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In this paper we study bisimulations dgnamical systentiirough a given partition. Our aim is to give a new vision
of the notion of bisimulation by usingrords To achieve this goal, we encode tn@ectoriesof the transition system
as words. This method was introduced in our paper “On o-mmahimgbrid systems” in order to give a hew proof of
the existence of a finite bisimulation forminimal hybrid system&s previously proved in a paper by Lafferriere G.,
Pappas G.J. and Sastry S.). Here we want to provide a systesnaty of this method in order to obtain a procedure
for building finite bisimulations based on words.

1 Introduction

More and more real-life systems are automatically corecbll It is of a capital importance to know
whether the programs governing these systems are correotdér to be able to manipulate these real-
life systems, various mathematical models have been intedi{imed automat§AD94], hybrid systems
[Hen96],...) making the study of the abstract systems a adkinteresting domain of research. Unfortu-
nately even the abstract systems are not always that easytibe) the main problem being their infinite
size. One way to solve this problem is to reduce these infgyistems to finite systems in such a way
that enough information is preserved. It is known thgimulations(see [Acz88, Cau95, Hen95]) are a
“reduction” of particular interest since they preservetaolfdnteresting propertiesg¢achability problem
model-checking branching logic [HNSY94, ACH"95, AHLPO0Q]). That is why we focus our attention
on systems admitting a finite bisimulation.

In [BMRTO04] in order to prove the existence of a finite bisimtibn for an extended class ofminimal
hybrid systeni, we encode the continuous dynamics througtids (see also [BMO5]). In the previous
two papers we limit ourselves to the encodingoefinimal dynamical systengse. dynamical systems
definable in an o-minimal structure; see [vdD98] for a nicergiew on o-minimality.). In particular we
only had to manipulaténite words Let us mention that some analogue already appears in ¢natlire
(the notion of signature for example in [ASY01]). Let us alsmtice that bisimulations of dynamical
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systems has been studied independently in [JdS04] but iifesiedit framework. They studied dynamical
system as defined in [Wil91].

Our technique was used by Korovina and Vorobjov in order tmmoate a doubly exponential bound
on the size of the coarsest finite bisimulationpdéffian hybrid systemgee [KV04]). They recently
improved their results by reducing the bound to a single agptial and prove that this bound is tight
(see [KV06]).

In this paper, we want to give a systematic study of this emgptechnique. In particular we give
a ProcedureRBisiw) that aims to build a bisimulation on a dynamical system ulgioa partition. Our
hope is that this systematic study will lead to the discox@rgome new general classes of dynamical
systems (through partition) which admit finite bisimulatso Beyond the fact that dynamical systems are
of interest in their own, they are an essential componenylofiti systems. In particular, whetrong reset
conditionsare assumed on the hybrid system, finding finite bisimulatimiithe hybrid system reduces
in finding a finite bisimulation on each location (which is emad with a dynamical system) w.r.t. the
partition induced by the guards, resets and invariant. théscase for o-minimal hybrid systems, see
[LPSO00]. Moreover a recent point of view on the theory of hglsystems allows to see an hybrid system
as a dynamical system (see the notiomylrifold in [SISLOQ]).

The rest of the paper is organized as follows. In section 2regall classical definitions and prop-
erties of bisimulations on a transition system, we also rilesd¢he well-knownbisimulation algorithm
([BFH91, KS90, Hen96]), which is in fact a semi-algorithm.eWhd this section by defining what we
call adynamical systerm this paper. Section 3 is the main section of the paper. af By explaining
how to associate word with a trajectory; we introduce the notion difnamical typewhich allows in
some sense to recover the continuous dynamics through ttitgma These tools being formalized we
introduce a conceptual semi-algorithm called Proced®ire@w and we prove that this procedure com-
putes a bisimulation. We also describe several variantsigbmcedure. Finally we discuss in which case
Bisiw provides the coarsest bisimulation of a dynamical systewutfh a given partition. In Section 4
we provide an extensive list of examples.

2 Preliminaries

In this section, we recall some basic definitions and resalteerning bisimulations on a transition sys-
tem (see [Acz88, Cau95, Hen95] for general references). l¥¢eracall the well-knowrbisimulation
algorithm ([BFH91, KS90, Hen96]). Then we give definition dfnamical systemand associate with
them a natural transition system.

2.1 Transition systems and bisimulation

Definition 2.1 A transition systenT = (Q, X, —) consists of a set of statég (which may be uncount-
able),X afinite alphabet of events, ard C Q x ¥ x @Q a transition relation.

A transition(¢1, a, g2) € — is denoted by;; % ¢». A transition system is said finite @ is finite. If
the alphabet of events is reduced to a singletors {a}, we will denote the transition systef, —)
and omit the event.

Definition 2.2 Given a transition systel = (Q, X, —), afinite path inT is a finite sequence of transi-
tionsqo q1 ¢2 - -+ ¢, such that for ali = 1, ..., n there exists; € ¥ such thaig;_; — ¢;. We denote it
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Fig. 1: Forward stable relation

Fig. 2: Backward stable relation

as follows:

p=q 5 q g g,

Definition 2.3 Given two transition systems on the same alphabet of evénts: (Q:,%, —;) and
Ty = (Q2, X, —2), apartial simulation off; by T3 is a binary relation~ C @1 x Q2 which satisfies the
following condition:

\V/qlaqll S Q17 qu S QQ, va € 27
(@1 ~ g2 andqy =1 ¢f) = (3gb, ¢4 ~ b andqz =2 gb)

1)

The condition (1) is read’ partially simulatesy .

Definition 2.4 Given~ a partial simulation ofl}; by T5, we say that- is asimulation ofT} by T5 if, for
eachq; € 1, there existgy € Q2 such thaty; ~ ¢-.

Definition 2.5 Given two transition systems on the same alphabet of evénts: (Q1,>,—1) and
Ty = (Q2, %, —2), a bisimulation betwee; andT; is a relation~ C @1 x Q2 such that~ is a
simulation ofT} by T, and the inverse relatidfi ~—! is a simulation ofl;, by 7). In this case we say
thatT; andT5 are bisimilar

Remark 2.6 One could consider a different notion of bisimulation, Istaall it back-bisimulatioror
backward bisimulatiofsee [HKPV98]). This would come from the notiongafrtial backward-simulation
defined as partial simulation (Definition 2.3) where the dtind (1) is replaced by:

VC]hqll € Q17 Vq/Q € Q27 Ya € 27
(¢ ~ ¢handgqr 1 ¢}) = (3g2, @1 ~ g2 andga S5 ¢b)

We say that a bisimulation is farward stablerelation and that the back-bisimulation iskteckward
stablerelation. The difference between these two notions istititsd on Figures 1 and 2.

Definition 2.7 Given a transition systefi = (@, X, —), we can look at bisimulations of x Q; they
are calledbisimulations ori".

As already mentioned in the introduction, a motivation fer study of bisimulation is theeachability
problem Let us make this problem more precise:

O 1f ~={(q1,92) € Q1 X Q2| q1 ~ g2}, then~~1={(q2,q1) € Q2 X Q1 | g1 ~ g2}
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Reachability Problem 2.8 GivenT' = (Q, 3, —) a transition system/nit C @ and Fiin C @ two
subsets of states, is therdiaite patt) p from I'nit to Fin?

If T = (Q,—) is areflexivé" transition system then there exists sevaiaial “partial” bisimulations
onT given by~,= {(¢q,¢') | ¢ € Q} for g € Q. This implies that there exists a bisimulation betw&en
and aone-state systeffyy, whereTy = (Qo, —o) With Qo = {q0} and—o= {(qo, go) }- The bisimulation
betweerll” andTy is given by~o= {(¢,q0) | ¢ € Q}.

Regarding theeachability problem 2.8the bisimulations-, and~ are completely irrelevant. One
can have a bisimulation between a completely disconneeftgkive transition system and a single state
system {). This gives a motivation for the definition bfsimulation w.r.t. a partition This notion leads
to a preservation result on the Reachability Problem (seen& 2.15).

Moreover the study of finite bisimulation w.r.t. a partition dynamical systems leads to the existence
of finite bisimulations on subclassesyfbrid systemdor examples see [LPS00, Dav99, BMRT04, KV04,
BMO5, KVO06].

Let us give the definition dbisimulation w.r.t. a partition

Definition 2.9 GivenT a transition systenm? a partition of Q@ and~ C @ x @ a bisimulation, we say
that the bisimulation- respects the partitioR if given anyp, g € @ such thatp ~ ¢ thenp andq belong
to the same piece of the partitigh. We will speak obisimulations w.r.tP.

Definition 2.10 GivenT a transition systenP a partition of Q we can define theoarsest bisimulation
onT w.r.t. P, itis denotedvp:

~p = J {~|~is abisimulation o’ w.r.t. P}

Remarks 2.11 Definition 2.10 makes sense since the union of bisimulatafdsw.r.t. P is still a bisim-
ulation onT" w.r.t. P.

One can show that the coarsest bisimulatiorifow.r.t. P is an equivalence relation, moreover each piece
of the partition? is an union of equivalence classes-ob.

In the case of bisimulations which are equivalence relatiore can define the notion gfiotient of a
transition system by such a bisimulation

Definition 2.12 Given a transition systefll = (Q, X, —) and~ a bisimulation oril”’ which is an equiv-
alence relation. We can consider thaotient ofT" by ~, denoted byl'/. = (Q/~, %, —~.) and defined
as follows:

o Q/~=A{lgl~ [ g€ Q}wherelg]. ={q"[¢~q'}
e [¢1]~ =~ [g2]~ if and only if there existg] € [¢:]~ andq} € [g2]~ such thaiy; = ¢b5.

Remark 2.13 Definition 2.12 makes sense even when we consider an equieatdation~ which is not
a bisimulation.

Lemma 2.14 GivenT a transition systemy- a bisimulation onl” which is an equivalence relation, then
the graph of the natural majp .. : @ — Q/~ is a functional bisimulation frorff" to its quotient transition
systeni’/ ... (see [Cau95, Lemma A.1 p. i]).

(iii) i.e.p=qo a1, q1 a2, q2 - Ln, qn With go € Init andg, € Fin.
M j.e. forallg € Q we have that — q.



Words and bisimulations of dynamical systems 5

We end this subsection by making precise the folk result stetes that bisimulations preserve the
Reachability Problem

Lemma 2.15 GivenT', Init, Fiin as in theReachability Problem 2,8 a partition of@ given by{Im’tﬂ
Fin,Fin \ Init, Init \ Fin,Q \ (Init U Fin)} and~p a bisimulation onI’ which is an equivalence
relation w.r.t.P. There exists a finite path ifi from Init to F'in if and only if there exists a finite path in
T/, fromInit/., to Fin/.,.

Let us notice that the same result holds for back-bisimamati

2.2 Bisimulation Algorithm

As already mentioned previously, it is an important questio know whether a given infinite system
admits a finite bisimulation. Since, for example, the readig problem is decidable for a finite sys-
tem effectively described. Moreover it would be nice to hameautomatic procedure to build this fi-
nite bisimulation. These facts lead to the introductiontafhisimulation algorithmwhich appeared in
[BFH91, KS90, Hen96]. Given a transition systdim= (@, >, —) and P, a finite partition ofQ, the
bisimulation algorithm iterates the computation of prezssor®) of the pieces of the partition, let us
recall it:

Algorithm 2.16

Initialization: P := Py

While 3P, P’ € P Ja € ¥ suchthato # P N Pre,(P’) # P
SetP, = PN Pre,(P') andP, = P\ Pre,(P’)
RefineP := (P\ {P}) U{P1, P»}

End while

Return P

The following are well-known results on the bisimulatioga@dithm.

Lemma 2.17 GivenT a transition system an®, a finite partition of@, the bisimulation algorithm
terminates if and only if there exists a finite bisimulationfow.r.t. Py.

Lemma 2.18 If the bisimulation algorithm terminates it provides theacgest bisimulation of” w.r.t.
Po.

2.3 Dynamics
Definition 2.19 A dynamical systef) is a pair (M, v) where:
e M = (M, <) is atotally ordered structure,

o v: MM x M — M*2 is a function.

M) GivenT a transition system angl € Q, the set ofa-predecessors af, denotedPre, (q), is defined byPreq(q) = {¢' €
Q¢ % ¢}, andif P C Q, Preq(P) = U,ep Prea(q).

M) Qur definition of dynamical system is an attempt to genezalie continuous dynamics of hybrid systems ([Hen96]) with n
explicit reference to differential equations. This defomt even if rather close, is different from the one givenWilp1]. Deeper
investigation on the links between the two definitions wdudrelevant work.
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Fig. 3: A finite automaton

The functiony is called the dynamics of the dynamical system. More gelyeved can consider the case
wherey is defined on subsets off thatis~y : V; x V — Vo with 1} € M*, vV € M andV, € M*2,

In the sequel we assume the rangeyd$ equal toM 2. Classically, when/ is the field of the reals,
we seel/ as the time) %1 x M as the space-tim@/*2 as the (output) space add** as the input space.
We keep this terminology in the more general context of ectiting M.

In this presentation time and space have the same undedgingture (i.e. M) this comes from our
presentation in [BMRT04] where we needed the whole dynarmicdem to be definable in the o-minimal
structureM. However we can imagine dynamical system with dynamics; x V' — V5 whereV is
a totally ordered set and;, V3 are defined in completely different structure. This showdtaffect the
results presented in the sequel.

The definition ofdynamical systerencompasses a lot of different behaviors. Let us give soramex
ples.

Example 2.20 Let M = (N, <) and the dynamics : {0,1} x {0,1} — {0,1} is given byy(z,t) =
(x +t) mod 2. The transition system associated with this dynamicaksygsee Definition 2.24) is in
fact a finite automaton (see Figure 3).

Example 2.21 We can recover the continuous dynamics ofttheed automatorfisee [AD94]). In this
case, we have tha1 = (R, <) and the dynamics : R" x [0, +oco[— R" is defined as follows.

7(:615 ...,In,t) = ('rl + ta vy T+ t)

Example 2.22 Definition 2.19 also allows dynamical systems with non aeiteistic') behavior. Let us
consider(M, v) where each point of the plane has two possible behaviorsgtido the right” or “to
go up” (see Figure 4 on page 12). More precisely we have that= (R, <) and~y : R3 x R — R?is
defined as follows.

(1 +t,22) ifp>0

’Y(Ilvavpat)_{ (xl,xg‘i‘t) pr<0

Definition 2.23 If we fix a pointz € M*1, the sef’, = {v(x,t) |t € M} C M*2 is called the trajectory
determined by.

We define a transition system associated with the dynamystgs, this definition is an adaptation to
our context of the classicabntinuous transitiofin the case of hybrid system (see [LPS00] for example).

Definition 2.24 Given(M, ) a dynamical system, we definé¢ransition systenT’, = (Q, —) associ-
ated with the dynamical systeby:

i) The non determinism comes in fact from the associated transiystem, see Definition 2.24.
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e the set) of states is\/*2;

e the transition relationy; —- y- is given by:

dx € ]\/[kl, dt1,to € M, (tl < to andv(w,tl) =1 andw(x,tg) = yg)

Remark 2.25 Let us notice thaf’, is a reflexive transition system.

Remark 2.26 The transition systerfi, is in general not transitive. To illustrate this fact, let csnsider
Example 2.22. Given the three points of the output space- (0,0), y2 = (0,1) andys = (1,1),
we clearly have thay, /4. ys sincey: —, y» andy, —, ys. Indeedy; = ~(0,0,—1,0), y» =
7(0,0,—1,1) = ~(0,1,1,0) andys = v(0,1,1,1).

3 Words and dynamics

Given a dynamical systeroM,y) and P a finite partition of the spacé/*2, an interesting question
is to know if there exists a finite bisimulation ¢fM,~) w.r.t. P. If such a bisimulation exists the
bisimulation algorithm2.16 provides the coarsest one by iterating the computafidhe predecessors
of the pieces of the partitio®. The goal of this section is to give another procedure thatmdes the
coarsest bisimulation on a dynamical systei, ) (i.e. a bisimulation o) w.r.t. a partition?. Our
approach is in some sense more global thathilsenulation algorithm We use the idea introduced in
[BMRTO04] which consists in encoding the dynamics(8ft, ) through the partitiorP by words on this
partition. Let us first explain how we associate a word withegettory.

3.1 Encoding trajectories by words

First let us define the notion aford in this general (possibly uncountable) context. This dédiniis
inspired from [BCO1], see also [Tru89, Rab03].

Definition 3.1 GivenP a finite set (called thalphabe}, M a totally ordered set, avordw on P is a
function fromM to P; the wordw is also denoted in a sequence-like notation®y), . ,, wherew; € P
is the image of the elementnder the functio.

We recover the classical finite wordswiwords when the sel/ is respectively finite or equal .

Example 3.2 Let us consider the finite sét= { A, B}. We give three examples of words®Bn

1. Given the finite sed/; = {1,2,3,4} equipped with the natural ordering and the function :
M; — P such thatv; (1) = A, w1(2) = B, w1 (3) = Aandw;(4) = B, we recover an example of
finite word In this casev; is classically denoted BAB.

2. Given the set of natural numb@drd, = N equipped with the natural ordering and the function
we : My — P such thatua(n) = A if n is even ande(n) = B if n is odd, we recover an example
of w-word. In this casevs is classically denotefAB)~.

3. Given the set of real numbér; = R equipped with the natural ordering and the functiog :
M3 — P such thatvs(n) = Aif n € Qandws(n) = Bif n € R\ Q, we have a “degenerated”
example of word.
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We need to introduce basic notions related to words in thiegg context. For finite words, we adopt
the classical notations.

Definition 3.3 Givenw : M — P a word onP, a subword ofw is given byws : M’ — P where
M’ C M is an arbitrary subset o/ considered with the order induced frahd.

Definition 3.4 Givenw : M — P a word onP, a suffix of w is a subword of a particular form. A
subwordw, : M’ — P is asuffixifand only if M’ = {t |t > to} or M' = {t |t > to} for somey € M.
In the same way we can define the notiompoefix.

Definition 3.5 Givenw; : M7 — P andws : My — P two words orP, theconcatenation of the words
w1 andwg is defined by the WOI'dleg : MlL.JMg — P Wherewlwg [1\41 = wq andwlwg f]uz = Wa and
where the order od/; UM, is the order induced fromd/; on M, the order induced fromd/; on M, and
VYmq € My, Ymg € M, we have thatn, < ms in M;UMos.

We are now ready to build words associated with trajectoi@sen (M, v) a dynamical system and
P afinite partition ofM*2, givenz € M* we associate a word with the trajectdry in the following
way. We consider the sefs € M | v(z,t) € P} for eachP € P. This gives a partition of the tima&/.

In order to define a word o associated with the trajectory determinedahywe need to define the set
of intervalsF,.

Fo = {I \ (I is a time interval or a pointand is maximal for the property
3P e P, Vte I, y(z,t) € P}.

For eachr, the setF, is totally ordered by the order induced frai. Let us note that the s, can be
equal toM itself. This allows us to definde word onP associated with",, denotedu,.

Definition 3.6 Givenz € M*1, the word associated with,. is given by the functiow, : 7, — P
defined by:

we(I)=P wherel € F, is such thawt € I ~(z,t) € P.

Let us note that givem € M*1, there exists a unique word, on P associated with the trajectory; .
The intuition behind the introduction ¢, is the following. We want successi® letters of the words
w,, to be different.

Definition 3.7 We denote bf2, the set of words associated wifth, v) w.r.t. P. We have tha®©» is a
set of words orP.

The sef)p gives in some sense a complstaticdescription of the dynamical systefim1, ) through
the partition”. In order to recover thdynamicswe need further information. This is the object of the
following subsection.

(i) The notion of successive letters is only defined“foell behaving” dynamical systems.
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3.2 Dynamical type

Given a pointz of the input spacé/*1, we have associated with a trajectoryl’,, and a wordw,. If
we considelz, t) a point of the space-tim&/** x M, it corresponds to a point(z,¢) lyingonT',.. To
recover in some sense the positiony¢f, t) onT',, from w,,, we associate witliz, t) a suffix of the word
w, denotedv(, ;. The construction ob, ;) is similar to the construction @f,.. We need to introduce
the set of intervals
Flapy ={IN{t' [t >t} | I € Fo}}.

For each(z, t), the setF, ;) is totally ordered by the order induced frabA. This allows us to define

the suffix of the word . associated with timedenotedv, ).

Definition 3.8 Given(z,t) € M* x M, the suffix of the wordv, associated with timeis given by the
functionw, 4) : F(az,¢) — P defined by:

WizyI) =P wherel € F(, ;) is suchthatt’ € I ~(x,t') € P.
Due to the particular form of the suffixes, ), it makes sense to defitiee first letter ofv, 4.

Definition 3.9 Given(z,t) € M* x M, the first letter of the suffix, . is given byw, (I) where! is
the interval of 7, such thatt € I. We denote the first letter af,, ;) by F(w(x ¢))-

Let us notice that givef, t) a point of the space-tim&/** x M there is a unique suffieo, ;) of w,
associated witltz, t).

Given a pointy € M*2 it may have severalz,t) such thaty(z,t) = y and so several suffixes are
associated withy. In other words, givery € M*2, thefuture of y is non deterministic, and so a single
suffix w(, ;) is not enough to recover the dynamics of the transition systeough the partitiorP. To
encode the dynamical behavior of a pajrif the output spacé/*2 through the partitio®, we introduce
several notions oflynamical typef a pointy w.r.t. P.

Definition 3.10 Given a dynamical syste\, v), a finite partition? of M*2, a pointy € M*2 the
suffix dynamical type ofy w.r.t. P is denoted Suf(y) and defined by:

Sug)(y) = {w(m,t) | V(xvt) = y}
We have that Suf(y) is a subset of suffixes of words(®p.

Definition 3.11 Given a dynamical syste(W, ), a finite partition of M*2, an integem € N, a point
y € M*2 then-subword dynamical type gf w.r.t. P is denotechSuly () and defined by:

nSulp (y) ={w | y(z,t) = y andw is a subword olv, ¢
and the length ob, |w| < n andF(w) = F(w(xt)) }-

Definition 3.12 Given a dynamical syste\, v), a finite partition? of M*2, a pointy € M*2 the
subword dynamical type af w.r.t. P is denoted Sub(y) and defined by:

Suby(y) = | nSubs(y).

neN

We have thatSuby(y) is a subset of Syk(y) for all n € N.



10 Thomas Brihaye

Notations 3.13 If we want to talk about a dynamical type of the pointvithout specifying if it is a
subwordn-subword or suffix dynamical type, we use the notafipiy ).

Our goal is to refine the partitio® in order to build a bisimulation w.r.t/?. For this purpose we
consider the equivalence relation between points of theutispacel/*2 “to have same dynamical type
w.r.t. P”. This equivalence relation induces a new partition of thigpat space\/*2 which refinesp.

Definition 3.14 We denote by (P) the refinement of the partitigR obtained by considering the equiv-
alence relation=(p) on M*2 given by:

Y1 =7(P) Y2 if and only if Tp (yl) = Tp (yg)

Notations 3.15 The partition7 (P) is respectively denoted S(), nSub(P) and Sul{P) in the case of
the suffixyp-subword and subword dynamical type.

Remark 3.16 ThenSub(P) partitions are only relevant fon > 2. Indeed,0Sub(P) = {M*2} and
1Sub(P) = P. This is why in the sequel of the paper when we talk abestibword dynamical typen we
always assume > 2.

Remark 3.17 The different dynamical types induced different partisiomhose partitions are related as
follows in term of refinement.

P 2 2Sub(P) 2 ... 2 nSub(P) 2 ... 2 () (iSub(P)) = Sub(P) 2 Suf(P)

ieN

OnceT (P) is compute®® two possibilities can occur. On one hand we can havefhat 7 (P), in
this situation, we have th& is in fact a bisimulation oM, ~v) w.r.t. P (see Theorem 3.27). On the
other hand we can have thBt# 7 (P). In this case we can refirig (P) by considering the dynamical
types onZ (P). We start by building words off (P) associated with the trajectori€s to obtainQ2 p)
and finally we obtain the different kinds of dynamical typestw7 (P). This leads to a third partition
T (T (P)) denotedZ 2 (P). Again two situations can occuf: (P) = 72 (P) or T (P) # T2 (P). This
allows us to consider a general procedure that we descrithe ifollowing subsection.

Remark 3.18 The readers familiar with the classichisimulation algorithn{2.16) realised that the par-
tition induced by2Sub(P) is sufficent in order to compute bisimulation. We invesgéghe other dynam-
ical types in order to “accelerate” in some sense the condinn of the bisimulation, in particular when
thebisimulation algorithndoes not terminate (see Corollary 3.37 and Example 4.1).

3.3 Procedure Bisiw

By starting with some initial partitio®, we have seen how to build a new partiti@n(P,). We iterate
the construction to obtain a sequence of partiti(mé(Po))ieN such that for eache N we have that the
partition (7" (Py)) = T (T*(Po)) corresponds to the partition induced by the dynamical types
T (Pp). This construction is summarized by the following procedwe call this procedurBisiw.

(X) the meaning of the wordcomputed is discussed in Remark 3.20.
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Procedure 3.19
Initialization: P := Py
Do
Computethe set of word$)p
Associatel’s () with eachy € M*2 use it toBuild 7 (P)
If P=T(P)
Then ReturnP
ElseP := T (P)
End Do

Remark 3.20 ProcedureBisiw is merely conceptual. Indeed in general it is far to be coraplg. One
main problem to be settled is to determine when two generalsyas defined in our context, are equal.
Let us be more explicit, assume that andw,, are words respectively associated with the trajectories
I', andT',.. The problem is that, andw,. are not equal as functions since their domains are different
they are respectively,, and F,.. Since the order otF,, and F, is possibly not discrete, and even not
well-founded, we need to introduce a general notiosyfchronizatiorior ordered sets which is nothing
else than an isomorphism of ordered structures. So we wiltlsatw, andw, are equal if and only there
exist an isomorphism between the ordered structurés and F,. such that for alll € F,, we have that
wy(I) = wy (o(I)).

Let us remark that the partitio (P) is in general even nadefinableby a first-order£-formula where

L is the language given by the order and the initial partitiah= {<, P, v}.

However we have shown that in the cas@ehinimal structurethe first step of ProcedurBisiw already
provides interesting results. A discussion about compuriaif the words and the dynamical types in this
particular case can be found in [BMO5].

Remark 3.21 GivenP € 7 (P) it can be seen as a subset/af*z, or it can be seen as a dynamical type
w.r.t. P i.e. a set of words of®.

Lemma 3.22 Giveny a point of the output spac&/*2, the first letter of eacv € 7p (y) is P where
P € Pandy € P. This is true for the each kind of dynamical type defined presly.

Proof: This is an immediate consequence of the different defirstafrthe dynamical types. O
Lemma 3.23 Given a dynamical syste(iM,~v) and P a partition of M*2 we have that (P) refinesP.

Proof: This a direct consequence of Remark 3.17 and the facfthatl Sub(P). O

Remark 3.24 By Lemma 3.23 we have that Procedilittsiw generates a decreasing sequence of parti-
tions:
P2T(P)2T*(P)2- 2T (P) 2+

To illustrate how ProcedurBisiw works, let us give an example.

Example 3.25 We consider the dynamical systém, v) of Example 2.22. We associate(i®1, v) the
initial partition P = {A4;, A2} whereA; = {(0,0)} and A, = R? \ {(0,0)} (see Figure 4). We apply
ProcedureBisiw on (M, ~) with P as initial partition and using thesuffix dynamical type



12 Thomas Brihaye

7777777 B el i
oo b Az g
B Rt el = CE R T Do
‘A—A—GD—A—A%

: A
fffffff e B

b b 4 A
7777777 B e = e e e

Fig. 4: P = {A1, Ao}

First, we compute the set of words w.R,
Qp = {43, A1 Az, As A1 A3}
From Qp we see that there exist three dynamical types Wr.t.
By = {Az, AA1 Ay} s Bo = {A1 Az} 5 By = {Ax}.

These dynamical types lead to the new partition(Byf= {Bi, B2, B3} (see Figure 5) wherd3; =
{(y1,0) | 11 < 0} U{(0,42) | y2 < 0}, Ba = {(0,0)} and B3 = R? \ (B; U By). Notice that SufP) is
a strict refinement oP, so we iterate the construction. We compute the set of wardsSuf(P),

Qsupp) = {B1B2B3, B3B1 B3, BoB3, B1 B3, B3 }.
From Qg,») We see that there exist four dynamical types w.r.t.(Buf
Ci1 ={B1B2B3,B1B3} ; Cy = {B3B1Bs}; C3 = {B2B3} ; Csy = {Bs}

Again these dynamical types lead to a new partitiorf §8f = {C, Cy, C3, C4} (see Figure 6). Let us
compute the set of words w.r.t. 3(P),

Qsup(py = {02010y, C1C3Cy, C1Cy, C3Cy, Cy ).
From Qg () We see that there exist four dynamical types w.r.t* 8Rj:

Dy ={C1C5Cy,C1Cy} ; Dy = {C2C1Cy}; Dy ={C3Cy}; Dy ={Cy4}

Those four dynamical types do not refine the partitiorf 88§ (see Figure 7). In other words, we have
the following equality Saf(P) = Suf (P). One can check that SufP) is a bisimulation onM, v)
w.rt. P.

Remark 3.26 The dynamical system of Example 3.25 is non-deterministéeed two trajectories are
associated with each pointof the output spacé/*z. In the papers [BMRT04, BMO05], we were unable
to deal with such situations.
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B3 C'4 D4
By Ch D,
B2 03 D3

Bg CQ DQ
By Ch D,

Fig. 5: Suf(P) Fig. 6: Suf (P) Fig. 7: Suf (P)

The situation of Example 3.25 is not a particular case. IddderocedureBisiw terminates, it provides
a bisimulation. We can now state the main result of the paper:

Theorem 3.27 Let (M, v) be a dynamical system, I&, be the associated transition system 2,
and letP, be a finite partition of\/*2. If ProcedureBisiw terminates, then it provides a bisimulation on
T, w.rt. Pg.

Proof: By hypothesis, ProcedutBisiw returns a partitior? such thatP = 7 (P). To prove that the
equivalence relation induced frof is a bisimulation oril’, w.r.t. P,. We will show that given any
y1,y2 € Aandy; € B (forsomeA, B € P) if y; —, y; then there existg; € B such that, —- y5.

SinceP? = 7 (P), A corresponds to a dynamical type #n(i.e. an element of (P)). Hence we
have thatl’s (y1) = Tp(y2). Depending of the kind of dynamical type, the argument to fint slightly
different. We do the rest of the proof with the suffix dynanhigae, the othel) cases are similar.

Sincey; —, v} there exists; € MP* andty, ¢, € M with t; < ¢} such thaty(z1,t;) = y; and
y(x1,t}) = y;. By definition of the suffix dynamical typey,, +,y € Sufp(y1). Sincey; € A and
y; € B, we have that B is a subworfl) of w,, ;). Using the fact that Syf(y,) = Sufp(y2), we can
find zo € M* andt, € M such thaty(za,t2) = yo andw,, +,) = Wz, +,)- Hence itis possible to find
an interval (or a point) € F,, ;,) such thatv,, ¢,y (I) = B. We pick any point; € I and clearly we
have thaty, = v(z2, t}) is the desired point.

We have thaP respect$, by iterating Lemma 3.23. O

Corollary 3.28 Under the assumptions of Theorem 3.27 we have that if théses@X a refinement of
Py such thatPy = 7 (P) thenP} is a bisimulation oril’, w.r.t. Py.

Unfortunately, ProcedurBisiw does not provide in general the coarsest bisimulatioffpw.r.t. P.
Here are two examples that illustrate this fact.

Example 3.29 We consider a dynamical system where the output space toabisvo parallel straight
lines and the dynamics is completely deterministic, givg@oiat on one of the lines, it goes to infinity
without leaving the line. In other words, we have thdt= (R, <) and the dynamics : Rx {0, 1} xR —

R x {0, 1} is defined byy (1, x2, t) = (21 + ¢, z2). We associate withM, ) the partitionP = { A, B}
whereB =R x {0,1} \ A andA is defined as follows:

A={(n—(1/m),0) |[ne N,me N\ {0}}U{(n,1)|neN}.

(X_) This of course does not hold for tiesubword and thé-subword dynamical types.
&) Formally, we have to takét1,t)} = M’ C M.
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Let us consider the suffix dynamical type of the two pajnts (1/2,0) andy, = (1,1):

Suf, (y1) = ((AB)*)” and Suf (y2) = (AB)“.

Clearly, 1y, andys do not have the same suffix dynamical type wi.thowever one can show th&is
the coarsest bisimulation w.rP.

Remark 3.30 In the previous example, the fact that the patrtition is toe fim due to the fact that the
bisimulation does not distinguisiB)* and ((AB)*)“. Indeed, in this case the transition syst&m

is completely deterministic, so the bisimulation only ntekinow that the dynamics goes infinitely often
from A to B and fromB to A. The bisimulation does not care about theénd of infinity” . It is well-
known that in the case of deterministic finite transitiortsyss, the bisimulation and language correspond.
Example 3.29 shows that considering more complex systera nadklear how the notions of language
equivalence and bisimulation are related.

Remark 3.31 Let us notice that if we considersubword or subword dynamical type on Example 3.29
we obtain the coarsest bisimulation.

However when considering non deterministic system, the eeample shows that usirgysubword
dynamical type leads already to a too fine analysis.

Example 3.32 Let us consider the dynamical system of Figure 8 with theitfmant? = {A, B, C}. Let
us consider th8-subword dynamical type of the two poigtsandys.

3Sulp (1) = {ABC}  and  3Sulp (1) = {AB, AC}.

Clearly, y; andy, do not have the sansubword dynamical type w.r.%2, however one can show that
P is the coarsest bisimulation w.rE.

A B c
Yyie--—f>-—---—- P B
= T
ygo’i [ >

Fig. 8: 3-subword dynamical types do not provide the coarsest bisition

Nevertheless if we look at th&subword dynamical type, we always obtain the coarsesnhisition
as stated in the following theorem.

Theorem 3.33 Let (M, v) be a dynamical system, I&, be the associated transition system 2,
and letP, be a finite partition ofM/*2. If ProcedureBisiw terminates with th&-subword dynamical
type, then it provides the coarsest bisimulatioriZgnw.r.t. Po.
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Proof: By Theorem 3.27 we already know that ProcedBieiw provides a bisimulation offi, w.r.t. Py,

it remains to show that it is the coarsest. We procaie@dbsurdo Hence we suppose there exists some
step of Procedur@isiw andy, y» € M*2 such thaty; ~p, y» and2Subp (y1) # 2Subp (y2). We
can choose this step such that each piec® & a union of equivalence classes fop,. We have that

y1 € A for someA € P. Since2Subp (y1) # 2Subp (y2), we can supposdB € 2Subp (y;) and
AB ¢ 2Subp (y2) for someB € P. This means that there exigis € B with y; —, y} and that it is
impossible to findy; € B with y» —., y5. Sincey; ~p, y2 andB is a union of equivalence classes for
~p,, this contradicts that-p, is a bisimulation. O

Corollary 3.34 Let (M, ) be a dynamical system, I, be the associated transition system &2,
and letP, be a finite partition ofd/*2. ProcedureBisiw terminates with th@-subword dynamical type
if and only if there exists a finite bisimulation @h w.r.t. .

Proof: If there exists a finite bisimulation dii, w.r.t. Py, the proof of Theorem 3.33 shows that Procedure
Bisiw terminates.

Let us now suppose that ProceduBeésiw terminates. Sincé, is finite, the number of-subword
dynamical types is finite, (i.e2Sub(Py) is finite). By an easy induction using the same argument, one
can see thatSuld (Py) is finite for alli € N. Hence if Procedur®isiw terminates, we clearly have that
there exists a finite bisimulation &i, w.r.t. Py. O

In the sequel, we investigate extra assumptions which deothiat Procedur®isiw terminates with
the coarsest bisimulation.

Theorem 3.35 Let (M, «) be a dynamical system and IB} be a finite partition ofA/*2 such that for
alln € N and for ally € M*2 we have that Syfi (p,) (v) reduces to a singleton, and I&t, be the
associated transition system dadi*2. If ProcedureBisiw terminates with the subword dynamical type,
then it provides the coarsest bisimulationBnw.r.t. Py.

Proof: The proof is similar to the proof of Theorem 3.33. We also pestab absurdo. Hence we can
find some step of Proceduf®isiw andy;, y; € M*2 such thaty; ~p, 3} and Sub (y1) # Subp (v}).
We can choose this step such that each pieg2igfa union of equivalence classes fop, .

Given anyw = A;...A,, € Subp (y1), we can build the following sequence of transitions.

Y1 =y Y2 7~ oo 7~ Yn,

with y; € A; fori =1,...,n. Sincey; ~p y; we can build a similar sequence of transitions.
/ / /
Y 7y Y2 7y - 7y Yno

with y; ~p, yl fori = 1,...,n. Since each; is a union of equivalence classes fop,, we have that
y; € A; fori =1,...,n. Let us now prove that the suffix uniqueness hypothesis esphat there exists
r € M* andty,...t, € M with t; < ... < t,, such thaty(z,t;) € A; fori = 1,...,n ; meaning that
w € Subp (y}). Clearly we can finde, ¢, t2 with t1 < t2, v(2,t1) € A; andy(x,t2) € A, (since
y; —~ y5). Let us suppose, for a contradiction, that givert,, ¢ such that; < ¢, y(x,t1) € A
and~y(z,t2) € A2 we have thaty(x,t3) ¢ As for all t5 > t5. In particular, using the suffix uniqueness
hypothesis, this means that the unique word of-Syf,) does not contain the lettets. This contradicts
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the existence of the transitigd —, y5 wherey; € As. Thus we can finds with the desired conditions.
Iterating the same argument we find the othé&r.
Similarly, given anyv € Subp (v} ), we can prove that € Subp (y1). This contradicts that Syb(y; ) #

Subp (y1)- O

The assumptions of Theorem 3.35 are very strong. To wealese thissumptions, one could investigate
cases wher&., is transitive or deterministic.

Corollary 3.36 Under the hypothesis of Theorem 3.35, if there exists a isteulation orl’, w.r.t. Py,
ProcedureBisiw terminates with the subword dynamical type.

Corollary 3.37 Under the hypothesis of Theorem 3.35, if some step of Proeétiuiw, with the subword
dynamical type, provides an infinite partitighthere is no finite bisimulation o, w.r.t. Py.

Corollary 3.38 Under the hypothesis of Theorem 3.35, when ProcefRiséw has terminated, we have
that:
2Sub(P) = ... = nSub(P) = ... = Sub(P) D Suf(P)

Remark 3.39 The assumptions of Theorem 3.35 are satisfied wifen) is a flow of a vector field” :
R™ — R™ which does not depend on the time (this is the assumptiorA8Q0]). In this casel’, is both
transitive and deterministic.

Remark 3.40 An interesting question is of course to know when Proceditgw terminates. In [BMO5]
Theorem 4.21 gives a condition of termination for ProcedBieiw.

Remark 3.41 Given(M,~) a dynamical system arf@ a finite partition ofA/*2 such that there is no fi-
nite bisimulation orf’, w.r.t. P, there are examples where Procediitésiw terminates with the subwords
(or suffix) dynamical types (see Example 4.1).

Remark 3.42 In order to obtain similar results on back-bisimulation,eoould apply an analog to Pro-
cedureBisiw where the suffixes are replaced by the prefixes.

Remark 3.43 In [BMRTO04] in order to define the dynamical type of a pointtw.some partition, we
introduced the notion of (multi)dotted words (instead @& $hffixes). One can show that the finite bisimu-
lation obtained with (multi)dotted words is both forwarddamackward stable. However the use of suffixes
instead of (multi)dotted words leads to a coarser bisiniatathan the one obtained with the suffixes. This
is illustrated in Figures 9 and 10. In Figure 9, the partitiomduced by the dotted words have nine pieces
corresponding to the dotted wordls ABA, ..., ABA, ABABA, ..., ABABA. In Figure 10, the partition
induced by the suffixes have five pieces corresponding tathempty suffixes of the worlBAB A.

4 Examples

This section illustrates Procedufg siw on some examples. In each case, we give a dynamical system
(M, ~) and an initial partitior’®? and we observe how ProceduBésiw behaves.

Example 4.1 We consider a dynamical systém, ) related to the spiral example of [LPS00]. We have
M = (R, <) andy : R? x R — R? are defined as follows.

y(z,t) = e’ (xcost,zsint)
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Fig. 9: Dotted words partition Fig. 10: Suffixes partition

The dynamics is a solution of the system of differential equations (2)altis not time depending.
Hence we can apply Corollary 3.37 (see Remark 3.39) to tlample.

0)-¢ )6

The dynamics describes spirals moving away from the origin when time sdap We associate with
this dynamical system the partitéh= {4, B} whereA = {(y1,0) |0 < y; < 1} and B = R?\ {4}.
Let us focus on the the trajectofy = {(e’ cost,e'sint) | t € R}. We divide the trajectory; into two
distinct parts:

Iy = {(e'cost,e'sint) |t < 0} andT] = {(e’ cost, e’ sint) |t > 0}

We have thaF; is included in the ball of radius centered at the origir0, 0) andT";{” has no interesection
with this ball. In particular we have that the subword dynaaiitype of any poiny € I'f is given by
{B}. If we now consider points ofi; , one can see that their subword dynamical consists of wards i
(AB)T or (BA)™. Let us now show that there are infinitely many subword dyoaltypes by describing
explicitely the dynamical types of the pointson. Giveny € I';, we have thay = ~(1,¢) for some

t < 0, two cases can occur.

If t = —2kn then(AB)*™! € Subp(y) and(AB)*2 ¢ Subp(y),
ift €] —2(k+ 1)m, —2kn[ then(BA)**1 B € Subp(y) and(BA)** 2B ¢ Subp(y).

Hence the first step of Procedufgisiw with subword dynamical types, already provides an infinite
partition Sub(P). This shows that there is no finite bisimulation ®n w.r.t. P by Corollary 3.37.
However one can see that S@b) = Sul? (P). This means that SUlP) is the coarsest bisimulation on
T, w.rt. P.

Remark 4.2 In Example 4.1, we have just seen tlgtdoes not admit a finite bisimulation w.r.®.
HoweverT’, admits a finite back-bisimulation w.r.tP. In particular when considering points on the
trajectoryI';, we only have two prefixes to considedB)“ and (BA)“. That justifies the interest of
considering both back-bisimulations and bisimulationgegia dynamical system.

We now consider an example with self intersecting ctffve

i) This kind of behavior motivated the notion of multidottednae in [BMRTOA4].
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e Aq
,’ﬂ/
Fig. 11: A simple loop Fig. 12: T2 (P) = T2 (P)

Example 4.3 We consider the dynamical system of Figure 11 with initiatipan P = {A4;, A2}. There
are four suffix dynamical types w.rf:

By = {A1 A2 A1} By = {AA}; B3 ={A1}; By ={A, A1 AA}.

This leads to the four pieces partitidn(7?). The sef2;(p) consists of the unique woish B4 31 By B3 B4 B3.
There are six dynamical types w.rE.(P):

Cy ={B1B4B1B3,B3B4B3} ; Co = {B4B1B>;B3B,B3, B4 B3} ;

Cs = {B1B2B3B4B3} ; Cy = {B2B3ByB3} ; Cs = {B3B4B3s} ; Cs = {Bs}.

We obtain the partitio? 2 (P). One can easily check th@® (P) = 72 (P).

5 Conclusion

In this paper we introduced a merely conceptual algorithileddrocedure3isiw. This procedure aims
to build a finite bisimulation of a given dynamical system.twa given partition using words. Procedure
Bisiw gives a more “global” vision of the bisimulation than the isalown bisimulation algorithm The
papers [KV04, KV06] illustrates that ProceduBésiw can help to compute complexity bound on the size
of the coarsest bisimulation.

Two of the main challenges for futur work are the followingegtions,“When is ProcedureBisiw
effective?’; “When does Procedur®isiw terminate?”.

Another question to address is the following. In Section@jmroduced several “intermediate”equivalence
relations (see Definition 3.14). These equivalence raiatiteserve to be investigate for their own. At
present we did not manage to find any relevant property ottbgsivalence relations.
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