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Relaxivities of human liver and spleen ferritin
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Abstract

Ferritin, the iron-storing protein of mammals, is known to darken 7,-weighted magnetic resonance images. This darkening can be used
to noninvasively measure an organ’s iron content. Significant discrepancies exist between 7, data obtained with ferritin-containing tissues
and with aqueous solutions of horse spleen ferritin (HSF). The NMR properties of stable human ferritin have never been studied in
aqueous solutions. Relaxometry results on human liver and spleen ferritin are reported here, showing that the relaxation induced in
aqueous solutions by human ferritins is comparable to that induced by HSF. As a consequence, the differences between ferritin-containing
human tissues and ferritin solutions cannot be attributed to different NMR properties of human and horse ferritins, but probably to a
clustering of the protein in vivo.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction The influence of ferritin on in vivo MRI contrast will
therefore grow together with the increase of the imaging
magnetic fields, as does 1/7,. Indeed, 1/T, of a ferritin-
containing brain tissue will be about two to three times
larger in a 3-T MR scanner than in a 1-T machine [33].
For almost all the MRI protocols of iron content eval-
uation, the general qualitative correlation between the mea-
sured parameter (1/75, 1/T5*, etc.) and the iron concentration

Magnetic resonance imaging (MRI) was proposed early
on for the in vivo quantification of ferritin-bound iron in the
liver, spleen and brain [1,2]. Various MRI protocols have
since been used to study the distribution of ferritin in the
liver [3—12] and in the brain, especially in the cases of
Parkinson’s and Alzheimer’s diseases [13—19]. Indeed,
ferritin, the mammal’s iron storage protein, contains a
superparamagnetic ferrihydrite (5Fe;03-9H,0) crystal
[20,21] that accelerates the transverse relaxation of water

and therefore darkens 7,-weighted images. For a better 25 2 }ﬁ;igmi

understanding of the MRI contrast caused by ferritin, S MM

numerous studies have investigated the relaxation of 20| O 1/T1-300Mhz
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aqueous solutions of horse spleen ferritin (HSF) and 5

hydrated iron oxide nanoparticles [22—29], finally showing ;& 154

that ferritin-induced 7', shortening arises from the binding of =

water protons to the surface of the ferrihydrite crystal. This E 104

unique relaxation mechanism is responsible for the unusual

proportionality between 1/7, and the applied magnetic field 5
observed in solution [24,25,27] and in tissues [26,30—-32]. //"_’//
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Fig. 2. Evolution of 1/7 and 1/T, with iron concentration for human liver
ferritin at 20, 60 and 300 MHz.

was checked, but the measurements seem to be too sensi-
tive to the experimental procedures and to physiological
data (type of organ, iron content, degradation of the tissues,
etc.) to allow for their general use in hospitals [34].

These difficulties are clearly related to the unexplained
yet significant differences between ferritin-induced relaxa-
tion in aqueous solutions and in tissues: for the same iron
concentration, at 1 T, the transverse relaxation rate is more
than three times greater in tissue than in HSF aqueous
solution. Even in vivo, the rate is significantly greater in
mouse liver than in spleen [32]. The reasons for these
differences could be:

e Structural differences between HSF (used for the
aqueous solution studies) and human ferritin.

e In vivo clustering of ferritin, affecting transverse
relaxation properties, which has been shown to depend
on the type of organ [35—37]. It should be noted that
the restriction of water diffusion in tissues could also
contribute, in part, to the relaxivity differences.

To discriminate between these hypotheses, the relaxation
properties of stable, nonclustered human ferritin were
studied. More particularly, the longitudinal (r) and trans-
verse (r,) relaxivities (i.e., the increase of relaxation rate
induced by an increase of 1 mmol in the iron concentration)
were determined and compared to HSF data.

If these relaxivities are comparable to those obtained for
HSF, it is an indication that the clustering of the protein

Table 1
Relaxivities of human spleen and liver ferritins

could be the only reason for the increase of 7, shortening
observed in tissues.

2. Materials and methods
2.1. Samples

Human liver and spleen ferritin samples were obtained
from Scipac (Sittingbourne, UK). The purity of the sample
was better than 96%. The average loading factor (number of
iron ions per molecule) of the ferritin samples, determined
from the iron mass fraction, was 1740 and 2740 for the liver
and spleen ferritin, respectively. The hydrodynamic size of
the protein, as measured by photon correlation spectroscopy
(BIC-9000, Brookhaven Instruments, Holtsville, NY, USA),
was 17 and 12 nm for the liver and spleen ferritin,
respectively. These results show that the samples are stable
and do not present important clustering.

Relaxation time measurements were performed on
BRUKER PC110, PC120, PC140 and mq 60 instruments
working at proton Larmor frequencies (v¢) of 10, 20, 40 and
60 MHz, respectively (a magnetic field of 1 T corresponds
to a proton Larmor frequency of 42.6 MHz). A BRUKER
AMX 300 (300 MHz) spectrometer was used for the high-
field measurements. 7, was obtained at 37°C with a Carr—
Purcell-Meiboom—Gill sequence, with a TE of 1 ms. The
repetition time was always longer than 5 7';. The mono-
exponential fits were good, thereby providing no evidence
of a multiexponential behaviour. The error on the relaxation
times was less than 4%.

3. Results and discussion

Figs. 1 and 2 show T and T, data for human spleen and
liver ferritin, respectively. As expected, 1/7; and 1/T,
increase linearly with the iron concentration, and the slope
of this increase gives the longitudinal and transverse
relaxivities of ferritin. The relaxivities obtained are approx-
imately the same as for HSF, but clearly smaller than those
obtained in tissues (Table 1). Moreover, 1/7T, increases
linearly with magnetic field for both samples, as previously
observed in solutions of HSF and ferritin-containing tissues
(Fig. 3). The normalized slopes () of this linear relationship
between 1/T, and Larmor frequency (x=4.41x107> s~!
MHz ' mM™!' for liver ferritin and 2=4.07x10""° s~

20 MHz

60 MHz

300 MHz

72=0.099 s~ mM !
71=0.0238 s~ mM~!
r=0.112 s ' mM™!
71=0.0303 s mM~!
72=0.127 s~ mM ™!

Human spleen ferritin
Human liver ferritin
Horse spleen ferritin [27]

Ferritin in human liver [7]
Ferritin in primate liver [30]

At ~20 MHz, ,=0.331 s~ ' mM !
At ~40 MHz, 7,=0.69 s~ ' mM '

72=0287 s ' mM™!
71=0.0261 s~ mM~!
7=0287 s ' mM™!
71=0.0338 s ' mM !
75=0.283 s mM™!

=128 s ' mM™!
71=0.0224 s ' mM~!
=142 s mM!
71=0.0259 s~!' mM ™!
=122 s mM™!
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Fig. 3. Evolution of 1/7, with magnetic field for human liver and spleen
ferritin.

MHz ' mM ™" for spleen ferritin) are consistent with the
value obtained for HSF solution (¢=3.92x10> s~ MHz "'
mM '), but clearly below the slope measured in ferritin-
containing tissues, for example, in the brain’s globus pallidus
(2=8.4x10"% s MHz ' mM™") [26] and in angioma of
the brain (x=21.2x10"> s~ ' MHz ' mM ") [38].

These results indicate that human and HSFs have similar
NMR behaviors. Thus, the significant differences observed
between ferritin in solutions and in tissues seem to be clearly
related to the clustering of the protein in tissues, a clustering
that is not observed using stable aqueous solutions of ferritin
and that may depend in vivo on the type of organ. This is
consistent with recently published results showing that in
mouse spleen, where clustering is not significant, the 7,
behavior is similar to that in HSF solutions, while in mouse
liver the T, shortening is clearly greater [32].

A first indication in that direction was given by the study
of Wood et al. [39] showing an increase of transverse
relaxivity in liposomal ferritin. This 7, increase, which was
shown to depend on the echo time, could be due to the
accumulation of fields from all the particles in an aggregate.
It is possible that at a certain stage in the clustering process,
the diffusive part of relaxation — the outer sphere
contribution, clearly dependent on the echo time — becomes
significant and also contributes to the transverse relaxivity.
However, this contribution should be clearly identified by a
quadratic increase of 1/7T, with magnetic field, which has
never been observed for ferritin, neither in solution nor in
tissues. An on-going in vitro experimental study of ferritin
clustering, consistent with the previous interpretation,
should soon provide the final piece of the puzzle for the
complete understanding of ferritin-induced relaxation in
solutions and in tissues. This understanding will help to
establish the best conditions to obtain a good correlation
between MRI contrast and iron content. High fields are
clearly better, but what sequence should be used? That
question remains to be answered.
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