) 6|= z → w1; and

2. K(q) 6|= z → w2.

Existence of H , w1, and w2. Let V = vars(p) ∪ {x} and let the sequential proof π be H1, H2, . . . ,H`. For
every u ∈ V \ {x}, we define the depth of u, denoted d(u), as the smallest integer j such that u ∈ vars(Hj).
Furthermore, we define d(x) = 0. Clearly, d(y) = `.

For u ∈ V and i, j ∈ {0, . . . , `}, we write i
u
� j if d(u) = i and j ∈ {i + 1, . . . , `} such that u ∈ key(Hj).

Intuitively, if i > 0, then i
u
� j says that the variable u is introduced in the sequential proof by Hi, and “used”

later on by Hj . We can assume k ∈ {1, . . . , `} such that G = Hk. Clearly, d(z) < k. It can be easily seen that
the following can be assumed without loss of generality.

Simple-Things-First Condition: for every u ∈ V , if K([[q]]) |= z → u, then d(u) < k.

Since no atom of π is redundant, there exists a sequence

k0
u1

� k1
u2

� k2 · · ·
um

� km

where k0 = k and km = `. Thus, y occurs at a non-primary-key position in Hkm . For all i ∈ {1, . . . ,m},
d(ui) ≥ k, hence K([[q]]) 6|= z → ui by the Simple-Things-First Condition.

Since K(q) 6|= z → y, we have K(q) 6|= z → key(Hkm). Hence, we can assume a smallest integer j ∈
{1, 2, . . . ,m} such that K(q) 6|= z → key(Hkj). Then obviously, K(q) |= z → key(Hkj−1

), hence K(q) |= z →
uj . We can choose w1 = uj andH = Hkj . Further, sinceK(q) 6|= z → key(Hkj), we can choose w2 ∈ key(Hkj)
such that K(q) 6|= z → w2. We conclude that H , w1, and w2 indeed exist.

Since q is saturated, fromK(q) |= z → w1 andK([[q]]) 6|= z → w1, it follows that there exists an atomG′ ∈ q such
that K(q) |= z → key(G′) and such that either G′

q
 z or G′

q
 w1. Clearly, G′ is an atom with mode i.

We show K(q \ {G′}) |= x → z. Assume towards a contradiction that K(q \ {G′}) 6|= x → z. Since
K(Cq(x) ∪ [[q]]) |= x → z, it must be the case that G′ ∈ Cq(x), hence key(G′) = {x}. Then, from K(q) |=
z → key(G′) and K(q) |= x → y, it follows K(q) |= z → y, a contradiction. We conclude by contradiction that
K(q \ {G′}) |= x→ z.

Two cases can occur.

Case G′ q
 w1. Since K(q) 6|= key(G′) → w2 (or otherwise K(q) |= z → w2, a contradiction), we have

w2 6∈ G′+,q , hence G′
q
 w2. Since K(q) |= x→ w2, it follows by Lemma 23 that G′

q
 x.

Case G′ q
 z. Since K(q \ {G′}) |= x→ z, we have that G′

q
 x by Lemma 22.

Thus, at this part of the proof, we have G′
q
 x. We now distinguish two cases.

Case K(q) |= key(G′)→ x. From K(q) |= z → key(G′) and K(q) |= x → y, we have K(q) |= z → y, a
contradiction.

Case K(q) 6|= key(G′)→ x. From K(q) |= y → x and G′
q
 x, it follows from Lemma 23 that G′

q
 y, which

implies G′
q
 F0. Since F0 belongs to an initial strong component of q’s attack graph and since the attack

graph of q contains no strong cycle, the attack G′
q
 F0 must be weak, so K(q) |= key(G′) → y. Since

K(q) |= z → key(G′), we obtain K(q) |= z → y, a contradiction.

We conclude by contradiction that K(q) |= z → y. 2

The proof of Lemma 14 is given next.

36

x u1 u2

u3y

Figure 4: Markov graph of the query in Example 21.

Proof of Lemma 14 By repeated application of Lemma 3, the initial strong component with two or more atoms
will contain two atoms F0, G such that F0

q
 G

q
 F0.

Let {w0} = key(F0) (and thus Cq(w0) 6= ∅) and {y} = key(G). Since the attack graph of q contains no strong
cycle, we have K(q) |= w0 → y and K(q) |= y → w0. By Lemma 26, there exists w1 ∈ vars(q) such that
w0

M−→ w1, Cq(w1) 6= ∅, and K(q) |= w1 → y. The latter implies that K(q) |= w1 → w0 as well.

By repeated application of Lemma 26, for every k > 0, there exists a Markov path w0
M−→ w1 · · · M−→ wk, where

Cq(wi) 6= ∅ for every i ∈ {0, . . . , k}, and K(q) |= wk → w0. Since vars(q) is a finite set, at some point we will
have wk = wi for some i with i < k, at which point we have found the desired Markov cycle. 2

The proof of Lemma 14 actually shows a slightly stronger result than the statement of Lemma 14. The proof
shows that whenever R(x, ~z) belongs to an attack cycle of size 2 that is part of an initial strong component of the
attack graph, then the Markov graph contains a directed path from x to a Markov cycle with the desired properties.
This is illustrated by the following example.

Example 21 Let q = {R1(x, u1), R2(u1, u2), R3(u2, u3), R4(u3, y), R5(y, u1), Sc(u2, y, x)}. In the attack
graph of q, every Ri-atom attacks every other atom of q, and all these attacks are weak.

The Markov graph of q is shown in Figure 4. As predicted by the proof of Lemma 14, for every variable among
x, y, u1, u2, u3, there is a path that starts from the variable and ends in a Markov cycle. Notice, however, that x
itself is not part of a Markov cycle. �

C.6 Proof of Lemma 16

Proof of Lemma 16 Construct a maximal sequence

db0,g1,db1,g2,db2, . . . ,gn,dbn (15)

such that db0 = db and for every i ∈ {1, . . . , n},
1. gi is a gblock of dbi−1 such that some repair of gi is not grelevant for q in dbi−1;

2. dbi = dbi−1 \ gi.
Clearly, dbn is gpurified relative to q, and by repeated application of Lemma 15, every repair of db satisfies q if
and only if every repair of dbn satisfies q.

It remains to be shown that dbn can be computed in polynomial time. Clearly, the above sequence (15) satisfies
n ≤ |db|. The condition 1 can be tested in polynomial time, as argued in the sequel of this proof.

First, every uncertain database that is purified relative to q has at most polynomially many gblocks, and every
gblock has at most polynomially many repairs. Further, for any repair s of some gblock gi, the following are
equivalent:

1. s is grelevant for q in dbi−1;

2. there exists a repair r of db such that s ⊆ r and for some valuation θ over vars(q) and some fact A ∈ s,
A ∈ θ(q) ⊆ r; and

37

3. (dbi−1 \ dbs) ∪ s |= q, where dbs is the subset of db that contains all facts whose relation name occurs
in s.

The first two items are equivalent by definition. Equivalence of the last two items follows from the observation
that if some atom A ∈ s is relevant for q in r, then every atom of s must be relevant for q in r. The latter test is
obviously in polynomial time. 2

38

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Attack Graphs
	5 First-Order Expressibility
	5.1 Necessary Condition
	5.2 Sufficient Condition

	6 Intractability Result
	7 Polynomial Tractability
	7.1 Relations Known to Be Consistent
	7.2 Syntactic Simplifications
	7.3 Dissolving Markov Cycles
	7.4 The Proof of Theorem 5
	7.5 The Reduction of Lemma 12

	8 Conclusion
	A Proofs for Section 4
	A.1 Proof of Lemma 3
	A.2 Proof of Lemma 4
	A.3 Proof of Lemma 5

	B Proofs for Section 5
	B.1 Proof of Lemma 6
	B.2 Proof of Lemma 8

	C Proofs for Section 7
	C.1 Helping Lemmas
	C.2 Proof of Lemma 10
	C.3 Proof of Lemma 11
	C.4 Proof of Lemma 13
	C.5 Proof of Lemma 14
	C.6 Proof of Lemma 16

