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In this paper we study bisimulations ondynamical systemsthrough a given partition. Our aim is to give a new vision
of the notion of bisimulation by usingwords. To achieve this goal, we encode thetrajectoriesof the transition system
as words. This method was introduced in our paper “On o-minimal hybrid systems” in order to give a new proof of
the existence of a finite bisimulation foro-minimal hybrid systems(as previously proved in a paper by Lafferriere G.,
Pappas G.J. and Sastry S.). Here we want to provide a systematic study of this method in order to obtain a procedure
for building finite bisimulations based on words.

1 Introduction
More and more real-life systems are automatically controlled. It is of a capital importance to know
whether the programs governing these systems are correct. In order to be able to manipulate these real-
life systems, various mathematical models have been introduced (timed automata[AD94], hybrid systems
[Hen96],...) making the study of the abstract systems a wideand interesting domain of research. Unfortu-
nately even the abstract systems are not always that easy to handle, the main problem being their infinite
size. One way to solve this problem is to reduce these infinitesystems to finite systems in such a way
that enough information is preserved. It is known thatbisimulations(see [Acz88, Cau95, Hen95]) are a
“reduction” of particular interest since they preserve a lot of interesting properties (reachability problem,
model-checking branching logic... [HNSY94, ACH+95, AHLP00]). That is why we focus our attention
on systems admitting a finite bisimulation.

In [BMRT04] in order to prove the existence of a finite bisimulation for an extended class ofo-minimal
hybrid systems(i) , we encode the continuous dynamics throughwords(see also [BM05]). In the previous
two papers we limit ourselves to the encoding ofo-minimal dynamical systems(i.e. dynamical systems
definable in an o-minimal structure; see [vdD98] for a nice overview on o-minimality.). In particular we
only had to manipulatefinite words. Let us mention that some analogue already appears in the literature
(the notion of signature for example in [ASY01]). Let us alsonotice that bisimulations of dynamical
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systems has been studied independently in [JdS04] but in a different framework. They studied dynamical
system as defined in [Wil91].

Our technique was used by Korovina and Vorobjov in order to compute a doubly exponential bound
on the size of the coarsest finite bisimulation ofpfaffian hybrid systems(see [KV04]). They recently
improved their results by reducing the bound to a single exponential and prove that this bound is tight
(see [KV06]).

In this paper, we want to give a systematic study of this encoding technique. In particular we give
a Procedure (Bisiω) that aims to build a bisimulation on a dynamical system through a partition. Our
hope is that this systematic study will lead to the discoveryof some new general classes of dynamical
systems (through partition) which admit finite bisimulations. Beyond the fact that dynamical systems are
of interest in their own, they are an essential component of hybrid systems. In particular, whenstrong reset
conditionsare assumed on the hybrid system, finding finite bisimulations of the hybrid system reduces
in finding a finite bisimulation on each location (which is endowed with a dynamical system) w.r.t. the
partition induced by the guards, resets and invariant. It isthe case for o-minimal hybrid systems, see
[LPS00]. Moreover a recent point of view on the theory of hybrid systems allows to see an hybrid system
as a dynamical system (see the notion ofhybrifold in [SJSL00]).

The rest of the paper is organized as follows. In section 2, werecall classical definitions and prop-
erties of bisimulations on a transition system, we also describe the well-knownbisimulation algorithm
([BFH91, KS90, Hen96]), which is in fact a semi-algorithm. We end this section by defining what we
call adynamical systemin this paper. Section 3 is the main section of the paper. We start by explaining
how to associate aword with a trajectory; we introduce the notion ofdynamical typewhich allows in
some sense to recover the continuous dynamics through the partition. These tools being formalized we
introduce a conceptual semi-algorithm called ProcedureBisiω and we prove that this procedure com-
putes a bisimulation. We also describe several variants of our procedure. Finally we discuss in which case
Bisiω provides the coarsest bisimulation of a dynamical system through a given partition. In Section 4
we provide an extensive list of examples.

2 Preliminaries
In this section, we recall some basic definitions and resultsconcerning bisimulations on a transition sys-
tem (see [Acz88, Cau95, Hen95] for general references). We also recall the well-knownbisimulation
algorithm ([BFH91, KS90, Hen96]). Then we give definition ofdynamical systemsand associate with
them a natural transition system.

2.1 Transition systems and bisimulation

Definition 2.1 A transition systemT = (Q, Σ,→) consists of a set of statesQ (which may be uncount-
able),Σ a finite alphabet of events, and→ ⊆ Q × Σ × Q a transition relation.

A transition(q1, a, q2) ∈ → is denoted byq1
a
−→ q2. A transition system is said finite ifQ is finite. If

the alphabet of events is reduced to a singleton,Σ = {a}, we will denote the transition system(Q,→)
and omit the eventa.

Definition 2.2 Given a transition systemT = (Q, Σ,→), a finite path inT is a finite sequence of transi-
tionsq0 q1 q2 · · · qn such that for alli = 1, ..., n there existsai ∈ Σ such thatqi−1

ai−→ qi. We denote it
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Fig. 2: Backward stable relation

as follows:
ρ = q0

a1−→ q1
a2−→ q2 · · ·

an−−→ qn.

Definition 2.3 Given two transition systems on the same alphabet of events,T1 = (Q1, Σ,→1) and
T2 = (Q2, Σ,→2), a partial simulation ofT1 by T2 is a binary relation∼ ⊆ Q1 ×Q2 which satisfies the
following condition:

∀q1, q
′
1 ∈ Q1, ∀q2 ∈ Q2, ∀a ∈ Σ,

(

q1 ∼ q2 andq1
a
−→1 q′1

)

⇒
(

∃q′2, q′1 ∼ q′2 andq2
a
−→2 q′2

) (1)

The condition (1) is readT2 partially simulatesT1.

Definition 2.4 Given∼ a partial simulation ofT1 byT2, we say that∼ is asimulation ofT1 by T2 if, for
eachq1 ∈ Q1, there existsq2 ∈ Q2 such thatq1 ∼ q2.

Definition 2.5 Given two transition systems on the same alphabet of events,T1 = (Q1, Σ,→1) and
T2 = (Q2, Σ,→2), a bisimulation betweenT1 andT2 is a relation∼ ⊆ Q1 × Q2 such that∼ is a
simulation ofT1 by T2 and the inverse relation(ii) ∼−1 is a simulation ofT2 by T1. In this case we say
thatT1 andT2 are bisimilar.

Remark 2.6 One could consider a different notion of bisimulation, let us call it back-bisimulationor
backward bisimulation(see [HKPV98]). This would come from the notion ofpartial backward-simulation
defined as partial simulation (Definition 2.3) where the condition (1) is replaced by:

∀q1, q
′
1 ∈ Q1, ∀q′2 ∈ Q2, ∀a ∈ Σ,

(

q′1 ∼ q′2 andq1
a
−→1 q′1

)

⇒
(

∃q2, q1 ∼ q2 andq2
a
−→2 q′2

)

We say that a bisimulation is aforward stablerelation and that the back-bisimulation is abackward
stablerelation. The difference between these two notions is illustrated on Figures 1 and 2.

Definition 2.7 Given a transition systemT = (Q, Σ,→), we can look at bisimulations onQ × Q; they
are calledbisimulations onT .

As already mentioned in the introduction, a motivation for the study of bisimulation is thereachability
problem. Let us make this problem more precise:

(ii) If ∼= {(q1, q2) ∈ Q1 × Q2 | q1 ∼ q2}, then∼−1= {(q2, q1) ∈ Q2 × Q1 | q1 ∼ q2}.
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Reachability Problem 2.8 GivenT = (Q, Σ,→) a transition system,Init ⊆ Q and Fin ⊆ Q two
subsets of states, is there afinite path(iii) ρ from Init to Fin?

If T = (Q,→) is areflexive(iv) transition system then there exists severaltrivial “partial” bisimulations
onT given by∼q= {(q, q′) | q′ ∈ Q} for q ∈ Q. This implies that there exists a bisimulation betweenT
and aone-state systemT0, whereT0 = (Q0,→0) with Q0 = {q0} and→0= {(q0, q0)}. The bisimulation
betweenT andT0 is given by∼0= {(q, q0) | q ∈ Q}.

Regarding thereachability problem 2.8, the bisimulations∼q and∼0 are completely irrelevant. One
can have a bisimulation between a completely disconnected reflexive transition system and a single state
system (T0). This gives a motivation for the definition ofbisimulation w.r.t. a partition. This notion leads
to a preservation result on the Reachability Problem (see Lemma 2.15).

Moreover the study of finite bisimulation w.r.t. a partitionon dynamical systems leads to the existence
of finite bisimulations on subclasses ofhybrid systems, for examples see [LPS00, Dav99, BMRT04, KV04,
BM05, KV06].

Let us give the definition ofbisimulation w.r.t. a partition.

Definition 2.9 GivenT a transition system,P a partition ofQ and∼ ⊆ Q × Q a bisimulation, we say
that the bisimulation∼ respects the partitionP if given anyp, q ∈ Q such thatp ∼ q thenp andq belong
to the same piece of the partitionP . We will speak ofbisimulations w.r.t.P .

Definition 2.10 GivenT a transition system,P a partition ofQ we can define thecoarsest bisimulation
onT w.r.t. P , it is denoted∼P :

∼P =
⋃

{∼ | ∼ is a bisimulation onT w.r.t. P}

Remarks 2.11 Definition 2.10 makes sense since the union of bisimulationsonT w.r.t. P is still a bisim-
ulation onT w.r.t. P .
One can show that the coarsest bisimulation onT w.r.t. P is an equivalence relation, moreover each piece
of the partitionP is an union of equivalence classes of∼P .

In the case of bisimulations which are equivalence relations, we can define the notion ofquotient of a
transition system by such a bisimulation.

Definition 2.12 Given a transition systemT = (Q, Σ,→) and∼ a bisimulation onT which is an equiv-
alence relation. We can consider thequotient ofT by ∼, denoted byT/∼ = (Q/∼, Σ,→∼) and defined
as follows:

• Q/∼ = {[q]∼ | q ∈ Q} where[q]∼ = {q′ | q ∼ q′}

• [q1]∼
a
−→∼ [q2]∼ if and only if there existsq′1 ∈ [q1]∼ andq′2 ∈ [q2]∼ such thatq′1

a
−→ q′2.

Remark 2.13 Definition 2.12 makes sense even when we consider an equivalence relation∼ which is not
a bisimulation.

Lemma 2.14 GivenT a transition system,∼ a bisimulation onT which is an equivalence relation, then
the graph of the natural map[·]∼ : Q → Q/∼ is a functional bisimulation fromT to its quotient transition
systemT/∼ (see [Cau95, Lemma A.1 p. i]).

(iii) i.e. ρ = q0

a1−−→ q1

a2−−→ q2 · · ·
an−−→ qn with q0 ∈ Init andqn ∈ F in.

(iv) i.e. for all q ∈ Q we have thatq → q.
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We end this subsection by making precise the folk result thatstates that bisimulations preserve the
Reachability Problem.

Lemma 2.15 GivenT , Init, Fin as in theReachability Problem 2.8,P a partition ofQ given by
{

Init∩

Fin, F in \ Init, Init \ Fin, Q \ (Init ∪ Fin)
}

and∼P a bisimulation onT which is an equivalence
relation w.r.t.P . There exists a finite path inT from Init to Fin if and only if there exists a finite path in
T/∼P

from Init/∼P
to Fin/∼P

.

Let us notice that the same result holds for back-bisimulation.

2.2 Bisimulation Algorithm

As already mentioned previously, it is an important question to know whether a given infinite system
admits a finite bisimulation. Since, for example, the reachability problem is decidable for a finite sys-
tem effectively described. Moreover it would be nice to havean automatic procedure to build this fi-
nite bisimulation. These facts lead to the introduction of the bisimulation algorithmwhich appeared in
[BFH91, KS90, Hen96]. Given a transition systemT = (Q, Σ,→) andP0 a finite partition ofQ, the
bisimulation algorithm iterates the computation of predecessors(v) of the pieces of the partition, let us
recall it:

Algorithm 2.16
Initialization: P := P0

While ∃P, P ′ ∈ P ∃a ∈ Σ such that∅ 6= P ∩ Prea(P ′) 6= P
SetP1 = P ∩ Prea(P ′) andP2 = P \ Prea(P ′)
RefineP := (P \ {P}) ∪ {P1, P2}

End while
ReturnP

The following are well-known results on the bisimulation algorithm.

Lemma 2.17 Given T a transition system andP0 a finite partition ofQ, the bisimulation algorithm
terminates if and only if there exists a finite bisimulation on T w.r.t. P0.

Lemma 2.18 If the bisimulation algorithm terminates it provides the coarsest bisimulation onT w.r.t.
P0.

2.3 Dynamics

Definition 2.19 A dynamical system(vi) is a pair (M, γ) where:

• M = 〈M, <〉 is a totally ordered structure,

• γ : Mk1 × M → Mk2 is a function.

(v) Given T a transition system andq ∈ Q, the set ofa-predecessors ofq, denotedPrea(q), is defined byPrea(q) = {q′ ∈

Q | q′
a
−→ q}, and ifP ⊆ Q, Prea(P ) =

S

q∈P Prea(q).
(vi) Our definition of dynamical system is an attempt to generalize the continuous dynamics of hybrid systems ([Hen96]) with no

explicit reference to differential equations. This definition, even if rather close, is different from the one given in [Wil91]. Deeper
investigation on the links between the two definitions wouldbe relevant work.
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0 1

Fig. 3: A finite automaton

The functionγ is called the dynamics of the dynamical system. More generally, we can consider the case
whereγ is defined on subsets ofM that isγ : V1 × V → V2 with V1 ⊆ Mk1 , V ⊆ M andV2 ⊆ Mk2 .

In the sequel we assume the range ofγ is equal toMk2 . Classically, whenM is the field of the reals,
we seeM as the time,Mk1 ×M as the space-time,Mk2 as the (output) space andMk1 as the input space.
We keep this terminology in the more general context of a structureM.

In this presentation time and space have the same underlyingstructure (i.e.M) this comes from our
presentation in [BMRT04] where we needed the whole dynamical system to be definable in the o-minimal
structureM. However we can imagine dynamical system with dynamicsγ : V1 × V → V2 whereV is
a totally ordered set andV1, V3 are defined in completely different structure. This should not affect the
results presented in the sequel.

The definition ofdynamical systemencompasses a lot of different behaviors. Let us give some exam-
ples.

Example 2.20 Let M = 〈N, <〉 and the dynamicsγ : {0, 1} × {0, 1} → {0, 1} is given byγ(x, t) =
(x + t) mod 2. The transition system associated with this dynamical system (see Definition 2.24) is in
fact a finite automaton (see Figure 3).

Example 2.21 We can recover the continuous dynamics of thetimed automaton(see [AD94]). In this
case, we have thatM = 〈R, <〉 and the dynamicsγ : Rn × [0, +∞[→ Rn is defined as follows.

γ(x1, ..., xn, t) = (x1 + t, ..., xn + t)

Example 2.22 Definition 2.19 also allows dynamical systems with non deterministic(vii) behavior. Let us
consider(M, γ) where each point of the plane has two possible behaviors: “togo to the right” or “to
go up” (see Figure 4 on page 12). More precisely we have thatM = 〈R, <〉 andγ : R3 × R → R2 is
defined as follows.

γ(x1, x2, p, t) =

{

(x1 + t, x2) if p > 0
(x1, x2 + t) if p < 0

Definition 2.23 If we fix a pointx ∈ Mk1 , the setΓx = {γ(x, t) | t ∈ M} ⊆ Mk2 is called the trajectory
determined byx.

We define a transition system associated with the dynamical system, this definition is an adaptation to
our context of the classicalcontinuous transitionin the case of hybrid system (see [LPS00] for example).

Definition 2.24 Given(M, γ) a dynamical system, we define atransition systemTγ = (Q,→γ) associ-
ated with the dynamical systemby:

(vii) The non determinism comes in fact from the associated transition system, see Definition 2.24.
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• the setQ of states isMk2 ;

• the transition relationy1 →γ y2 is given by:

∃x ∈ Mk1 , ∃t1, t2 ∈ M,
(

t1 6 t2 andγ(x, t1) = y1 andγ(x, t2) = y2

)

Remark 2.25 Let us notice thatTγ is a reflexive transition system.

Remark 2.26 The transition systemTγ is in general not transitive. To illustrate this fact, let usconsider
Example 2.22. Given the three points of the output spacey1 = (0, 0), y2 = (0, 1) and y3 = (1, 1),
we clearly have thaty1 6→γ y3 sincey1 →γ y2 and y2 →γ y3. Indeedy1 = γ(0, 0,−1, 0), y2 =
γ(0, 0,−1, 1) = γ(0, 1, 1, 0) andy3 = γ(0, 1, 1, 1).

3 Words and dynamics
Given a dynamical system(M, γ) andP a finite partition of the spaceMk2 , an interesting question
is to know if there exists a finite bisimulation of(M, γ) w.r.t. P . If such a bisimulation exists the
bisimulation algorithm2.16 provides the coarsest one by iterating the computationof the predecessors
of the pieces of the partitionP . The goal of this section is to give another procedure that computes the
coarsest bisimulation on a dynamical system(M, γ) (i.e. a bisimulation onTγ) w.r.t. a partitionP . Our
approach is in some sense more global that thebisimulation algorithm. We use the idea introduced in
[BMRT04] which consists in encoding the dynamics of(M, γ) through the partitionP by words on this
partition. Let us first explain how we associate a word with a trajectory.

3.1 Encoding trajectories by words
First let us define the notion ofword in this general (possibly uncountable) context. This definition is
inspired from [BC01], see also [Tru89, Rab03].

Definition 3.1 GivenP a finite set (called thealphabet), M a totally ordered set, aword ω on P is a
function fromM to P ; the wordω is also denoted in a sequence-like notation by(ωi)i∈M whereωi ∈ P
is the image of the elementi under the functionω.

We recover the classical finite words orω-words when the setM is respectively finite or equal toN.

Example 3.2 Let us consider the finite setP = {A, B}. We give three examples of words onP .

1. Given the finite setM1 = {1, 2, 3, 4} equipped with the natural ordering and the functionω1 :
M1 → P such thatω1(1) = A, ω1(2) = B, ω1(3) = A andω1(4) = B, we recover an example of
finite word. In this caseω1 is classically denotedABAB.

2. Given the set of natural numberM2 = N equipped with the natural ordering and the function
ω2 : M2 → P such thatω2(n) = A if n is even andω2(n) = B if n is odd, we recover an example
of ω-word. In this caseω2 is classically denoted(AB)ω .

3. Given the set of real numberM3 = R equipped with the natural ordering and the functionω3 :
M3 → P such thatω3(n) = A if n ∈ Q andω2(n) = B if n ∈ R \ Q, we have a “degenerated”
example of word.
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We need to introduce basic notions related to words in this general context. For finite words, we adopt
the classical notations.

Definition 3.3 Givenω : M → P a word onP , a subword ofω is given byωs : M ′ → P where
M ′ ⊆ M is an arbitrary subset ofM considered with the order induced fromM .

Definition 3.4 Givenω : M → P a word onP , a suffix of ω is a subword of a particular form. A
subwordωs : M ′ → P is asuffix if and only ifM ′ = {t | t > t0} or M ′ = {t | t > t0} for somet0 ∈ M .
In the same way we can define the notion ofprefix.

Definition 3.5 Givenω1 : M1 → P andω2 : M2 → P two words onP , theconcatenation of the words
ω1 andω2 is defined by the wordω1ω2 : M1∪̇M2 → P whereω1ω2↾M1

= ω1 andω1ω2↾M2
= ω2 and

where the order onM1∪̇M2 is the order induced fromM1 onM1, the order induced fromM2 onM2 and
∀m1 ∈ M1, ∀m2 ∈ M2 we have thatm1 < m2 in M1∪̇M2.

We are now ready to build words associated with trajectories. Given(M, γ) a dynamical system and
P a finite partition ofMk2 , givenx ∈ Mk1 we associate a word with the trajectoryΓx in the following
way. We consider the sets{t ∈ M | γ(x, t) ∈ P} for eachP ∈ P . This gives a partition of the timeM .
In order to define a word onP associated with the trajectory determined byx, we need to define the set
of intervalsFx.

Fx =
{

I
∣

∣ (I is a time interval or a point) and is maximal for the property

∃P ∈ P , ∀t ∈ I, γ(x, t) ∈ P
}

.

For eachx, the setFx is totally ordered by the order induced fromM . Let us note that the setFx can be
equal toM itself. This allows us to definethe word onP associated withΓx denotedωx.

Definition 3.6 Givenx ∈ Mk1 , the word associated withΓx is given by the functionωx : Fx → P
defined by:

ωx(I) = P whereI ∈ Fx is such that∀t ∈ I γ(x, t) ∈ P.

Let us note that givenx ∈ Mk1 , there exists a unique wordωx onP associated with the trajectoryΓx.
The intuition behind the introduction ofFx is the following. We want successive(viii) letters of the words
ωx to be different.

Definition 3.7 We denote byΩP theset of words associated with(M, γ) w.r.t. P . We have thatΩP is a
set of words onP .

The setΩP gives in some sense a completestaticdescription of the dynamical system(M, γ) through
the partitionP . In order to recover thedynamics, we need further information. This is the object of the
following subsection.

(viii) The notion of successive letters is only defined for“well behaving” dynamical systems.
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3.2 Dynamical type
Given a pointx of the input spaceMk1 , we have associated withx a trajectoryΓx and a wordωx. If
we consider(x, t) a point of the space-timeMk1 × M , it corresponds to a pointγ(x, t) lying on Γx. To
recover in some sense the position ofγ(x, t) onΓx from ωx, we associate with(x, t) a suffix of the word
ωx denotedω(x,t). The construction ofω(x,t) is similar to the construction ofωx. We need to introduce
the set of intervals

F(x,t) =
{

I ∩ {t′ | t′ > t}
∣

∣ I ∈ Fx}
}

.

For each(x, t), the setF(x,t) is totally ordered by the order induced fromM . This allows us to define
the suffix of the wordωx associated with timet denotedω(x,t).

Definition 3.8 Given(x, t) ∈ Mk1 × M , the suffix of the wordωx associated with timet is given by the
functionω(x,t) : F(x,t) → P defined by:

ω(x,t)(I) = P whereI ∈ F(x,t) is such that∀t′ ∈ I γ(x, t′) ∈ P.

Due to the particular form of the suffixesω(x,t), it makes sense to definethe first letter ofω(x,t).

Definition 3.9 Given(x, t) ∈ Mk1 × M , the first letter of the suffixω(x,t) is given byωx(I) whereI is
the interval ofFx such thatt ∈ I. We denote the first letter ofω(x,t) byF(ω(x,t)).

Let us notice that given(x, t) a point of the space-timeMk1 × M there is a unique suffixω(x,t) of ωx

associated with(x, t).
Given a pointy ∈ Mk2 it may have several(x, t) such thatγ(x, t) = y and so several suffixes are

associated withy. In other words, giveny ∈ Mk2 , the futureof y is non deterministic, and so a single
suffix ω(x,t) is not enough to recover the dynamics of the transition system through the partitionP . To
encode the dynamical behavior of a pointy of the output spaceMk2 through the partitionP , we introduce
several notions ofdynamical typeof a pointy w.r.t. P .

Definition 3.10 Given a dynamical system(M, γ), a finite partitionP of Mk2 , a pointy ∈ Mk2 the
suffix dynamical type ofy w.r.t. P is denoted SufP(y) and defined by:

SufP(y) = {ω(x,t) | γ(x, t) = y}.

We have that SufP(y) is a subset of suffixes of words ofΩP .

Definition 3.11 Given a dynamical system(M, γ), a finite partitionP of Mk2 , an integern ∈ N, a point
y ∈ Mk2 then-subword dynamical type ofy w.r.t. P is denotednSubP(y) and defined by:

nSubP(y) ={ω | γ(x, t) = y andω is a subword ofω(x,t)

and the length ofω, |ω| 6 n andF(ω) = F(ω(x,t))}.

Definition 3.12 Given a dynamical system(M, γ), a finite partitionP of Mk2 , a pointy ∈ Mk2 the
subword dynamical type ofy w.r.t. P is denoted SubP(y) and defined by:

SubP(y) =
⋃

n∈N

nSubP(y).

We have thatnSubP(y) is a subset of SubP(y) for all n ∈ N.
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Notations 3.13 If we want to talk about a dynamical type of the pointy without specifying if it is a
subword,n-subword or suffix dynamical type, we use the notationTP(y).

Our goal is to refine the partitionP in order to build a bisimulation w.r.t.P . For this purpose we
consider the equivalence relation between points of the output spaceMk2 “ to have same dynamical type
w.r.t. P”. This equivalence relation induces a new partition of the output spaceMk2 which refinesP .

Definition 3.14 We denote byT (P) the refinement of the partitionP obtained by considering the equiv-
alence relation≡T (P) onMk2 given by:

y1 ≡T (P) y2 if and only if TP (y1) = TP(y2).

Notations 3.15 The partitionT (P) is respectively denoted Suf(P), nSub(P) and Sub(P) in the case of
the suffix,n-subword and subword dynamical type.

Remark 3.16 ThenSub(P) partitions are only relevant forn > 2. Indeed,0Sub(P) =
{

Mk2

}

and
1Sub(P) = P . This is why in the sequel of the paper when we talk aboutn-subword dynamical typen we
always assumen > 2.

Remark 3.17 The different dynamical types induced different partitions. Those partitions are related as
follows in term of refinement.

P ⊇ 2Sub(P) ⊇ ... ⊇ nSub(P) ⊇ ... ⊇
⋂

i∈N

(iSub(P)) = Sub(P) ⊇ Suf(P)

OnceT (P) is computed(ix) two possibilities can occur. On one hand we can have thatP = T (P), in
this situation, we have thatP is in fact a bisimulation on(M, γ) w.r.t. P (see Theorem 3.27). On the
other hand we can have thatP 6= T (P). In this case we can refineT (P) by considering the dynamical
types onT (P). We start by building words onT (P) associated with the trajectoriesΓx to obtainΩT (P)

and finally we obtain the different kinds of dynamical types w.r.t. T (P). This leads to a third partition
T (T (P)) denotedT 2 (P). Again two situations can occur:T (P) = T 2 (P) or T (P) 6= T 2 (P). This
allows us to consider a general procedure that we describe inthe following subsection.

Remark 3.18 The readers familiar with the classicalbisimulation algorithm(2.16) realised that the par-
tition induced by2Sub(P) is sufficent in order to compute bisimulation. We investigate the other dynam-
ical types in order to “accelerate” in some sense the construction of the bisimulation, in particular when
thebisimulation algorithmdoes not terminate (see Corollary 3.37 and Example 4.1).

3.3 Procedure Bisiω

By starting with some initial partitionP0 we have seen how to build a new partitionT (P0). We iterate
the construction to obtain a sequence of partitions

(

T i (P0)
)

i∈N
such that for eachi ∈ N we have that the

partition
(

T i+1 (P0)
)

= T
(

T i (P0)
)

corresponds to the partition induced by the dynamical typesw.r.t.
T i (P0). This construction is summarized by the following procedure, we call this procedureBisiω.

(ix) the meaning of the word “computed” is discussed in Remark 3.20.
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Procedure 3.19
Initialization: P := P0

Do
Computethe set of wordsΩP

AssociateTP(y) with eachy ∈ Mk2 use it toBuild T (P)
If P = T (P)

Then ReturnP
ElseP := T (P)

End Do

Remark 3.20 ProcedureBisiω is merely conceptual. Indeed in general it is far to be computable. One
main problem to be settled is to determine when two general words, as defined in our context, are equal.
Let us be more explicit, assume thatωx andωx′ are words respectively associated with the trajectories
Γx andΓx′ . The problem is thatωx andωx′ are not equal as functions since their domains are different:
they are respectivelyFx andFx′ . Since the order onFx andFx′ is possibly not discrete, and even not
well-founded, we need to introduce a general notion ofsynchronizationfor ordered sets which is nothing
else than an isomorphism of ordered structures. So we will say thatωx andωx′ are equal if and only there
exist an isomorphismσ between the ordered structuresFx andFx′ such that for allI ∈ Fx we have that
ωx(I) = ωx′ (σ(I)).
Let us remark that the partitionT (P) is in general even notdefinableby a first-orderL-formula where
L is the language given by the order and the initial partition:L = {<,P , γ}.
However we have shown that in the case ofo-minimal structuresthe first step of ProcedureBisiω already
provides interesting results. A discussion about computation of the words and the dynamical types in this
particular case can be found in [BM05].

Remark 3.21 GivenP ∈ T (P) it can be seen as a subset ofMk2 , or it can be seen as a dynamical type
w.r.t. P i.e. a set of words onP .

Lemma 3.22 Giveny a point of the output spaceMk2 , the first letter of eachω ∈ TP (y) is P where
P ∈ P andy ∈ P . This is true for the each kind of dynamical type defined previously.

Proof: This is an immediate consequence of the different definitions of the dynamical types. 2

Lemma 3.23 Given a dynamical system(M, γ) andP a partition ofMk2 we have thatT (P) refinesP .

Proof: This a direct consequence of Remark 3.17 and the fact thatP = 1Sub(P). 2

Remark 3.24 By Lemma 3.23 we have that ProcedureBisiω generates a decreasing sequence of parti-
tions:

P ⊇ T (P) ⊇ T 2 (P) ⊇ · · · ⊇ T i (P) ⊇ · · ·

To illustrate how ProcedureBisiω works, let us give an example.

Example 3.25 We consider the dynamical system(M, γ) of Example 2.22. We associate to(M, γ) the
initial partition P = {A1, A2} whereA1 = {(0, 0)} andA2 = R2 \ {(0, 0)} (see Figure 4). We apply
ProcedureBisiω on (M, γ) with P as initial partition and using thesuffix dynamical type.
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A1

A2

Fig. 4: P = {A1, A2}

First, we compute the set of words w.r.t.P ,

ΩP = {A2, A1A2, A2A1A2}.

FromΩP we see that there exist three dynamical types w.r.t.P :

B1 = {A2, A2A1A2} ; B2 = {A1A2} ; B3 = {A2}.

These dynamical types lead to the new partition Suf(P) = {B1, B2, B3} (see Figure 5) whereB1 =
{(y1, 0) | y1 < 0} ∪ {(0, y2) | y2 < 0}, B2 = {(0, 0)} andB3 = R2 \ (B1 ∪ B2). Notice that Suf(P) is
a strict refinement ofP , so we iterate the construction. We compute the set of words w.r.t. Suf(P),

ΩSuf(P) = {B1B2B3, B3B1B3, B2B3, B1B3, B3}.

FromΩSuf(P) we see that there exist four dynamical types w.r.t. Suf(P):

C1 = {B1B2B3, B1B3} ; C2 = {B3B1B3} ; C3 = {B2B3} ; C4 = {B3}

Again these dynamical types lead to a new partition Suf2 (P) = {C1, C2, C3, C4} (see Figure 6). Let us
compute the set of words w.r.t. Suf2 (P),

ΩSuf2(P) = {C2C1C4, C1C3C4, C1C4, C3C4, C4}.

FromΩSuf2(P) we see that there exist four dynamical types w.r.t. Suf2 (P):

D1 = {C1C3C4, C1C4} ; D2 = {C2C1C4} ; D3 = {C3C4} ; D4 = {C4}

Those four dynamical types do not refine the partition Suf2 (P) (see Figure 7). In other words, we have
the following equality Suf2 (P) = Suf3 (P). One can check that Suf2 (P) is a bisimulation on(M, γ)
w.r.t. P .

Remark 3.26 The dynamical system of Example 3.25 is non-deterministic.Indeed two trajectories are
associated with each pointy of the output spaceMk2 . In the papers [BMRT04, BM05], we were unable
to deal with such situations.
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B1

B1

B2

B3

B3

Fig. 5: Suf(P)

C1

C1

C3

C2

C4

Fig. 6: Suf2 (P)

D1

D1

D3

D2

D4

Fig. 7: Suf3 (P)

The situation of Example 3.25 is not a particular case. Indeed if ProcedureBisiω terminates, it provides
a bisimulation. We can now state the main result of the paper:

Theorem 3.27 Let (M, γ) be a dynamical system, letTγ be the associated transition system onMk2 ,
and letP0 be a finite partition ofMk2 . If ProcedureBisiω terminates, then it provides a bisimulation on
Tγ w.r.t. P0.

Proof: By hypothesis, ProcedureBisiω returns a partitionP such thatP = T (P). To prove that the
equivalence relation induced fromP is a bisimulation onTγ w.r.t. P0. We will show that given any
y1, y2 ∈ A andy′

1 ∈ B (for someA, B ∈ P) if y1 →γ y′
1 then there existsy′

2 ∈ B such thaty2 →γ y′
2.

SinceP = T (P), A corresponds to a dynamical type onP (i.e. an element ofT (P)). Hence we
have thatTP(y1) = TP(y2). Depending of the kind of dynamical type, the argument to findy′

2 is slightly
different. We do the rest of the proof with the suffix dynamical type, the other(x) cases are similar.

Sincey1 →γ y′
1 there existsx1 ∈ Mk1 andt1, t′1 ∈ M with t1 6 t′1 such thatγ(x1, t1) = y1 and

γ(x1, t
′
1) = y′

1. By definition of the suffix dynamical type,ω(x1,t1) ∈ SufP(y1). Sincey1 ∈ A and
y′
1 ∈ B, we have thatAB is a subword(xi) of ω(x1,t1). Using the fact that SufP(y1) = SufP(y2), we can

find x2 ∈ Mk1 andt2 ∈ M such thatγ(x2, t2) = y2 andω(x2,t2) = ω(x1,t1). Hence it is possible to find
an interval (or a point)I ∈ F(x2,t2) such thatω(x2,t2) (I) = B. We pick any pointt′2 ∈ I and clearly we
have thaty′

2 = γ(x2, t
′
2) is the desired point.

We have thatP respectsP0 by iterating Lemma 3.23. 2

Corollary 3.28 Under the assumptions of Theorem 3.27 we have that if there existsP ′
0 a refinement of

P0 such thatP ′
0 = T (P ′

0) thenP ′
0 is a bisimulation onTγ w.r.t. P0.

Unfortunately, ProcedureBisiω does not provide in general the coarsest bisimulation onTγ w.r.t. P .
Here are two examples that illustrate this fact.

Example 3.29 We consider a dynamical system where the output space consists of two parallel straight
lines and the dynamics is completely deterministic, given apoint on one of the lines, it goes to infinity
without leaving the line. In other words, we have thatM = 〈R, <〉 and the dynamicsγ : R×{0, 1}×R →
R×{0, 1} is defined byγ(x1, x2, t) = (x1 + t, x2). We associate with(M, γ) the partitionP = {A, B}
whereB = R × {0, 1} \ A andA is defined as follows:

A =
{

(n − (1/m), 0) | n ∈ N, m ∈ N \ {0}
}

∪
{

(n, 1) | n ∈ N
}

.

(x) This of course does not hold for the0-subword and the1-subword dynamical types.
(xi) Formally, we have to take{t1, t′

1
} = M ′ ⊆ M .
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Let us consider the suffix dynamical type of the two pointsy1 = (1/2, 0) andy2 = (1, 1):

SufP (y1) =
(

(AB)ω
)ω

and SufP (y2) = (AB)ω .

Clearly, y1 andy2 do not have the same suffix dynamical type w.r.t.P however one can show thatP is
the coarsest bisimulation w.r.t.P .

Remark 3.30 In the previous example, the fact that the partition is too fine is due to the fact that the
bisimulation does not distinguish(AB)ω and ((AB)ω)

ω. Indeed, in this case the transition systemTγ

is completely deterministic, so the bisimulation only needto know that the dynamics goes infinitely often
from A to B and fromB to A. The bisimulation does not care about the“kind of infinity” . It is well-
known that in the case of deterministic finite transition systems, the bisimulation and language correspond.
Example 3.29 shows that considering more complex system make not clear how the notions of language
equivalence and bisimulation are related.

Remark 3.31 Let us notice that if we considern-subword or subword dynamical type on Example 3.29
we obtain the coarsest bisimulation.

However when considering non deterministic system, the next example shows that using3-subword
dynamical type leads already to a too fine analysis.

Example 3.32 Let us consider the dynamical system of Figure 8 with the partition P = {A, B, C}. Let
us consider the3-subword dynamical type of the two pointsy1 andy2.

3SubP (y1) = {ABC} and 3SubP (y2) = {AB, AC} .

Clearly, y1 andy2 do not have the same3-subword dynamical type w.r.t.P , however one can show that
P is the coarsest bisimulation w.r.t.P .

A B C
y1

y2

Fig. 8: 3-subword dynamical types do not provide the coarsest bisimulation

Nevertheless if we look at the2-subword dynamical type, we always obtain the coarsest bisimulation
as stated in the following theorem.

Theorem 3.33 Let (M, γ) be a dynamical system, letTγ be the associated transition system onMk2 ,
and letP0 be a finite partition ofMk2 . If ProcedureBisiω terminates with the2-subword dynamical
type, then it provides the coarsest bisimulation onTγ w.r.t. P0.
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Proof: By Theorem 3.27 we already know that ProcedureBisiω provides a bisimulation onTγ w.r.t. P0,
it remains to show that it is the coarsest. We proceedab absurdo. Hence we suppose there exists some
step of ProcedureBisiω andy1, y2 ∈ Mk2 such thaty1 ∼P0

y2 and2SubP (y1) 6= 2SubP (y2). We
can choose this step such that each piece ofP is a union of equivalence classes for∼P0

. We have that
y1 ∈ A for someA ∈ P . Since2SubP (y1) 6= 2SubP (y2), we can supposeAB ∈ 2SubP (y1) and
AB /∈ 2SubP (y2) for someB ∈ P . This means that there existsy′

1 ∈ B with y1 →γ y′
1 and that it is

impossible to findy′
2 ∈ B with y2 →γ y′

2. Sincey1 ∼P0
y2 andB is a union of equivalence classes for

∼P0
, this contradicts that∼P0

is a bisimulation. 2

Corollary 3.34 Let (M, γ) be a dynamical system, letTγ be the associated transition system onMk2 ,
and letP0 be a finite partition ofMk2 . ProcedureBisiω terminates with the2-subword dynamical type
if and only if there exists a finite bisimulation onTγ w.r.t. P0.

Proof: If there exists a finite bisimulation onTγ w.r.t. P0, the proof of Theorem 3.33 shows that Procedure
Bisiω terminates.

Let us now suppose that ProcedureBisiω terminates. SinceP0 is finite, the number of2-subword
dynamical types is finite, (i.e.2Sub(P0) is finite). By an easy induction using the same argument, one
can see that2Subi (P0) is finite for all i ∈ N. Hence if ProcedureBisiω terminates, we clearly have that
there exists a finite bisimulation onTγ w.r.t. P0. 2

In the sequel, we investigate extra assumptions which provide that ProcedureBisiω terminates with
the coarsest bisimulation.

Theorem 3.35 Let (M, γ) be a dynamical system and letP0 be a finite partition ofMk2 such that for
all n ∈ N and for all y ∈ Mk2 we have that SufSubn(P0)(y) reduces to a singleton, and letTγ be the

associated transition system onMk2 . If ProcedureBisiω terminates with the subword dynamical type,
then it provides the coarsest bisimulation onTγ w.r.t. P0.

Proof: The proof is similar to the proof of Theorem 3.33. We also proceed ab absurdo. Hence we can
find some step of ProcedureBisiω andy1, y′

1 ∈ Mk2 such thaty1 ∼P0
y′
1 and SubP (y1) 6= SubP (y′

1).
We can choose this step such that each piece ofP is a union of equivalence classes for∼P0

.
Given anyω = A1...An ∈ SubP (y1), we can build the following sequence of transitions.

y1 →γ y2 →γ ... →γ yn,

with yi ∈ Ai for i = 1, ..., n. Sincey1 ∼P y′
1 we can build a similar sequence of transitions.

y′
1 →γ y′

2 →γ ... →γ y′
n,

with yi ∼P0
y′

i for i = 1, ..., n. Since eachAi is a union of equivalence classes for∼P0
, we have that

y′
i ∈ Ai for i = 1, ..., n. Let us now prove that the suffix uniqueness hypothesis implies that there exists

x ∈ Mk1 andt1,...,tn ∈ M with t1 6 ... 6 tn such thatγ(x, ti) ∈ Ai for i = 1, ..., n ; meaning that
ω ∈ SubP (y′

1). Clearly we can findx, t1, t2 with t1 6 t2, γ(x, t1) ∈ A1 andγ(x, t2) ∈ A2 (since
y′
1 →γ y′

2). Let us suppose, for a contradiction, that givenx, t1, t2 such thatt1 6 t2, γ(x, t1) ∈ A1

andγ(x, t2) ∈ A2 we have thatγ(x, t3) /∈ A3 for all t3 > t2. In particular, using the suffix uniqueness
hypothesis, this means that the unique word of SufP (y′

2) does not contain the letterA3. This contradicts
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the existence of the transitiony′
2 →γ y′

3 wherey′
3 ∈ A3. Thus we can findt3 with the desired conditions.

Iterating the same argument we find the otherti’s.
Similarly, given anyω ∈ SubP (y′

1), we can prove thatω ∈ SubP (y1). This contradicts that SubP (y1) 6=
SubP (y′

1). 2

The assumptions of Theorem 3.35 are very strong. To weaken these assumptions, one could investigate
cases whereTγ is transitive or deterministic.

Corollary 3.36 Under the hypothesis of Theorem 3.35, if there exists a finitebisimulation onTγ w.r.t. P0,
ProcedureBisiω terminates with the subword dynamical type.

Corollary 3.37 Under the hypothesis of Theorem 3.35, if some step of ProcedureBisiω, with the subword
dynamical type, provides an infinite partitionP there is no finite bisimulation onTγ w.r.t. P0.

Corollary 3.38 Under the hypothesis of Theorem 3.35, when ProcedureBisiω has terminated, we have
that:

2Sub(P) = ... = nSub(P) = ... = Sub(P) ⊇ Suf(P)

Remark 3.39 The assumptions of Theorem 3.35 are satisfied whenγ(., .) is a flow of a vector fieldF :
Rn → Rn which does not depend on the time (this is the assumption in [LPS00]). In this case,Tγ is both
transitive and deterministic.

Remark 3.40 An interesting question is of course to know when ProcedureBisiω terminates. In [BM05]
Theorem 4.21 gives a condition of termination for ProcedureBisiω.

Remark 3.41 Given(M, γ) a dynamical system andP a finite partition ofMk2 such that there is no fi-
nite bisimulation onTγ w.r.t. P , there are examples where ProcedureBisiω terminates with the subwords
(or suffix) dynamical types (see Example 4.1).

Remark 3.42 In order to obtain similar results on back-bisimulation, one could apply an analog to Pro-
cedureBisiω where the suffixes are replaced by the prefixes.

Remark 3.43 In [BMRT04] in order to define the dynamical type of a point w.r.t. some partition, we
introduced the notion of (multi)dotted words (instead of the suffixes). One can show that the finite bisimu-
lation obtained with (multi)dotted words is both forward and backward stable. However the use of suffixes
instead of (multi)dotted words leads to a coarser bisimulation than the one obtained with the suffixes. This
is illustrated in Figures 9 and 10. In Figure 9, the partitioninduced by the dotted words have nine pieces
corresponding to the dotted wordṡA, ȦBA, ...,ABȦ, ȦBABA, ...,ABABȦ. In Figure 10, the partition
induced by the suffixes have five pieces corresponding to the non empty suffixes of the wordABABA.

4 Examples
This section illustrates ProcedureBisiω on some examples. In each case, we give a dynamical system
(M, γ) and an initial partitionP and we observe how ProcedureBisiω behaves.

Example 4.1 We consider a dynamical system(M, γ) related to the spiral example of [LPS00]. We have
M = 〈R, <〉 andγ : R2 × R → R2 are defined as follows.

γ(x, t) = et (x cos t, x sin t)
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A B

Fig. 9: Dotted words partition

A B

Fig. 10: Suffixes partition

The dynamicsγ is a solution of the system of differential equations (2) which is not time depending.
Hence we can apply Corollary 3.37 (see Remark 3.39) to this example.

(

Ẋ

Ẏ

)

=

(

1 −1
1 1

)

·

(

X
Y

)

(2)

The dynamicsγ describes spirals moving away from the origin when time elapses. We associate with
this dynamical system the partitonP = {A, B} whereA = {(y1, 0) | 0 6 y1 6 1} andB = R2 \ {A}.
Let us focus on the the trajectoryΓ1 = {(et cos t, et sin t) | t ∈ R}. We divide the trajectoryΓ1 into two
distinct parts:

Γ−

1 = {(et cos t, et sin t) | t 6 0} andΓ+
1 = {(et cos t, et sin t) | t > 0}

We have thatΓ−

1 is included in the ball of radius1 centered at the origin(0, 0) andΓ+
1 has no interesection

with this ball. In particular we have that the subword dynamical type of any pointy ∈ Γ+
1 is given by

{B}. If we now consider points onΓ−

1 , one can see that their subword dynamical consists of words in
(AB)+ or (BA)+. Let us now show that there are infinitely many subword dynamical types by describing
explicitely the dynamical types of the points onΓ−

1 . Giveny ∈ Γ−

1 , we have thaty = γ(1, t) for some
t 6 0, two cases can occur.

If t = −2kπ then(AB)k+1 ∈ SubP(y) and(AB)k+2 /∈ SubP(y),

if t ∈ ] − 2(k + 1)π,−2kπ[ then(BA)k+1B ∈ SubP(y) and(BA)k+2B /∈ SubP(y).

Hence the first step of ProcedureBisiω with subword dynamical types, already provides an infinite
partition Sub(P). This shows that there is no finite bisimulation onTγ w.r.t. P by Corollary 3.37.
However one can see that Sub(P) = Sub2 (P). This means that Sub(P) is the coarsest bisimulation on
Tγ w.r.t. P .

Remark 4.2 In Example 4.1, we have just seen thatTγ does not admit a finite bisimulation w.r.t.P .
HoweverTγ admits a finite back-bisimulation w.r.t.P . In particular when considering points on the
trajectory Γ1, we only have two prefixes to consider,(AB)ω and (BA)ω . That justifies the interest of
considering both back-bisimulations and bisimulations given a dynamical system.

We now consider an example with self intersecting curve(xii) .

(xii) This kind of behavior motivated the notion of multidotted words in [BMRT04].
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A1

A2

Fig. 11: A simple loop

C1

C2

C3

C4

C5

C6

Fig. 12: T 2 (P) = T 3 (P)

Example 4.3 We consider the dynamical system of Figure 11 with initial partition P = {A1, A2}. There
are four suffix dynamical types w.r.t.P :

B1 = {A1A2A1} ; B2 = {A2A1} ; B3 = {A1} ; B4 = {A1, A1A2A1}.

This leads to the four pieces partitionT (P). The setΩT (P) consists of the unique wordB1B4B1B2B3B4B3.
There are six dynamical types w.r.t.T (P):

C1 = {B1B4B1B2B3B4B3} ; C2 = {B4B1B2B3B4B3, B4B3} ;

C3 = {B1B2B3B4B3} ; C4 = {B2B3B4B3} ; C5 = {B3B4B3} ; C6 = {B3}.

We obtain the partitionT 2 (P). One can easily check thatT 2 (P) = T 3 (P).

5 Conclusion
In this paper we introduced a merely conceptual algorithm called ProcedureBisiω. This procedure aims
to build a finite bisimulation of a given dynamical system w.r.t. a given partition using words. Procedure
Bisiω gives a more “global” vision of the bisimulation than the well-knownbisimulation algorithm. The
papers [KV04, KV06] illustrates that ProcedureBisiω can help to compute complexity bound on the size
of the coarsest bisimulation.

Two of the main challenges for futur work are the following questions,“When is ProcedureBisiω
effective?”, “When does ProcedureBisiω terminate?”.

Another question to address is the following. In Section 3, we introduced several “intermediate”equivalence
relations (see Definition 3.14). These equivalence relations deserve to be investigate for their own. At
present we did not manage to find any relevant property of these equivalence relations.
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Christian Michaux for careful reading of the drafts of this paper and numerous relevant comments. He
also want to thank the referees for their serious work and useful remarks.
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