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Abstract
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1 Introduction

Several new theoretical aspects of quantum mechanics have been developped in the
last years. In series of papers (see e.g. [1, 2] and [3] for a recent review) it is shown
that the traditional self adjointness requirement of the Hamiltonian operator is not a
necessary condition to guarantee a real spectrum and that the weaker condition of PT-
invariance of the Hamiltonian is sufficient for that purpose. An alternative possibility
for an operator to admit a real spectrum is also developed in [4]. It is the notion of
pseudo-hermiticity. Following the ideas of [4], we remind here that a Hamiltonian is
called η pseudo-hermitian if it satisfies the relation ηHη−1 = H†, where η denotes
a linear hermitian operator. It is this new notion (i.e pseudo-hermiticity property)
of non hermitian Hamiltonians which explains the reality of their energy spectrum.
This important property has further been considered in Refs.[5, 6].

Another direction of development of quantum mechanics is the notion of quasi
exact solvability [7, 8]. It provides techniques to construct linear operators preserving
a finite dimensional subspace V of the Hilbert space. Accordingly, the so called Quasi
Exactly Solvable operators, once restricted on V can be diagonalized by means of
algebraic methods. The QES property is strongly connected to finite dimensional
representation of Lie or graded Lie algebras [7, 9, 10]. Amongst many models used to
describe quantum properties of physical systems, the Jaynes-Cummings model play
an important role [11, 12, 13, 14]. It describes, in a simple way the interaction of
photons with a spin-1/2 particle. From the mathematical point of view, the Jaynes-
Cummings model is described by a self-adjoint operator and it is completely solvable
in a sense that the entire spectrum can be computed algebraically.

The purpose of this paper is to consider operators generalizing the Jaynes-Cummings
Hamiltonians which are neither self-adjoint nor PT-invariant but which are pseudo-
hermitian with respect to two different operators. In particular, from the original
Jaynes-Cummings model (JCM in the following), we construct an extended one by
adding a polynomial of the form P (a†, a) (a†, a are the usual creation and annihi-
lation operators) of degree d ≥ 2 in the diagonal part of the hamiltonian. Some
particular choices of P are constructed in such a way that the resulting operator be-
comes QES. The non-diagonal interaction part is also modified in such a way that (i)
multiple photon exchanges are allowed and (ii) the full operator can be hermitian or
pseudo-hermitian.

Here is the plan of the paper. In section 2, we revisit the Hamiltonian considered
in Ref.[5] and express it in terms of differential operator of a real variable x. This
reveals its exact solvability in terms of differential operators acting on sets of polyno-
mials of appropriate degrees in x. In Sect. 3 we propose a family of operators which
generalize the original JC Hamiltonian in several respects. The (pseudo)-hermiticity
of these operators are analysed and the spectra and the eigenvectors are computed in
details for a few of them. The differences in the spectrum corresponding to Hermi-
tian and pseudo-Hermitian are pointed out. In particular, the energy eigenvalues are
entirely real in spite of the fact that they are associated to a non hermitian and non
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PT -invariant Hamiltonian. The reality of those eigenvalues is ensured by the pseudo-
hermiticity of the Hamiltonians. The section 4 is devoted to QES extensions of the
JCM. These are constructed in such a way that, both, one-photon and two-photons
exchange terms coexist in the non-diagonal interacting terms. By construction, these
new models preserve finite dimensional vector spaces of the Hilbert spaces ,the alge-
braic part of the spectrum is computed in Sect 5. Further properties of these new
types of QES operators, say HT , can be discussed. Namely, following the ideas of [15]
we show in Sect. 6 that the solutions of the spectral equation HTψ = Eψ for generic
values of E lead to new types of recurence relations. The relations between HT and
specific graded algebras are pointed out in Sect 7. Finally, the section 8 is kept for
concluding remarks.

2 Exactly solvable pseudo-hermitian Hamiltonian

In this section we consider the Hamiltonian describing a system of a spin-1

2
particle in

the external magnetic field, ~B which couples to a harmonic oscillator through some
nonhermitian interaction [5]

H = µ~σ · ~B + h̄ωa†a+ ρ(σ+a− σ−a
†). (1)

Here ~σ denotes Pauli matrices, ρ is some arbitrary real parameter and σ± ≡ 1

2
[σx±iσy].

σ+ and σ− can be expressed in matrix form

σ+ =
(

0 1
0 0

)

, σ− =
(

0 0
1 0

)

. (2)

Our purpose is to relate the Hamiltonian above to an appropriate differential operator
preserving a family of spaces of polynomials in the variable x, following the ideas of
exactly and quasi-exactly solvable operators [7]. With this aim, we use the usual
creation and annihilation operators respectively a† and a which are defined as follows

a† =
p+ imωx√

2mωh̄
, a =

p− imωx√
2mωh̄

, (3)

where p = −i d
dx

. The external magnetic field is chosen in z-direction (i.e ~B = B0~z)
in order to reduce the Hamiltonian defined in Eq.(1) and it has the form

H =
ǫ

2
σz + h̄ωa†a + ρ(σ+a− σ−a

†), (4)

where ǫ = 2µB0. As σ†
± = σ∓, it is pointed out that this Hamiltonian is not hermitian

H† =
ǫ

2
σz + h̄ωa†a− ρ(σ+a− σ−a

†),

6= H. (5)
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Thus as,

PTH(PT )−1 = − ǫ

2
σz + h̄ωa†a + ρ(σ+a

† − σ−a),

6= H, (6)

one can see that the Hamiltonian (1) is not PT symmetric i.e H 6= HPT [1].
The next step is to write H in terms of differential operators(i.e p = −i d

dx
) and

of variable x. The purpose of these transformations is to reveal the exact solvability
of the operator H by using the quasi-exactly solvable (QES) technique as has been
considered in Ref.[14]. Replacing the operators a† and a by their expressions(as given
in Eq.(3))in the Eq.(4), the Hamiltonian of the model is written now as follows

H =
ǫ

2
σz +

p2 −mω +m2ω2x2

2m
+ ρ

[σ+(p− imωx) − σ−(p+ imωx)]√
2mωh̄

(7)

In order to reveal the solvability of the above operator H , we first perform the stan-
dard (often called ” gauge”) transformation

H̃ = R−1HR , R = exp(−mωx
2

2
). (8)

After some algebra, the new Hamiltonian H̃ is obtained and is given by

H̃ =
ǫ

2
σz −

1

2m

d2

dx2
+ ωx

d

dx
+ ρ

[σ+p− σ−(p+ 2imωx)]√
2mωh̄

=
ǫ

2
σz +

p2

2m
+ ωx

d

dx
+ ρ

[σ+p− σ−(p+ 2imωx)]√
2mωh̄

(9)

Replacing σz, σ+ and σ− by their matrix form, the final form of the Hamiltonian H̃
reads

H̃ =
ǫ

2

(

1 0
0 −1

)

+

(

p2

2m
+ ωx d

dx
0

0 p2

2m
+ ωx d

dx

)

− ρ

(

0 − p√
2mωh̄

p+2imωx√
2mωh̄

−0

)

=





p2

2m
+ ωx d

dx
+ ǫ

2
ρ p√

2mωh̄

−ρp+2imωx√
2mωh̄

p2

2m
+ ωx d

dx
− ǫ

2



 . (10)

Then, the operator H̃ is typically QES because it preserves a finite dimensional vector
spaces of polynomials namely Vn = (Pn−1(x), Pn(x))

t with n ∈ IN. Moreover H̃ is
exactly solvable because n does not have to be fixed (it can be any nonnegative
integer).

Note that the above Hamiltonian H̃ is not invariant under simultaneous parity
operator(P) and time reversal (T)reflection (i.e respectively x → −x and i → −i)
[1]. Even if the operator H̃(therefore H)is nonhermitian and not PT invariant, it
was pointed out that its spectrum is real. The reality of the eigenvalues of H is a
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consequence of the unbroken Pσz(i.e combined parity operator P and Pauli matrice
σz)invariance of H (i.e [H,Pσz] = 0). In other words, the spectrum is real because
H is pseudo-hermitian with respect to σz(i.e σzHσ

−1
z = H†) and also to the parity

operator P (i.e PHP−1 = H†) [4, 5, 6]. We would like to mention that it is not
necessary to calculate the energy eigenvalues and their corresponding eigenvectors
of H because they have been determined in [5]. In the following section, we will
construct the spectrum of the generalized Hamiltonian of the one given by Eq.(1).

3 Family of exactly solvable Hamiltonians

The original JCM is defined by the Hamiltonian

H =
ǫ

2
σ3 + h̄ωa†a+ ρ(aσ+ + a†σ−), (11)

where ρ is a real parameter(i.e it is a real coupling constant). Note here that the
Hamiltonian H is hermitian.

In the next, we consider an extension of the above JCM Hamiltonian in the form

H =
ǫ

2
σ3 + h̄ωa†a + P (a†a) + ρ(akσ+ + φ(a†)kσ−), (12)

where φ = ±1 and P (a†a) denotes a polynomial of degree d ≥ 2, k is an integer ≥ 1
and ρ is an arbitrary real parameter. In fact, the above Hamiltonian is nonhermitian(
i.e for φ = −1 ) and not PT invariant but it satisfies the pseudo-hermiticity with the
operators P (operator of parity) and σ3 (Pauli matrice ). considering φ = +1 the
Hamiltonian given by the Eq.(12) becomes hermitian. Both for these cases, it can
be easily observed that the energy spectrum is entirely real. Thus, notice that the
above Hamiltonian (12) is a generalization of the Hamiltonians given by the Eqs.(1)
and (11). The matrix form of H reads

(

h̄ωa†a + P (a†a) + ǫ
2

ρak

φρ(a†)k h̄ωa†a+ P (a†a) − ǫ
2

)

(13)

which can be easily checked to preserve the vector spaces

Vn = span

{

( | n〉
0

)

,
(

0
| n + k〉

)

}

, n ∈ IN. (14)

It means that the action of the operatorH on the vectors states
( | n〉

0

)

and
(

0
| n+ k〉

)

can expressed as linear combinations of these same states. Here, we are allowed to
conclude that H is exactly solvable because it preserves the vector space Vn for any
integer n.

The next step is to find the energy eigenvalues and their corresponding eigenvec-
tors of the Hamiltonian H for φ = −1 and for φ = +1. For this purpose we recall the
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following identities[5]

a†a | n, 1

2
ms〉 = n | n, 1

2
ms〉,

σ3 | n, 1

2
ms〉 = ms | n,

1

2
ms〉,

σ+ | n, 1

2
〉 = 0 ; σ+ | n,−1

2
〉 =| n, 1

2
〉,

σ− | n,−1

2
〉 = 0 ; σ− | n, 1

2
〉 =| n,−1

2
〉, (15)

with n and ms = ±1 are respectively the eigenvalues of the number operator a†a
and the operator σ3. It is readily seen that the state | 0,−1

2
〉 is a ground state

of the operator H(i.e it is constructed by the lowest values of n and ms which are
respectively 0 and −1). We have now to consider the action of H to the state | 0,−1

2
〉

in order to find its associated eigenvalue

H | 0,−1

2
〉 =

ǫ

2
σ3 | 0,−1

2
〉 + h̄ωa†a | 0,−1

2
〉 + P (a†a) | 0,−1

2
〉

+ρakσ+ | 0,−1

2
〉 + φρ(a†)kσ− | 0,−1

2
〉,

=
ǫ

2
σ3 | 0,−1

2
〉,

= − ǫ

2
| 0,−1

2
〉. (16)

It is proved now that − ǫ
2

is the eigenvalue of the ground state | 0,−1

2
〉. It is easily

understood that the next state | 0, 1

2
〉 is not an eigenstate alone of the Hamiltonian

H because applying this operator to this state, we obtain a linear combination of two
states | 0, 1

2
〉 and | k,−1

2
〉,

H | 0,
1

2
〉 =

ǫ

2
| 0,

1

2
〉 ± ρ

√
k! | k,−1

2
〉. (17)

The state | k,−1

2
〉 under the action of H leads to a linear combination also of two

above states

H | k,−1

2
〉 = (h̄ωk + P (k) − ǫ

2
) | k,−1

2
〉 + ρ

√
k! | 0,

1

2
〉. (18)

The excited states | 0, 1

2
〉 and | k,−1

2
〉 span an invariant subspace in the space of

states so that the Hamiltonian matrix is written as follows

Hk =

(

ǫ
2

ρ
√
k!

φρ
√
k! h̄ωk + P (k) − ǫ

2

)

(19)

In particular, note that for k = 1, P (k) = 0(i.e P (k) = kd , d ≥ 2) and considering
φ = −1, Hk becomes the matrix H1 constructed in [5]. In order to find the eigenvalues
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of the Hamiltonian matrix(19), we have to solve the following usual equation(i.e
characteristic polynomial)

det(Hk − λ1I) = 0,
(

ǫ
2
− λ ρ

√
k!

φρ
√
k! h̄ωk + P (k) − ǫ

2
− λ

)

= 0,

4λ2 − 4(h̄ωk + P (k))λ+ 2(h̄ωk + P (k))ǫ− ǫ2 + φ4k!ρ2 = 0. (20)

After some algebra, the energy eigenvalues(i.e square-roots of the above equation in
λ) of Hk are

λI
k =

h̄ωk + P (k) +
√

(h̄ωk + P (k) − ǫ)2 + φ4k!ρ2

2
,

λII
k =

h̄ωk + P (k) −
√

(h̄ωk + P (k) − ǫ)2 + φ4k!ρ2

2
. (21)

It is easily checked that for k = 1, P (k) = 0 and for φ = −1), we obtain the eigenvalues
λI,II

1 determined in[5]. These are the energy eigenvalues of the Hamiltonian (1). The
next step now is to calculate the associated eigenvectors of the above eigenvalues λI,II

k .
Here, we propose to consider two cases : the first case for φ = −1 and the second one
for φ = +1.

3.1 The case φ = −1

Considering φ = −1, the eigenvalues (21) are given by

λI
k =

h̄ωk + P (k) +
√

(h̄ωk + P (k) − ǫ)2 − 4k!ρ2

2
,

λII
k =

h̄ωk + P (k) −
√

(h̄ωk + P (k) − ǫ)2 − 4k!ρ2

2
. (22)

For the sake simplicity, we can impose P (k) = 0 and the eigenvalues λI,II
k have the

form

λI
k =

h̄ωk +
√

(h̄ωk − ǫ)2 − 4k!ρ2

2
,

λII
k =

h̄ωk −
√

(h̄ωk − ǫ)2 − 4k!ρ2

2
. (23)

The following relations are considered as in [5]

|h̄ωk − ǫ| ≥ 2ρ
√
k!,

2ρ
√
k! = (h̄ωk − ǫ) sin θk (24)
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and the Hamiltonian matrix given by (19) reads

Hk =

(

ǫ
2

ρ
√
k!

−ρ
√
k! h̄ωk − ǫ

2

)

,

=
( ǫ

2

1

2
(h̄ωk − ǫ) sin θk

−1

2
(h̄ωk − ǫ) sin θk h̄ωk − ǫ

2

)

. (25)

Taking account of the following equation

( ǫ
2

1

2
(h̄ωk − ǫ) sin θk

−1

2
(h̄ωk − ǫ) sin θk h̄ωk − ǫ

2

)(

A
B

)

= λI,II
k

(

A
B

)

, (26)

the associated eigenvectors of λI,II
k are determined

| ψI
k〉 = sin

θk

2
| 0,

1

2
〉 + cos

θk

2
| k,−1

2
〉,

for λI
k =

h̄ωk

2
(1 + cos θk) −

ǫ

2
cos θk, (27)

with A = sin θk

2
and B = cos θk

2
.

| ψII
k 〉 = cos

θk

2
| 0,

1

2
〉 + sin

θk

2
| k,−1

2
〉,

for λII
k =

h̄ωk

2
(1 − cos θk) +

ǫ

2
cos θk, (28)

with A = cos θk

2
and B = sin θk

2
.

In particular, for k = 1, it is easily checked that ψI
k and ψII

k become respectively
ψI

1 and ψII
1 which were determined in [5].

3.2 The case φ = +1

Taking account of φ = +1 and imposing P (k) = 0 , the eigenvalues (21) read

λI
k =

h̄ωk +
√

(h̄ωk − ǫ)2 + 4k!ρ2

2
,

λII
k =

h̄ωk −
√

(h̄ωk − ǫ)2 + 4k!ρ2

2
. (29)

The relations considered in Eq.(24) become

|h̄ωk − ǫ| ≥ 2ρ
√
k!,

2ρ
√
k! = (h̄ωk − ǫ) sinh θk. (30)
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Following the same method used in the previous case, the eigenvectors associated to
above eigenvalues (29) are written as follows

| ψI
k〉 = sinh

θk

2
| 0,

1

2
〉 + cosh

θk

2
| k,−1

2
〉,

for λI
k =

h̄ωk

2
(1 + cosh θk) −

ǫ

2
cosh θk,

| ψII
k 〉 = cosh

θk

2
| 0,

1

2
〉 − sinh

θk

2
| k,−1

2
〉,

for λII
k =

h̄ωk

2
(1 − cosh θk) +

ǫ

2
cosh θk, (31)

For H 6= H† (i.e for φ = −1), it may be easily observed that two states given in
(27) and (28) are not orthogonal to each other. But one can prove that the states given
by Eq.(31) (i.e for φ = +1, H = H†) are orthogonal.This property is a consequence of
the hermiticity of H . In order to find the next excited states, one has to consider the
next invariant subspace which is spanned by the vectors | 1, 1

2
〉 and | k+ 1,−1

2
〉. The

eigenvalues and eigenvectors for this doublet can be determined following the same
method used previously.

3.3 The excited states

The next step is to generalize the previous results to the invariant subspace which is
spanned by the vectors | n, 1

2
〉 and | n + k,−1

2
〉. Following the same technique used

in the previous section and after some algebra, the Hamiltonian matrix for the above
doublet is written as,

Hn+k =

(

h̄ωn+ P (n) + ǫ
2

ρ
√
n + 1 . . .

√
n+ k

φρ
√
n+ 1 . . .

√
n+ k h̄ω(n+ k) + P (n+ k) − ǫ

2

)

(32)

For the sake simplicity, we impose P (n) = P (n+ k) = 0 and Hn+k is of the form

Hn+k =

(

h̄ωn+ ǫ
2

ρ
√
n + 1 . . .

√
n+ k

φρ
√
n+ 1 . . .

√
n+ k h̄ω(n+ k) − ǫ

2

)

(33)

and its eigenvalues are

λI
n+k =

h̄ω(2n+ k) +
√

(h̄ωk − ǫ)2 + φ4ρ2(n+ 1) . . . (n+ k)

2
,

λII
n+k =

h̄ω(2n+ k) −
√

(h̄ωk − ǫ)2 + φ4ρ2(n + 1) . . . (n + k)

2
, (34)

In particular, putting k = 1 and φ = −1 only in (34), the above eigenvalues be-
come the eigenvalues λI,II

n+1 associated to the operator H given by the Eq.(1). These
eigenvalues were determined in [5].
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Now putting 2ρ
√
n+ 1 . . .

√
n+ k = (h̄ωk−ǫ) sin θn+k and 2ρ

√
n+ 1 . . .

√
n+ k =

(h̄ωk − ǫ) sinh θn+k in Eq.(34) respectively for φ = −1 and for φ = +1, we find the
eigenvectors corresponding to the doublet | n, 1

2
〉 and | n+ k,−1

2
〉.

First considering φ = −1, the eigenvectors associated to this doublet are

| ψI
n+k〉 = sin

θn+k

2
| n, 1

2
〉 + cos

θn+k

2
| n+ k,−1

2
〉,

for λI
n+k = h̄ωn+

h̄ωk

2
(1 + cos θn+k) −

ǫ

2
cos θn+k,

| ψII
n+k〉 = cos

θn+k

2
| n, 1

2
〉 + sin

θn+k

2
| n+ k,−1

2
〉,

for λI
n+k = h̄ωn+

h̄ωk

2
(1 − cos θn+k) +

ǫ

2
cos θn+k. (35)

Finally considering φ = +1 for the Eq.(34), the eigenvectors for the doublet | n, 1

2
〉

and | n+ k,−1

2
〉 are of the form

| ψI
n+k〉 = sinh

θn+k

2
| n, 1

2
〉 + cosh

θn+k

2
| n + k,−1

2
〉,

for λI
n+k = h̄ωn+

h̄ωk

2
(1 + cosh θn+k) −

ǫ

2
cosh θn+k,

| ψII
n+k〉 = cosh

θn+k

2
| n, 1

2
〉 − sinh

θn+k

2
| n+ k,−1

2
〉,

for λI
n+k = h̄ωn+

h̄ωk

2
(1 − cosh θn+k) +

ǫ

2
cosh θn+k. (36)

Note that all the discussions considered in the previous section are confirmed by these
generalized results.

4 Quasi-exactly solvable Hamiltonians

In this section let us consider an extension of the Jaynes-Cummings Hamiltonian
which includes two-photon interaction

H2 =
ǫ

2
σ3 + h̄ωa†a+ ρ(σ+a

2 + σ−a
†2) (37)

The matrix form of the above Hamiltonian reads

H2 =
(

h̄ωa†a+ ǫ
2

ρa2

ρ(a†)2 h̄ωa†a− ǫ
2

)

. (38)

It is clear that this Hamiltonian H is similar of the one reported in Ref.[11] and is
also a particular case of the Hamiltonian given in Eq.(13) (i.e if k = 2, P (a†a) = 0)
and one can prove easily its exact solvability. However, if one would like to construct
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an JC-type Hamiltonian including both a one-photon and a two-photon interaction,
the above Hamiltonian should be modified as follows

H12 =
(

h̄ωa†a + ǫ
2

ρa2 + ρ1a
ρ(a†)2 + ρ̂1a

† h̄ωa†a− ǫ
2

)

. (39)

where ρ, ρ1, ρ̂1 are, a priori, arbitrary constants.
Unfortunately, the corresponding operator H12 is not anylonger exactly solvable.

Indeed, it is easy to show that it fails to admit any finite dimensional invariant vector
spaces. Accordingly, it is impossible (to our knowledge) to find its energy spectrum
by algebraic methods.

In order to restaure, at least partly, a certain algebraic solvability of H12, one
can attemp to supplement the Hamitonian H12 with an appropriate interation term.
After some algebra, one can convince oneself that adding an interaction term of the
form

HI =
1

n

(

0 ρ1aa
†a

ρ̂1a
†aa† 0

)

(40)

leads to a new Hamiltonian HT = H12 + HI which is quasi-exactly solvable, as we
will now demonstrate.

Assuming n to be an integer and redefining c ≡ −ρ1

n
, ĉ ≡ − ρ̂1

n
, the operator HT

reads

HT =
(

h̄ωa†a+ ǫ
2

ρa2 + ca(a†a− n)
φρ(a†)2 + ĉ(a†a− n)a† h̄ωa†a− ǫ

2

)

, (41)

where that a† and a are respectively the usual creation and annihilation operator and
ǫ is chosen as previously according to ǫ = 2µB0.

The main idea now is to reveal that the above operator HT is quasi-exactly solv-
able(QES). In this purpose we construct a finite dimensional vector space which is
invariant under the action of HT . Let us apply now the Hamiltonian H to the states
( | N〉

0

)

and
(

0
|M〉

)

with N,M ∈ IN as follows

HT

( | N〉
| M〉

)

=

(

(h̄ωN + ǫ

2
) | N〉 + ρ

√

M(M − 1) | M − 2〉 + c
√

M(M − n) | M − 1〉

φρ

√

(N + 1)(N + 2) | N + 2〉 + ĉ
√

N + 1(N + 1 − n) | N + 1〉 + (h̄ωM − ǫ

2
) | M〉

)

. (42)

In order to be in agreement with the invariance of the two vectors states
( | N〉

0

)

and
(

0
|M〉

)

under the action of the Hamiltonian HT , we have to impose the value

of the integer n according to n = M = N + 2 (i.e N = M − 2). Taking account of
the above fixed value of n, we obtain

HT

( | N〉
| M〉

)

=









[

(h̄ωN + ǫ

2
) + ρ

√

(N + 2)(N + 1)

]

| N〉

[

h̄ω(N + 2) − ǫ

2
+ φρ

√

(N + 1)(N + 2)

]

| N + 2〉 − ĉ
√

N + 1 | N + 1〉









. (43)

Finally the Hamiltonian HT is of the new form

HT =
(

h̄ωa†a+ ǫ
2

ρa2 + ca(a†a− (N + 2))
±ρ(a†)2 + ĉ(a†a− (N + 2))a† h̄ωa†a− ǫ

2

)

. (44)
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As it is clear from the Eq.(43), the Hamiltonian HT preserves the finite dimensional
vector space namely

Vn = span

{

( | j〉
0

)

,
(

0
| k〉

)

, j = N, . . . , 0 ; k = N + 2, . . . , 0

}

, (45)

and n is fixed according to n = N + 2. From this, we conclude that the Hamiltonian
HT is quasi-exactly solvable. Hence the terms of perturbation added to H12 have
broken its non solvability.

Notice that is also easily to reveal the quasi-exact solvability of the operator
expressed in Eq.(41) by considering the matrix Hamiltonian Eq.(41) in terms of dif-
ferential expressions. Here we have to replace the operators a† and a respectively by
their differential expressions given by Eq.(3), performing the standard gauge trans-
formation as,

H̃T = exp(
ωx2

2
) HT exp(−ωx

2

2
), (46)

and thus, after some algebra, we obtain a matrix Hamiltonian which preserves the
finite dimensional vector space of the form Vk = (Pk(x), Pk+2(x))

t with k ∈ IN and
n = k + 2 ( i.e n which is expressed in Eq.(41)). This operator H̃T (therefore HT ) is
quasi-exactly solvable because it is expressed in terms of the integer n which is fixed
according to n = k + 2.

5 Spectral properties

In this section, we would like to emphasize a few properties of the spectrum of the
Hamiltonian discussed above. First we stress that for given k the JC model admits
k levels which are ρ-independant and which are not involved in the list given above.
They are of the form

ψj =
( ~0
|j〉
)

, 0 ≤ j ≤ k − 1 ,

where ~0 denotes the null vector of the Hilbert space. The corresponding eigenvalue
is Ej = j − ǫ

2
.

The spectrum of the JC model (and of its generalisations for k > 1) varies con-
siderably with the parameter ρ. In Fig. 1, we show the evolution of six levels in the
k = 2, φ = 1 case. They correspond to the two ρ-independant eigenstates and the
ones with n = 0, 1 in Eq.(34). In Fig. 1 and in the following we assume ǫ = 1 for
simplicity but the features pointed out below remain similar for ǫ 6= 1. The same
levels corresponding to the non hermitian case φ = −1 are reported on Fig. 2. The
contrast with Fig.1 is obvious. Couples of eigenvalues regularly disappear at finite
values of the coupling constants ρ. So that, at finite ρ only a finite number of real
eigenvalues subsist, the other being real. In this respect, the Hamiltonian is like a
quasi exactly solvable operator.

The energy levels displayed on Fig.1 corresponds to the six lowest ones in the
limit ρ = 0. The figure clearly shows that they mix relatively quickly for increasing ρ

12



and that, for instance, eigenvectors involving two or more quanta become the ground
state for ρ ∼ 1.

We have studied the evolution of the spectrum when the QES-extension of the
model, H12 = ρa2+θa(1− 1

N+2
a†a) namely characterized by the new coupling constant

θ, is progressivel switched on. Notice that the vector ψ0 = (~0 , |0〉)t is an eigenvector
with E = −ǫ/2, irrespectively of ρ, θ

In the case ρ = 0, N = 1 the effect of the new term on the eigenvalues under
consideration leads to

E = −1

2
,

1

6
(3 ± 4θ) ,

1

6
(9 ± 2

√
2)θ,

5

2

These levels are indicated on Fig. 3 by the dotted lines and it is clearly seen that
they also lead to numerous level crossing.

The evolution of the eigenvalues corresponding to the case ρ = 1 is displayed
by the dashed lines in Fig.3, supplemented by the black line E = −1/2 which is
present irrespectively of ρ. The figure clearly shows that the occurence of the new
term induced only one level mixing, namely two levels cross at E = −1/2 for θ = 1.5
For larger values of ρ, e.g. ρ = 2, the analysis reveals that the algebraic eigenvalues
depend only weakly of θ.

6 Series expansion and Recurence relations

Here we would like to present another aspect of the QES Hamiltonian presented in
the previous section. Following the ideas of [15] we will construct the solution for
energy E under the form of a formal serie in the basic vector whose coefficients are
polynomials in E. More precisely, we write the solution of the equation

HTψ = Eψ, (47)

in the form

ψ =
(

∑∞
j=0 pj(E) | j〉

∑∞
j=−2 qj(E) | j + 2〉

)

(48)

and where HT is given by the Eq.(41). After some algebra it can be seen that the
polynomials pj(E), qj(E) obey the following recurence relations

Aj+1Pj+1 +BjPj = 0, (49)

where

Aj+1 =

(

ρ
√

(j + 2)(j + 3) −(E − (j + 1) − ǫ
2
)

0 ĉ(j + 2 − n)
√
j + 2

)

,

Bj =

(

c(j + 2 − n)
√
j + 2 0

−(E − (j + 2) + ǫ
2
) ρ

√

(j + 1)(j + 2)

)

,

Pj =
(

qj
pj

)

, j = −2,−1, 0, 1, . . . (50)
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These equations have to be solved with the initial conditions

q−2 = 0 , q−1 = N (51)

with N fixing the normalisation of the solution. Then the solution for qj turns out
to be a polynomial of degree E2j . The quasi-exact solvability of the system leads to
the fact that An−1 is not invertible and that pn−1 can be choosen arbitrarily. With
the choice pn−1 = 0 it turns out that all polynomials pj, qj with j ≥ n − 2 are
proportional to qn−3(E). As a consequence for fixed n and for the values of E such
that qn−3(E) = 0 the serie above is truncated and the set of algebraic eigenvectors are
recovered. We would like to stress that series considered in this section are built with
the basis vector of the harmonic oscillator and not on monomials in x contrasting
with the construction of Ref.[15]. In the case of standard QES equations [15] there it
appears a three terms recurence relations which leads to sets of orthogonal relation.
In the case of systems of QES equations adressed in [16] the recurence relation is also
three terms but the situation here is quite different. Actually, it is to our knowledge,
an open question to know whether the set of polynomials (pj(E), qj(E)) are somehow
orthogonal as it is the case for standard scalar equation.

7 Hidden algebraic structures

As pointed out in the previous sections, the different Hamiltonians studied here posses
the property that their spectrum can be (partly or fully) computed. This property
is deeply related to the fact that the corresponding operators are elements of the
enveloping algebra of particular graded algebra in an appropriate finite dimensional
representation. The classification of linear operators preserving the vector spaces
V(m,n) = (Pm(x), Pn(x))t was reported in [10]. It is shown that these operators are
the elements of the enveloping algebra of some non-linear graded algebra depending
essentially of |m − n|. Note that, in the present context, the difference |m − n| is
nothing else but the parameter called k in Sect. 3. The cases k = 1 and k = 2 are
special because the underlying algebra is indeed a graded Lie algebra. In the case
k = 1, related to the conventional JC model, the Hamiltonian is an element of the
enveloping algebra of osp(2, 2); in the representation constucted in [9]. The generators
involved in this relation do not depend explicitely on n, i.e. of the dimension of the
representation, explaining that the Hamiltonian is exactly solvable. Finally, in the
case k = 2, the Hamiltonian is an element of the graded Lie algebra q(2), as shown in
[17, 18]. This algebra possesses an sl(2)×U(1) bosonic subalgebra and six fermionic
operators splitted into three triplets of the sl(2) subalgebra. In the case of the JC
model corresponding to k = 2, the Hamiltonian is independant on the dimension of
the representation n and the model is exactly solvable. For the modified model of
Sect. 4, the supplementary interaction term HI defined in (40) indeed depends on
n and the operator admit only the vector space Vn as finite dimensional invariant
vector space.
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8 Conclusions

In this letter, we have considered several extensions of JCM by adding to its origi-
nal Hamiltonian the polynomial P (a†a) of degree d ≥ 2 and an arbitrary sign, say
φ = ±1, in the non-diagonal interaction term. In fact, considering this sign φ = −1,
these extended Hamiltonians are nonhermitian and not PT invariant but they sat-
isfy the pseudo-hermiticity with respect of different operators P and σ3. This new
property reveals the reality of the energy spectrum which has been constructed alge-
braically. They become hermitian when one considers the sign φ = 1. Notice that
these Hamiltonians are completely solvable as it has been pointed out by the QES
technique.

Several usual properties available with hermitian Hamiltonian are not kep with
pseudo-hermitican. Namely the eigenstates given by (27) and (28)(i.e corresponding
to the doublet | 0, 1

2
〉 and | k,−1

2
〉) are not orthogonal to each other, but they are

orthogonal to all eigenstates corresponding to other doublets. For example, the eigen-
state (27) and the one given by Eq.(35)(i.e it corresponds to the doublet | n, 1

2
〉 and

| n+ k,−1

2
〉) are orthogonal to each other. The eigenstates of any particular doublet

are orthogonal to each other only if θm = mπ (i.e with m = 0, 1, 2, . . . , k, . . . , n+ k),
this implies ρ = 0 because it depends to sin θm. In fact, as the energy eigenvalues are
entirely real, it is impossible to have all eigenstates orthogonal to each other. This is
explained by the unbroken symmetry of the operator Pσ3. But for energy eigenvalues
complex, the orthonormality condition is satisfied by all the associated eigenstates.
All these discussions are the result of the scalar product applied to those eigenstates.

We manage to construct a JC-type Hamiltonian describing both one and two-
photons interactions in terms of quasi exactly solvable operators. This involves a
very specific interaction term of degree one in the creators and annihilators which can
be seen as a perturbation of more conventional p-photons interacting term. Several
properties of this new family of QES-operators have been presented. Namely, (i)
they can be written in terms of the generators of the graded Lie algebra osp(2,2)
in a suitable representation; (ii) when expressed as series, the formal solutions of
HTψ = Eψ leads to a different type of recurence relation between the different terms
of the series.
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Figure 1: The first few energy levels in the k = 2-JC Hamiltonian for ǫ = 1 and
φ = 1.
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Figure 2: The first few energy levels in the k = 2-JC Hamiltonian for ǫ = 1 and
φ = −1.
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Figure 3: The first few energy levels in the QES deformed k = 2 JC Hamiltonian as
function of the parameter θ, the energy level E = −1/2 (solid line) is independant of
ρ.
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