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Preface to ”Exact Solutions in Classical Field Theory:

Solitons, Black Holes and Boson Stars”

Compact objects is the name given to solutions in General Relativity (or alternative models of

gravity) that are typically so dense that the curvature of space–time around them has detectable

effects. An extreme case exists, which is realised and observed in nature: black holes. There exists at

least one alternative to black holes, albeit more exotic, given by compact objects made out of bosonic

fields, the simplest example being the boson star made of a complex valued, massive scalar field.

The study of compact objects as dense as black holes and boson stars is interesting in its own

right. It is also very important from another perspective: Since these objects create very strong

gravitational fields, they are also an ideal testing ground for alternative models of gravity and/or for

testing the limits of General Relativity. The latter theory works extremely well in the weak regime,

but has not been explored in full detail in the very strong regime. This Special Issue is mainly devoted

to exact solutions to Einstein–Yang–Mills-type theories and their various extensions. It is dedicated

to Prof. Yves Brihaye on the occasion of his 65th birthday. Prof. Brihaye contributed significantly and

is still contributing to this very active topic.

Nicolas Boulanger, Andrea Campoleoni

Editors

vii
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Abstract: The equation of state of SU(3) Yang–Mills theory can be modelled by an effective
Z3−symmetric potential depending on the temperature and on a complex scalar field φ. Allowing φ

to be dynamical opens the way to the study of spatially localized classical configurations of the
scalar field. We first show that spherically symmetric static Q-balls exist in the range (1 − 1.21)× Tc,
Tc being the deconfinement temperature. Then we argue that Q-holes solutions, if any, are unphysical
within our framework. Finally, we couple our matter Lagrangian to Einstein gravity and show that
spherically symmetric static boson stars exist in the same range of temperature. The Q-ball and
boson-star solutions we find can be interpreted as “bubbles” of deconfined gluonic matter; their mean
radius is always smaller than 10 fm.

Keywords: deconfinement; Matter-gravity coupling; Yang–Mills theory; Q-ball; boson star

1. Introduction

A fascinating feature of Yang–Mills theory is the existence of a deconfinement temperature,
Tc, above which free color charges (free gluons) may propagate without being confined into color
singlets [1,2]. This deconfined phase can be thought as a “gluon plasma”, in analogy with the celebrated
quark-gluon plasma experimentally created first at RHIC [3,4], i.e., the deconfined phase of full QCD.

In pure SU(Nc) Yang–Mills theory, deconfinement might be driven by the breaking of a global
center symmetry, i.e., ZNc symmetry [5,6], exemplified by the behavior of the Polyakov loop at

finite temperature T. The Polyakov loop is defined as L(T,�y) = 1
Nc

TrcP ei g
∫ 1/T

0 dτA0(τ,�y), with A0 the
temporal component of the Yang–Mills field and �y the spatial coordinates. P is the path-ordering, g is
the strong coupling constant and units where h̄ = c = kB = 1 are used. Since gauge transformations
belonging to the center of the gauge group only cause L(T,�y) to be multiplied by an overall factor,
the Polyakov loop is such that the spatial average 〈L〉 = 0 ( �= 0) when the ZNc symmetry is present
(broken), hence when the theory is in a (de)confined phase [2,7]. Hence 〈L〉 is commonly seen as an
order parameter for Yang–Mills theory at finite T, although it may not be the best physical candidate.
As shown in [8], distinct ZNc phases above Tc do not actually label different physical states. Moreover,
the value −T ln 〈L〉, giving the free energy of a static color source in the heath bath, may take unphysical
complex values above Tc. The real number | 〈L〉 | may be a better candidate, with a free energy given
by −T ln | 〈L〉 |. It is also argued in [8] that the correlator

〈
L(T,�y)L(T,�0)†

〉
at large distances may be a

proper order parameter. Another relevant order parameter for pure Yang–Mills theory has finally been
formulated in [9]: It is the spatial ’t Hooft loop V(C) [10], C being a closed spatial contour. V(C) shows
a perimeter law in the confined phase and an area law in the deconfined phase: V(C) ∼ exp(−m P(C))
and V(C) ∼ exp(−α S(C)) respectively, with P and S the perimeter and the area of the closed contour.

Symmetry 2020, 12, 1668; doi:10.3390/sym12101668 www.mdpi.com/journal/symmetry1
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In view of the above results we can safely assume that there exists one scalar field φ playing
the role of an order parameter. Moreover, there should exist a ZNc temperature-dependent potential
V(φ, φ∗, T), whose global minimum is different at T < Tc and T > Tc, reproducing the equation of
state computed in lattice QCD [11] in the mean-field approximation—recall that the pressure reads
p = −minφ,φ∗ V. In the case Nc = 3, the Z3-symmetry should be present through terms in φ3 + φ∗3 at
the lowest-order in a power expansion of V [12]: The explicit form we will use is given in Section 2.
In the following we go beyond mean-field theory and treat φ as a complex, position-dependent, scalar
field: This dynamical field mimics the behavior of pure Yang–Mills theory at finite T. The value of |φ|
being related to the phase of the gluonic matter, we can summarize the aim of our study as follows:
We search for configurations describing localized regions of (de)confined gluonic matter, either in flat
or curved 750/9.

On one hand we have already shown the existence of nontrivial solutions for φ(�y), vanishing at
infinity, at the deconfinement temperature in flat space-time and at large Nc [13]. On the other
hand, nontrivial static configurations in Z3-symmetric potentials have already been found in [14,15].
Most of the effort in the field has been devoted to study the temporal evolution of such solutions in
close relation with thermalization issues of experimentally observed quark-gluon-plasma [14,16–19].
In this work we search for spherically symmetric static Q-ball solutions with a focus on conditions
constraining their existence: temperature range, radial nodes, etc. Less standard solitons as Q-holes
[20], never studied up to now within that framework, are also discussed. Q-balls and Q-holes are
discussed in Sections 3 and 5.

Finally, we couple our Z3-symmetric Lagrangian to Einstein gravity. To our knowledge, very few
attempts to describe to interplay between gravity and confinement/deconfinement phase transition
can be found in the literature. One can quote [21,22], respectively discussing the loss of simultaneity
between chiral restoration and deconfinement in curved space, and the possible existence of deconfined
regions near a black hole horizon. Here we go one step further by building “particle-like” solutions
for our scalar field that are known to appear in pure 3 + 1-dimensional Yang–Mills theory coupled to
Einstein gravity, see the seminal paper [23]. Within our approach the Yang–Mills degrees of freedom
are replaced by a complex scalar field, whose associated Q-balls, when coupled to gravity, are called
boson stars—see the review [24] for more recent references. To our knowledge, such a problem has
never been addressed at finite temperature although research devoted to “QCD boson stars” (at T = 0)
is currently ongoing [25]. We build gravitating solutions of static-boson-star-type, i.e., spherically
symmetric localized configurations of the scalar field that lead to an asymptotically flat metric without
singularity, see Section 5.

2. The Model

2.1. Z3-Symmetric Potential

Let us model SU(3) Yang–Mills theory at finite temperature by an effective Lagrangian based on a
complex scalar field φ plus Z3−symmetry. We use the potential V of Ref. [26] which reads

U(φ, φ∗, T) =
V(φ, φ∗, T)

T4 , (1)

with

U(φ, φ∗, T) = − b2(T)
2

|φ|2 + b4(T) ln
[
1 − 6|φ|2 + 4(φ3 + φ∗3)− 3|φ|4

]
, (2)

and

b2(T) = 3.51 − 2.47
Tc

T
+ 15.22

(
Tc

T

)2
, b4(T) = −1.75

(
Tc

T

)3
. (3)

We have retained the above parametrization because it to an optimal agreement with the equation
of state of pure SU(3) Yang–Mills theory computed in lattice QCD [11], and also with the full
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Nf = 2 lattice QCD equation of state at zero and nonzero chemical potential when coupled to a
Nambu–Jona–Lasinio (NJL) model [26]. We note that the latter reference explicitly identifies the scalar
field with the Polyakov loop. In fact, their result is more general since φ can be regarded as the actual
order parameter of the model, not necessarily the Polyakov loop.

Potential (1) is displayed in Figure 1 for the values (3) of the parameters and for several
temperatures. The change in minimum is clearly seen above and below Tc: A (non)vanishing value for
|φ| gives the minimum of U in the (de)confined phase. We notice that potential (1) is only Z3-symmetric
and not U(1)-symmetric as is often the case in Lagrangians based on a complex scalar field, with typical
potentials of the form |φ|6 − 2|φ|4 + b|φ|2 [27]. A U(1)-symmetry can be recovered in the large-Nc limit
of ZNc -symmetric potentials, see [13,28].

Figure 1. The potential U(φ, φ∗, T) versus φ for various temperatures. U is given by Equations (2)
and (3), and the plot is restricted to φ ∈ R for the sake of clarity.

According to the suggestion of e.g., Ref. [29], we choose for φ a kinetic part of the form
N2

c T2∂μφ∂μφ∗/λ, which has both the correct energy dimensions and the expected Nc-scaling when the
gauge group SU(Nc) is chosen. λ is the ’t Hooft coupling. Minkowski metric has signature (+−−−).
In our SU(3) case, recalling that αs = λ/(12π), we can write our Lagrangian as

Lphys =
3T2

4παs
∂μφ∂μφ∗ − T4U(φ, φ∗, T), (4)

where φ = φ(yμ), yμ are the space-time coordinates. It is convenient to further define dimensionless
variables xμ related to the original (physical) ones by

yμ = lphys xμ, with lphys =

√
3

T
√

4παs
, (5)

so that the above Lagrangian can be replaced by the dimensionless one

L =
Lphys

T4 = ∂μφ∂μφ∗ − U(φ, φ∗, T), (6)

where φ = φ(xμ) and where T is expressed in units of Tc.
It is worth estimating the physical length used in the model. First, a typical value for the

deconfinement temperature in pure gauge QCD is Tc = 0.3 GeV [30]. Second, a way to estimate αs

is to note that the short-range part of the static interaction between a quark and an antiquark scales

3
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as −(4/3)αs/r, at least from T = 0 to Tc. Lattice studies, performed at Nc = 3, favor αs = 0.2 up to
T = Tc [31], which is the value we retain here. We are then in position to estimate that, at T = Tc,

lphys = 3.6 GeV−1 = 0.72 fm. (7)

2.2. Coupling to Einstein Gravity

The coupling of the above Lagrangian to gravity can be performed by minimally coupling the
scalar field to Einstein gravity: The action reads

S =
∫

d4x
√−g

(
R
α
+ L
)

, (8)

with the effective coupling constant
α = 16πGNl2

physT4. (9)

The replacement of the partial derivatives by covariant ones in (6) must be performed.

3. Q-Balls

3.1. Ansatz and Existence Conditions

We begin by considering Lagrangian (6) where φ3 and φ∗3 are replaced by |φ|3 in order to recover
the usual U(1)-symmetry needed to build Q-balls solutions.

The classical equations of motion in flat space-time with potential U(|φ|, T) = − b2(T)
2 |φ|2 +

b4(T) ln
[
1 − 6|φ|2 + 8|φ|3 − 3|φ|4] read

∂μ∂μφ = ∂φ∗U = − b2(T)
2

φ + 6b4(T)
−φ + 2|φ|φ − |φ|2φ

1 − 6|φ|2 − 3|φ|4 + 8|φ|3 (10)

plus the complex conjugated equation. We then perform the usual Q-ball ansatz on the scalar field :

φ = exp(iωt)φ(r), (11)

where t = x0 and where r =
√
(x1)2 + (x2)2 + (x3)2. The solutions we will build can be characterized

by their mas M and by a dimensionless conserved charge Q, respectively defined by

M = Mphys

∫
d3x T00 (12)

with Mphys = 1/lphys and

Q = 2ω
∫

d3x |φ|2. (13)

The temporal component of the energy-momentum tensor represents the energy density, given by

T00 = ω2|φ|2 + �∇φ · �∇φ∗ + U(|φ|). (14)

The conserved charge Q finds its origin in the (artificially restored) U(1)-symmetry of the
considered Lagrangian, leading to a conserved Noether current of the form Jμ = i(φ∂μφ∗ − φ∗∂μφ),
Q being the space integral of J0. Axially symmetric solutions with k �= 0 are spinning Q-balls
whose angular momentum J is related to the charge Q according to J = kQ [27]. Here we focus on
non-spinning Q-balls.

We have studied the equations for generic values of ω although it is clear that only the solutions
corresponding to ω = 0 are physically relevant for the potential under consideration: The original

4
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potential is Z3-symmetric, not U(1). Note also that if φ(r) is a real solution of the equations of motion,
e

ikπ
3 with k ∈ Z is also a solution because of the system’s symmetry.

The mass term of the potential plays a crucial role in the existence of the solutions. In a power
expansion in |φ|,

U(|φ|, T) = m2(T)|φ|2 + ‘higher order” , with m2(T) = − b2(T)
2

− 6b4(T). (15)

General results on Q-balls [27] state that the soliton exist for ωmin ≤ ω ≤ ωmax with

ωmin = min
|φ|

U(|φ|, T)
|φ|2 , ωmax = m(T). (16)

In particular, if the potential U(|φ|) is negative in some interval of values of |φ|, the value ω = 0
belongs to the spectrum of the boson star. This turns out to be the case for T > Tc. The condition
m(T)2 > 0 also needs to be fulfilled; in terms temperature, this corresponds to T/Tc > 1.21. As a
consequence, the general properties of Q-balls solutions suggest that Q-ball solutions with zero
frequency will exist for 1 < T/Tc < 1.21.

The parametrization (2) of the potential is not unique. In particular, a power expansion of the form

U = − b2

2
|φ|2 − b3

6
(φ3 + φ∗3) +

b4

4
|φ|4 (17)

is often used in effective YM theories at finite T, the choice b2 = 6.75 − 1.95(Tc/T) + 2.63(Tc/T)2 −
7.44(Tc/T)3, b3 = 0.75, b4 = 7.5 leading to a good agreement with lattice QCD data [32]. Using this
alternative choice would not forbid the existence of Q-ball solutions: The mass term b2 is positive
above Tc and the criterion (16) leads to ωmin < 0, so ω = 0 solitons are allowed also in this case.

3.2. Numerical Results

A numerical resolution of the equations (10) can now be performed. We use a collocation
method for boundary-value ordinary differential equations, equipped with an adaptive mesh selection
procedure [33]. The regularity of the solution at the origin implies dφ

dr (r = 0) = 0, the finiteness of the
energy and the charge impose φ(∞) = 0. These are the boundary conditions.

We present in Figure 2 the spectrum of the Q-balls for T/Tc = 0.83, 1.01, 1.18. It can be observed
that no Q-ball solution with ω = 0 can be found below Tc: It is a nice feature of our model that it does
not lead to solutions modelling deconfined matter below Tc. In the range 1 < T/Tc < 1.21 suggested
by the above analysis however, such solutions can be found. From now on, we concentrate on the
latter ω = 0 solutions. Our results are summarized in Figures 3 and 4.

Our numerical analysis shows that in the limit T/Tc → 1.21 the scalar function φ(r) approaches
uniformly the null function as expected by the existence criterion discussed before. The limit T → Tc

reveals a peculiar behavior of the solitons: Their mean radius and mass increase considerably. In this
limit the scalar function φ(r) is closer and closer to a nonzero constant solution, leading to the observed
increase in mass and mean radius.

All the Q-balls we find have a mean radius smaller than 14× lphys = 10 fm and are lighter
than 140 × Mphys = 38.9 GeV. Similar solutions were found in [14] with a simpler, power-law,
Z3−symmetric potential of the form |φ|2 − a(φ3 + φ∗3) + b|φ|4. At T = 1.1 Tc they find a soliton
with a typical size of 1.5−2 fm while we find a Q-ball with mean radius 1.43 fm and mass 200 MeV at
the same temperature. Other results are obtained in [14] but in 2 + 1 dimensions so they cannot be
compared to ours.

We have tried to construct radially excited solutions, i.e., solutions where the radial function
presents one or more nodes, but so far, we cannot find any. The absence of solutions presenting nodes

5
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for our model can be explained by the following argument. In general, the existence of node solutions
is closely related to the shape of the effective potential

Ve f f (|φ|) = ω2

2
|φ|2 − 1

2
U(|φ|) . (18)

Several conditions are necessary for node solutions to exist [27,34]: (i) φ = 0 should be a local
maximum of Ve f f , (ii) the effective potential should admit local minima for both signs of φ. It would
be challenging to have a generic proof of the absence of node solutions with our potential but an
inspection of the potential U(|φ|) quickly reveals that no local minimum exist for φ < 0 when φ ∈ R

(see Figure 1), so the condition (ii) cannot be fulfilled when ω = 0.

Figure 2. Relation between ω and Ω ≡ √m2(T)− ω2 versus φ(0) for three values of T/Tc in flat
space-time (α = 0) (solid lines). The dotted lines represent ω and gtt(0) in the case T/Tc = 1.01 for
gravitating solutions (α = 1).

Figure 3. Profiles of φ(r) for several values of T/Tc. Distances are in units of lphys.

The spectrum of the fundamental Q-ball appears quite different with the present potential than
in more conventional U(1)-symmetric potentials. For example, one of us previously studied Q-balls

with the SUSY-inspired potential USUSY(|φ|) ∼ 1 − exp
(
−|φ|2

η2 )
)

, with η ∈ R
+
0 [35]. In contrast to our

potential, solutions can be constructed for arbitrarily large values of the central density φ(0) with the
latter potential, and radially excited solitons can be obtained. We considered an effective potential
consisting of a linear superposition of our potential and the SUSY-potential. The latter is known to

6
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admit node solutions: Ue f f = cos(y)USUSY + sin(y) U with y ∈ [0, π/2]. It turns out that when
we progressively deform the SUSY-potential into our potential (say with a fixed value φ(0) < 1) the
zero-node solutions get continuously deformed and the frequency ω decreases with increasing the
mixing parameter y. By contrast, for the one node solution, the ω quickly reaches ω = 1 and the
solution becomes oscillating.

Figure 4. Evolution of the mean radius 〈R〉 as a function of T/Tc, the insert contains φ(0) and the
mass (12) of the scalar field. Distances are in units of lphys and masses are in units of Mphys.

3.3. Symmetry Breaking

An obvious outlook is to include the matter sector of QCD in our approach. As discussed in [12],
an immediate effect of quarks is the breaking of Z3−symmetry in the potential and the simplest
way to mimic that symmetry breaking is to add a term proportional to (φ + φ∗) or even (φ + φ∗)2

to the potential. A more rigorous treatment of quark fields may be achieved by coupling φ to a
NJL Lagrangian [15,36]. Within mean-field approximation for quarks, it has been show in [37] that
complex-valued solutions of Q-ball-type still exist with broken Z3-symmetry. A question arising at
this stage is therefore: May the ω = 0 Q-balls we constructed “survive” to such a symmetry breaking?

We propose to perform the substitution U → Uβ = U + β (φ + φ∗)2 with β a real constant
parameter. This ansatz breaks the Z3-symmetry while still allowing analytical calculations. In a
power expansion in φ on the real axis, the β-term shifts the mass term: m2(T) → m2(T) + 4β.
Graphical inspection of the modified potential shows that there is always an interval of φ values
in which Uβ is negative above Tc if β < 0. Nevertheless a negative value of β lowers m2 and therefore
lowers the maximal temperature at which Q-balls may be expected (m2 is indeed a decreasing function
of T). If −0.5 < β < 0, there always exists an interval of temperatures above Tc for which the existence
of Q-balls is guaranteed. We can thus safely assume that the solutions we find will not necessarily
disappear in a more realistic theory including quarks.

4. Q-Holes

Q-holes are configurations of the scalar field behaving like (11) but such that |φ(r = 0)| > 0 and
|φ(r → ∞)| = φc > |φ(r = 0)|, with φc a local minimum of the potential under study [20]. Are ω = 0
Q-holes solutions worth being constructed within the present approach?

A necessary condition for Q-holes to exist is that the second maximum of the effective potential (18)
is lower than the maximum at the origin [38]. As illustrated in Figure 1, it can only happen below Tc in
our model since Ve f f (|φ|) = − 1

2 U(|φ|) at vanishing ω. A configuration where φ is everywhere nonzero
at a temperature below the deconfinement one is not physically relevant; although the problem is

7
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interesting from a technical point of view we have thus to discard Q-hole solutions in the present work.
The same conclusion holds for the parameterization (17).

5. Boson Stars

The action (8) leads to the Einstein equation

Gμν =
α

2
Tμν (19)

where the energy-momentum tensor is given by Tμν = (Dμφ)∗(Dνφ) + (Dμφ)(Dνφ)∗ −
gμν(Dαφ)∗(Dαφ) + gμνL. The metric defines ds2 = gμνdxμdxν and Dμ is the covariant derivative.
An estimation of this coupling constant α in the temperature range under study is 16πGNl2

physT4
c =

3.58 × 10−38. It is so small that no significant change of the solutions can be observed by numerical
investigation. To appreciate more clearly the influence of gravity on the system we will construct
solutions with α = 0.01 and 1.

We search for boson-star solution. First, the ansatz (11) and the boundary conditions are kept for
the scalar field. Second, we choose a spherically symmetric ansatz for the metric:

ds2 = − f (r)dt2 +
l(r)
f (r)

(
dr2 + r2 dθ2 + r2 sin2 ϕ dϕ2

)
, (20)

with the boundary conditions f (r = +∞) = l(r = +∞) = 1 (asymptotically flat space-time) and
f ′(r = 0) = l′(r = 0) = 0 (no singularity at origin). The gravitational mass MG of these gravitating
objects is defined as usual according to f (r → ∞) ∼ 1 − 2MGGN

r . The explicit equations involving
φ, f and l can be found in Appendix B of [34]; we do not recall them here for the sake of simplicity.
The same numerical method as for Q-balls is used to construct boson-star solutions [33].

Even for such large values as α = 1, our results indicate that gravitating solutions with ω = 0 still
exist on roughly the same interval of T/Tc, see Figure 5. However, the numerical analysis turns out to
be tricky in the limit T → Tc likely because the local minimum of the potential disappears. Our results
strongly suggest that the gravitational mass and mean radius increase considerably in the limit T → Tc

as shown by Figure 5, similarly as what is observed in the Q-ball case. As expected, the metric gets more
deviated from the Minkowski metric in the central region of the soliton: for instance g00 � 1 (see the
blue line of Figure 5) and one can expect an essential singularity of the metric to be formed at Tc.

The profiles of the solution corresponding to T/Tc = 1.01 are presented in Figure 6 for α = 1
(solid lines). This plot clearly demonstrates that the soliton splits the space into two distinct regions:
an interior region where φ is practically constant and strongly curving space-time and a region with
φ ∼ 0 where space-time is essentially Minkowski. These regions are separated by a “wall” of the
scalar field. The profile of a solution at an intermediate temperature T/Tc = 1.11 is also shown in
Figure 6; the same qualitative features are observed. The boson star finally presents different features
for T/Tc → 1.21, i.e., the limit of vanishing m(T). In this limit the scalar field approaches uniformly
the null function and the Minkowski space-time is approached.

The existence of boson-star configurations for α = 1 implies the existence of such solutions for
much smaller, “realistic”, values of the coupling constant around Tc, see Figure 5. Since potential (17)
will also lead to Q-balls above Tc, we can state that boson stars also exist with that parameterization.
We choose however not to perform full numerical computations since potential (2) leads to a more
accurate modelling of QCD equation of state as computed on the lattice.

8
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Figure 5. Evolution of the mean radius < R > (black line, in units of lphys) and of the gravitational
mass MG (red lines, in units of Mphys) as function of Tc/T for ω = 0 boson stars. The metric component
g00 = f (0) is represented by the solid (resp. dashed) blue lines for α = 1 (resp. α = 0.1). These values
depend very weakly on α and the curves are mostly superimposed.

Figure 6. Profiles of the metric functions f , l and of the scalar field φ for α = 1, ω = 0 and two values
of the temperature : T/Tc = 1.01 (solid lines) T/Tc = 1.11 (dashed lines). The radial variable r is in
units of lphys.

6. Summary and Outlook

We have built Q-balls and boson stars from a model with a complex scalar field plus a
temperature-dependent Z3-symmetric potential mimicking Yang–Mills theory at finite temperature.
We have shown that static Q-balls only exist between 1 and 1.21 Tc with a mean radius smaller than
10 fm and that they cannot have radial nodes. The solutions we find are spherically symmetric and the
scalar field is such that |φ(r = 0)| �= 0 and |φ(r → ∞)| = 0; they can be interpreted as “bubbles” of
deconfined gluonic matter. We also showed that Q-holes solutions should be discarded from a physical
point of view since they are solutions modelling a deconfined phase, but that can only exist below
Tc within our approach. Static boson stars exist in roughly the same temperature range as Q-balls.
Their qualitative features are almost independent on the value of the matter-Einstein gravity coupling
constant α.

9
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To our knowledge, it is the first time that boson stars are constructed from an effective potential
such as (2). Typical potentials used in boson-star-related studies are such that solutions exist for
0 < ωmin ≤ ω ≤ ωmax, see i.e., [35]. It is worth pointing out that the potential used here even allows
the existence of static solutions with ωmin = 0.

Computation of the QCD equation of state in curved space-time shows that the latter may affect
the phase-diagram of the theory by increasing the splitting between the critical points for chiral and
deconfinement transitions [21]. We hope to present generalizations of our boson-star configurations
to the case of a nontrivial quark field in a future work; they could shed new light on the interplay
between confinement, chiral symmetry and gravity.
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Abstract: In this paper, we demonstrate that a phenomenon described as topological inflation, during
which inflation occurs inside the core of topological defects, has a non–topological counterpart.
This appears in a simple set-up containing Einstein gravity coupled minimally to an electromagnetic
field as well as a self-interacting, complex valued scalar field. The U(1) symmetry of the model is
unbroken and leads to the existence of globally regular solutions, so-called boson stars, that develop
a horizon for sufficiently strong gravitational coupling. We also find that the same phenomenon
exists for black holes with scalar hair.

Keywords: black holes; scalar fields; boson stars

1. Introduction

The theory of General Relativity (GR) is the best tested theory of gravity developed up to date.
The classical tests, within the solar system, where the deviations from Newtonian gravity are small,
helped to promote GR to one of the fundamental theories of nature. For strong gravitational fields,
i.e., when the deviations from Newtonian gravity become important, observations and tests have
now become available. An excellent laboratory to consider strong gravitational field effects are black
holes (BHs) and neutron stars (NSs). It is a common belief that BHs are “simpler” to describe than
NSs partly due to the lack of knowledge of the equation of state of the matter making up the NS.
BHs, in fact, are still believed to follow the so-called no-hair conjecture [1], which states that all
stationary asymptotically flat BHs are fully characterized by global charges associated with a Gauss
law. There are numerous counter-examples for the conjecture when considering nonlinear matter
fields. However, the situation for scalar fields is very different. A number of no-scalar-hair theorems
were put forward (see [2] for a recent review) and scalar fields, apparently, should be trivial around a
stationary and asymptotically flat BH spacetime.

One process where a scalar field can become non-trivial in a BH spacetime is through spontaneous
scalarization. It was first discussed in a scalar-tensor theory of gravity around a NS [3], in which the
scalar field couples to the trace of the energy-momentum tensor and can obtain non-vanishing values
even if its asymptotic value is zero. The corresponding phenomenon has gained considerable attention
in black hole physics [4].

The view on no-hair theorems for minimally coupled scalar fields has changed since the discovery
of hairy Kerr BHs in a model where a massive complex scalar field is minimally coupled to gravity [5,6].
To circumvent the no-scalar-hair theorems, it is necessary to assume a harmonic dependence on the
time and azimuth coordinates. Then, the so-called synchronization condition ω/m = ΩH must be
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imposed, where ω is the scalar field frequency, m an integer, and ΩH the horizon angular velocity.
The configuration of the test scalar field outside the event horizon was dubbed “scalar cloud” and
when taking backreaction into account leads to the existence of hairy Kerr BH solutions. As the horizon
radius approaches zero, the solution is reduced to a spinning boson star.

Boson stars (BSs) are regular, stationary, and localized solutions to the Einstein–Klein–Gordon
system of equations, formed by a complex scalar field with a continuous U(1) symmetry, which gives
rise to a globally conserved Noether charge. They are the self-gravitating counterparts of Q-balls [7].

Their size can range from the atomic scale up to the size of supermassive BHs, depending
on the choice of the scalar potential (see [8] for a review), and can be used as models for dark
matter particles [9] and BH mimickers [10], for example. The absence of an event horizon, however,
can lead to significant changes in the propagation of light rays when compared to the spacetime of
a BH [11]. Charged BSs were studied in [12] for a self-interacting scalar potential whose motivation
comes from supersymmetric extensions of the standard model and, originally, uncharged Q-balls had
been discussed [13–15]. A combination of the attractive effects of gravity and the repulsive effects of
electromagnetism can render the charged BS stable. Most work that deals with boson stars is concerned
with infinitely extended boson stars, e.g., also when considering these compact objects as black hole
mimickers. Moreover, the boson stars that are actually compact do need a very specific potential that
is not differentiable at vanishing scalar field value; see, e.g., [16]. In this latter case, the exterior of
the boson star would simply be given by the Schwarzschild solution with a scalar field identically
zero. Thus, in this paper, we consider only the boson stars with scalar field falling off exponentially
at infinity.

Further studies concerning scalar clouds were considered subsequently for Reissner–Nordström
(RN) spacetime [17], where, for a non-trivial configuration of the gauged scalar field, it was shown that
it is necessary to add self-interactions in the scalar potential and the resonance condition to be satisfied,
ω = qV(rh), where q is the scalar coupling constant and V(rh) the electric potential on the horizon.

Gauged scalar clouds in the Schwarzschild BH were considered in [17,18]. In this case,
the background is fixed by the Schwarzschild metric and the differential equations for the electric
potential and the scalar field are coupled. It was shown that the scalar clouds exist for some range in
the gauge coupling, and it was also found numerically in [18] that two different solutions exist for the
same values of the gauge coupling constant and the electric potential at infinity. When backreaction is
taken into account, the solutions exist up to a maximal value of the gravitational constant and lead to
two distinct situations: (i) an extremal BH with a diverging derivative of the scalar field at the horizon
and (ii) a RN–de Sitter solution with a screened electric charge.

In this paper, we extend the results of [18] to include globally regular space-times with the same
matter field content. The corresponding solutions are charged Q-balls (in a Minkowski space-time)
and boson stars. In the following, we will demonstrate that the phenomenon described above doesn’t
depend on the details of the scalar self-interaction or on the fact that the space-time possesses a priori
a horizon. Our paper is organized as follows: in Section 2, we discuss the model and equations of
motion, while Section 3 contains our results on black hole and globally regular space-times, respectively.
We end with a discussion in Section 4.

2. Model

Here, we will discuss solutions to the following (3+1)-dimensional model :

S =
∫

d4x
√−gL , L =

R
16πG

− (DμΨ
)∗ DμΨ − 1

4
FμνFμν − U(|Ψ|) . (1)

This is the Einstein–Hilbert action with R the Ricci scalar and G Newton’s constant minimally
coupled to a complex valued scalar field Ψ that is charged under a U(1) gauge field Aμ. Dμ = ∂μ − iqAμ

is the covariant derivative of the scalar field and Fμν = ∂μ Aν − ∂ν Aμ the field strength tensor of the U(1)
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gauge field. The scalar field potential U(|Ψ|) will turn out to be a crucial ingredient in our construction
in the following. We will choose the potential as follows [13,14] :

U(|Ψ|) = μ2η2
[

1 − exp
(
−|Ψ|2

η2

)]
, (2)

where μ corresponds to the mass of the scalar field and η is an energy scale.
In the following, we are interested in spherically symmetric and stationary solutions. The Ansatz

for the metric is:

ds2 = −N(r)(σ(r))2dt2 +
1

N(r)
dr2 + r2(dθ2 + sin2 θdϕ2) , N(r) = 1 − 2m(r)

r
, (3)

while the matter fields are chosen according to :

Ψ(r, t) = ηeiω̃tψ(r) , A0 = ηV(r) (4)

with ω̃ a real constant. Note that, although the scalar field is time-dependent, the associated
energy-momentum tensor is static and hence likewise the space-time. Defining the following
dimensionless quantities

x = μr , ω =
ω̃

μ
, e =

ηq
μ

, α = 4πGη2 (5)

the equations resulting from the variation of the action (1) depend only on e and α and read (with the
prime denoting derivative with respect to x) :

m′ = αx2
[

V′2

2σ2 + Nψ′2 + U(ψ) +
(ω − eV)2

Nσ2 ψ2
]

(6)

σ′ = 2αxσ

[
ψ′2 + (ω − eV)2

N2σ2 ψ2
]

(7)

for the metric functions and

V′′ +

(
2
x
− σ′

σ

)
V′ + 2(ω − eV)ψ2

N
= 0 (8)

ψ′′ +

(
2
x
+

N′

N
+

σ′

σ

)
ψ′ + (ω − eV)2ψ

N2σ2 − 1
2N

dU
dψ

= 0 . (9)

for the matter fields. As is obvious, these equations depend only on the combination ω − eV(x).
Note that the Lagrangian density and with it the energy density are now given in units of η2μ2.

The asymptotic behaviour of the metric and matter field functions is:

N(x � 1) = 1 − 2M
x

+
αQ2

x2 + ..... , σ(x � 1) = 1 +O(x−4) , (10)

V(x) = V∞ − Q
x
+ .... , ψ(x → ∞) ∼ exp(−μeff,∞x)

x
+ .... , μeff,∞ =

√
1 − Ω2 , (11)

where Ω2 := (ω − eV∞)2. M and Q denote the (dimensionless) mass and electric charge of the solution,
respectively. V∞ can be understood to be a “chemical potential”, i.e., the resistance of the system
against the addition of extra charges e to the system. Note that the scalar field possesses an effective
mass μeff smaller than the bare mass of the scalar field, which—in our dimensionless units—is equal
to unity.
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Next to the electric charge, the solutions possess a Noether charge which results from the unbroken
U(1) symmetry of the system. This reads :

QN =
∫

dx
2x2evψ2

Nσ
. (12)

This quantity can be interpreted as the number of scalar bosons that make up the solution.
For globally regular solutions eQN ≡ Q, while, for black holes, Q = eQN − Ex(xh)x2

h/σ(xh), where
Ex(x) = −V′(x) is the radial electric field of the solution. The second term in this equality is the
horizon electric charge and is the consequences of the fact that the horizon corresponds to a surface
on which boundary conditions have to be imposed. Finally, the temperature TH and entropy S of the
black hole solutions are given by

TH = (4π)−1σ(xh)N′|x=xh , S = πx2
h . (13)

The energy-density ε, radial pressure pr, and tangential pressure pθ = pϕ, respectively, read :

ε = −Tt
t = ε1 + ε2 + ε3 + U(ψ) (14)

pr = Tr
r = −ε1 + ε2 + ε3 − U(ψ) (15)

pθ = Tθ
θ = ε1 − ε2 + ε3 − U(ψ) . (16)

with

ε1 =
V′2

2σ2 , ε2 = Nψ′2 , ε3 =
(ω − eV)2ψ2

Nσ2 . (17)

3. Results

In the following, we will discuss the different types of solutions to the equations of motions (7)–(9).
We will start with the discussion of black holes, for which we have integrated the equations between
x = xh, i.e., the horizon and infinity, respectively. The solutions correspond to Schwarzschild black
holes endowed with charged scalar clouds, so-called Q-clouds, when neglecting the backreaction of
the cloud on the space-time, otherwise to charged black holes with scalar hair. We will also discuss
globally regular solutions that exist on x ∈ [0 : ∞). Without and with backreaction, these are charged
Q-balls and charged boson stars, respectively.

3.1. Black Hole Solutions

Here, we will discuss space-times that contain a horizon. We begin by discussing Q-clouds on
Schwarzschild black holes and will demonstrate that the results obtained in [18] are not specific to the
form of the scalar potential and that the existence of two branches of Q-cloud solutions can also be
observed when considering a potential of the form (2). We will then discuss the backreaction of these
two different branches of solutions onto the space-time.

3.1.1. Solutions without Scalar Fields

Without scalar fields ψ ≡ 0, the equations of motion have well-known black hole solutions.
These are the uncharged Schwarzschild (Q = 0) and the charged Reissner–Nordström solution,
respectively:

N(x) = 1 − 2M
x

− αQ2

x2 , σ ≡ 1 , V(x) =
Q
xh

− Q
x

. (18)

The horizon(s) of this space-time are x± = M ±
√

M2 − αQ2. For the Reissner–Nordström
solution, there exists a so-called extremal limit, the limit of maximal possible charge for the black hole,
which is x+ = x− = M =

√
αQ. Note that we have chosen V(xh) = 0 here, such that V∞ = Q/xh.
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3.1.2. Q-Clouds on Schwarzschild Black Holes

In this section, we consider the equations of the matter fields in the background of a Schwarzschild
black hole, i.e., we set α = 0 and let σ ≡ 1, N = 1− xh/x, where xh is the event horizon radius. In order
to ensure regularity of the matter fields on the horizon, we need to impose :

ψ′(xh) =
xh
2

dU
dψ

(ψ(xh)) , V(xh) = 0 , ψ(x → ∞) = 0 , V(x → ∞) = V∞ . (19)

Note that V(xh) = 0 is a gauge choice implying ω = 0 and hence Ω = eV∞. This is the so-called
synchronization condition necessary for the scalar field to be non-trivial in the black hole background.

In Figure 1 (left), we give the value of the scalar field ψ as well as the radial electric field Ex on the
horizon for xh = 0.15 and two different values of e dependent on eV∞. We also give the electic charge
Q as well as the electric charge contained in QN charges e in this figure (right). This demonstrates
that charged Q-clouds exist on a finite interval of Ω ∈ [Ωmin : 1] and that, for each choice of eV∞, two
solutions with different mass M, electric charge Q, and Noether charge QN exist. On the first branch
of solutions, starting at eV∞ = 1 (which is the threshold for the electric potential to be able to create
scalar particles of mass unity) and decreasing eV∞, the scalar field on the horizon ψ(xh) increases
up to a maximal value. With it, the radial electric field on the horizon, Ex(xh), decreases in absolute
value. Moreover, the electric charge Q and the Noether charge QN increase. eV∞ can be decreased to a
minimal value that depends on e and increases with the increase of e. Increasing eV∞ again from this
minimal value, a second branch of charged Q-clouds exist that extends all the way back to eV∞ = 1.
On this second branch, the scalar field on the horizon decreases and with it the absolute value of the
electric field on the horizon when increasing eV∞. Interesting, we observe that on this second branch
of solutions nearly all electric charge seems to be contained in the QN scalar bosons which each carry
charge e, while the horizon electric charge decreases indicated by the decreasing electric field on the
horizon. Hence, moving along the branches stores increasingly electric charge in the scalar cloud
and moves it away from the black hole horizon. Figure 1 (right) further demonstrates that eQN is
approximately equal to Q on the second branch, while on the first branch we find eQN < Q.
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Figure 1. Left: We show the value of the scalar field ψ (dashed) and the radial electric field Ex (solid)
on the horizon dependent on eV∞ ≡ Ω for xh = 0.15 and two different values of e. Right: We show
the values of the electric charge Q (solid) and the charge contained in QN charges e, eQN , (dashed)
dependent on eV∞ ≡ Ω for the same solutions.

In Figure 2 (left), we show the profiles of the scalar field function ψ(x) and the gauge field function
V(x) for the two Q-cloud solutions available for e = 0.08, eV∞ ≡ Ω = 0.94 and xh = 0.15.
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When fixing V∞ and varying e, we find that—again—two branches of solutions exist. These two
branches join at a minimal value of the gauge coupling, emin, and exist both up to emax = 1/V∞ where
the effective mass μeff,∞ of the scalar field becomes zero. The minimal value of e has to be determined
numerically and we find that emin ≈ 0.088 for V∞ = 10 and emin ≈ 0.109 for V∞ = 8.8, respectively.
In other words, the potential difference between the horizon and infinity, i.e., the chemical potential,
needs to be large enough to support the scalar cloud.
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Figure 2. Left: Profiles of the scalar field ψ(x) and the gauge potential V(x) for the two possible Q-cloud
solutions on Schwarzschild black holes with xh = 0.15, e = 0.08, and eV∞ = Ω = 0.94. Right: Profiles
of the scalar field ψ(x) and the gauge potential V(x) for the two possible Q-ball solutions for e = 0.08
and Ω = 0.94.

Another interesting question is to understand how the surface area, i.e., the entropy of the
background Schwarzschild black hole influences the observations we have made. We have hence
fixed e and V∞ and studied the solutions for varying event horizon radius xh. Our results are shown
in Figure 3, where we give the electric charge Q as well as the electric charge contained in the QN
scalar bosons that make up the cloud dependent on the event horizon radius xh. Again, we obtain two
branches of solutions. We find that the black hole needs to be sufficiently small in order to allow for the
scalar clouds to exist. For the particular choice of parameters here, we find that the maximal possible
event horizon radius is xh ≈ 1.2. Remembering the rescaling (5), this means that rh < 1.2λC,μ, where
λC,μ = 1/μ is the Compton wavelength of the bare scalar field. This implies that we would need an
ultra-light scalar field in order for the phenomenon of Q-cloud formation to be relevant for astrophysical
black holes. e.g., for μ = 10−10 eV, the maximal possible event horizon radius for Q-clouds to exist
would be ≈ 2.4 km, the approximate size of a solar mass black hole. We find that, when varying eV∞,
the maximal radius can double or triple, However, it stays the same order of magnitude.

As a final remark, let us mention that, in the limit xh → 0, we find that Q → eQN . This is
not surprising since globally regular counterparts to the solutions discussed above exist. These are
charged Q-balls (without backreaction of the space-time) and charged boson stars (with backreaction),
respectively. Moreover, Figure 3 indicates that, also in the regular limit, two different types of solutions
should exist when fixing e and V∞. This is what we will discuss in Section 3.2.
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Figure 3. We show the electric charge Q and the electric charge contained in QN charges e of Q-clouds
on Schwarschild black holes with xh = 0.15 and for e = 0.08, V∞ = 11.75, i.e., Ω = eV∞ = 0.94.

3.1.3. Backreaction of Q-Clouds

For α > 0, the Q-clouds backreact on the space-time and modify the original
Schwarzschild black hole. The result is a charged black hole which carries scalar hair on its horizon.
Note that the existence of these solutions does not contradict no-hair theorems due to the specific
form of the scalar field potential. In [18], the same model as in this paper has been discussed,
however, for a ψ6-self-interaction potential. It was noticed that, when approaching the critical value
of the gravitational coupling for solutions on the second branch of solutions (those with larger
values of ψ(x)), the black holes form a second horizon. This second horizon can be interpreted as
the horizon of an extremal RN solution. Here, we find that this is also true when considering an
exponential-type potential for the scalar field. We show the approach to criticality for the metric and
matter field functions in Figure 4 for Ω = 0.6 and xh = 0.15. We find that, at a critical value of α = αcr,
the solution forms a second horizon at x = x(ex)

h that agrees with the value of an extremal horizon of

the corresponding RN solution. Our numerical results indicate that x(ex)
h ≈ M ≈ √

αQ ≈ 121 for our
choice of couplings.

The question then remains how these solutions can be interpreted and why they exist. In fact, this
can be understood when considering the energy density components, see (17). In Figure 5 (left), we plot
the different components very close to the critical value of α = αcr ≈ 0.000113. Clearly, the scalar field
energy U(ψ) dominates all the other energy momentum components up to a radius x ≈ x̃, with x̃ on
the order of 100 for this particular choice of α and Ω. This means that the energy-momentum tensor
is approximately of the form Tν

μ = diag(ε, p, p, p), where ε = −p = U(ψ). This is the energy of a
perfect fluid that has the equation of state of a positive cosmological constant. In fact, assuming that
U(ψ) = U0 dominates the energy density up to x = x̃, we can integrate the equation for m to get

Ncr(x) ≈ 1 − 2
3

αU0x2 , (20)

while σ = σ0 �= 0. This is a space-time with a positive cosmological constant Λ = 2αU0. For our
choice of potential, U0 = 1. Using αcr ≈ 0.000113, the cosmological horizon of this solution would be
at x = xc ≈ 115 ≈ x̃. This is not equal to the value of the extremal horizon x(ex)

h . This is different to
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what is found in the case of inflating monopoles (see e.g., [19,20]) or BH solutions with scalar hair in a
scalar-tensor gravity model (see [21] in this issue), where xc = x(ex)

h . We rather find a “transition zone”
between x̃ and the extremal RN solution that is of finite thickness—in our dimensionless coordinates,
Δx := x(ex)

h − x̃ = O(10).
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Figure 5 (right) further demonstrates that the reason for the existence of these solutions is related
to the coupling of the scalar field to the electromagnetic field. The “bare” potential U(ψ) does not

possess extrema away from ψ = 0, while the effective potential Ueff = U(ψ)− (ω−eV)2

Nσ2 ψ2 does. For α

close to αcr and Ω = 0.6, there exists a local minimum for ψ = O(10). This is the value that ψ takes on
the horizon and up to x ≈ xc. Moreover, the first and second derivative of the effective potential with
respect to ψ, ∂ψUeff and ∂2

ψUeff, respectively, are smaller than the potential itself close to this value of ψ.
Hence, the effective potential is sufficiently “flat” to allow for inflation.

3.2. Globally Regular Solutions

For globally regular solutions, we have to impose boundary conditions at the origin x = 0 which
ensure regularity. These are

m(0) = 0 , V(0) = 0 , V′|x=0 = 0 , ψ′|x=0 = 0 . (21)

The condition V(0) = 0 is, in fact, a gauge choice. At spatial infinity, the boundary conditions are
chosen such that the solution is asymptotically flat and has finite energy. They read:

ψ(x → ∞) → 0 , N(x → ∞) → 1 . (22)

Note, in particular, that now ω �= 0 is necessary for globally regular solutions to exist and that
it cannot be set to zero as in the black hole case. In the following, however, we will only use the
gauge-invariant quantity Ω = ω − eV∞ to describe the solutions.

3.2.1. (Un)Charged Q-Balls

For α = 0, the matter field Equations (8) and (9) decouple from the gravity equations and the
metric functions are m ≡ 0 (i.e., N ≡ 1) and σ ≡ 1 (or equal to any non-vanishing, positive constant).
The remaining Equations (8) and (9) possess non-trivial solutions, so-called (charged) Q-balls. For V ≡ 0,
the solutions for the specific potential (2) have been studied in [13–15], while, for V �= 0, they were
investigated in [12]. Let us remind the reader of the most important features of these solutions in the
following and add details that are important for the discussion in the following. For e = 0, the solutions
exist for Ω ∈ (0 : 1], and there is a one-to-one relation between the value of the scalar field ψ at the
origin, ψ(0), and Ω. The limit ψ(0) → 0 corresponds to Ω → 1. In this limit, the solution becomes
ψ(x) ≡ 0, However, neither the mass nor the Noether charge QN of the solutions vanish. Increasing the
value ψ(0) from zero, Ω decreases, while the mass M and Noether charge QN increase monotonically.
The dependence of QN on Ω for e = 0 is given in Figure 6 (left). This demonstrates that, for Ω → 0,
the Noether charge QN diverges with ψ(0) tending to infinity. That means that the central density of
the uncharged Q-ball is not restricted and can become arbitrarily large.

When choosing e �= 0, charged Q-balls can be constructed. However, there is a very crucial
difference to the uncharged case: the central value of ψ(0) is limited to a finite value. As such, solutions
exist only for Ω ∈ [Ωmin : 1] with Ωmin > 0 for e �= 0. Moreover, two charged Q-ball solutions—and
not one as in the uncharged case—are possible. Figure 6 demonstrates the existence of this second
branch of solutions for several values of e. Here, we give the Noether charge QN of the (un)charged
Q-balls (including the uncharged case e = 0) (left) as well as the central value of the scalar field,
ψ(0), for several values of e and dependent on Ω. Note that this is qualitatively similar to the case
for Q-clouds on Schwarzschild black holes, see Figure 1 (left): decreasing Ω on the first branch of
solutions, the value of ψ(0) increases up to a maximal value at Ωmin > 0. From there, a second branch
of solutions extends all the way back to Ω = 1. On this second branch, the value of ψ(0) slightly
decreases when increasing Ω. Moreover, we find hat Ωmin is more or less equal when considering
charged Q-clouds and Q-balls, respectively. The presence of the horizon in the former case does not
seem to influence this value. The Noether charge QN of the Q-balls on the second branch is much

21



Symmetry 2020, 13, 2

larger than that of solutions on the first branch. Hence, the Q-balls on the second branch are composed
of many more scalar bosons than those on the first branch.
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Figure 6. Left: We show the Noether charge QN of (un)charged Q-balls dependent on Ω for four
different values of e. Right: We show the central value of the scalar field, ψ(0), of (un)charged Q-balls
dependent on Ω for four different values of e.

When two solutions exist for the same value of Ω, we will use the convention in the following to
denote “branch 1” (resp. “branch 2”) the branch of solutions with the lower (resp. higher) Noether
charge QN . The profiles of the scalar field ψ(x) and the electric potential V(x) of the two different
Q-ball solutions for e = 0.08 and Ω = 0.94 are shown in Figure 2 (right). Although some features
appear to be similar when comparing Q-clouds and Q-balls, there is one crucial difference which is
apparent from Figure 2: the electric field. For Q-balls, it vanishes at the origin (as it should), while it is
non-zero on the horizon of the black hole that carries the charged Q-cloud.

3.2.2. Charged Boson Stars

For α �= 0, charged boson star solutions exist. We have constructed these solutions and found that
a previously unnoticed phenomenon is present when the U(1) in the model is gauged, i.e., when the
scalar field is charged under the U(1). In fact, this phenomenon is very similar to that observed for
charged black holes with scalar hair (see [18] and discussion above). Choosing a solution on the second
branch of solutions, where ψ(x) is large at and close to the origin and increasing the gravitational
coupling leads to the appearance of a horizon at a critical value of α. The approach to criticality is
shown in Figure 7 for Ω = 0.6. When increasing α, we find that the minimal value of N(x) tends to
zero, while σ(0) decreases (but does not reach zero). For α = αcr, we find that, outside a given value of
the radial coordinate x = x̃, the solution corresponds to the extremally charged Reissner–Nordström
solution with σ ≡ 1 and ψ ≡ 0. For Ω = 0.6, we find that αcr ≈ 0.000113. Note that the value of x̃
and the location of the extremal horizon at x(ex)

h ≈ 121 do not coincide in this case. In agreement with

our interpretation of the limiting solution, we find that the mass at αcr is M = x(ex)
h =

√
αQ ≈ 121.

Comparing this to the case of charged black holes with scalar hair, we find that fixing Ω leads to
the same numerical values of αcr, xc and x(ex)

h for both cases. This suggests that the phenomenon of
inflation observed for black holes has a regular limit for xh → 0. The reason for this is also connected
to the observation that, while for boson stars we always have eQN = Q, this is not true for black
hole. However, for the black hole solutions on the second branch, we find eQN ≈ Q, which means
that (essentially) all electric charge is carried by the scalar field. Hence, these black holes behave very
similar to charged boson stars.
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Figure 7. We show the approach for a charged boson star with Ω = 0.6.

The interpretation of the solutions is, hence, very similar, although we are now dealing with an a
priori globally regular space-time. In particular, for the same choice of Ω and α, Figure 5 (left and right)
is identical to the corresponding equivalent plots for the boson stars. Note that, while the component
ε1 is zero for the boson stars by construction, it is zero for the black hole in this particular limit.
To re-emphasize this point, only in this particular limit does the electric field on the horizon of the
black hole vanish indicating that the horizon electric charge is vanishing.

As we have discussed above, the exterior of the black hole is hence inflating with the scalar
field energy dominating the remaining energy-momentum components and hence driving inflation.
We find the interior of the boson star defined by U(ψ) = U0 ≈ 1 (as compared to the exterior of the
boson star, where U(ψ) = 0) is inflating. Hence, these solutions are the non-topological equivalent of the
inflating topological defects (such as magnetic monopoles) that have been discussed in [22,23]. These latter
defects contain a core that is trapped inside the false vacuum of the model and this is exactly what
provides the vacuum energy to drive inflation. Consequently, in these models of topological inflation,
topological defects can “blow up” to sizes of the universe. Here, we find that a similar phenomenon
happens for localized, globally regular solutions made up out of a complex valued scalar field coupled
to an Abelian gauge field.

4. Discussion

In this paper, we have studied black holes and globally regular solutions in a simple scalar
field model with scalar field self-interaction of an exponential type that is motivated from models
of gauge-mediated supersymmetry breaking. The crucial point for the existence of the solutions

23



Symmetry 2020, 13, 2

presented here is the self-interacting of the scalar field as well as the coupling to the electromagnetic
field. This latter coupling allows for the effective scalar field potential to possess a local minimum
(the “false vacuum”) in which the scalar field can become trapped for specific choices of the coupling
constants such that the energy density of these solutions becomes dominated by the scalar field
energy of this false vacuum. When letting these solutions backreact on the space-time, we find that,
for sufficiently strong gravitational coupling, a second horizon starts to form which corresponds to the
horizon of an extremal RN solution.

In order to get an idea of whether these results could be important at cosmological scale,
let us go back to dimensional couplings for a moment. For e = 0.005 (corresponding to the case
Ω = 0.6 described above), we find that αcr ≈ 0.000113. This corresponds to η ≈ 0.003MPl, where
MPl = G−1/2. Hence, the energy scale of the scalar field would have to be on the order of the
Grand Unification scale. The remaining details depend very much on the mass μ of the scalar field.
e = 0.005 then implies q ≈ 1.67(μ/MPl) and a Hubble constant associated with the expansion of

H ∼
√

8πGU0
3 =

√
8π
3

μη
MPl

≈ 0.0087μ.
Let us now discuss the new phenomenon observed here compared to the topological inflation

scenario. What we have noticed in the model at hand is a phenomenon not discussed in the literature
so far. It contains an unbroken U(1) symmetry (in contrast to the model of topological inflation, where
a spontaneous symmetry breaking occurs) and is hence much closer to the scalar field models normally
used in inflation. Considering topological inflation to occur inside the core of magnetic monopoles
typically requires a higher rank gauge group to be broken to U(1) and hence a Higgs field in the adjoint
representation of the group. All of this is not necessary in our case. We are dealing with a simple set up
that does not require any symmetry breaking mechanism, However, only the coupling to a U(1) gauge
field. Certainly, what we have presented is a toy model, However, we believe that it is quite generic.

5. Materials and Methods

We have used the Black box solver COLSYS.
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Abstract: We consider charged black holes with scalar hair obtained in a class of Einstein–Maxwell–
scalar models, where the scalar field is coupled to the Maxwell invariant with a quartic coupling
function. Besides the Reissner–Nordström black holes, these models allow for black holes with scalar
hair. Scrutinizing the domain of existence of these hairy black holes, we observe a critical behavior.
A limiting configuration is encountered at a critical value of the charge, where space time splits into
two parts: an inner space time with a finite scalar field and an outer extremal Reissner–Nordström
space time. Such a pattern was first observed in the context of gravitating non-Abelian magnetic
monopoles and their hairy black holes.

Keywords: black holes; scalar fields; Einstein–Maxwell–scalar theory

1. Introduction

In recent years, studies of black holes with scalar hair received much interest, both in the context
of generalized gravity theories such as Einstein–scalar–Gauß–Bonnet (EsGB) theories [1–22] and in
the context of simpler models such as Einstein–Maxwell–scalar (EMs) models [23–40]. In both cases,
the way to couple scalar fields to the respective invariants, the Gauß–Bonnet and the Maxwell invariant,
is crucial for the resulting types of black hole solutions and their properties. In fact, according to
the choice of coupling function, distinct classes arise. In the first class, black holes with scalar hair
are present but with no general relativity (GR) black holes. Examples here are dilatonic black holes,
first obtained long ago [41,42]. In contrast, the second class allows for both black holes with scalar hair
and GR black holes. In the latter case, we should distinguish whether the GR black holes can exhibit
tachyonic instability, causing spontaneous scalarization of black holes [1–3,23], or whether the GR
black holes will never succumb to such an instability [31].

An example of the latter has been studied in [38,39]. In this set of models, the coupling
function f (Φ) = 1 + αΦ4 has been chosen, coupling the scalar field φ to the Maxwell invariant
with coupling constant α. Clearly, this coupling function allows for GR black hole solutions,
since the resulting coupled set of field equations can always be satisfied with a vanishing scalar
field. Thus, Reissner–Nordström (RN) black holes are solutions of this set of models with their usual
domain of existence, limited by the set of extremal RN black holes. However, this set of models allows
also for black holes with scalar hair. These scalarized solutions can be found in two different sets
or branches: the cold branch and the hot branch [38,39], that are labeled according to their horizon
temperature. For fixed coupling α, their domain of existence can be expressed in terms of their charge
to mass ratio q = Q/M. The cold branch resides in the interval [qmin(α), 1] and the hot branch resides
in [qmin(α), qmax(α)], while the bald RN branch resides in [0, 1].

On the other hand, hairy black holes with non-Abelian gauge fields have been studied for a long
time (see, e.g., [43–45] for reviews). The Einstein–Yang–Mills (EYM) and Einstein–Yang–Mills–Higgs
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(EYMH) theories typically allow not only for black holes with non-Abelian hair but also for embedded
Abelian solutions, such as RN black holes. This is thus analogous to the EMs models of the second class.
Unlike most EMs models though, the EYM and EYMH models also feature globally regular solutions,
solitons. In the SO(3)-EYMH case, these solitons correspond to gravitating magnetic monopoles and
dyons, which can be endowed with a horizon, generating hairy black holes [46–52]. These non-Abelian
solutions do not exist for arbitrary values of the coupling constant or horizon radius but possess a
limited domain of existence. As one of the boundaries is approached, an interesting limiting behavior
is observed: At a critical radial coordinate rcr = Qcr, the space time divides into two parts. In the
exterior part r > rcr, the scalar field assumes its vacuum expectation value while the non-Abelian
gauge field vanishes except for an embedded Abelian field, yielding the exterior region of an extremal
RN black hole with degenerate horizon rcr. In the interior part r < rcr, nontrivial non-Abelian and
scalar fields remain. These tend to their respective vacuum values at rcr. As this critical solution is
approached, both parts of the space time become infinite in extent, since the metric coefficient of the
radial coordinate features the double zero of a degenerate horizon.

Here, we will consider the limiting behavior of the EMs hairy black holes on the cold branch as
the upper boundary of their domain of existence, q = 1, is approached. Since the upper limit indeed
has q = 1 and a vanishing horizon temperature, one may expect that an extremal RN solution is
approached. However, as we will show, this is only part of the truth. In fact, an analogous critical
behavior is encountered, as has been known in the case of non-Abelian solutions for long. As the critical
solution is approached, the space time splits into two parts, an exterior part r > rcr corresponding to
the exterior region of an extremal RN black hole and an interior part r < rcr with a finite scalar field
that vanishes at rcr.

In Section 2, we present the EMs theory and the equations of motion. We then recall the Ansatz
for spherically symmetric black hole solutions and the expansions at the horizon and at infinity.
The properties of the black hole solutions are recalled in Section 3. Next, we consider the critical
behavior for fixed coupling constant α and then address the α-dependence of the properties of the
critical solutions in the same section. In Section 4, we show that the excited solutions exhibit an
analogous critical behavior. We conclude in Section 5.

2. EMs Theory

We consider EMs theory described by the action

S =
∫

d4x
√−g

[
R − 2∂μΦ∂μΦ − f (Φ)FμνFμν

]
, (1)

with the Ricci scalar R, the real scalar field Φ, the Maxwell field strength tensor Fμν and the coupling
function f (Φ). We use units so that c = G = 1.

In this paper, we will assume a quartic dependence:

f (Φ) = 1 + αΦ4 . (2)

We will focus on positive values of the coupling constant α, meaning Φ = 0 is the global
minimum of the coupling function. This type of coupling is representative of the type IIB
(scalarised-disconnected-type following the nomenclature introduced in [31]), since it allows for
the existence of both bald (RN) and hairy (scalarised) black holes. However, RN solutions are not
unstable with respect to scalar perturbations [38,39].
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The Einstein–, Maxwell– and scalar-field equations follow from the variational principle and read
as follows:

Rμν − 1
2

gμνR = TΦ
μν + TEM

μν , (3)

∇μ(
√−g f (Φ)Fμν) = 0 , (4)

1√−g
∂μ(
√−ggμν∂νΦ) = ḟ (Φ)FμνFμν , (5)

with ḟ (Φ) = d f (Φ)/dΦ, electromagnetic stress-energy tensor

TEM
μν ≡ 2 f (Φ)

(
FμαF α

ν − 1
4

gμνF2
)

(6)

and scalar stress-energy tensor

TΦ
μν ≡ 1

2
∂μΦ∂νΦ − 1

2
gμν

1
2
(∂αΦ)2 . (7)

To study static spherically symmetric black holes, we employ the following parametrization of
the metric:

ds2 = −N(r)e−2δdt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2) , (8)

with the metric functions N(r) and δ(r). However, for some expressions, it is useful to define the mass
function m(r) as N(r) = 1 − 2m(r)

r and the metric function as g(r) = N(r)e−2δ(r) = −gtt(r).
To obtain black holes with electric charge and, in the scalarized case, also scalar charge,

we parametrize the gauge potential and the scalar field by

Aμ =
(

At(r), 0, 0, 0
)

, Φ = Φ(r) . (9)

The above Ansatz for a static and spherically symmetric configuration is substituted into the
equations of motion (3)–(5). This leads to the following set of coupled ordinary differential equations
(ODEs) for the unknown functions of the metric and the fields:

m′ = r2NΦ
′2

2
+

Q2

2r2 f (Φ)
, δ′ + rΦ

′2 = 0 , A′
t = − Qe−δ

f (Φ)r2 , (10)

Φ
′′
(r) +

1 + N
rN

Φ
′ − Q2

r3N f (Φ)

(
Φ

′ − ḟ (Φ)

2r f (Φ)

)
= 0 , (11)

where a prime denotes a derivative with respect to the radial coordinate and Q is the electric charge of
the black holes.

To address the vicinity of the black hole horizon, we perform a power series expansion of the
functions of the metric and the fields in r − rH at the horizon, where we denote the horizon radius by
rH and the horizon values of the functions by the subscript H:

m(r) =
rH
2

+ m1(r − rH) + · · · , δ(r) = δH − Φ2
1rH(r − rH) + · · · , (12)

At(r) = ΨH − e−δH Q
r2

H f (ΦH)
(r − rH) + · · · , Φ(r) = ΦH + Φ1(r − rH) + · · · , (13)

with

m1 =
Q2

2r2
H f (ΦH)

, Φ1 =
Q2 ḟ (ΦH)

2rH f (ΦH)
[
Q2 − r2

H f (ΦH)
] . (14)
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Some important properties of the horizon that we will use are the horizon area AH = 4πr2
H and

the horizon temperature TH = N′(rH)e−δ(rH)/4π (which is determined by the surface gravity at the
horizon in the usual way).

A power series expansion in 1/r at infinity of the functions of the metric and the fields allows us
to read off the global charges of the black holes:

m(r) = M − Q2 + Q2
s

2r
+ · · · , δ(r) =

Q2
s

2r2 + · · · , (15)

At(r) = −Q
r
+ · · · , Φ(r) =

Qs

r
+

MQs

r2 + · · · , (16)

with Arnowitt-Deser-Misner mass M and scalar charge Qs, both of them also defined in the standard way.

3. Limit of Cold Black Holes

3.1. Branches of Black Holes

We now briefly recall the properties of static spherically symmetric electrically charged black hole
solutions with quartic coupling function (2). The black holes of the RN branch are given by

δ(r) = 0 , m(r) = M − Q2

2r
, At(r) = −Q

r
, Φ(r) = 0 . (17)

The scalarized black hole solutions are obtained numerically [38]. We solve the field equations
subject to the boundary conditions that follow from the above expansions at the horizon and at
infinity, with input parameters α, rH and Q. We employ the professional solver COLSYS [53], which is
based on a collocation method for boundary-value ODEs and on a damped Newton method of
quasi-linearization. Since this solver includes an adaptive mesh selection procedure, it is very suitable
for the problem at hand, where high accuracy is needed in a very small interval close to the black
hole horizon. Consequently, the grid is successively refined until the required accuracy is reached,
typically 10−16.

The solutions are characterized by a set of dimensionless quantities: the charge to mass ratio q,
the reduced horizon area aH and the reduced horizon temperature tH , for which

q ≡ Q
M

, aH ≡ AH

16πM2 =
r2

H
4M2 , tH ≡ 8πMTH = 2MN′(rH)e−δ(rH) . (18)

We illustrate the domain of existence of the black holes in Figure 1a, where we show the mass
to charge ratio q versus the coupling constant α. The horizontal black line q = 1 represents the set of
extremal RN black holes and, thus, the upper boundary for RN black holes. At the same time, that line
represents the set of critical scalarized solutions forming the upper boundary of the cold black holes,
which reside in the lower green area. The solid green line marks the bifurcation line qmin(α) separating
the cold and hot black holes. The hot black holes then extend from this bifurcation line to the dashed
red critical line qmax(α), i.e., they fill the whole shaded region.

In Figure 1b, we exhibit the reduced area aH and reduced temperature tH (inset) versus the charge
to mass ratio q of the black hole solutions for the particular coupling α = 200 [38]. The RN branch is
shown in solid black, the cold branch is shown in dotted blue and the hot branch is shown in dashed
red. Along the cold branch, the mass to charge ratio q decreases, while the reduced area aH and
temperature tH increase. At the minimal value qmin, the cold branch bifurcates with the hot branch.
Along the hot branch, aH decreases again, while tH increases with increasing q.

From the figure, it seems that the cold branch starts from an extremal RN black hole. Clearly,
the charge to mass ratio at its endpoint agrees with the ratio q = 1 of an extremal RN black hole and the
horizon temperature vanishes at its endpoint, TH = 0. Looking at the horizon area (Figure 1b) and
further properties, one is indeed tempted to conclude that the cold branch emerges from an extremal
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RN black hole. However, as we will demonstrate in the following, this is only partially true. In fact,
the endpoint of the cold branch is a more intriguing configuration.
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Figure 1. (a) Phase diagram of scalarized black holes: mass to charge ratio q vs. coupling constant α.
(b) Reduced horizon area aH (inset: reduced temperature tH) vs. q for α = 200: cold branch (dotted
blue), hot branch (dashed red) and RN branch (solid black).

3.2. Approach to the Critical Solution for α = 200

To gain an understanding of the limiting configurations, we now inspect a family of cold black
holes with fixed coupling constant α = 200, fixed horizon radius rH = 2 and increasing charge Q
in order to reach the critical solution with q = 1 at some Qcr. If the family of cold black holes simply
approached an extremal RN black hole, this extremal black hole would have its degenerate horizon at
rH = 2, and it would satisfy rH = Q = M.

In Figure 2, we exhibit a set of these cold black hole solutions as they approach the endpoint of the
cold branch. Notably, all the solutions exhibited here possess a charge Q ≥ 2, i.e., they range between
the extremal RN limit of Q = 2 and a critical value Qcr = 2.0016701 (+O(10−8)). Thus, they slightly
exceed the extremal RN limit for fixed horizon radius rH = 2. The figure shows the metric functions
g(r) (a) and N(r) (b), the electromagnetic function At(r) (c) and the scalar field function Φ(r) (d)
versus the compactified radial coordinate x = 1 − rH

r in a logarithmic scale. Note that r = rH then
corresponds to x = 0 and r = ∞ corresponds to x = 1.

Whereas the metric and electromagnetic functions appear smooth at first glance, as seen in the
inlets of Figures 2a,b and in Figure 2c, the scalar field function (Figure 2d) immediately reveals a
critical behavior: As Qcr is approached, the scalar field function assumes a finite limiting value Φ(rH)

at the imposed horizon rH = 2. However, the function Φ(r) decreases more and more steeply as it
approaches zero, with its boundary value at infinity, Φ(∞) = 0. In fact, in the limit Q → Qcr, it tends
to zero already at a critical value of the radial coordinate r = rcr, which coincides with the value of the
critical charge, rcr = Qcr. In the limit, therefore, the solution features a finite scalar field in the interior
r < rcr, whereas the scalar field vanishes identically in the exterior r > rcr.

Since the critical exterior solution is a pure electrovacuum solution, starting at rcr and possessing
electric charge Qcr, this suggests that the exterior critical solution is described by an extremal RN black
hole. However, instead of carrying charge Q = 2, it carries the critical charge Qcr. Comparing the Qcr

numerical solution with a Qcr extremal RN black hole shows that this conclusion holds true. In the
interior, however, not only is the scalar field function finite but also all the functions differ from this Qcr

extremal RN black hole, as they must in order to satisfy the imposed boundary conditions at rH = 2.
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Figure 2. Approach to the critical solution for α = 200: (a) metric function g(r) = N(r)e−2δ(r),
(b) metric function N(r) = 1 − 2m(r)

r , (c) electromagnetic function At(r) and (d) scalar function Φ(r)
vs. the compactified radial coordinate x = 1 − rH

r . The insets highlight the vicinity of the critical radius
r = rcr.

We now inspect the behavior of the functions in the interior in more detail as Qcr is approached,
starting with the electromagnetic function At. As seen in Figure 2c, also in the interior, a limiting
critical solution is reached. At the critical radius rcr, the electromagnetic function At of this critical
solution assumes the value At(rcr) = −1. In fact, in the full interior r < rcr, it assumes this value
At(r ≤ rcr) = −1, as seen in the inset of the figure. Therefore, there is no electric field in the
interior region.

To reveal the critical behavior of the metric functions, we need to consider double logarithmic
plots, as exhibited in Figure 2a,b. The extremal RN with charge Qcr would have a double zero at rcr,
for both functions g(x) and N(r). Indeed, we observe a very sharp drop at rcr as the limiting solution
is approached for both metric functions g(r) and N(r), confirming our interpretation of the exterior
solution. However, in the interior, it becomes apparent that we have not yet fully reached the critical
solution but are only very close to it.

In the interior, both functions g(r) and N(r) differ distinctly. The function N(r) tends to a finite
limiting solution in the interior, except at rH = 2, where the boundary conditions force it to vanish.
In contrast to N(r), the function g(r) approaches zero in the limit. (With every further digit determined
at the critical value Qcr, the function g(r) assumes smaller values in the interior.) Recalling that the
function g(r) has been decomposed into the factors N(r) and exp(−2δ(r)), we conclude that it is the

32



Symmetry 2020, 12, 2057

function δ(r) which causes g(r) to vanish in the interior in the limit, since N(r) has a finite limit. It is
instructive now to look again at the horizon temperature TH . Having observed above (e.g., in the inset
of Figure 1b) that TH → 0 on the cold branch in the limit, one may expect that the reason was that a
degenerate horizon arose at rH = 2 and therefore the derivative N′(r) vanished there. However, now,
we see that there is no degenerate horizon at rH = 2 in the limit. Instead, TH vanishes because of the
factor exp(−δ(r)) in Equation (18).

We have thus obtained the following scenario: In the limit Q → Qcr, the space time splits into an
exterior and an interior part. The exterior is described by an extremal RN black hole; the interior has
a finite scalar field but no electric field. Since at the critical radius rcr, a double zero is approached,
as featured by a degenerate horizon, the radial distance l(r) to and from rcr increases as the critical
solution is approached. In the limit, both parts of the space time become infinite in extent.

To demonstrate this effect for the interior part, we consider in Figure 3 the radial distance l(r),
defined via

l(r) =
∫ r

rH

dr√
N(r)

. (19)

The dependence of the radial coordinate r(l) on the radial distance is illustrated in Figure 3a for
the approach to the critical solution. For Qcr, an infinite radial distance is reached at the finite value
of the radial coordinate rcr; thus, an infinite throat is formed. For Q → Qcr, the metric function N(r)
(Figure 3b), the electromagnetic function At(r) (Figure 3c) and the scalar function Φ(r) (Figure 3d) are
also shown versus the radial distance l(r). The metric function N(r) again highlights the formation of
an infinite throat in the limit, while the electromagnetic function At(r) approaches a constant value in
the interior region. The scalar function Φ(r), on the other hand, demonstrates that, when considered
as a function of the radial distance l instead of the radial coordinate r, there is remarkably little
dependence on the value of the charge Q during the approach Q → Qcr. An analogous observation
was made for the matter functions of the magnetic monopoles during their approach to their respective
critical solution [46].
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Figure 3. Approach to the critical solution for α = 200: (a) radial coordinate r, (b) metric function
N(r) = 1− 2m(r)

r , (c) electromagnetic function At(r) and (d) scalar function Φ(r) vs. the radial distance
l(r) (Equation (19)).

3.3. α-Dependence of the Critical Solution

We now demonstrate that the critical scenario described above holds for a large range of couplings
α, showing that the scenario is rather generic. We exhibit the critical solutions in Figure 4, where we
show the metric function N(r) = 1 − 2m(r)

r (Figure 4a) and the scalar function Φ(r) (Figure 4b) for a
set of couplings α in the interval [3.2, 200].
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Figure 4. Critical solutions for a set of couplings α: (a) metric function N(r) = 1 − 2m(r)
r and (b)

scalar function Φ(r) vs. the compactified radial coordinate x = 1 − rH
r . Note that the key applies to

both figures.

The figure shows that, with decreasing α, the critical radius rcr increases. We recall that it coincides
with the critical charge, rcr = Qcr. At the same time, the scalar field assumes larger values in the
interior. We highlight the α-dependence of the critical charge Qcr and of the horizon value of the scalar
field Φ(rH) in Figure 5a,b, respectively. We note the steep increase of the critical charge Qcr for small α,
while Qcr → rH for large α. This dependence can be well described by the simple relation

Qcr

rH
− 1 =

1
4
√

2 α
, (20)
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as demonstrated in the figure. The horizon value of the scalar field Φ(rH) satisfies the even
simpler relation

Φ(rH) =
1√
α

, (21)

as seen in the figure as well. In Figure 5c,d, we show that, for the interior critical solution,
the derivatives of the metric function m(r) and the scalar function Φ(r) at the horizon precisely
respect the expansion at the horizon (Equations (12) and (13), respectively).
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Figure 5. Properties of critical solutions: (a) Qcr(α) (solid red) and limit for α → ∞ according to
Equation (20) (dashed green), (b) Φ(rH)(α) (solid red) and relation from Equation (21) (dashed green),
(c) Φ′(rH)(α) (solid red) and expansion coefficient Φ1(rH)(α) from Equation (14) (dashed green), and
(d) m′(rH)(α) (solid red) and expansion coefficient m1(rH)(α) from Equation (14) (dashed green).

4. Excited Solutions

Until now, we have focused the discussion on the fundamental branch of scalarized black holes,
with scalar field functions that possess no nodes. However, in certain cases, the model allows for the
existence of excited solutions, meaning solutions with nodes in the scalar field functions. Let us discuss
them briefly here.

These solutions present very similar properties to the n = 0 solutions, with a hot/cold branch
structure, the hot one bifurcating from the cold one. The cold branch also reaches a critical end-point
with q = 1. However, an important difference is that all of these excited branches are radially unstable,
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as previously discussed in [38,39]. Also, the number of excited branches depends on the coupling
constant α, i.e., the larger the value of α, the more excited branches exist.

As an example, in Figure 6a, we show again the reduced area aH as a function of the reduced
charge q for α = 200. This is the same as Figure 1b, but now, we include the n = 1 solutions in solid
green. As we can see, these excited solutions could also be distinguished in two different branches: one
branch (cold) would extend from q = 1 to a minimum qmin < 1; the second branch (hot) would extend
from this qmin up to a certain qmax > 1. It turns out that the interval (qmin, qmax), where n = 1 solutions
exist, is smaller than the domain interval of the n = 0 solutions. On the other hand, for this particular
value of the coupling constant (α = 200), only n = 1 excited solutions exist. However, sufficiently large
values of α allow for additional branches with n > 1 excited solutions appear.
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Figure 6. (a) Reduced horizon area aH vs. q for α = 200: In addition to the RN branch (solid black),
the (n = 0) cold branch (finely dotted blue) and the (n = 0) hot branch (coarsely dotted red), the n = 1
excited solutions (solid green) are shown. (b) A similar figure for the scalar field at the horizon ΦH vs.
reduced temperature tH .

In Figure 6b, we show the scalar field at the horizon as a function of the reduced temperature
tH , also for α = 200. As we approach the q = 1 limit along the cold branch, the temperature goes to
zero but the value of the scalar field remains constant. (This is similar to what happens for the n = 0
solutions we have discussed in the previous sections, as shown in this figure.) If we compare solutions
with the same th, the larger the excitation number, the larger the value of the scalar field at the horizon.

As already said, the critical behavior is also present in these excited solutions. When fixing rH = 2,
the critical solutions possess a value of the electric charge Q = Qcr(n) > 2 (this value depends on n).
The limit results in a set of critical solutions with split space time, similar to the n = 0 solutions we
have been discussing in the previous sections. The exterior part is the extremal RN solution. On the
interior part, however, we have a nontrivial scalar field for which the number of nodes can be labeled
by an integer number n.

In Figure 7, some profiles for n = 1 critical solutions with different values of α are shown as an
example. In particular, we show the critical solutions for α = 200 with Qcr = 2.02407591 (solid red),
for α = 400 with Qcr = 2.01180482 (dashed green) and for α = 800 with Qcr = 2.00584391 (dotted blue).

In Figure 7a, we show the metric function N(r) versus x = 1 − rH/r. It demonstrates that the
behavior of these n = 1 solutions is very similar to the one presented in Figure 4a, which corresponds
to n = 0 solutions. Essentially, the metric function N(r) develops a zero at some critical value r = rcr.
For r > rcr, the solution is extremal RN, but in the interior region, it is a nontrivial solution with a
scalar field. The main difference now, as shown more clearly in the inset, is that the function develops
a minimum at a certain point r < rcr.
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Figure 7. Critical solutions with n = 1 for a set of couplings α: (a) metric function N(r) = 1 − 2m(r)
r

and (b) scalar function Φ(r) vs. the compactified radial coordinate x = 1 − rH
r .

Figure 7b exhibits the scalar field Φ versus x, with the inset showing a zoomed region around the
critical value of the radial coordinate rcr. This demonstrates that the profile of the scalar field is quite
different from the one in Figure 4b. Now the scalar field function not only vanishes at rcr but also has a
node at some intermediate point.

Solutions with more nodes also follow this pattern. As an example, we depict in Figure 8 similar
plots for n = 2 solutions. These correspond to critical solutions for α = 640 with Qcr = 2.0362514
(solid red), for α = 832 with Qcr = 2.0274443 (dashed green) and for α = 960 with Qcr = 2.02361315
(dotted blue). Figure 8 (left) exhibits how the N function develops a minimum a bit below rcr, and in
Figure 8 (right), we demonstrate that the scalar field function has two nodes below rcr.
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Figure 8. Critical solutions with n = 2 for a set of couplings α: (a) metric function N(r) = 1 − 2m(r)
r

and (b) scalar function Φ(r) vs. the compactified radial coordinate x = 1 − rH
r .

5. Conclusions

We have considered black holes in EMs models with a quartic coupling function f (Φ) = 1 + αΦ4,
that allows for RN black holes as well as cold and hot scalarized black holes [38]. The models are
parameterized by the coupling constant α and exhibit generic features. In particular, the RN black
holes never become unstable to grow scalar hair [38,39]. Still, the cold branch follows the RN branch
to a large extent and starts at q = Q/M = 1, the endpoint of the RN branch.
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In particular, we have investigated the approach of the cold branch to this critical point q = 1 in
detail for these EMs models. For that purpose, we have fixed the horizon radius rH of the black holes
and then increased the electromagnetic charge Q until, for some fixed coupling α, a critical solution
with q = 1 has been reached. Whereas an extremal RN black hole with horizon radius rH satisfies
q = 1 with rH = Q = M, the critical solution on the cold branch satisfies q = 1 with rcr = Qcr = Mcr

and rH < rcr. Consequently, the critical solution cannot simply be an extremal RN black hole.
Inspection of the functions of the critical solution then revealed that the critical solution splits the

space time into two parts: an exterior part which indeed corresponds to an extremal RN black hole
solution but with rcr = Qcr = Mcr, and an interior part, which has a finite scalar field that vanishes at
rcr and a vanishing electromagnetic field. Since the radial metric function develops a double zero at rcr,
both parts of the space time become infinite in size as the space time splits.

By studying the critical solution for many values of the coupling α, we have shown that this
observed phenomenon is generic for these EMs models. In fact, the critical charge Qcr possesses a rather
simple α-dependence, with (Qcr/rH − 1) being inversely proportional to α, while the horizon value of
the scalar field ΦH is inversely proportional the square root of α. At the same time, the functions of the
critical solution satisfy the horizon expansion at rH as well as the expansion at infinity, the latter of
course with vanishing scalar charge.

In addition, we have discussed the case of the excited solutions, with nodes in the scalar field
functions. These solutions posses a similar (hot/cold) branch structure, with a critical limit that splits
the space time just like in the nodeless case. The excited solutions can be labeled by an integer number
n, counting the number of nodes of the scalar in the interior part of the space time.

It is interesting that the critical phenomenon which has previously been encountered for
non-Abelian magnetic monopoles and their associated hairy black holes as well as for similar
non-Abelian solutions arises also in these EMs models. Note a somewhat similar observation in
the recent investigation of strong gravity effects of charged Q-clouds and inflating black holes [54]
(see also [55] in this issue). For non-Abelian monopoles, the interior solution has nontrivial non-Abelian
gauge fields and Higgs field, whereas the exterior solution is simply an embedded RN black hole
with magnetic charge. Not surprisingly, for solutions with both electric and magnetic charge, this
phenomenon persists. Even pure non-Abelian solutions (without a Higgs field) were shown to exhibit
a somewhat analogous phenomenon, which emerges in the limit of infinite node number (see e.g., [43]).
It would thus be interesting to find general criteria to identify models that allow for this type of
phenomenon where the space time splits into two infinitely extended parts, with the interior part
containing nontrivial fields that vanish identically in the exterior part, where a simple extremal black
hole solution emerges.
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Abstract: Spontaneous Symmetry Breaking (SSB) in λΦ4 theories is usually described as a 2nd-order
phase transition. However, most recent lattice calculations indicate instead a weakly 1st-order phase
transition as in the one-loop and Gaussian approximations to the effective potential. This modest
change has non-trivial implications. In fact, in these schemes, the effective potential at the minima
has two distinct mass scales: (i) a first mass mh associated with its quadratic curvature and (ii)
a second mass Mh associated with the zero-point energy which determines its depth. The two
masses describe different momentum regions in the scalar propagator and turn out to be related by
M2

h ∼ m2
h ln(Λs/Mh), where Λs is the ultraviolet cutoff of the scalar sector. Our lattice simulations of

the propagator are consistent with this two-mass picture and, in the Standard Model, point to a value
Mh ∼ 700 GeV. However, despite its rather large mass, this heavier excitation would interact with
longitudinal W’s and Z’s with the same typical coupling of the lower-mass state and would therefore
represent a rather narrow resonance. Two main novel implications are emphasized in this paper:
(1) since vacuum stability depends on the much larger Mh, and not on mh, SSB could originate within
the pure scalar sector regardless of the other parameters of the theory (e.g., the vector-boson and
top-quark mass) (2) if the smaller mass were fixed at the value mh =125 GeV measured at LHC,
the hypothetical heavier state Mh would then naturally fit with the peak in the 4-lepton final state
observed by the ATLAS Collaboration at 700 GeV.

Keywords: Spontaneous Symmetry Breaking; BEH field mass spectrum; LHC experiments

PACS: 11.30.Qc; 12.15.-y; 13.85.-t

1. Introduction

Spontaneous Symmetry Breaking (SSB) through the vacuum expectation value 〈Φ〉 �= 0 of a
fundamental scalar field, the BEH field [1,2], is an essential element of the Standard Model. This original
idea has been recently confirmed by the discovery at LHC [3,4] of a narrow scalar resonance with mass
mh ∼ 125 GeV whose characteristics fit well with the theoretical expectations. This has produced the
widespread belief that any change of this general picture could only originate from new physics.

However, this conclusion might not be entirely true. In fact, at present, only the gauge and Yukawa
interactions of the 125 GeV resonance have been tested. Instead, the possible effects of a genuine scalar
self-coupling λ = 3m2

h/〈Φ〉2 are still below the precision of the observations. This suggests that some
uncertainty on the origin of SSB may still persist.

Originally, the underlying mechanism was identified in a classical double-well, scalar potential.
However, later, after Coleman and Weinberg [5], the classical potential was replaced by the quantum
effective potential Veff(ϕ) which includes the zero-point energy of all fields in the theory.

Yet, SSB could still originate within the pure λΦ4 sector if the other fields give a negligible
contribution to the vacuum energy. To fully appreciate this point, we must start from scratch
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and consider one aspect which has still to be clarified: the nature of the phase transition in a
pure λΦ4 scalar theory in 4D. More precisely, is it a 2nd-order phase transition or a (weakly)
1st-order transition? Surprising as it may be, this apparently minor change can have substantial
phenomenological implications.

To this end, in Sections 2–4 we will give a general overview of the problem and argue that SSB
in pure λΦ4 theory is a weak 1st-order phase transition. Then, in this picture, besides the known
resonance with mass mh ∼ 125 GeV, we expect a new excitation of the BEH field with a much larger
mass Mh ∼ 700 GeV. Since vacuum stability depends on this larger Mh, and not on mh, SSB could well
originate within the pure scalar sector regardless of the remaining parameters of the theory (as the
vector boson or top-quark mass).

However, despite such large mass, this heavier state would interact with longitudinal W’s and
Z’s with the same typical strength of the lower-mass state. As such, it would represent a rather
narrow resonance. On this basis, in Sections 5 and 6, we will consider these more phenomenological
aspects and their implications for the present LHC experiments.

2. SSB: 2nd- or (Weak) 1st-Order Phase Transition?

To introduce the problem, let us start with the classical potential (λ > 0)

Vclass(ϕ) =
1
2

m2 ϕ2 +
λ

4!
ϕ4 (1)

Here, there is no ambiguity. As one varies the m2 parameter, one finds a 2nd-order phase transition
occurring for m2 = 0. However, in the full quantum theory is this conclusion still so obvious? To this
end, one should look at the effective potential and study vacuum stability depending on the physical
mass, say m2

Φ, in the symmetric vacuum at ϕ = 0

V′′
eff(ϕ = 0) ≡ m2

Φ (2)

Clearly, this is locally stable if m2
Φ > 0. However, for m2

Φ > 0, is this symmetric vacuum also
globally stable? Or, instead, could the SSB transition be 1st-order and occur for some very small but still
positive m2

Φ = m2
c > 0? Then, if this were true, the lowest-energy state for the classically scale-invariant

case m2
Φ = 0 would correspond to the broken-symmetry phase with an expectation 〈Φ〉 �= 0.

This dilemma, on the nature of the phase transition, goes back to the pioneering work of Coleman
and Weinberg [5]. After subtracting a ϕ− independent constant and quadratic divergences, in this
massless limit of λΦ4, their original 1-loop result was

V1−loop(ϕ) =
λ

4!
ϕ4 +

λ2 ϕ4

256π2

[
ln( 1

2 λϕ2/Λ2
s )−

1
2

]
(3)

where Λs is a large ultraviolet cutoff. As it is well known, this 1-loop form could equivalently be
expressed as the sum of classical background + zero-point energy of a field with a ϕ−dependent mass
M(ϕ) given by

M2(ϕ) ≡ 1
2

λϕ2 (4)

namely

V1−loop(ϕ) =
λϕ4

4!
− M4(ϕ)

64π2 ln
Λ2

s
√

e
M2(ϕ)

(5)

By using this notation, there are non-trivial minima for those values, say ϕ = ±v, where

M2
h ≡ M2(±v) =

λv2

2
= Λ2

s exp(−32π2

3λ
) (6)
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Therefore, since the massless theory exhibits SSB, the 1-loop potential indicates a 1st-order phase
transition. Actually, it is a weak 1st-order transition because, in units of the M2

h in Equation (6), the mass
mΦ in the symmetric phase is bounded to be smaller than a critical mass [6]

m2
Φ < m2

c =
λM2

h
64π2

√
e
∼ M2

h
ln(Λs/Mh)

� M2
h (7)

With such extremely small critical mass, SSB emerges as an infinitesimally weak 1st-order
transition which could hardly be distinguished from a 2nd-order transition unless one looks on
an extremely fine scale.

As is well known [5], though, the standard Renormalization-Group (RG) improvement of the
1-loop potential contradicts this scenario. Indeed, leading-logarithmic terms entering the effective
potential are re-absorbed into an effective coupling λ(ϕ) giving a re-summed expression

VRG(ϕ) ∼ λ(ϕ)

4!
ϕ4 (8)

Thus, by restricting to λ(ϕ) > 0, the 1-loop minimum disappears and we would again predict a
2nd-order transition at m2

Φ = 0. The standard view is that it is this latter point of view to be reliable.
To see why things are not so simple, let us consider another approximation scheme. Specifically,

the Gaussian effective potential [7,8]. Diagrammatically, this corresponds to the infinite re-summation
of all one-loop bubbles with mass M(ϕ) and has a variational nature by exploring the Hamiltonian
operator within the Gaussian functional states. For this reason, it is a very natural alternative because
a Gaussian set of Green’s functions would fit with the “triviality” of λΦ4 theory in 4D. An early
calculation [9] of the Gaussian effective potential for the one-component λΦ4 theory confirmed the
1st-order scenario in agreement with the 1-loop potential. This is because the existing corrections
beyond 1-loop reproduce the some functional form and thus support the same 1st-order picture.

Further calculations, by Bryhaye and one of us [10,11], confirmed that by imposing
V′′

Gauss(ϕ = 0) = 0, the Gaussian effective potential for the O(2) and O(N)-symmetric scalar theories
exhibits SSB thus again supporting the weak 1st-order picture. In particular, it was noted the
non-uniformity of the two limits N → ∞ and ultraviolet cutoff Λs → ∞.

To fully appreciate the substantial equivalence with the one-loop potential, we observe that the
infinite additional terms in the Gaussian effective potential can be expressed in a form analogous to
Equation (5) with a simple redefinition of the classical background and of the ϕ−dependent mass in
the zero-point energy, i.e.,

VGauss(ϕ) =
λ̂ϕ4

4!
− Ω4(ϕ)

64π2 ln
Λ2

s
√

e
Ω2(ϕ)

(9)

with

λ̂ =
λ

1 + λ
16π2 ln Λs

Ω(ϕ)

and Ω2(ϕ) =
λ̂ϕ2

2
(10)

This shows that the 1-loop potential also admits a non-perturbative interpretation. In fact,
by displaying the same basic structure of classical background + zero-point energy, it represents the
prototype of all gaussian and post-gaussian calculations [12,13]. At the same time, it also explains why
1-loop and Gaussian approximations, although differing in terms of the bare parameters, can become
identical in a suitable renormalization scheme [14,15].

This concordance among various approximations may cast some doubts on the re-summation
in Equation (8) and its 2nd-order scenario. Nevertheless, at the time of those works, the precise
motivation for the discrepancy was not understood. Thus, the whole problem of SSB in pure λΦ4

theories did not attract much attention, also due to the lack of definite phenomenological implications.
However, two subsequent theoretical developments, producing new evidence in favor of the

1st-order scenario, have refreshed anew the interest into the whole problem:
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(i) the first development was concerning the physical mechanisms [6] underlying SSB as a 1st-order
transition. In fact, once SSB really coexists with a physical mass 0 < m2

Φ ≤ m2
c for the elementary

quanta of the symmetric phase, these quanta, the “phions” [6], should be considered to be real particles
although, being “frozen” in the broken-symmetry vacuum, they would not be directly observable
(like quarks). Now, the conventional picture of λΦ4 corresponds to a repulsive interaction. Only its
strength decreases at large distance. However, then, this is somewhat mysterious. In fact, if the
interaction remains always repulsive, how could this broken-symmetry vacuum with 〈Φ〉 �= 0, a Bose
condensate of phions, have a lower energy than the 〈Φ〉 = 0 empty state with no phions? Here,
a crucial observation [6] was that phions, moreover the +λδ3(r) contact repulsion, also feel a −λ2 e−2mΦr

r3

attraction arising at 1-loop and which becomes more and more important when mΦ → 0 (From the
scattering amplitude M, computed from Feynman graphs, one can define an interparticle potential
which is nothing but the 3D Fourier transform of M, see Feinberg et al. [16,17].). By including both
effects, one can now understand [6] why, for small enough mΦ, the attraction can dominate and
the lowest-energy state becomes a state with a non-zero density of phions Bose-condensed in the
zero-momentum state.

However, then, if SSB is produced by these two competing effects (short-range repulsion and
long-range attraction) we now understand the failure of the standard RG-analysis. In fact, the attractive
term originates from the ultraviolet-finite part of the 1-loop graphs. Therefore, to correctly include
higher-order effects, one should renormalize both the tree-level contact repulsion and the 1-loop,
long-range attraction, as if there were two different coupling constants in the theory. This different
procedure has been adopted by Stevenson [18], see Figure 1. By avoiding double counting, he has
shown that the simple 1-loop result and its RG-improvement, in this new scheme, now agree very well
so that the weak 1st-order scenario is confirmed.

Figure 1. The re-arrangement of perturbation theory introduced by Stevenson [18] in his alternative
analysis of Veff(ϕ). The quanta of the symmetric phase with mass mΦ, besides the contact +λδ3(r)

repulsion, also feel a −λ2 e−2mΦr

r3 attraction from the Fourier transform of the ultraviolet-finite part of
the 1-loop term [6]. Its range diverges in the mΦ → 0 limit and, for mΦ below a critical mass mc,
the attraction will dominate and induce SSB. Since higher-order contributions simply renormalize these
two basic effects, the resulting RG-improvement, in this new scheme, now confirms the 1st-order phase
transition scenario as at 1-loop.

(ii) recent lattice simulations of pure λΦ4 in 4D [19–21], obtained with different algorithms in
the Ising limit of the theory (and on the present largest available lattices), indicate that the SSB phase
transition is weakly 1st-order.

Since the above arguments (i) and (ii) confirm the 1st-order picture of SSB, and the general validity
of the 1-loop and Gaussian approximations to the effective potential, we will now consider in Section 3
some important physical implications of this scenario.

3. Two-Mass Scales in the Broken Phase

To explore the physical implications of a 1st-order scenario of SSB, we will restrict to the one-loop
approximation Equation (5) of Veff(ϕ) which is equivalent to the Gaussian approximation result
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Equation (9). Equation (5) is just a different way of re-writing Equation (3) but intuitively supports the
traditional view where the broken-symmetry phase is a simple massive theory with mass Mh as in
Equation (6). Thus, one expects that up to small perturbative corrections, this is the mass parameter
entering the scalar propagator.

To see why, again, things are not so simple, let us compute the quadratic shape of the effective
potential, i.e., its second derivative at the minimum. This other quantity, say m2

h, has the value

m2
h ≡ V′′

eff(±v) =
λ2v2

32π2 =
λ

16π2 M2
h ∼ M2

h
L

� M2
h (11)

where L ≡ ln Λs
Mh

. Now, the derivatives of the effective potential are just (minus) the n-point functions
for zero external momentum. In particular, one finds

m2
h ≡ V′′

eff(ϕ = ±v) = −Π(p = 0) = |Π(p = 0)| (12)

Therefore, by expressing the inverse propagator as

G−1(p) = p2 − Π(p) (13)

we find G−1(p) ∼ (p2 + m2
h) for p → 0. This means that apparently, it is this smaller mass m2

h, and not
M2

h, which enters the (low-momentum) propagator. However, now, in the λ → 0 limit, m2
h and M2

h are
vastly different scales (i.e., do not differ by small perturbative corrections). Thus one may ask: which
is the right mass?

To better understand this point, let us sharpen the meaning of Mh by using the general relation
which expresses the zero-point-energy (“zpe”) in terms of the trace of the logarithm of G−1(p), i.e.,

zpe =
1
2

∫ d4 p
(2π)4 ln(p2 − Π(p)) (14)

Thus, after subtracting a constant and quadratic divergences, to match the 1-loop Equation (5),
we can impose appropriate limits in the logarithmic divergent part (i.e., p2

max ∼ √
eΛ2

s and p2
min ∼ M2

h)

zpe = −1
4

∫ pmax

pmin

d4 p
(2π)4

Π2(p)
p4 ∼ −〈Π2(p)〉

64π2 ln
p2

max

p2
min

∼ − M4
h

64π2 ln
√

eΛ2
s

M2
h

(15)

This relation indicates that M4
h reflects the typical, average 〈Π2(p)〉 at non-zero p2. Therefore,

if we trust in the 1-loop relation M2
h ∼ m2

h ln Λs
Mh

, we should observe large deviations in the propagator
if we try to extrapolate to higher-p2 with the 1-particle form G−1(p) ∼ (p2 + m2

h) which is valid for
p → 0. In other words, in a 1st-order picture of SSB, the idea of a simple massive propagator seems to
be wrong.

To show that these are not just speculations, let us compare with lattice calculations of the scalar
propagator in the broken-symmetry phase. The simulation was performed [22] in the 4D Ising limit
which has always been considered a convenient laboratory to exploit the non-perturbative aspects
of the theory. It is the λΦ4 in the limit of an infinite bare coupling λ0 = +∞, as sitting exactly at the
Landau pole. As such, for a finite cutoff Λs, it represents the best possible definition of the local limit
for a non-zero, low-energy coupling λ ∼ 1/L (where L = ln(Λs/Mh)). For the convenience of the
reader, we will report here the main results of [22].

In the Ising limit, the broken-symmetry phase corresponds to values of the basic hopping
parameter κ > κc, with the critical κc = 0.0748474(3) [19,20]. We computed the field vacuum
expectation value

v = 〈|φ|〉 , φ ≡ 1
V4

∑
x

φ(x) (16)
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and the connected propagator
G(x) = 〈φ(x)φ(0)〉 − v2 (17)

where with 〈...〉 we are indicating the average over lattice configurations.
In terms of the Fourier transform of the propagator, the extraction of mh is straightforward, i.e.,

G(p = 0) =
1

|Π(p = 0)| ≡
1

m2
h

(18)

Instead Mh had to be extracted from the data for the Fourier transformed propagator at higher
momentum. To this end, we first fitted the data to the 2-parameter form

Gfit(p) =
Zprop

p̂2 + m2
latt

(19)

in terms of the lattice squared momentum p̂2 with p̂μ = 2 sin pμ/2. The quality of this fit was then
studied to understand how reliable the determination Mh ≡ mlatt is from the higher-momentum region.
Finally, the propagator data were re-scaled by the factor ( p̂2 + m2

latt). In this way, deviations from a
straight line will show up clearly if a fitted mass Mh ≡ mlatt fails to describe the lattice data when
p → 0.

The results in the symmetric phase, see Figure 2, show that there, with just a single lattice mass
one can describe all data down to p = 0.
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p
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 (

p̂2 +m
2 )

κ=0.0740

Figure 2. The data for the re-scaled lattice propagator ref. [22] in the symmetric phase at κ = 0.074
depending on the square lattice momentum p̂2 with p̂μ = 2 sin pμ/2. In this case, the mass fitted from
higher-p̂2, Mh = mlatt = 0.2141(28), describes well the data down to p = 0. The dashed line is the
fitted Zprop = 0.9682(23).

In the broken phase, for κ = 0.0749, the results for the largest lattice 764 are reported
in Figures 3 and 4. The larger mass obtained from the higher-momentum fit p̂2 > 0.1 was
Mh ≡ mlatt = 0.0933(28). As one can see from Figure 3, this fitted mass describes the data for
not too small momentum. But for p → 0 the deviations from a straight line become highly
significant statistically. In this low-p̂2 limit, in fact, the data would require the other mass
mh = |Π(p = 0)|1/2 = 0.0769, see Figure 4.
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Figure 3. The data for the re-scaled lattice propagator ref. [22] in the broken phase at κ = 0.0749.
The mass used for the re-scaling, Mh = mlatt = 0.0933(28), was obtained from fitting to all data with
p̂2 > 0.1. The black square at p = 0 is Z(p = 0) = M2

h/m2
h = 1.47(9) as computed from the fitted Mh

for mh = |Π(p = 0)|1/2 = 0.0769.
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Figure 4. The lattice data of ref. [22] at κ = 0.0749 for p̂2 < 0.1. The mass used here for the re-scaling
has been fixed at the value mh = |Π(p = 0)|1/2 = 0.0769.

The difference between Mh = 0.0933(28) and mh = 0.0769 has the high statistical significance
of 6 sigma. More importantly, once m2

h is directly computed from the zero-momentum limit of G(p)
and Mh is extracted from its behavior at higher p2, the extrapolation of the results toward the critical
point [22] is well consistent with the expected increasing logarithmic trend M2

h ∼ Lm2
h.

4. The Relative Magnitude of mh, Mh and 〈Φ〉
As summarized in Section 3, our lattice simulations supports the idea of a scalar propagator

which, in the broken phase, interpolates between two different mass scales mh and Mh (Two-mass
scales also require some interpolating form for the scalar propagator in loop corrections. Since some
precise measurements, e.g., AFB of the b-quark or sin2 θw from NC experiments [23], still favor a
rather large BEH particle mass, this could help to improve the present rather low quality of the
overall Standard Model fit). The lattice data are also consistent with the trend M2

h ∼ m2
h ln(Λs/Mh)

predicted by the one-loop and Gaussian approximations to the effective potential. Since the two
masses do not scale uniformly in the Λs → ∞ limit (This non- uniform scaling is crucial not to run
in contradiction with the “triviality” of λΦ4 in 4D [22]. In fact, this implies a continuum limit with
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a Gaussian set of Green’s functions and therefore with a massive free-field propagator. Thus, in an
ideal continuum theory, there can only be one mass depending on the unit of mass (mh or Mh) adopted
for measuring momenta), the question naturally arises about the extension to the Standard Model
and their relationship with the fundamental weak scale 〈Φ〉 ∼ (GFermi

√
2)−1/2 ∼ 246.2 GeV. In fact,

it seems that we should now introduce two different coupling constants, say m2
h/〈Φ〉2 and M2

h/〈Φ〉2.
However, then, since M2

h ∼ Lm2
h � m2

h, are we faced with a weak- or a strong-coupling theory?
To approach the problem in a systematic way, let us first return to the one-loop relations

Equations (5) and (6) in Section 2 and observe that the vacuum energy depends on Mh, not on
mh, namely

E = Veff(±v) = − M4
h

128π2 = const. Λ4
s exp(−64π2

3λ
) (20)

This means that the critical temperature to restore the symmetry, kBTc ∼ Mh, and the whole
stability of the broken-symmetry phase will depend on Mh, not on mh.

This remark will be crucial to understand the cutoff dependence of the various scales and to
formulate a description of SSB which in principle can be extended to the Λs → ∞ limit. In fact, since for
any non-zero low-energy coupling λ there is a Landau pole Λs, we will consider the entire set of pairs
(Λs,λ), (Λ′

s,λ′), (Λ′′
s ,λ′′)...with larger and larger cutoffs, smaller and smaller couplings but all with the

same vacuum energy as in Equation (20). This amounts to impose

(
Λs

∂

∂Λs
+ Λs

∂λ

∂Λs

∂

∂λ

)
E(λ, Λs) = 0 (21)

a condition which can be derived from the more general requirement of RG-invariance for the effective
potential in the (ϕ, λ, Λs) 3-space

(
Λs

∂

∂Λs
+ Λs

∂λ

∂Λs

∂

∂λ
+ Λs

∂ϕ

∂Λs

∂

∂ϕ

)
Veff(ϕ, λ, Λs) = 0 (22)

In fact, for ϕ = ±v, where (∂Veff/∂ϕ) = 0, Equation (21) follows directly from (22).
It is important that in this RG-analysis, besides a first invariant mass scale I1 = Mh, if we

introduce an anomalous dimension for the vacuum field

Λs
∂ϕ

∂Λs
≡ γ(λ)ϕ (23)

there will be a second invariant [22] associated with the RG-evolution in the (ϕ, λ, Λs) 3-space, namely

I2(ϕ) = ϕ exp(
∫ λ

dx
γ(x)
β(x)

) (24)

This invariant fixes a particular normalization (The anomalous dimension of ϕ reflects the fact that
from Equation (6), the cutoff-independent combination is λv2 ∼ M2

h = I2
1 and not v2 itself implying

γ = β/(2λ) [22]. This somewhat resembles the definition of the physical gluon condensate in QCD
which is 〈g2Fa

μνFaμν〉 and not just 〈Fa
μνFaμν〉.) of ϕ and is then the natural candidate to represent the

weak scale I2(v) = 〈Φ〉 ∼ 246.2 GeV. The minimization of the effective potential is then translated
into a proportionality of the two invariants through some constant K, say

Mh = K〈Φ〉 (25)

Such guiding principle indicates that Mh and 〈Φ〉 scale uniformly while at the same time, M2
h ∼

Lm2
h and 〈Φ〉2 ∼ Lm2

h. Therefore, by assuming the theoretical predictions for the ratio mh/〈Φ〉,
and computing the Mh/mh ratio from our lattice data for the propagator, we have extracted the
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constant K. As shown in [22] such procedure, where the cutoff-dependent L drops out, leads to a final
estimate K = 2.92 ± 0.12 or

Mh ∼ 720 ± 30 GeV (26)

which includes various statistical and theoretical uncertainties and updates the previous work of
refs. [24,25].

We emphasize that the relation Mh = K〈Φ〉 does not introduce a new large coupling 3K2 = O(10)
which modifies the phenomenology of the broken phase. This 3K2 is clearly quite distinct from the
other coupling λ = 3m2

h/〈Φ〉2 ∼ 1/L but should not be viewed as a coupling producing observable
interactions. Since M4

h reflects the magnitude of the vacuum energy density, it would be natural
to consider K2 ∼ λL as a collective self-interaction of the vacuum condensate which persists when
Λs → ∞. This original view [14,15] can intuitively be formulated in terms of a scalar condensate whose
increasing density ∼ L [6] compensates for the decreasing strength λ ∼ 1/L of the two-body coupling
(This view of SSB has some analogy with the occurring of superconductivity in solid-state physics.
There, the superconductive phase occurs even for an arbitrary small two-body attraction ε between
the two electrons in a Cooper pair. However, the energy density and the collective quantities of the
superconductive phase (as energy gap, critical temperature, etc.) depend on a much larger coupling
εN obtained by re-scaling ε with the large density of states at the Fermi surface. This means that the
same macroscopic description could be obtained with smaller and smaller ε and Fermi systems with
suitably larger and larger N. In this analogy λ is the counterpart of ε and K2 of εN).

Instead, λ ∼ 1/L is the right coupling for the individual interactions of the vacuum excitations,
i.e., the BEH field and the Goldstone bosons. Consistently with the “triviality” of λΦ4 theory,
these interactions will become weaker and weaker when Λs → ∞.

With this description of the scalar sector, and by using the Equivalence Theorem [26,27], the same
conclusion applies to the high-energy interactions of the BEH field with the longitudinal vector bosons
in the full ggauge �= 0 theory. In fact, the limit of zero-gauge coupling is smooth [28]. Therefore, up to
corrections proportional to ggauge, a heavy BEH resonance will interact exactly with the same strength
as in the ggauge = 0 theory [29]. For the convenience of the reader, this point will be summarized in
Section 5. In Section 6, we will instead consider some phenomenological implications for the present
LHC experiments.

5. Observable Interactions for a Large Mh

As anticipated, the quantity 3K2 should be understood as a collective self-coupling of the scalar
condensate whose effects are re-absorbed into the vacuum structure. As such, it is basically different
from the coupling λ defined through the β−function

ln
μ

Λs
=
∫ λ

λ0

dx
β(x)

(27)

For β(x) = 3x2/(16π2) + O(x3), whatever the bare contact coupling λ0 at the asymptotically
large Λs, at finite scales μ ∼ Mh this gives λ ∼ 16π2/(3L) with L = ln(Λs/Mh). It is this latter
coupling which governs the residual interactions among the fluctuations with very small deviations
from a purely quadratic potential for Λs → ∞.

By introducing the W-mass Mw = ggauge〈Φ〉/2 and with the notations of [30], a convenient
way [29] to express these residual interactions in the scalar potential is (r = M2

h/4M2
w = K2/g2

gauge)

Uscalar =
1
2

M2
hh2 + ε1rggaugeMwh(χaχa + h2) +

1
8

ε2rg2
gauge(χ

aχa + h2)2 (28)
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The two parameters ε1 and ε2, which are usually set to unity, take into account the basic difference
λ �= 3K2, i.e.,

ε2
1 = ε2 =

λ

3K2 ∼ 1/L (29)

Then, one can consider that corner of the parameter space [29], namely large K2 but Mh � Λs,
that does not exist in the conventional view where one assumes λ = 3K2.

A possible objection to this scenario might concern its validity in the full gauge theory. In fact,
the original calculation [31] in the unitary gauge could give the impression of the opposite view.
Specifically, that with a heavy Higgs resonance of mass Mh, longitudinal WLWL scattering is indeed
governed by the large parameter K2 = M2

h/〈Φ〉2. Since this is an important point, we will repeat here
the main argument of [29].

In the unitary-gauge calculation of WLWL → WLWL high-energy scattering, the lowest-order
amplitude A0 is formally O(g2

gauge) but one ends up with

A0(WLWL → WLWL) ∼
3M2

hg2
gauge

4M2
w

=
3M2

h
〈Φ〉2 = 3K2 (30)

In this chain, g2
gauge comes from the vertices. The 1/M2

w originates from the external longitudinal

polarizations ε
(L)
μ ∼ (kμ/Mw) and the factor M2

h emerges after expanding the Higgs field propagator

1
s − M2

h
→ 1

s
(1 +

M2
h

s
+ ...) (31)

Then the leading 1/s contribution cancels against a similar term from the other diagrams
(which otherwise would give an amplitude growing with s) and the M2

h from the expansion of
the propagator is effectively “promoted” to the role of coupling constant. In this way, one gets exactly
the same result as in a pure λΦ4 theory with a contact coupling λ0 = 3K2.

However, this is only the tree approximation. To obtain the full result, let us observe that the
Equivalence Theorem is a non perturbative statement which holds to all orders in the pure scalar
self-interactions [28]. Therefore, we have not to worry to re-sum the infinite series of higher-order
vector-boson graphs. However, from the χχ → χχ amplitude at a scale μ for ggauge = 0

A(χχ → χχ)
∣∣∣
ggauge=0

∼ λ ∼ 1
ln(Λs/μ)

(32)

we can deduce the result for the longitudinal vector bosons in the ggauge �= 0 theory, i.e.,

A(WLWL → WLWL) = [1 + O(g2
gauge)] A(χχ → χχ)

∣∣∣
ggauge=0

∼ λ ∼ 1
ln(Λs/μ)

(33)

Then, in the present perspective of a large but finite Λs, where mh and Mh now coexist and could
be experimentally determined, at μ ∼ Mh the putative strong interactions proportional to λ0 = 3K2

should actually be viewed as weak interactions controlled by the much smaller coupling

λ =
3m2

h
〈Φ〉2 = 3K2 m2

h
M2

h
(34)

Analogously, the conventional very large width into longitudinal vector bosons computed
with the coupling λ0 = 3K2, say Γconv(Mh → WLWL) ∼ M3

h/〈Φ〉2, should instead be re-scaled
by ε2

1 = (λ/3K2) = m2
h/M2

h. This gives
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Γ(Mh → WLWL) ∼
m2

h
M2

h
Γconv(Mh → WLWL) ∼ Mh

m2
h

〈Φ〉2 (35)

In this way, through the decays of the heavier state, the scalar coupling λ = 3m2
h/〈Φ〉2 ∼ 1/L

could finally become visible.

6. Some Predictions for the LHC Experiments

Let us take seriously the idea of a BEH field with two vastly different mass scales,
namely mh ∼ 125 GeV and Mh ∼ 700 GeV. Is there any experimental signal from the LHC experiments?
If so, what kind of phenomenology should we expect?

To address these questions, we will use a small but definite experimental evidence: the peak in the
4-lepton final state which is presently observed by the ATLAS Collaboration [32] for an invariant mass
μ4l = 700 GeV. We emphasize that this should be taken seriously. In fact, an independent analysis of
these data and their combination [33] with the corresponding ones of the CMS Collaboration indicates
an evident excess, over the background, at the level of about 5 sigma.

Of course, the 4-lepton channel is only one decay channel of a hypothetical heavier BEH resonance
and, for a more complete analysis, we should also consider the other final states. For instance the decay
into two photons, a channel that in the past has been showing other intriguing evidence for the near
energy μγγ ∼ 750 GeV. However, the 4-lepton channel, has the advantage of being experimentally very
clean and, just for this reason, is called the “golden” channel to detect a possible heavy BEH resonance.
At the same time, as in ref. [34], the main effect can be analyzed at a very simple level. For this reason,
one can meaningfully start from here.

Let us consider the peak in the number of events observed by ATLAS in the 4-lepton channel for
an invariant mass μ4l = 700 GeV (l = e, μ). From Figure 4a of [32] this corresponds to

3 � npeak[4l] � 9 ATLAS − 700 GeV (36)

above the very small background nbkg ∼ 1 event. By subtracting this background, we get

npeak[4l] ∼ 5 ± 3 (non − bkg) EXP (37)

Since the ATLAS efficiency for reconstructed 4-lepton events at large transverse momentum is
about 100%, for the given luminosity of 36.1 f b−1, we obtain a peak cross-section

σpeak(pp → 4l) ∼ (0.14 ± 0.08) f b (38)

For our estimates, we will assume the invariant mass μ4l = 700 GeV to be the same pole mass
Mh = 700 GeV of our heavier excitation of the BEH field. Moreover, if we consider this as a relatively
narrow resonance, the corrections due to its virtual propagation should be small [35] and one could
approximate the result in terms of on-shell branching ratios as

σ(pp → Mh → 4l) ∼ σ(pp → Mh) · B(Mh → ZZ) · 4B2(Z → l+l−) (39)

In this relation, the Z−boson branching fraction into charged leptons is known precisely and one
finds 4B2(Z → l+l−) ∼ 0.0045.

Concerning the other branching ratio B(Mh → ZZ), for Mh = 700 GeV, the only unconventional
aspect of our picture concerns the coupling of the heavy BEH resonance to longitudinal vector bosons
which is proportional to λ = 3m2

h/〈Φ〉2 ∼ 1/L and not to 3M2
h/〈Φ〉2. Therefore, given a decay width

Γ(Mh → ZZ), we could use the conventional estimate for Mh = 700 GeV [36,37]

Γconv(Mh → ZZ) ∼ 56.7 GeV (40)
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and, by replacing instead

Γ(Mh → ZZ) ∼ m2
h

M2
h

Γconv(Mh → ZZ) (41)

obtain mh as

mh ∼
√

Γ(Mh → ZZ)
56.7 GeV

700 GeV (42)

Equivalently, given a value of mh we can compute

Γ(Mh → ZZ) ∼ m2
h

(700 GeV)2 56.7 GeV (43)

Here, we will follow this latter strategy and assume mh = 125 GeV which gives

Γ(Mh → ZZ) ∼ 1.8 GeV (44)

Thus, to obtain B(Mh → ZZ), we only need to estimate the total decay width. Here, we will
retain exactly the other contributions reported in the literature [36,37] for Mh = 700 GeV

Γ(Mh → fermions + gluons + photons...) ∼ 28 GeV (45)

and the same dimensionless ratio
Γ(Mh → WW)

Γ(Mh → ZZ)
∼ 2.03 (46)

These input numbers (which have very small uncertainties) will then produce a total decay width

Γ(Mh → all) ∼ 28 GeV + 3.03 Γ(Mh → ZZ) ∼ 33.5 GeV (47)

and a branching ratio

B(Mh → ZZ) ∼ 1.8
33.5

∼ 0.054 (48)

Let us now consider the total cross-section σ(pp → Mh), for production of a heavy BEH resonance
with mass Mh ∼ 700 GeV. Here, the two main contributions derive from more elementary parton
processes where two gluons or two vector bosons VV fuse to produce the heavy state Mh (here
VV = WW, ZZ would be emitted by two quarks inside the protons). For this reason, the two process
are usually called Gluon-Gluon Fusion (GGF) and Vector-Boson Fusion (VBF) mechanisms, i.e.,

σ(pp → Mh) ∼ σ(pp → Mh)GGF + σ(pp → Mh)VBF (49)

The traditional importance of the latter process for large Mh is understood by noticing that the
VV → Mh process is the inverse of the Mh → VV decay and therefore σ(pp → Mh)VBF can be
expressed [38] as a convolution with the parton densities of the same BEH resonance decay width.
Thus, once its coupling to longitudinal W’s and Z’s were proportional to K2 = M2

h/〈Φ〉2, with a
conventional width Γconv(Mh → WW + ZZ) ∼ 172 GeV for Mh ∼ 700 GeV, the VBF mechanism
would become important. However, this coupling is not present in our model, where instead we expect

Γ(Mh → WW + ZZ) ∼ m2
h

M2
h

Γconv(Mh → WW + ZZ) ∼ 5.5 GeV (50)

For this reason, the whole VBF will also be correspondingly reduced from its conventional value
σconv(pp → Mh)VBF = 250 ÷ 300 f b, i.e.,

σ(pp → Mh)VBF ∼ 5.5
172

σconv(pp → Mh)VBF � 10 f b (51)
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This is much smaller than the uncertainty in the pure GGF contribution and will be ignored in
the following.

In the end, the GGF term. Here, we will separately adopt two slightly different estimates. On the
one hand, the value σ(pp → Mh)GGF = 800(80) fb of ref. [36] and on the other hand, the value
σ(pp → Mh)GGF = 1078(150) fb of ref. [37]. These values refer to

√
s = 14 TeV and will be re-scaled by

about −12% for the present center of mass energy
√

s = 13 TeV. In the two cases, the errors take into
account uncertainties in the normalization scale and in the parametrization of the parton distributions.

Altogether, for B(Mh → ZZ) = 0.054 and 4B2(Z → l+l−) ∼ 0.0045, our predictions for the
4-lepton cross-section and the number of events (for luminosity of 36.1 f b−1 and 139 f b−1) are reported
in Table 1.

Table 1. For Mh = 700 GeV and mh = 125 GeV, we report our predictions for the peak cross-section
σ(pp → 4l) and the number of events at two values of the luminosity. The two total cross sections are
our extrapolation to

√
s = 13 TeV of the values in [36,37] for

√
s = 14 TeV. As explained in the text,

only the GGF mechanism is relevant in our model.

σ(pp → Mh) σ(pp → 4l) n[4l](L = 36.1 f b−1) n[4l](L = 139 f b−1)

700(70) fb 0.17(2) fb 6.1 ± 0.6 23.6 ± 2.4

950(150) fb 0.23(4) fb 8.3 ± 1.3 32.1 ± 5.1

From this comparison we deduce that without introducing any free parameter, our model can
easily reproduce the presently observed number of events n[4l] ∼ 5 ± 3. This is why, our hypothetical
new resonance could naturally fit with the ATLAS peak. At present, this is the only possible conclusion
and a real test of our picture is postponed to the analysis of the entire statistics L = 139 f b−1. If the
new Mh ∼ 700 GeV were really there, the peak should become four times higher but remain well
above the background which is very small at that energy. Thus, the profile of the resonance should
become visible and direct determinations of the total decay width should be feasible. An experimental
result Γexp(Mh → all) = 33 ÷ 34 GeV would favor an experimental branching ratio Bexp(Mh → ZZ)
close to our reference value 0.054 and, therefore, improve the agreement of our smaller mh with the
value 125 GeV which is measured directly at LHC. Thus, the description of SSB given here would find
a first experimental confirmation.
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Abstract: We present a comparative analysis of the self-gravitating solitons that arise in the
Einstein–Klein–Gordon, Einstein–Dirac, and Einstein–Proca models, for the particular case of static,
spherically symmetric spacetimes. Differently from the previous study by Herdeiro, Pombo and Radu
in 2017, the matter fields possess suitable self-interacting terms in the Lagrangians, which allow for
the existence of Q-ball-type solutions for these models in the flat spacetime limit. In spite of this
important difference, our analysis shows that the high degree of universality that was observed by
Herdeiro, Pombo and Radu remains, and various spin-independent common patterns are observed.

Keywords: solitons; boson stars; Dirac stars

1. Introduction and Motivation

1.1. General Remarks

The (modern) idea of solitons, as extended particle-like configurations, can be traced back (at least)
to Lord Kelvin, around one and half centuries ago, who proposed that atoms are made of vortex
knots [1]. However, the first explicit example of solitons in a relativistic field theory was found by
Skyrme [2,3], (almost) one hundred years later. The latter, dubbed Skyrmions, exist in a model with
four (real) scalars that are subject to a constraint. They were proposed as field theory realizations of
baryons; nonetheless, Skyrmions capture the basic properties of a generic soliton.

In the context of this work, solitons are defined as spatially localized, singularity-free solutions of
a field theory model, which possess a finite mass and angular momentum (the fields may possess a
non-trivial time-dependence, as for the solitons in this work. However, this dependence is absent at
the level of the energy-momentum tensor. Additionally, in our definition, we shall ignore the issue of
stability and do not impose the solutions possessing a topological charge). As already suspected in the
literature before Skyrme’s seminal work (in a historical setting, a concrete realization of the idea of
(relativistic) solitons was put forward in 1939 by Rosen [4], who looked for localized configurations
which could be used as representations of extended particles), many non-linear field theories possess
such solutions. The study of solitons has attracted a lot of attention in the last 50 years; they have
important applications in various contexts, ranging from, e.g., the models of condensed matter physics
to high energy physics and cosmology. Moreover, solitons are also significant for a nonperturbative
quantum description of states. Famous examples of solitons include the sphalerons in the Standard
Model [5] and the magnetic monopoles [6,7] in various extensions thereof.

A review of soliton physics in the non-gravitating case can be found in the textbooks [8,9]; also see
the reviews [10,11]. In this work, we shall focus on a special class of solitons in four spacetime
dimensions that are time-dependent (at the level of the matter field), but non-dissipative (with a
time independent spacetime geometry), and carrying a Noether charge Q that is associated with a
global U(1) symmetry. We shall restrict ourselves to models with a single matter field (except for the

Symmetry 2020, 12, 2032; doi:10.3390/sym12122032 www.mdpi.com/journal/symmetry59



Symmetry 2020, 12, 2032

fermionic case) and possessing a standard kinetic term. These solitons do not possess topological
properties, but the field theory Lagrangian must have suitable self-interactions.

Three different models are considered here: (ungauged) field theories describing particles of spin
s = 0, 1/2, 1, with the goal of providing a comparative analysis of their spherically symmetric solitonic
solutions. As such, this work is an extension of that in Ref. [12], which dealt with the same matter
fields, but without self-interactions. The latter introduce a novel feature: self-interactions allow for the
existence of solitonic solutions, even on a fixed flat spacetime background, i.e., ignoring gravity. As we
shall see, self-interactions lead to a more intricate landscape of (gravitating) solutions, with some new
qualitative features when compared to the picture that is revealed in [12].

Historically, in the non-gravitating case, solitons in a complex scalar field model have been
known for more than 50 years, being dubbed Q − balls by Coleman [13] (also see the previous
work [14]). These are central for our discussion, sharing most of the basic features with the higher spin
generalizations. Within a Dirac field model with a positive quartic self-interaction term, Ivanenko [15],
Weyl [16], Heisenberg [17], and Finkelstein et al. [18,19] have made early attempts to construct
particle-like solutions. However, the first rigorous numerical study of such configurations was been
done by Soler in 1976 [20]. The case of a (Abelian) vector field has been ignored until recently; the study
of Q-ball-like solutions was initiated by Loginov [21].

In all three cases, a large literature has grown based on these early studies, which includes
generalizations in various directions. A particularly interesting case concerns the study of backreaction
of these solutions on the spacetime geometry. This is a legitimate question, since the existence of solitons
relies on the nonlinearity of the field theory and General Relativity (GR) is intrinsically highly nonlinear.
Therefore, gravitational interactions could significantly alter the flat spacetime solitons.

The results in the literature prove that all flat space solitons survive when including gravity
effects; however, a more complicated picture emerges when compared to the non-self-interacting
case. The study of gravitating generalization of the flat spacetime Q-balls has started with
Friedberg et al. [22]. The higher spin fields are less studied; GR generalization of the self-interacting
spinors were only considered recently by Dzhunushaliev and Folomeev [23], while the gravitating
Q-Proca stars have been studied by Brihaye et al. [24] and Minamitsuji [25].

The main purpose of this work is to review various existing results on this type of solitons,
putting them together under a consistent set of notations and conventions. A comparative study is
presented, which starts with the generic framework and scaling symmetries (Section 2). There and
afterwards, the mathematical description of each of the three models is made in parallel in order
to emphasise their similarities. The basic properties of solutions in a flat spacetime background are
discussed in Section 3, where we adapt Deser’s argument [26] to find virial identities that yield some
insight on the existence of such configurations. Gravity is included in Section 4; a curved spacetime
generalization of the Deser-type virial identities is also discussed. Extending the models’ framework
to include GR effects allows for the possibility to add a black hole (BH) horizon at the center of soliton,
a possibility that is indeed realized for other well-known solutions, such as Skyrmions, magnetic
monopoles, and sphalerons (see e.g., the review work [27]). However, as we shall discuss in Section 4
(and Appendix B), the situation is different for the considered (spherically symmetric) solutions and
there are no BH generalizations, regardless of the presence of self-interactions. We also discuss the
physical interpretation of the fermionic solutions. Section 5 presents concluding remarks and some
open questions.

1.2. Conventions

Throughout, we set c = h̄ = 1 and adopt a metric signature +2. Greek letters α, β, γ . . . are used
for coordinate indices, whereas latin letters a, b, c, . . . are used for tetrad basis indices. Symmetrization
and antisymmetrization of indices is denoted with round and square brackets, () and [], respectively.
We use ∂μ, ∇μ, and D̂μ to denote partial, covariant, and spinor derivatives, respectively.
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The flat spacetime metric in spherical coordinates reads

ds2 = −dt2 + dr2 + r2(dθ2 + sin2 θdϕ2), (1)

with x0 = t, x1 = r, x2 = θ, and x3 = ϕ.
The conventions for scalars are those presented in Ref. [28]. In the Proca field case, we shall use

the notation and conventions in [29,30]. For fermions, we shall follow the framework (including the
definitions and conventions) in [31], as reviewed in Appendix A.

For the matter content, we shall consider three different fields ψ, with the specific form:

• spin 0:

Φ is a complex scalar field, which is equivalent to a model with two real scalar fields, ΦR, ΦI , via
Φ = ΦR + iΦI .

• spin 1/2:

Ψ(A) are massive spinors, with four complex components, the index (A) corresponding to
the number of copies of the Lagrangian. For a spherically symmetric configuration, one
should consider (at least) two spinors (A = 1, 2), with equal mass μ. A model with a
single spinor necessarily possesses a nonzero angular momentum density and it cannot be
spherically symmetric.

• spin 1:

A is a complex 4-potential, with the field strength F = dA. Again, the model can be described in
terms of two real vector fields, A = AR + iAI .

Some relations get a simpler form by defining

ψ2 ≡ {Φ∗Φ; AαĀα; iΨ(A)Ψ(A)} , (2)

for spin 0, 1/2 ,and 1, respectively, while we denote ψ4 ≡ (ψ2)2 and ψ6 ≡ (ψ2)3.
The numerical construction of the solutions reported in this work is standard. In our approach,

we use a Runge–Kutta ordinary differential equation solver. For each model, we evaluate the initial
conditions that are close to the origin at ε = 10−6 for global tolerance 10−14, adjusting for shooting
parameters (which are some constants that enter the near origin expansion of the solutions) and
integrating towards r → ∞. The accuracy of the solutions was also monitored by computing virial
relations that were satisfied by these systems, as discussed below. For a given set of input parameters,
the solutions form a discrete set labelled by the number of nodes, n, of (some of) the matter function(s).
Only fundamental states, which have the minimal number of radial nodes, are considered in this work.

2. The General Framework

2.1. The Action and Field Equations

We consider Einstein’s gravity that is minimally coupled to spin−s matter fields ψ(s) = {Φ; Ψ;A},
with s = 0, 1/2, 1. The action reads

S =
1

4π

∫
d4x
√−g

[
1

4G
R − L(s)

]
, (3)

where

L(s) = L(0)
(s) + U(int)

(s) ; (4)
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the kinetic part of the matter Lagrangians reads, respectively,

scalar : L(0)
(0) = gαβΦ∗

, αΦ, β,

Dirac : L(A)(0)
(1/2) = i

[
1
2

(
{D̂Ψ(A)}Ψ(A) − Ψ(A)D̂Ψ(A)

)]
, (5)

Proca : L(0)
(1) =

1
4
FαβF̄ αβ .

U(int)
(s) in (4) is a potential term, which includes self-interactions. In what follows, we shall consider

the simplest form of U(int)
(s) , which allows for solitonic solutions in a flat spacetime background,

with polynomial terms. As such, apart from the mass term, U(int)
(s) contains quartic and sextic terms

only. Afterwards, all three cases can be treated in a unitary way by defining

U(int)
(s) = Mψ2 − λψ4 + νψ6 ≡ U , (6)

where we have denoted

M ≡
{

μ2; μ;
1
2

μ2
}

, (7)

for spin 0, 1/2 and 1, respectively. In all cases, μ corresponds to the mass of the elementary quanta of
the field(s). Additionally, λ, ν are the input parameters of the theory, which are not fixed a priori.

We shall also denote

U̇ ≡ ∂U
∂ψ2 = M− 2λψ2 + 3νψ4, Ü ≡ ∂U̇

∂ψ2 = −2λ + 6νψ2. (8)

Extremizing the action (3) leads to the Einstein field equations

Rαβ − 1
2

Rgαβ = 2G Tαβ , (9)

where the energy–momentum tensor reads, respectively,

scalar : Tαβ = Φ∗
,αΦ,β + Φ∗

,βΦ,α − gαβL(0),

Dirac : Tαβ = ∑
A

T(A)
αβ , with T(A)

αβ = − i
2

[
Ψ(A)

γ(αD̂β)Ψ
(A) −

{
D̂(αΨ(A)

}
γβ)Ψ

(A) − gαβL(1/2)

]
,

Proca : Tαβ =
1
2
(FασF̄βγ + F̄ασFβγ)gσγ + U̇(AαĀβ + ĀαAβ)− gαβL(1), (10)

and to the matter field equations,

scalar : (∇2 − U̇)Φ = 0,

Dirac : (D̂ − U̇)Ψ(A) = 0, (11)

Proca :
1
2
∇αF αβ − U̇Aβ = 0.

In the Proca case, taking the four-divergence of the field Equation (11) results in a generalization
of the Lorenz condition, which is a dynamical requirement, rather than a gauge choice. This condition
takes a particularly simple form in the Ricci-flat case, with

(∇αAα)U̇ + Ü∇α(ĀβAβ) = 0 . (12)
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In all cases, the action of the matter fields ψ possesses a global U(1) invariance, under the
transformation ψ → eiαψ, with α constant. This implies the existence of a conserved four-current,
which reads

scalar : jα = −i(Φ∗∂αΦ − Φ∂αΦ∗),
Dirac : jα = Ψ̄γαΨ, (13)

Proca : jα =
i
2

[
F̄ αβAβ −F αβĀβ

]
.

This current is conserved via the field equations,

jα
;α = 0. (14)

It follows that integrating the timelike component of this four-current in a spacelike slice Σ yields
a conserved quantity—the Noether charge:

Q =
∫

Σ
jt . (15)

2.2. The Ansätze and Explicit Equations

2.2.1. The Metric and Matter Fields

The spherically symmetric configurations are most conveniently studied in Schwarzschild-like
coordinates, within the following metric Ansatz:

ds2 = −N(r)σ2(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2) , with N(r) ≡ 1 − 2m(r)

r
. (16)

The matter field Ansatz, which is compatible with a spherically symmetric geometry, reads:

scalar : Φ = φ(r)e−iwt, (17)

introducing a single real function φ(r);

Proca : A = [F(r)dt + iH(r)dr] e−iwt, (18)

introducing two real potentials F(r) and H(r).
The case of a Dirac field is more involved. For a spherically symmetric configurations, we have to

consider two Dirac fields, A = 1, 2, with

Dirac : Ψ(A) = e−iwtR(A)(r)⊗ Θ(A)(θ, ϕ) , (19)

where

R(1) = −iR(2) =

[
z(r)

−iz̄(r)

]
, Θ(1) =

[ −κ sin θ
2

cos θ
2

]
ei ϕ

2 , Θ(2) =

[
κ cos θ

2
sin θ

2

]
e−i ϕ

2 ,

with κ = ±1 and z(r) a complex function. In what follows, we shall only consider the case κ = 1 (note
that qualitatively similar solutions with κ = −1 also exist). Additionally, in the above Ansatz, it is
convenient to define

z(r) = eiπ/4 f (r)− e−iπ/4g(r) , (20)

where f (r) and g(r) are two real functions, a choice that simplifies the equations.
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The reason that choose two independent s = 1/2 fields, with the Ansatz (19) and (20), is the
following. For both spinors, the individual energy-momentum tensors are not spherically symmetric
(this feature is present regardless of the self-interaction potential in the Lagrangian), since Tt(A)

ϕ �= 0

(while the other nonzero components Tr(A)
r , Tθ(A)

θ = Tϕ(A)
ϕ and Tt(A)

t only depend on r). However,

Tt(1)
ϕ + Tt(2)

ϕ = 0, such that the full configuration is spherically symmetric, being compatible with the
line element (16).

Within this framework, the explicit expressions of ψ2, as defined in (2), are

ψ2 =

{
φ2, 4(g2 − f 2), H2N − F2

Nσ2

}
(21)

for spin 0, 1/2 and 1, respectively. In all cases, w > 0 is the frequency of the matter field.

2.2.2. The Explicit Equations

The equations for the mass function m(r) read, respectively,

scalar : m′ = Gr2
(

Nφ′2 + w2φ2

Nσ2 + U
)

,

Dirac : m′ = 2Gr2
(

4
√

N(g f ′ − f g′) + 8 f g
r

+ U
)

, (22)

Proca : m′ = Gr2
[
(F′ − wH)2

2σ2 + (μ2 − 6λA2 + 10νA4)
F2

2Nσ2 +
U
A2 NG2

]
.

The equations for the metric function σ(r) read, respectively,

scalar :
σ′

σ
= 2Gr

(
φ′2 + w2φ2

N2σ2

)
,

Dirac :
σ′

σ
= 8G

r√
N

(
g f ′ − f g′ + w( f 2 + g2)

Nσ

)
, (23)

Proca :
σ′

σ
=

2Gr
N

(
H2N +

F2

Nσ2

)
U̇.

The equations for the matter fields are

scalar : φ′′ +
(

2
r
+

N′

N
+

σ′

σ

)
φ′ + w2

N2σ2 φ − U̇
φ

N
= 0,

Dirac − f : f ′ +
(

N′

4N
+

σ′

2σ
+

1
r
√

N
+

1
r

)
f − wg

Nσ
+

g√
N

U̇ = 0,

Dirac − g : g′ +
(

N′

4N
+

σ′

2σ
− 1

r
√

N
+

1
r

)
f +

w f
Nσ

+
f√
N

U̇ = 0, (24)

Proca − F : F′ − wH +
2Nσ2H

w
U̇ = 0 ,

Proca − H :
d
dr

{
r2[wH − F′]

σ

}
+

2r2F
Nσ

U̇ = 0 .

An additional supplementary constraint is also present, which is a second order equation for the
metric functions m(r) and σ(r), with first order derivatives of matter fields. However, this equation
is a differential consequence of the above field equations; it is used to check the accuracy of the
numerical results.
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Let us remark that the above equations can be derived from the following effective action

Seff =
∫

drLeff , with Leff =
1
G

σm′ − L(s) , (25)

where

L(0) = r2σ

(
Nφ′2 − w2φ2

Nσ2 + U
)

,

L(1/2) = 8r2σ

(√
N(g f ′ − f g′)− w

σ
√

N
( f 2 + g2) +

2 f g
r

+
1
4

U
)

, (26)

L(1) = r2σ

(
− (F′ − wH)2

2σ2 + U
)

.

Given the above framework, the energy density measured by a static observer, ρ = −Tt
t , is

scalar : ρ = Nφ′2 + w2

Nσ2 φ2 + U ,

Dirac : ρ = 8
(
(g f ′ − f g′)

√
N +

2 f g
r

+
1
4

U
)

, (27)

Proca : ρ =
(F′ − wH)2

2σ2 +
U
A2 NH2 +

F2

Nσ2

(
1
2

μ2 − 3λA2 + 5νA4
)

.

The mass of the flat space solutions is computed as the integral of ρ,

M =
∫

drr2ρ, (28)

while, in the self-gravitating case, it can be read off from the asymptotic behaviour of the gtt

metric potential

gtt = −Nσ2 = −1 +
2MG

r
+ . . . (29)

As for the Noether charge, it reads

scalar : Q = 2w
∫ ∞

0
dr r2 φ2

Nσ
,

Dirac : Q = 4
∫ ∞

0
dr r2 ( f 2 + g2)√

N
, (30)

Proca : Q = 2
∫ ∞

0
dr r2 (wH − F′)N

σ
.

2.3. Units and Scaling Symmetries

The matter fields in action (3) have the following dimensions: (with L = lenght):

scalar : [Φ] =
1
L

,

Dirac : [Ψ] =
1

L3/2 , (31)

Proca : [Aa] =
1
L

.
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Additionally, the coupling constants that enter the potential are (generically) dimension-full, with:

scalar : [μ] =
1
L

, [λ] = L0, [ν] = L2,

Dirac : [μ] =
1
L

, [λ] = L2, [ν] = L5, (32)

Proca : [μ] =
1
L

, [λ] = L0, [ν] = L2.

Turning now to scaling symmetries, we notice the existence of three different transformations,
which, in all cases, leave invariant the equations of motion (in the relations below, the functions or
constants that are not mentioned explicitly remain invariant).

The first one (s0) is very simple

(s0) : σ → cσ, w → cw, (33)

with c some arbitrary positive constant. However, this invariance is fixed when imposing the
asymptotic flatness condition σ → 1 as r → ∞.

More importantly, the equations of motion are invariant under a scaling of the radial coordinate,
together with other functions and parameters of the model. In the scalar and Proca cases,
this transformation reads:

(s1) : scalar and Proca : r = cr̄, w =
1
c

w̄, μ =
1
c

μ̄, λ =
λ̄

c2 , ν =
ν̄

c4 , m = cm̄. (34)

In the Dirac case, the corresponding symmetry is more complicated, with

(s1) : Dirac : r = cr̄, w =
1
c

w̄, μ =
1
c

μ̄, ν = cν̄; m = cm̄, f =
f̄√
c

, g =
ḡ√
c

. (35)

In all cases, the product mμ and the ratio w/μ are left invariant by the symmetry (s1). Under this
transformation, the global quantities behave as

M = cM̄, Q = c2Q̄. (36)

The symmetry (s1) is usually employed in order to work in units of length set by the field mass,

μ̄ = 1, i.e. c =
1
μ

. (37)

Finally, the equations are also invariant under a suitable scaling of the matter field(s) functions,
together with some coupling constants (while the radial coordinate or the field frequency are
not affected):

(s2) : λ =
λ̄

c2 , ν =
ν̄

c2 , G =
Ḡ
c2 , (38)

together with

(s2) : scalar : φ = φ̄c, Dirac : f = f̄ c, g = ḡc, Proca : F = F̄c, H = H̄c, (39)

while the global quantities transform as

M = c2M̄, Q = c2Q̄. (40)

66



Symmetry 2020, 12, 2032

The symmetries (s1) and (s2) are used, in practice, in order to simplify the numerical study of
the solitons. First, the symmetry (s2) can be used to set Ḡ = 1; i.e., essentially one absorbs Newton’s
constant in the expression of the matter field(s). This is the usual approach for the models without
self-interaction, see, e.g., the discussion in [12].

However, the probe limit of the solutions becomes less transparent for this choice. An alternative
route, employed in this work, is to use (38) and (39) to set the coefficient of the quartic term to unity,

λ̄ = 1, i.e. c =
1√
λ

. (41)

It follows that two mass scales naturally emerge, one set by gravity MPl = 1/
√

G and the other
one, M0, set by the field(s) coupling constants, with

scalar and Proca : M0 =
μ√
λ

; Dirac : M0 =
1√
λ

. (42)

The ratio of these fundamental mass scales defines the dimensionless coupling constant

α =
M0

MPl
, (43)

which is relevant in the physics of the solutions.
Another dimensionless input parameter is the scaled constant for the sextic term in the potential

U, with

scalar and Proca : β =
νμ2

λ2 ; Dirac : β =
νμ

λ2 . (44)

As such, the mass and charge of the non-gravitating solutions is given in units set by μ, λ, while,
in the gravitating case, in order to make contact with the previous results without self-interaction,
we use units that are set by G and μ.

A priori, the range of α is unbounded, 0 � α < ∞. The limit α → 0 corresponds to G → 0,
i.e., the probe limit—one solves the matter field(s) equations on a fixed geometry, which should be a
solution of the vacuum Einstein equations. The limit α → ∞ corresponds to λ → 0, i.e., no quartic,
or sextic term (when using β, if ν is finite) in the action. Thus, solutions of the Einstein-matter field
equations without self-interaction are approached in the second limit.

This choice of units with μ = λ = 1 (after employing the above scaling symmetries) has the
advantage of greatly simplifying the numerical study of the solutions. For example, the Einstein
equations read

Rαβ − 1
2

gαβ = 2α2Tαβ, (45)

the only input parameters being

{α, β and w} , (46)

with w the scaled frequency. Additionally, the scaled scalar potential reads

U = ψ2 − ψ4 + βψ6, (47)

For ψ2 > 0, U is strictly positive for β > 1/4. The case β = 1/4 is special, since the potential
becomes U = ψ2(1 − ψ2/2)2, and, thus, possesses three degenerate minima, at ψ = {0,±√

2}.
A discussion of these aspects (for a spin-zero field) can be found in Ref. [32].

67



Symmetry 2020, 12, 2032

3. The Probe Limit: Flat Spacetime Solutions

3.1. Deser’s Argument and Virial-Type Identities

Before performing a numerical study of the solutions, it is useful to derive virial-type identities.
For a flat spacetime background, we can adapt a simple argument given long ago by Deser [26]
(used therein to rule out the existence of finite energy time-independent solutions in Yang–Mills theory)
in order to obtain virial-type identities and a simple relation between the mass of solutions and the
trace of the energy-momentum tensor (the same virial identities are found by adapting Derrick’s
scaling argument [33].)—see also [34].

Working in Cartesian coordinates xa (a = 1, 2, 3), assume the existence of a stationary soliton in
some field theory model. Following [26], consider the following (trivial) identity observe that Deser’s
argument cannot be extended to a curved spacetime background)

∂

∂xa

(
xbTa

b

)
= Ta

a + xb ∂Ta
b

∂xa , (48)

together with its volume integral. The left hand side vanishes from regularity and finite energy
requirements (note that, in the spin-1/2 case, one considers the total energy-momentum tensor).
The second term in (48) vanishes from energy-momentum conservation (plus staticity) and, thus,
we are left with the virial-type identity

∫
d3x Ta

a = 0. (49)

It follows that the total mass-energy of a static soliton in d = 3 + 1 dimensions is determined by the
trace of the energy-momentum tensor

M = −
∫

d3x Tt
t = −

∫
d3x Tμ

μ . (50)

When applied to the specific Ansätze in this work, (49) results in the following expressions:

• scalar field:

∫ ∞

0
dr r2

[
1
3

φ′2 + (μ2 − w2)φ2 + νφ6
]
= λ

∫ ∞

0
dr r2φ4. (51)

This relation can be simplified by using the equation for φ in a simpler form

∫ ∞

0
dr r2(μ2 − w2)φ2 =

λ

2

∫ ∞

0
dr r2φ4. (52)

This clearly shows that the (flat space) Q-ball solutions are supported by the quartic self-interacting
term, with λ > 0 (i.e., the sextic term is not relevant at this level).

• Dirac field:

∫ ∞

0
dr r2

(
g f ′ − f g′ + 2 f g

r
+

3
8

U − 3
2

w( f 2 + g2)

)
= 0 (53)

which can also be written, via field equations, in the alternative form

∫ ∞

0
dr r2

(
μψ2 + λψ4

)
=
∫ ∞

0
dr r2

(
4w( f 2 + g2) + 3νψ6

)
. (54)
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One concludes that, for ν = 0 and λ > 0, the solutions are supported by the harmonic time dependence.
However, the above relation does not clarify the role that is played by the nonlinear quartic term for
the existence of solitons.

• Proca field:

∫ ∞

0
dr r2

(
1
2
(F′ − wG)2 − 3U + 2G2 dU

dA2

)
= 0 . (55)

After eliminating the kinetic term (F′ − wG)2, via field equations, the above relation takes the
suggestive form:

∫ ∞

0
dr r2

[
μ2(3F2 + (

μ2

w2 − 1)G2 +
16λ2G2

w2 A4 +
6ν

w2 A4
(

w2(F2 + G2) + 2G2(μ2 + 3νA2
)]

=

2λ
∫ ∞

0
dr r2A2

(
3F2 + G2 +

4G2

w2 (μ2 + 6νA2)

)
. (56)

From the bound state condition μ2 � w2, it is clear that the existence of finite mass solutions requires a
quartic term, λ �= 0 (ν being irelevant). However, since A2 may take both positive or negative values,
one cannot use the above relation in order to predict the sign of λ.

It is also interesting to note that the mass of the flat space Proca solitons takes the simple form

M =
∫ ∞

0
dr r2

(
μ2A2 − 2νA6

)
. (57)

3.2. Numerical Results

3.2.1. General Remarks

The corresponding equations are found by taking

N = σ = 1 , (58)

in the corresponding general equations presented in Section 2, and we shall not display them here.
Moreover, the boundary conditions that are satisfied by the functions ψ at r = 0, ∞ are similar to those
in the gravitating case, as given in the next Section.

The case of a scalar field is special for a flat spacetime metric. The frequency parameter w is
not relevant, since w2 acts as an effective tachyonic contribution to the mass term and, thus, it can be
absorbed into μ2, by defining μ2 − w2 → μ2. After this redefinition, the scalar field is static, Φ = φ(r)
and, thus, the Noether charge vanishes. Therefore, all Q-ball solutions in a flat spacetime background
can be interpreted as static scalar solitons, in a model with a shifted scalar field mass term [35], for a
new potential

U = U(w) − w2φ2. (59)

Note that, although φ formally satisfies the same equation as before, the energy-momentum tensor
and the total mass of these solutions are different. Additionally, the virial identities imply that the
redefined potential U is necessarily negative for some range of φ, which is realised by the solutions,
U < 0. Moreover, one can prove the following relation [35]

M(w = 0) = M(w)− wQ, (60)

which relates the mass of a static solution (w = 0 and the redefined potential (59)) to the mass and
Noether charge of solutions with a given w (the other parameters in the potential are kept fixed).
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No similar relation seems to exist for higher spin fields. However, it is interesting to notice the
existence in this case of a curious static, purely electric solution, i.e., with H = 0, w = 0. The electric
potential F(r) essentially satisfies the same equation as a scalar Q-ball,

F′′ + 2F′

r
− (μ2 + 4λF2 + 6νF4)F = 0 . (61)

The existence of solutions with proper asymptotics requires λ < 0, being constructed within the same
scheme as in the generic case.

To the best of our knowledge, this case has not been discussed in the literature. However, they
possess some unphysical features. For example, by using the virial identity (57) together with the
above equations, one can prove that the total mass of this configuration is negative (moreover, we have
verified that M remains negative when including gravity effects)

M = −1
3

∫ ∞

0
drr2F′2 < 0. (62)

In all cases, the sextic self-interaction term is not necessary for the existence of solutions. Because the
β = 0 case has some special properties, we shall discuss it separately at the end of this section.

3.2.2. Solutions with a Sextic Self-Interaction Term, β > 0

In what follows, in order to simplify the picture, we shall assume β > 1/4, such that the potential
U(ψ2) (as given by (6)) is strictly positive (assuming ψ2 > 0, which, as we shall see, is not necessarily
the case).

Because no exact solutions are known, the solitons are constructed numerically. Figures 1–3
(left panels) show the profile of typical solutions. One notices that, in the Proca case, ψ2 = A2 is

negative for small enough r, while ψ2 = iΨ(A)Ψ(A) is positive in the Dirac case.
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Figure 1. (Left): the radial profile of a typical non-gravitating scalar soliton. (Right): the mass and
Noether charge are shown vs. the scalar field frequency for the fundamental family of non-gravitating
scalar solitons.

The numerical results indicate that the s = 0, 1/2, 1 flat spacetime solitons follow the same pattern,
which can be summarized, as follows. First, in all cases, the solutions only exist in a certain frequency
range, wmin < w < wmax = μ, with wmin determined by β. Second, the solutions with w < μ decay

exponentially in the far field, with no radiation, as ψ ∼ e−
√

μ2−w2r. Finally, the most interesting
qualitative feature is perhaps the existence in all cases of a mass gap. That is, at a critical value
of the frequency, both the mass and charge of the solutions assume their minimal (nonzero) value,
from where they monotonically increase towards both limiting values of the frequency (see Figures 1–3
(right panels)). When considering the mass of the solutions as a function of the charge, there are thus
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two branches, merging at the minimal charge/mass. One expects that a subset of solutions with M
smaller than the mass of Q free particles (bosons or fermions) may be stable, which is possible along
the lower frequency branch.
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Figure 2. Same as Figure 1 for Dirac stars. Note that the single particle condition, Q = 1, is not imposed here.
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Figure 3. Same as Figure 1 for Proca stars.

3.2.3. Solutions without a Sextic Self-Interaction Term, β = 0

This case is likely physically less relevant (since the potential U is not positive definite); however,
it possesses some interesting properties, which depend, to some extent, on the spin of the field.

Starting with the scalar case, some numerical results are displayed in Figure 1 (right panel,
inset). Note that all of these solutions are unstable, since M > Q, and, thus, they have excess energy.
We remark that solutions with a negative energy density region, ρ < 0, found on a small r−interval,
are found for small enough w (although M > 0 always).

In fact, the equation for the scalar field has an interesting form, with the frequency parameter
being irrelevant. After using the alternative rescaling

r → r/
√

μ2 − w2, φ → φ

√
μ2 − w2

λ
, (63)

one can see that no free parameter exists in this case. The scalar field satisfies the kink-like equation

1
r2

d
dr

(
r2 dφ

dr

)
= φ − 2φ3, (64)
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which does not seem to possess an exact solution (Equation (64) is discussed by many authors,
being relevant for the issue of false vacuum decay [36]—e.g., an existence proof can be found in
Ref. [37]). Additionally, one can show that the following relation holds

M(w; μ, λ) =
M(w = 0; μ, λ)√

μ2 − w2
, (65)

with M(w = 0; 1, 1) � 1.503.
The pattern that is exhibited by the Proca solutions without a sextic term is different, as displayed

in Figure 3. As found in Ref. [24], the limit w = 0 is not approached in this case. Instead, a minimal
value of w is reached, with a backbending towards a critical solution possessing finite charges.
Because M > Q, one expects all of these solutions to be unstable. Additionally, the mass is still
positive, M > 0, and we did not notice the existence of negative energy densities (although we could
not find an analytical argument to show that ρ > 0).

Finally, the pattern of Dirac solitons without a sextic self-interaction (which was the original case
in the pioneering work by Soler [20] ) seems to be similar to the one that is found in the β > 0 case,
see Figure 2 (right panel). In particular, both M and Q still diverge at the limits of the w-interval.

4. Including the Gravity Effects

4.1. The Boundary Conditions

The boundary conditions satisfied by the metric functions at the origin are

m(0) = 0, σ(0) = σ0, (66)

while at infinity, one imposes

m(∞) = M, σ(∞) = 1, (67)

with σ(0), M numbers fixed by numerics. The matter functions should vanish as r → ∞

φ(∞) = f (∞) = g(∞) = F(∞) = H(∞) = 0, (68)

while the boundary conditions at the origin are

scalar :
dφ(r)

dr

∣∣∣∣
r=0

= 0,

Dirac : f (0) = 0,
dg(r)

dr

∣∣∣∣
r=0

= 0, (69)

Proca :
dF(r)

dr

∣∣∣∣
r=0

= 0, H(0) = 0.

Let us mention that, in each case, one can construct an approximate form of the solutions both at r = 0
and at infinity, which is compatible with the boundary conditions above.

4.2. Virial Identities

The reduced action (25) allows for us to prove that the solutions satisfy the (simple enough)
interesting virial identities, which generalize for a curved geometry Deser’s relations (51), (53) and (55).

Following [38,39] (wherein generalizations for a curved geometry of Derrick’s argument for flat
spacetime [33] were established), assume the existence of a solution that is described by m(r), σ(r)
and ψ(r) (with ψ = {φ; f , g; F, H} the matter fields) with suitable boundary conditions at r = 0 and
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at infinity. Subsequently, each member of the one-parameter family mΛ(r) ≡ m(Λr), σΛ(r) ≡ σ(Λr),
and ψΛ(r) ≡ ψ(Λr), assumes the same boundary values at r = 0 and at r = ∞, and the action
SΛ ≡ Se f f [mΛ, σΛ, ψΛ] must have a critical point at Λ = 1, i.e., [dS/dΛ]Λ=1 = 0. Thus, the putative
solution must satisfy the following virial relations (here, it is useful to work with unscaled variables,
i.e., before considering the transformations (s2), (s3)):

• scalar field:

∫ ∞

0
dr r2σ

[
φ′2 + w2(1 − 4N)φ2

N2σ2 + 3U
]
= 0 ; (70)

• Dirac field:

∫ ∞

0
dr r2σ

[√
H(g f ′ − f g′)

(
2 +

m
rN

)
+

4 f g
r

− w( f 2 + g2)

σ
√

N

(
3 − m

rN

)
− 3U

]
= 0 ; (71)

• Proca field:

∫ ∞

0
dr r2σ

[
μ2
(
A2
(

4 − 1
N

)
+ 2H2(1 − N)

)
+ 2λA2

(
A2
(

5 − 2
N

)
+ 4H2(1 − N)

)
(72)

+6νA4
(
A2
(

2 − 1
N

)
+ 2H2(1 − N) + 4G2(1 − N)

)
− (wH − F′)(3wH − F′)

σ2

]
= 0.

This relation can be further simplified after using the Proca field equations to yield

∫ ∞

0
dr r2σ

[
μ2
(

4 − 1
N

)
A2 + 2λ

(
5 − 2

N

)
A4 + 6ν

(
2 − 1

N

)
A6
]
= (73)

2
∫ ∞

0
dr r2σH2(μ2 + 4λA2 + 6νA4)

[
2N − 1 +

N2σ2

2w2 (μ2 + 4λA2 + 6νA4)

]

These expressions are not transparent, with the effects of gravity and self-interaction being mixed.
As such, their main use is to test the accuracy of the numerical results. However, the situation changes
once we set λ = ν = 0 (i.e., no self-interaction). Subsequently, one can see that the solutions are
supported by an harmonic time dependence of the matter fields, w �= 0, except for the Dirac case,
where we could not prove a similar result.

4.3. General Features

The flat space solitons can be generalized to curved spacetime. The presence of higher order
self-interacting terms in the potential is not crucial for the existence of gravitating solutions. However,
they affect some of their quantitative features.

A common pattern emerges again, with the basic generic properties of the gravitating solutions
being summarized, as follows. First, the solutions are topologically trivial, with 0 � r < ∞.
They possess no horizon; the size of the S2-sector of the metric shrinks to zero as r → 0. At infinity,
a Minkowski background is approached. Second, perhaps the most interesting feature is that gravity
regularizes the divergencies of the mass and charge that are found in the probe case at the limit(s)
of the w-interval. In particular, this regularization implies that no mass gap exists for gravitating
configurations: M, Q → 0 as w → μ. Additionally, assuming the existence of a sextic self-intertion
term, with β > 1/4, in all cases, the family of solutions describes a continuous curve in a mass M
(or charge Q), vs. frequency, w, diagram. This curve starts from M = Q = 0 for w = μ, in which limit
the fields become very diluted and the solution trivializes. At some intermediate frequency, a maximal
mass is attained (that may be a global, or only local, maximum, depending on α, β).
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The effects of the quartic and sextic self-interacting terms in the potential (6) become irrelevant
for large enough α. For example, the α = 10 curves that are displayed in Figures 4–6 are well
approximated by the corresponding Einstein-scalar/Dirac/Proca results, with β = ν = 0, the maximal
relative difference being of only a few percent (towards the critical value of frequency).
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Figure 4. ADM mass and Noether charge of the gravitating scalar boson stars vs. the scalar field
frequency for families of solutions with three different values of the coupling constant α. The solutions
in the right panel do not possess a sextic self-interacting term.
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Figure 5. The same as Figure 4 for Dirac stars. The single particle condition, Q = 1, is not imposed here.
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One can also identify some specific features, as follows. The scalar solutions with β > 1/4
(i.e., a positive potential, U > 0) and the Proca starts with large α describe a spiral in a (M, w)-diagram.
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As in similar cases, likely, these spirals approach, at their centre, a critical singular solution. The Dirac
solutions with β = 0 also describe a spiral. For general Proca solutions with β = 0 and Dirac solutions
with β �= 0, the (M, w)-curves appear to end in a critical configuration before describing a spiral. In the
Proca case, this feature is discussed in [24].

The scalar field solutions with β = 0 possess a more complicated pattern. For small α, they
possess a static limit. Moreover, two disconnected branches of solutions exist for some intermediate
range of α e.g., α = 0.5 in Figure 4 (right panel). In addition to the familiar spiral starting at w/μ = 1
and ending for some critical nonzero w = wc, one finds a secondary set, which extends from w = 0 to
some maximal value of w < wc.

Finally, let us mention the existence of another interesting possibility, with quartic interaction
only and λ < 0, in which case no flat spacetime solitons are found. The corresponding solutions were
discussed in [40] for a scalar field, and in [25] for a Proca field. No similar study exists so far for a
fermionic field. In the bosonic case, perhaps the most interesting feature is that their maximal mass is
proportional with

√|λ|, and, thus, can increase dramatically.

5. Other Aspects

5.1. No Hair Results

It is interesting to inquire whether the solutions above may allow the existence of a black hole
horizon, inside. Indeed, this is a well known feature that is found for a variety of other solitons, see e.g.,
the review work [27]. However, this is not the case for the (relatively) simpler solutions in this work.

The situation can be summarized, as follows:

• Scalar case

Peña and Sudarsky established a no-scalar-hair theorem, ruling out a class of spherically
symmetric BHs with scalar hair [41]. Their proof also covers the case of the potential (6) considered
in this work, and it still holds if the hair has the harmonic time-dependence that we consider.

• Dirac case

No hair results for the Einstein–Dirac case with a massive spinor (no self-interaction ) were
proposed in [42,43]. The nonexistence of stationary states for the nonlinear Dirac equation with a
quartic self-interaction on the Schwarzschild metric has been proven in [44].

• Proca case

A no hair theorem has been proven in [30] for a massive, non-selfinterating Proca field.
In Appendix B, we generalize it for an arbitrary Proca potential U(A2).

5.2. The Issue of Particle Numbers: Bosons vs. Fermions

In all of the results displayed above, we have equally treated the bosonic and fermionic fields.
However, while the classical treatment of the Dirac equation is mathematically justified (a discussion
on classical spinors and their possible physical justification can be found, e.g., in Ref. [45]), physically,
its fermionic nature should be imposed at the level of the occupation number: at most, a single, particle,
in accordance to Pauli’s exclusion principle.

Similarly to the non-self-interacting case that is discussed in [12], the one particle condition is
imposed, as follows. Let us suppose that we have a numerical solution with some values for the mass
and charge (M(num), Q(num)). Subsequently, we can use the symmetry (34)–(36) in order to map it to a
’new’ solution with

Q̄(num) = Q0, (74)

where Q0 > 0 is arbitrary. This assumption fixes the value of the scaling parameter c,

c =

√
Q(num)

Q0
, (75)
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such that the numerical mass of the ’new’ solution will be [12]

M̄(num) = M(num)

√
Q0

Q(num)
. (76)

Note that the values of w, μ, λ, and ν should also be scaled according to (34) and (35).
This transformation is used to normalize the total charge of a fermion to one, Q0 = 1. With this

condition Q = 1, the (M, w)-curves in Figure 2 (right panels) and Figure 5 are not sequences of solutions
with fixed parameters in the potential and varying Q; instead, they get mapped into sequences with
fixed Q and varying μ, ν. Consequently, one is discussing a sequence of solution of different models
(since μ, ν are input parameters in the action).

Figure 7 shows the corresponding results, for both the probe limit case and including gravity
effects. An interesting feature here is that the mass of Q = 1 non-gravitating configuration can still
take arbitrary large values. However, as expected, gravity effects lead to a picture that is qualitatively
similar to that found in the λ = ν = 0 case [12]. Again, both the total mass, M and the mass of the
field μ are bounded and never exceed, roughly, MPl .
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Figure 7. (Left panel) Soliton mass vs. the mass of the elementary quanta of the field, for non-gravitating
solutions of the Dirac equations with three different values of β. (Right panel) The same for the gravitating
solutions with several values of the coupling constant α and β = 0. The single particle condition, Q = 1,
is imposed here.

6. Further Remarks. Conclusions

The main purpose of this work was to provide a comparative analysis of three different types of
solitonic solutions of GR coupled with matter fields of spin s = 0, 1/2, 1. A unified framework has
been proposed, analysing these cases side-by-side under a consistent set of notations and conventions.
Differently from the previous work [12], the matter fields herein are self-interacting, such that all
three models possess (Q-ball-like) solutions on the flat spacetime limit. As such, a more complicated
landscape of gravitating solutions is found, with some new qualitative features when compared to the
picture that is revealed in [12].

However, despite this fact, our study shows that there is, again, a certain universality in the
properties of the solitons, being to some extent independent of their (fundamental) spin. As with linear
matter fields, the basic ingredients are again: (i) a harmonic time dependence of the matter fields;
(ii) complex field(s)/multiplets such that the energy–momentum is still real; and, (iii) the existence of
of mass term as a trapping mechanism, creating bound states with w < μ. Additionally, if one requires
the presence of a well defined flat space limit, then (iv) the fields should possess at least a quartic
self-interaction term.

As an avenue for future work, it would be interesting to go beyond the case of spherical symmetry
and consider a comparative study of axially symmetric, spinning solutions. In the non-self-interacting
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case, this was the subject of the recent work [46], where a common pattern was again revealed to exist.
The situation in the presence of self-interactions is less studied; only the scalar field case has, so far,
been discussed in the literature [47,48]. Indeed, even flat space spinning solitons with spin s = 1/2, 1
are yet unreported in the literature. Moreover, even in the static case, new families of non-spherically
symmetric solitons should exist, generalizing, for a self-interacting potential (and possibly for a higher
spin), the s = 0 multipolar boson stars recently reported in [49].

Finally, let us remark that, for a bosonic field, s = 0, 1, the no-hair theorems (as reviewed in
the previous Section) can be circumvented for an horizon that rotates synchronously with the field,
leading to BHs with scalar or Proca hair [30,50]. However, this does not seem to be the case for
fermions, regardless of the presence of a self-interacting potential.
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Appendix A. The Dirac Field: Conventions

Since this case is more complicated, we shall include here the basic relations.
Following the framework in [31], we consider a general four dimensional metric gαβ, and introduce

a tetrad of vectors

eα
a = {eα

0 , eα
1 , eα

2 , eα
3}, (A1)

which we take to be an orthonormal basis, i.e.,

gαβeα
a eβ

b = ηαβ, (A2)

where

ηab = diag(−1, 1, 1, 1). (A3)

Here, Roman and Greek letters are used for tetrad and coordinate indices, respectively. Roman indices
are raised and lowered with ηab. It follows that

ea
α = ηabgαβeβ

b and gαβ = ηabea
αeb

β. (A4)

The next step is to define two sets of 4 × 4 matrices γα and γ̂a satisfying the
anticommutation relations

{γα, γβ} = 2gαβ I4, {γ̂a, γ̂b} = 2ηab I4, (A5)
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(where, as usual, {A, B} = AB + BA). Note that the former set γα are functions of spacetime
position, whereas the latter γ̂a have constant components. The two sets may be related with any
orthonormal tetrad,

γα = eα
a γ̂a. (A6)

Matrix indices are raised/lowered in the standard way: γ̂a = ηabγ̂b and γα = gαβγβ.
One uses the Weyl/chiral representation, in which

γ̃0 =

(
O I
I O

)
, γ̃i =

(
O σi
−σi O

)
, i = 1, 2, 3, (A7)

where I is the 2 × 2 identity, O is the 2 × 2 zero matrix, and σi are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A8)

Then the matrices γ̂a are defined as

γ̂1 = iγ̃3, γ̂2 = iγ̃1, γ̂3 = iγ̃2, γ̂0 = iγ̃0. (A9)

The Dirac four-spinor is written as

Ψ =

(
ψ−
ψ+

)
, (A10)

where ψ+ and ψ− are (left- and right-handed) two-spinors, which may be projected out from Ψ with
the operators P± = 1

2 (I ± γ̂5) where

γ̂5 = iγ̂0γ̂1γ̂2γ̂3 =

(
−I O
O I

)
. (A11)

We define also the Dirac conjugate

Ψ ≡ Ψ†α, (A12)

with Ψ† denoting the usual Hermitian conjugate and α = −γ̂0.
The spinor covariant derivative D̂ν which enters the Dirac Equation (11) is

D̂ν = ∂ν − Γν. (A13)

The spinor connection matrices Γν are defined, up to an additive multiple of the unit matrix,
by the relation

∂νγμ + Γμ
νλγλ − Γνγμ + γμΓν = 0 , (A14)

where Γμ
νλ is the affine connection. A suitable choice satisfying (A14) makes use of the spin

connection ωα bc,

Γα = −1
4

ωα bcγ̂bγ̂c, (A15)

the spin-connection ωμab being defined as

ω a
μ b = ea

νeλ
b Γν

μλ − eλ
b ∂μea

λ. (A16)
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Also, the covariant derivative of the conjugate spinor is

D̂μΨ = ∂μΨ + ΨΓμ. (A17)

Appendix B. Self-Interacting Proca Field: A No Hair Result

As for the previous study [30] for a non-self-interacting field, the theorem is established by
contradiction. Let us assume the existence of a regular BH solution of the Einstein-Proca equations.
The general Ansatz and the field equations derived in Section 2 apply also to this case. Differently
from the globally regular case, the geometry would possess a non-extremal horizon at, say, r = rH > 0,
which requires that

N(rH) = 0 , (A18)

while σ(rH) > 0. Since we are assuming that there are no more exterior horizons, then r >

rH =constant are timelike surfaces and N′(rH) > 0. Also, we can choose without loss of generality
that σ(rH) > 0, since the equations of motion are invariant under σ → −σ. It follows that N(r) and
σ(r) are strictly positive functions for any r > rH .

In establishing the theorem, we shall use the relation (12) written in the generic form

d
dr

(
r2NσHU̇

)
= −wr2FU̇

Nσ
, (A19)

together with one of the Proca equations

F′ = wH
(

1 − 2Nσ2U̇
w2

)
. (A20)

The regularity of the horizon implies that the energy density of the Proca field is finite there and also
the norm of the Proca-potential A. One can easily see that this condition implies

F(rH) = 0 . (A21)

Then the function F(r) starts from zero at the horizon and remains strictly positive (or negative)
for some r-interval (the case of a negative F′(r) can be discussed in a similar way). Now, let us
assume F′(r) > 0 for rH < r < r1. It follows that, in this interval, F(r) is a strictly increasing
(and positive) function.

Next, we consider the expression (which appears in Equations (A19) and (A20)),

P(r) ≡ 1 − 2σ2(r)N(r)U̇
w2 . (A22)

One can see that P(rH) = 1; actually P becomes negative for large r, since N → 1, σ → 1 as r → ∞,
while A2 → 0 and μ > w (which is a bound state condition necessary for an exponential decay of the
Proca field at infinity). But the important point is the existence of an r−interval rH < r < r2 where P(r)
is a strictly positive function. Now, the same reasoning applies also for U̇ (since U̇(rH) = μ2/2 > 0),
while U̇ → 0 asymptotically. This implies the existence of some interval in the vicinity of the horizon
where U̇, F and P are all positive.

At this point, let us consider an arbitrary value of r in this interval. Then we observe
that (A19) implies

r2σ(r)N(r)H(r)U̇ = −w
∫ r

rH

dx
x2

σ(x)N(x)
F(x)U̇(x) < 0 (A23)

in that interval. Consequently, H(r) < 0, since σ, N are positive everywhere outside the horizon.
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The last conclusion implies a contradiction: H(r) < 0 is not compatible with F′(r) > 0, in that
interval. In fact, F′(r) > 0 together with P > 0 and w > 0, from (A20), that H(r) > 0. Thus we
conclude that F(r) = H(r) = 0 is the only solution compatible with a BH geometry (q.e.d.).
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Abstract: We construct scalarized wormholes with a NUT charge in higher curvature theories. We
consider both Einstein-scalar-Gauss-Bonnet and Einstein-scalar-Chern-Simons theories, following
Brihaye, Herdeiro and Radu, who recently studied spontaneously scalarised Schwarzschild-NUT
solutions. By varying the coupling parameter and the scalar charge we determine the domain of
existence of the scalarized nutty wormholes, and their dependence on the NUT charge. In the
Gauss-Bonnet case the known set of scalarized wormholes is reached in the limit of vanishing NUT
charge. In the Chern-Simons case, however, the limit is peculiar, since with vanishing NUT charge
the coupling constant diverges. We focus on scalarized nutty wormholes with a single throat and
study their properties. All these scalarized nutty wormholes feature a critical polar angle, beyond
which closed timelike curves are present.

Keywords: wormholes; scalar fields; NUT charge; black holes; higher curvature theories

1. Introduction

The fascinating phenomenon of scalarization has led to a large variety of interesting observations
in the context of compact objects. Scalarization arises, when the generalized Einstein–Klein–Gordon
equations lead to solutions with a non-trivial scalar field, caused by the presence of an adequate source
term. Depending on the properties of this source term distinct types of scalarized solutions arise. When
the source term in the scalar field equation does not vanish for vanishing scalar field, all solutions will
be scalarized, and the solutions of ordinary General Relativity (GR) will not be solutions of the coupled
set of field equations. In contrast, when the source term in the scalar field equation does vanish for
vanishing scalar field the GR solutions do remain solutions of the generalized set of field equations.
However, they develop tachyonic instabilities, where new scalarized solutions arise.

The latter phenomenon was first observed for neutron stars in scalar-tensor theories [1] where it
is referred to as matter-induced spontaneous scalarization, since the source term for the scalar field
is provided by the highly compact nuclear matter. Only much more recently it was observed that in
the case of the vacuum black holes of GR spontaneous scalarization is possible as well, when another
type of source term for the scalar field is provided. Coupling the higher curvature Gauss–Bonnet (GB)
invariant to the scalar field with an appropriate coupling function curvature-induced spontaneously
scalarized black holes arise, representing scalarized Schwarzschild and Kerr black holes [2–24].
Moreover, the curvature-induced spontaneous scalarized Kerr black holes come in two types, those
that arise in the slow rotation limit from the scalarized Schwarzschild black holes, and those that do not
possess a slow rotation limit [25–27]. We note that for GB theories with coupling functions allowing
for spontaneous scalarization the current constraints from gravitational waves produced in binary
black hole mergers can be avoided, since the scalar field can be set to zero in cosmological applications,
implying the cosmological standard results. In the case of localized compact objects, however, the
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deviation of the speed of gravitational waves from the speed of light decays rapidly with distance
[28–30].

An alternative higher curvature invariant to study curvature-induced spontaneously scalarized
black holes is the Chern–Simons (CS) invariant. However, in the static case of the Schwarzschild metric
the invariant vanishes, and therefore no spontaneously scalarized Schwarzschild black holes arise.
This is different for the Kerr metric, since rotation leads to a finite CS source term for the scalar field
[31–38], which should allow for spontaneously scalarized Kerr black holes. In order to learn about
scalarized rotating CS black holes without having to deal with the full complexity of the challenging
set of the resulting coupled partial differential equations, one may first resort to the technically much
simpler case and include a NUT charge [39–45] instead of rotation, as pursued successfully by Brihaye
et al. [46,47]. In that case, a much simpler set of ordinary differential equations (ODEs) results, since
the angular dependence of the scalarized solutions factorizes.

Inspired by Brihaye et al. [46,47], we here follow their motivation and apply this strategy to
wormholes, constructing scalarized nutty wormholes in higher curvature theories employing either a
GB term or a CS term as source term for the scalar field. Following Brihaye et al. [46], we here employ a
quadratic coupling function. The spontaneously scalarized Schwarzschild-NUT solutions of [46] then
represent one of the boundaries of the domain of existence of the scalarized nutty wormholes. However,
the wormhole solutions are not spontaneously scalarized, since when the scalar field vanishes, pure
vacuum GR is retained, and there are no Lorentzian traversable wormhole solutions in vacuum GR
(see e.g., [48–52]).

To obtain traversable wormhole solutions the energy conditions must be violated. In GR this
can be achieved by the presence of exotic matter. However, by allowing for alternative theories of
gravity traversable wormholes can be obtained without the need for exotic matter (see e.g., [53–63]).
Employing the string theory motivated dilaton-GB coupling, static scalarized wormholes were shown
to exist, and their domain of existence and their properties were studied before [59–61]. In the dilatonic
case, the black hole boundary of the domain of existence corresponds to static dilatonic black holes [64].
For other coupling functions, which give rise to spontaneously scalarized GB black holes, the black
hole boundary of the domain of existence of scalarized wormholes [59,65] consists of the corresponding
spontaneously scalarized black holes [2–4].

The domain of existence of scalarized wormholes is further bounded by a set of solutions, where
singularities are encountered, and by a set of solutions, where the wormhole throat becomes degenerate
[59–61,65]. In the latter case, this degeneracy reveals, that in addition to wormholes with a single
throat also wormholes with an equator and a double throat exist. The throat(s) and equator arise
naturally in these solutions in one of the two parts of the spacetime. However, when simply continuing
the solutions beyond the throat (or equator) a singularity will invariably be encountered. In order to
obtain wormholes without such singularities, symmetry has been imposed with respect to the throat
(or equator). This entails that a thin shell of matter is needed at the throat (or equator), to satisfy the
respective Israel junction conditions [66,67]. Typically, this matter can be ordinary matter, thus no
exotic matter is needed [59–61,65].

Here we generalize these scalarized wormhole solutions in two ways. On the one hand, we
include a NUT charge and on the other hand we consider besides the GB invariant also the CS
invariant. The presence of the NUT charge implicates a Misner string on the polar axis. Therefore the
resulting spacetimes are not asymptotically flat in the usual sense. However, all unknown functions
of the wormhole solutions are only functions of the radial coordinate, and their asymptotic fall-off is
of the usual type of an asymptotically flat spacetime, as in the case of scalarized Schwarzschild-NUT
solutions [46,47]. As always, the presence of a NUT charge gives rise to closed timelike curves, since
the metric component of the azimuthal angle, gϕϕ, changes sign in the manifold at a critical value of
the polar angle θ. Here we show that all scalarized nutty wormhole solutions possess such a critical
polar angle at their throat. In the black hole limit the throat changes into a horizon, where the critical
polar angle goes to zero.
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The paper is organized as follows: In Section 2 we present the actions involving the GB and the
CS term and exhibit the equations of motion for both cases. We then discuss the boundary conditions,
the conditions for the center, i.e., the throat (or equator), the junction conditions, and the null energy
condition (NEC). Subsequently we address the numerical procedure and present our results in Section
3. These include, in particular, the profile functions for the scalarized nutty wormhole solutions,
the violation of the NEC, the domain of existence with its outer boundaries, and an analysis of the
junction conditions for the thin shell of matter at the throat. We give our conclusions and an outlook in
Section 4.

2. Theoretical Setting

2.1. Action and Equations of Motion

Following Brihaye et al. [46], we consider the effective action for Einstein-scalar-higher curvature
invariant theories

S =
1

16π

∫ [
R − 1

2
∂μφ ∂μφ + F(φ)I(g)

]√−gd4x , (1)

where R is the curvature scalar, and φ denotes the massless scalar field without self-interaction, that is
coupled with some coupling function F(φ) to an invariant I(g). For the coupling function F(φ) we
choose a quadratic φ-dependence with coupling constant α,

F(φ) = αφ2 , (2)

the simplest choice leading to curvature-induced spontaneous scalarization of black holes.
For the invariant I(g) we make two choices, (i) the Gauss–Bonnet term

I(g) = R2
GB = RμνρσRμνρσ − 4RμνRμν + R2 , (3)

and (ii) the Chern–Simons term

I(g) = R2
CS =∗Rμ

ν
ρσ

Rν
μρσ , (4)

where the Hodge dual of the Riemann-tensor ∗Rμ
ν

ρσ
= 1

2 ηρσκλRμ
νκλ is defined with the 4-dimensional

Levi-Civita tensor ηρσκλ = εργστ/
√−g. While both invariants are topological in four dimensions, the

coupling to the scalar field φ via the coupling function F(φ) provides significant contributions to the
equations of motion.

We obtain the coupled set of field equations by varying the action (1) with respect to the scalar
field and to the metric,

∇μ∇μφ +
dF(φ)

dφ
I = 0 , (5)

Gμν =
1
2

T(eff)
μν , (6)

where Gμν is the Einstein tensor and T(eff)
μν denotes the effective stress-energy tensor

T(eff)
μν = T(φ)

μν + T(I)
μν , (7)

which consists of the scalar field contribution

T(φ)
μν =

(∇μφ
)
(∇νφ)− 1

2
gμν

(∇ρ φ
)
(∇ρφ) , (8)
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and a contribution from the respective invariant I(g). For the chosen invariants we obtain (i)

T(GB)
μν =

(
gρμgλν + gλμgρν

)
ηκλαβ∗Rργ

αβ∇γ∇κ F(φ) , (9)

and (ii)
T(CS)μν = −8

[∇ρF(φ)
]

ερστ(μ∇τ Rν)
σ
+
[∇ρ∇σF(φ)

]∗Rσ(μν)ρ. (10)

To obtain static, spherically symmetric wormhole solutions with a NUT charge N we assume the
line element to be of the form

ds2 = −e f0 (dt − 2N cos θdϕ)2 + e f1
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (11)

All three functions, the two metric functions f0 and f1 and the scalar field function φ, depend
only on the radial coordinate r.

When we insert the above ansatz (11) for the metric and the scalar field into the scalar-field
Equation (5) and the Einstein Equation (6) with effective stress-energy tensor (7), we obtain five
coupled, nonlinear ODEs. However, these are not independent, since the θ-dependence factorizes, and
one ODE can be treated as a constraint. This leaves us with three coupled ODEs of second order. Note
that in case (i) the system can be reduced to one first order and two second order ODEs.

Inspection of the field equations reveals an invariance under the scaling transformation

r → χr , N → χN , t → χt , F → χ2F , (12)

with constant χ > 0.

2.2. Throats, Equators, and Boundary Conditions

In order to obtain scalarized nutty wormhole solutions, we need to impose an appropriate set of
boundary conditions for the ODEs, which we now address. We first introduce the circumferential (or
spherical) radius

RC = e
f1
2 r (13)

of the wormhole spacetimes, which may possess one or more finite extrema. If there is a single finite
extremum, this corresponds to the single throat of the respective wormholes. Here we will mainly
consider such single throat wormholes, thus featuring a single minimum. But wormholes with more
extrema may also exist. They might, for instance, possess a local maximum surrounded by two minima.
The local maximum would then correspond to their equator, while the two minima would represent
their two throats, making them double throat wormholes.

To obtain the first set of boundary conditions we therefore require the presence of an extremum of
the spherical radius at some r = r0. This yields

dRC
dr

∣∣∣∣
r=r0

= 0 ⇐⇒ d f1

dr

∣∣∣∣
r=r0

= − 2
r0

. (14)

Some details on the condition R′′
C(r0) > 0 are given in the Appendix A. In the following we

will refer to the two-dimensional submanifolds defined by r = r0 and t = const. as the center of the
configurations.

We note that the presence of a NUT charge leads to an interesting feature of these wormholes.
Unlike the usual case, the throat metric of these nutty wormholes

ds2
th = e f1(r0)r2

0

(
dθ2 +

[
sin2 θ − 4N2

r2
0

e f0(r0)− f1(r0) cos2 θ

]
dϕ2

)
(15)
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changes its signature at the critical angles θc and π − θc, where the coefficient of dϕ2 changes sign. We
obtain θc from the condition det(gth) ≥ 0, which requires θc ≤ θ ≤ π − θc with

θc = arctan
(

2|N|
r0

e
f0− f1

2

)∣∣∣∣
r0

. (16)

Only for θc ≤ θ ≤ π − θc the signature of the metric is positive, as required for a two-dimensional
Riemannian surface. The change of signature is a consequence of the non-causal structure of a
spacetime in the presence of a NUT charge N, which allows for closed timelike curves.

We obtain the second set of boundary conditions by requiring the usual boundary conditions for
r → ∞ [46]. The associated asymptotic expansions of the metric functions and the scalar field read

f0 = −2M
r

+O
(

r−3
)

, (17)

f1 =
2M

r
+O

(
r−2
)

, (18)

φ = φ∞ − D
r
+O

(
r−3
)

, (19)

where M denotes the mass of the wormholes and D corresponds to their scalar charge. The quantity
φ∞ represents the asymptotic value of the scalar field. We note that all higher order terms in the
expansion can be expressed in terms of M, D and φ∞. Thus the solution is uniquely determined by
these quantities (and parameters of the theory). Since we are interested in the relation of the wormhole
solutions to the spontaneously scalarized black hole solutions of Brihaye et al. [46] we need to choose
the same asymptotic value φ∞ = 0.

2.3. Junction Conditions

In order to obtain wormholes whose geometry is symmetric with respect to the center and which
do not possess any singularity (apart from the Misner string), we need to impose junction conditions at
the center. For the discussion of the junction conditions it is useful to introduce the radial coordinate η,

η = r0

(
r
r0

− r0

r

)
, (20)

where r0 is a constant. We then define the constant η0 via η0 = 2r0. In terms of the new radial
coordinate η the metric reads

ds2 = −e f0 (dt − 2N cos θdϕ)2 + eF1
[
dη2 +

(
η2 + η2

0

) (
dθ2 + sin2 θdϕ2

)]
, (21)

where we have introduced the new metric function F1,

eF1 = e f1

(
1 +

r2
0

r2

)−2

.

Thus the center is located at η = 0, and the solution on the η ≤ 0 part of the manifold can be
obtained from the solution on the η ≥ 0 part of the manifold by imposing the symmetry conditions
f0(−η) = f0(η), F1(−η) = F1(η) and φ(−η) = φ(η). However, these conditions generically introduce
jumps in the derivatives of the functions f0 and φ at the center η = 0, which may be attributed to a
thin shell of matter that is localized at the center.
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To properly embed such a thin shell of matter in the complete wormhole solution, we make use of
an appropriate set of junction conditions [66,67]. In particular, we consider jumps in the coupled set of
Einstein and scalar field equations that arise when η → −η,

〈Gμ
ν − Tμ

ν〉 = sμ
ν , 〈∇2φ + ḞI〉 = sscal , (22)

with the abbreviation dF(φ)/dφ = Ḟ for the derivative of the coupling function. Here we have denoted
the stress-energy tensor of the matter at the center by sμ

ν, and the source term for the scalar field by
sscal. We would like the matter forming the thin shells to be some form of ordinary (non-exotic) matter.
We will therefore assume that there is a perfect fluid at the center which has pressure p and energy
density εc, and that there is a scalar charge density ρscal together with a gravitational source [60,61]

SΣ =
∫

[λ1 + 2λ0F(φ)R̄]
√
−h̄d3x , (23)

that has been employed before for GB wormholes without NUT charge. Here we have introduced the
constants λ1 and λ0, h̄ab denotes the induced metric at the center, and R̄ denotes the associated Ricci
scalar. In order to obtain the junction conditions, we substitute the metric into the set of equations (22).

Now we derive the junction conditions for both invariants separately. Note, that here and in the
following all functions and derivatives are evaluated at the center. In the case of the Gauss–Bonnet
invariant we find the equations

4
η2

0
Ḟφ′
(

η2
0 e−

3
2 F1 + 3N2e f0− 5

2 F1
)

= λ1η2
0 + 4λ0F

η2
0 e−F1 + 3N2e f0−2F1

η2
0

− εcη2
0 , (24)

N cos θ

[
η2

0 f ′0e−
F1
2 − 8Ḟφ′

(
e−

3
2 F1 +

4N2

η2
0

e f0− 5
2 F1

)]
= 2N cos θ

[
(εc + p) η2

0 − 4λ0F
η2

0 e−F1 + 4N2e f0−2F1

η2
0

]
, (25)

η2
0 f ′0
2

e−
F1
2 − 4N2

η2
0

Ḟφ′e f0− 5
2 F1 = pη2

0 + λ1η2
0 − 4λ0 N2F

e f0−2F1

η2
0

, (26)

e−F1 φ′ − 4
Ḟ
η4

0
f ′0
(

η2
0 e−2F1 + 3N2e f0−3F1

)
= −4λ0

Ḟ
η4

0

(
η2

0 e−F1 + N2e f0−2F1
)
+

ρscal

2
, (27)

which follow from the
(t

t
)
,
(

t
ϕ

)
, and

(
ϕ
ϕ

)
components of the Einstein equations and from the scalar

field equation, respectively. Note that the
(

θ
θ

)
equation is equivalent to the

(
ϕ
ϕ

)
equation, and that

all other equations are satisfied trivially. We also remark that the θ dependence in the
(

t
ϕ

)
equation

factorizes, and that this equation is satisfied once the
(t

t
)

and
(

ϕ
ϕ

)
equations are solved.

As an example we consider pressureless matter, p = 0. With

λ0 =
Ḟ
F

e−
F1
2 φ′ , λ1 =

f ′0
2

e−
F1
2 , (28)

we find the simple result

εc =
f ′0
2

e−
F1
2 . (29)

Since for our solutions f ′0 > 0 the energy density εc is always positive for this choice of the
constants λ0 and λ1.

We now turn to case of the Chern–Simons invariant where we find the equations
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8NḞφ′ f ′0e
f0
2 e−2F1 = λ1η2

0 + 4λ0F
η2

0e−F1 + 3N2e f0−2F1

η2
0

− εcη2
0 , (30)

N cos θ f ′0
(

η2
0e−

F1
2 − 24NḞφ′e

f0
2 −2F1

)
= 2N cos θ (εc + p) η2

0 − 8N cos θλ0F
η2

0e−F1 + 4N2e f0−2F1

η2
0

, (31)

f ′0
2

(
η2

0e−
F1
2 − 8NḞφ′e

f0
2 −2F1

)
= pη2

0 + λ1η2
0 − 4λ0N2F

e f0−2F1

η2
0

, (32)

e−F1 φ′ − 4N
Ḟ
η2

0
( f ′0)2e

f0−5F1
2 = −4λ0

Ḟ
η4

0

(
η2

0e−F1 + N2e f0−2F1
)
+

ρscal
2

, (33)

which follow again from the
(t

t
)
,
(

t
ϕ

)
,
(

ϕ
ϕ

)
components of the Einstein equations and the scalar field

equation, respectively.
Again we consider as an example pressureless matter, p = 0. With

λ0 =
η2

0 Ḟ
NF

e−
f0
2 , λ1 = − f ′0

2
e−

F1
2 , (34)

we now find

εc =
f ′0

2N

(
Ne−

F1
2 + 8Ḟφ′e−

f0
2 −F1

)
+

4N
η2

0
Ḟφ′ f ′0e

f0
2 −2F1 . (35)

2.4. Energy Conditions

In wormhole solutions the null energy condition (NEC)

Tμνnμnν ≥ 0 (36)

must be violated, where nμ is any null vector (nμnμ = 0). Thus it is sufficient to show that null vectors
exist, such that Tμνnμnν < 0 in some spacetime region. Such a null vector nμ is given by

nμ =
(

1,
√
−gtt/gηη , 0, 0

)
, (37)

and thus nμ =
(

gtt,
√−gtt gηη , 0, 0

)
. The NEC then takes the form

Tμνnμnν = Tt
t ntnt + Tη

η nηnη = −gtt (−Tt
t + Tη

η ) . (38)

Consequently the NEC is violated when

− Tt
t + Tη

η < 0 . (39)

Alternatively, considering the null vector

nμ =
(

1, 0,
√−gtt/gθθ , 0

)
, (40)

the NEC is violated when
− Tt

t + Tθ
θ < 0 . (41)

These conditions have been addressed before for various scalarized wormhole solutions [48,59–61].
We analyze these conditions in Section 3.2 for the scalarized nutty wormholes.
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3. Results

3.1. Numerics

In order to solve the coupled Einstein and scalar field equations numerically we introduce the
inverse radial coordinate x = 1/r. The asymptotic region r → ∞ then corresponds to x → 0. In this
region the expansion of the metric functions and the scalar field reads (see Equations (17)–(19))

f0 = −2Mx +O
(

x3
)

, f1 = 2Mx +O
(

x2
)

, φ = φ∞ − Dx +O
(

x3
)

. (42)

We treat the system of ODEs as an initial value problem, for which we employ the fourth order
Runge Kutta method. From the above expansion we read off the initial values,

f0,ini = 0 , f ′0,ini = −2M , f1,ini = 0 , f ′1,ini = 2M , φini = 0 , φ′
ini = −D . (43)

The computation then starts at spatial infinity, x = 0, and ends at the center at some finite x = x0,
where the condition (14) is reached. Note that the initial conditions determine the solution uniquely, as
discussed in Section 2.2 There is no fine-tuning of parameters needed.

3.2. Solutions

By following the above numerical procedure we obtain the sets of nutty wormhole solutions
for both invariants I(g). Here we demonstrate some typical solutions for both cases. We exhibit in
Figure 1 the metric profile functions e f0 , eF1 , and the scalar field function φ versus the radial coordinate
η/M for the GB invariant (a) and the CS invariant (b), choosing parameters α/M2 = 2.5, D/M = 2
and n = N/M = 3, and α/M2 = 4, D/M = 1 and n = N/M = 3, respectively. The figures also
show the circumferential radius Rc/η0 versus η/M (η0/M = 0.517: GB invariant, η0/M = 0.495: CS
invariant). As required, Rc reaches an extremum at the center η = 0. We note that the solutions have
rather similar properties for both invariants.

To see that the wormhole solutions violate the energy conditions, we inspect the components of
the effective energy momentum tensor, Tt

t , Tt
φ, Tη

η , and Tθ
θ . These are shown for the same solutions

and the GB and CS invariants in Figure 1c,d, respectively. In particular, we note, that the component
Tη

η is negative in the vicinity of the center for both invariants. Moreover, all components are negative
in some region of the spacetime. We exhibit in Figure 1e,f the NEC conditions −Tt

t + Tη
η ≥ 0 and

−Tt
t + Tθ

θ ≥ 0 for the GB and CS invariants, respectively. The figures clearly demonstrate the NEC
violation for both invariants.
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Figure 1. Examples of nutty wormhole solutions (left plots: Gauss–Bonnet with parameters α/M2 =

2.5, D/M = 2 and n = N/M = 3, right plots: Chern–Simons with α/M2 = 4, D/M = 1 and
n = N/M = 3): (a,b) metric profile functions e f0 , eF1 , scalar field function φ, and scaled circumferential
radius Rc/η0 vs radial coordinate η; (c,d) stress-energy tensor components Tt

t , Tt
φ, Tη

η , and Tθ
θ vs. radial

coordinate η/M; (e,f) NEC conditions −Tt
t + Tη

η ≥ 0 and −Tt
t + Tθ

θ ≥ 0 vs radial coordinate η.

3.3. Domain of Existence

We now address the domain of existence of these nutty wormhole solutions. We exhibit the
domain of existence in Figure 2 for the GB (left) and CS (right) invariants, for a set of values of the
scaled NUT charge n = N/M. In particular, we show the outer boundaries of the respective domains
of existence, by presenting the scaled coupling constant α/M2 versus the scaled scalar charge D/M.

The existence of the wormhole solutions requires the presence of a non-trivial scalar field. Since
the equations are invariant under the transformation φ → −φ, the domain of existence is symmetric
with respect to D → −D, and it is sufficient to only exhibit D ≥ 0. For D = 0 the scalar field vanishes,
and thus D = 0 represents the trivial boundary of the domain of existence, where pure GR solutions
reside. The first non-trivial boundary corresponds to scalarized nutty black holes, and is shown by the
solid red curves. These scalarized black holes were obtained before by Brihaye et al. [46]. Here the
center/throat turns into a black hole horizon.

91



Symmetry 2021, 13, 89

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5  3

n=0
n=1

n=2

n=3

8α
/M

2

D/M

singular

degenerate

black holes
 0

 10

 20

 30

 40

 50

 60

 70

 0  0.5  1  1.5  2

n=0.5 n=1 n=2

n=3

8α
/M

2

D/M

black holes

degenerate

singular

Figure 2. Domain of existence ((left) plot: Gauss–Bonnet, (right) plot: Chern–Simons) for several
values of the scaled NUT charge n = N/M: scaled coupling constant α/M2 vs scaled scalar charge
D/M. The solid red curves represent the black hole limit, the dashed green curves the degenerate
wormhole limit, and the dotted blue curves the singular limit.

The second non-trivial boundary in the figures is termed degenerate and shown by the dashed
green curves. To understand this boundary, we recall the numerical construction of the solutions.
The calculation is ended, when an extremum is reached. However, in principle, we can continue
the calculation beyond the extremum, where we might find a second extremum. The first one then
corresponds to a throat while the second one corresponds to an equator. As the coupling constant
is varied, the two extrema will approach each other until finally a degenerate extremum is reached.
This third boundary represents precisely the values of the coupling constant, where such a degenerate
extremum is reached.

The last boundary has been labeled singular, and is shown by the dotted blue curves. At this
boundary the calculations reveal the appearance of a singularity somewhere in the spacetime, that is
of the cusp type (see [59,65,68,69]). Their presence is due to the emergence of a node at some value of
the radial coordinate η	 in the determinant, that arises upon diagonalisation of the ODEs. These cusp
singularities seem to be a rather common feature of scalarized wormholes. Here we see, that they do
not only arise for GB theories, but are also present for CS theories.

The figures also show, that the domain of existence of wormhole solutions increases strongly
with increasing NUT charge. For the GB coupling, the limit of vanishing NUT charge leads to the
scalarized wormhole solutions of Antoniou et al. [59]. For the CS coupling, the vanishing of the NUT
charge needs special attention, since in this case two branches of solutions arise, as shown for the
Schwarzschild-NUT solutions by Brihaye et al. [46]. Along the first branch the coupling constant
decreases with decreasing NUT charge, analogous to the GB case. However, along the second branch
the coupling constant increases with decreasing NUT charge. This is seen in Figure 2(right), where the
solutions for n = N/M = 3, 2 and 1 are on the first branch, while the solutions for n = N/M = 0.5 are
already on the second branch. Interestingly, the smaller the values of the NUT charge, the larger the
values of the coupling constant that are necessary to obtain scalarized solutions. In fact, both conspire
in such a way, that a finite domain arises also in the CS case in the limit N → 0 as further discussed
below.

3.4. Throat Properties

We next address properties of the wormhole center, and since we do not consider equators here,
but only throats, we refer to these properties as throat properties. In particular, we consider the value
of the circumferential radius RC, Equation (13), at the throat which we denote by Rth, the value of the
metric function e f0 , and the value of the critical angle θc, Equation (16). For these properties we delimit
their domains of existence in Figure 3, by the extracting the boundaries of the respective domains. As
before we show the black hole limit by solid red curves, the degenerate limit by dashed green curves,
and the singular limit by dotted blue curves.
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Figure 3. Properties at the throat (left plots: Gauss–Bonnet, right plots: Chern–Simons) for several
values of the scaled NUT charge n = N/M: (a,b) scaled circumferential radius Rth/M, (c,d) metric
function e f0 , (e,f) scalar field φth vs scaled scalar charge D/M. The solid red curves represent the black
hole limit, the dashed green curves the degenerate wormhole limit, and the dotted blue curves the
singular limit.

We exhibit the domain of the scaled value Rth/M versus the scaled scalar charge D/M in Figure 3
for the GB invariant (a) and the CS invariant (b) for several values of the NUT charge n = N/M.
We note that for a fixed value of the NUT charge n = N/M, in the limit of vanishing scalar charge
(D/M → 0) the same solution is approached for both the GB invariant (a) and the CS invariant (b). In
this limit the scalar field vanishes identically, and thus there are no wormhole solutions. The limiting
solution therefore corresponds to a Schwarzschild-NUT black hole solution, for which the value of
Rth/M depends only on the value of the NUT charge n = N/M.

When taking the NUT charge to zero, the boundary composed of scalarized black holes remains
finite. In the GB case the scalarized Schwarzschild solutions are approached. In the CS case the
coupling constant diverges, as the NUT charge goes to zero, leaving a finite value for the source term
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of the scalar field. In fact a new coupling constant might be considered, α′ = α/N such that α′ is finite
and might be varied. Thus a peculiar set of limiting solutions arises, that starts from the Schwarzschild
black hole with R/M = 2 at D/M = 0 and forms the black hole boundary.

Considering the full domain of existence, in the GB case in the limit n = N/M → 0 the known
finite domain of scalarized wormhole solutions is approached [59]. In the CS case the limit n =

N/M → 0 leads to a finite domain of solutions as well, albeit solutions resulting from a peculiar
cancellation. Nevertheless, the change of the domain of existence of the circumferential radius Rth/M
is completely smooth in the limit n = N/M → 0, as calculations for several small values of n = N/M
have shown. The limiting domain is seen in Figure 3b. In this figure it does not make a difference
whether the solutions are on the first (large n = N/M) or second (small n = N/M) branch.

Inspection of the metric function e f0 , shown versus the scaled scalar charge D/M in Figure 3 for
the GB invariant (c) and the CS invariant (d), yields full agreement with the above discussion. In the
black hole limit the metric function vanishes as it must, while the boundary of degenerate scalarized
wormholes approaches also the black hole limit in the limit of vanishing scalar charge, D/M → 0. On
the other hand, the boundary of singular wormholes connects to the scalarized nutty black holes and
contains the maximal value of this metric function for a given value of the NUT charge n = N/M.
This maximum remains finite for n = N/M → 0.

The scalar field at the throat φth is exhibited versus the scaled scalar charge D/M in Figure 3 for
the GB invariant (e) and the CS invariant (f). As argued above, for D/M → 0 the scalar field vanishes,
and thus also φth → 0. Analogous to the metric function e f0 , for a given NUT charge n = N/M a
maximum of φth is reached on the singular boundary, and for n = N/M → 0 the maximum remains
finite.

3.5. Junction Conditions and Critical Polar Angle

As discussed above we need to satisfy junction conditions in order to obtain symmetric wormholes
without singularities (except for the Misner string). We have therefore introduced an action at the
center and allowed for a thin shell of matter in the form of a perfect fluid with energy density εc. Since
we here focus only on wormholes with a single throat, we denote this energy density by εth. We exhibit
in Figure 4 εth for a pressureless fluid for several sets of wormhole solutions with fixed values of the
scaled scalar charge D/M and NUT charge n = N/M = 1 versus the scaled coupling constant α/M2

for the GB invariant (a) and the CS invariant (b).
The boundaries of these sets of solutions are given by the dashed green curves, representing the

degenerate wormhole limit, and the dotted blue curves, representing the singular limit. We note, that
the energy density εth is positive in all cases shown. Thus these wormholes need only ordinary matter
at the throat to remain open.

Last we address the critical polar angle at the center θc, Equation (16). Denoting the critical polar
angle at the throat by θth, we exhibit θth also in Figure 4 versus the scaled coupling constant α/M2 for
the same sets of solutions for the GB invariant (c) and the CS invariant (d). The critical angle reaches
its maximal value of about θth,max ≈ 0.19 (c) and ≈ 0.18 (d) on the boundary of singular wormhole
solutions. Along the boundary of degenerate wormholes the critical angle decreases monotonically,
until it vanishes, precisely when the Schwarzschild-NUT solution is reached.
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Figure 4. Properties at the throat (left plots: Gauss–Bonnet, right plots: Chern–Simons) for scaled NUT
charge n = N/M = 1 and several values of the scaled scalar charge D/M: (a,b) energy density εth,
(c,d) critical polar angle θth vs scaled coupling constant α/M2. The dashed green curves represent the
degenerate wormhole limit, and the dotted blue curves the singular limit.

The horizon metric does not feature a finite critical polar angle for the Schwarzschild-NUT and the
scalarized nutty black holes. For these black holes θth = 0 only on the polar axis, θ = 0 and θ = π/2.
Consequently, θth = 0 along the black hole boundary. Along the degenerate wormhole boundary θth
then increases again. Thus all scalarized nutty wormholes do possess a finite critical polar angle. The
region of closed timelike curves therefore extends to the throat of these nutty wormholes.

4. Conclusions

Following the reasoning of Brihaye et al. [46], who have studied spontaneously scalarized
Schwarzschild-NUT solutions, whose scalarization is caused by the presence of either a GB term
or a CS term in the scalar field equation, we have investigated scalarized nutty wormhole solutions in
these higher curvature theories. The presence of a NUT charge leads to solutions with a Misner string
on the polar axis. However, the dependence of the polar angle factorizes and thus only a set of coupled
ODEs for the metric functions and the scalar field arises. Moreover the usual boundary conditions at
spatial infinity are retained.

Solving numerically the ODEs we have obtained scalarized nutty wormhole solutions for both
higher curvature invariants. These wormhole solutions possess a minimum of the circumferential
radius, that arises naturally in these solutions, and that is identified with the wormhole throat. When
integrating the ODEs beyond the throat, a maximum may be encountered, that would correspond to
an equator. In any case, when integrating further into the second part of the manifold a singularity
would be encountered at some value of the radial coordinate. To avoid such a singularity, we have
imposed reflection symmetry on the wormhole solutions at the throat, and satisfied the resulting
junction conditions in terms of an action with a thin shell of ordinary matter at the throat.
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The novel scalarized GB wormholes represent a NUT generalization of the previously obtained
scalarized wormholes [59–61,65]. In contrast, scalarized CS wormholes were not studied before, since a
finite CS term is necessary for their existence, while a spherically symmetric metric leads to a vanishing
CS invariant. Nevertheless the scalarized nutty wormholes with both invariants show many features
already known from the ordinary scalarized GB wormholes. In particular, their domains of existence
contain the same type of boundaries. These boundaries consist of the respective black hole boundary,
of a boundary, where singular solutions are reached, and of a degenerate boundary, where two extrema,
the equator and the throat, merge. However, the NUT charge gives rise to regions of the spacetime,
where closed timelike curves exist, that extend to the throat.

Considering the limit of vanishing coupling constant, the Schwarzschild-NUT solutions are
obtained for both invariants. Then wormhole solutions do not exist any longer, since they need the
higher order curvature terms in the (generalized) Einstein equations to obtain an effective stress energy
tensor that violates the NEC conditions. Considering on the other hand the limit of vanishing NUT
charge, for both invariants a finite domain of existence of scalarized solutions results. For the GB term
this is no surprise, since their existence was shown before [59–61,65]. For the CS, however, this limit is
special. Scalarization needs higher and higher values of the coupling constant, as the NUT charge is
lowered towards zero. In the limit, the coupling constant diverges as the NUT charge goes to zero. In
that case, the CS term approaches a finite limiting value, which gives rise to a finite limiting domain of
existence. Note that the spacetime of these wormhole and black hole solutions do not possess a Misner
string anymore and consequently no closed timelike curves exist.

The presence of a NUT charge can be viewed as toy model for learning about scalarized
rotating wormhole solutions. Their construction still represents a challenging task, not only because
complicated sets of coupled partial differential equations need to be solved, but also because the proper
conditions for the throat need to be formulated together with the proper set of junction conditions.
However, further directions of research look promising like, in particular, the inclusion of further
fields (see e.g., [70,71]), or the investigation of EGB theories viable in cosmological settings also for
non-vanishing scalar field (see e.g., [72,73].)
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Appendix A

With Rc = re f1/2, the definition of the throat dRc/dr(r0) = 0, d2Rc/dr2(r0) < 0, where r0 denotes
the location of the throat, yields

1
2

e f1/2 ( f ′1 + 2
)

= 0 ,

1
2r0

e f1/2 ( f ′′1 − 2
)

> 0 ,
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where all quantities are evaluated at r = r0 and the prime denotes the derivative with respect to the
dimensionless variable x = r/r0. f ′′1 can be expressed in terms of lower order derivatives of the metric
functions and the scalar field. This yields for the coupling to the Gauss–Bonnet term

R′′
C = 128α2e3 f1/2φ2r0

[
−6N4e2 f0

(
3( f ′0)2 − 2(φ′

0)
2
)
− N2e f0 e f1 r2

0

(
6( f ′0)2 − 7(φ′

0)
2
)
+ e2 f1 (φ′

0)
2r4

0

]
+16αe5 f1/2φ′

0r5
0

[
3e f0 f ′0φN2 − 6e f0 φ′

0N2 + e f1 f ′0φr2
0 − 2e f1 φ′

0r2
0

]
+e9 f1/2r7

0

[
12e f0 N2 − e f1 (φ′

0)
2r2

0 + 4e f1 r2
0

]
×
{

2048α3 f ′0φ3φ′
0

[
9e2 f0 N4 + 6e f0 e f1 r2

0 N2 + e2 f1 r4
0

]
−512α2e f1 φ2r2

0

[
21e2 f0 N4 + 10e f0 e f1 r2

0 N2 + e2 f1 r4
0

]
+ 8e5 f1 r10

0

}−1

> 0 , (A1)

where f ′0 and φ′ are related by the constraint

0 = 16α f ′0φφ′
0

[
3e f0 N2 + e f1 r2

0

]
+ e f1 r2

0 −
[
4e f0 N2 + e f1(φ′

0)
2r2

0 + 4e f1 r2
0

]
. (A2)

Similarly, for the coupling to the Chern–Simons term we find

R′′
C =

(
1024α3e3 f0/2( f ′0)4φ3φ′N3

−α2e f0 e3 f1/2N2
[
1280e f0 e− f1 ( f ′0)2φ2r0N2 + 192( f ′0)2φ2(φ′)2r3

0 − 256( f ′0)2φ2r3
0

]
+αe f0/2e3 f1 N

[
16( f ′0)2φφ′r6

0 − 32 f ′0(φ′)2r6
0 − 352e f0 e− f1 φφ′r4

0 N2 + 8φ(φ′)3r6
0 − 160φφ′r6

0

]
−12e f0 e7 f1/2r7

0 N2 + e9 f1/2(φ′)2r9
0 − 4e9 f1/2r9

0

)
×
{

8
[
192α2e f0 ( f ′0)2φ2N2 − 24αe f0/2e3 f1/2φ(φ′)r3

0 N − e3 f1 r6
0

]
e f1 r4

0

}−1

> 0 , (A3)

and the constraint

0 = αe f0/2( f ′0)2φφ′N + 4e f0 e f1/2r0N2 + e3 f1/2(φ′)2r3
0 + 4e3 f1/2r3

0 . (A4)

We note from Figure 3f that φ ≥ 0 at the throat. As a consequence of the constraint we find φ′ ≤ 0
at the throat.
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Abstract: The relativistic (Poincaré and conformal) symmetries of classical elementary systems are
briefly discussed and reviewed. The main framework is provided by the Hamiltonian formalism for
dynamical systems exhibiting symmetry described by a given Lie group. The construction of phase
space and canonical variables is given using the tools from the coadjoint orbits method. It is indicated
how the “exotic” Lorentz transformation properties for particle coordinates can be derived; they are
shown to be the natural consequence of the formalism.

Keywords: coadjoint orbits; conformal group; Poincaré group

1. Introduction

We present here a brief review of some results obtained by our colleagues in collaboration with
Yves Brihaye and us. They concern the old topic of the basic role of space-time symmetries in physics.
It appears that some of the main results, which were for the first time obtained and developed in
quantum theory, can be described quite precisely on the classical level in the framework of Hamiltonian
formalism. Then, their quantum counterparts are recovered by applying a straightforward canonical
quantization procedure. The problem is not only academic. For example, in recent years, much effort
has been devoted to exploring the anomaly-related phenomena in kinetic theory [1,2]. This work is
to a great extent based on semiclassical approximation and the description of various symmetries
within this approximation. The sound knowledge concerning the (semi)classical aspects of relativistic
symmetries contributes to a deeper understanding of such phenomena.

Part of the results reported here has been obtained in collaboration with our longtime friend Yves
Brihaye. It was always a great pleasure to work with him.

2. Orbit Method

In physics, beauty is often identified with symmetry. Having at our disposal two theories
explaining the same set of experimental data, we are inclined to choose the one exhibiting more
symmetry. This strategy is somehow supported by our experience. A dazzling example is the success
of general relativity, which is confirmed over and over again by experiments, observations and
even everyday life. Although some physicists warn that beauty can lead one astray [3], we are,
generally speaking, attached to the idea that adopting symmetry as a guiding principle often leads to
the theories with considerable predictive power.

The symmetry of the physical system is described, at the formal level, by the choice of symmetry
group G. In quantum theory, the states of the physical system are classified according to the unitary
representations of G. However, even if the group G represents the maximal symmetry of some
system, there is still much freedom in the choice of the total space of states and relevant observables.
The exception is provided by the so-called elementary systems, which are, by definition, described by
irreducible representations of the symmetry group. For the elementary system, given the symmetry
group G, one can classify all admissible spaces of states and construct all relevant observables in purely
group-theoretical terms. For example, an elementary relativistic particle is described by an unitary
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irreducible representation of the Poincaré group [4,5]. All its states are explicitly known and may be
obtained by acting with group elements on some fixed state; all observables, like energy, momentum
and angular momentum (and coordinate), are constructed out of group generators. The same concerns
nonrelativistic particle; the relevant group here is the (quantum mechanical) Galilei group [6].

Let us note that, in order to construct the quantum description of elementary particles, we do not
have to refer to classical theory, canonical quantization, etc. However, it would be nice to find if the
notion of elementary system, formulated in group-theoretical language, can be extended to classical
physics in such a way that the canonical quantization of the latter yields the corresponding quantum
elementary system. This question has been considered by a number of authors. The mathematical basis
has been laid out by Kirillov [7,8], who developed the so-called orbit method. Souriau [9] elaborated
symplectic aspects of classical and quantum physics.

Let us sketch the main points of the description of the classical system exhibiting symmetry [10,11].
The general framework for classical dynamics is provided by the Hamiltonian formalism. The space
of states is a symplectic manifold—a phase space. The symplectic structure allows one to define the
Poisson bracket. Once a Hamiltonian—some function on the phase space—is selected, one can write the
canonical equations of motion, which determine the actual dynamics. The transformations preserving
symplectic structures are called the canonical transformations. The symmetry transformations are the
canonical transformations which preserve the functional form of the Hamiltonian. The set of symmetry
transformations form a group, which is the symmetry group of a given dynamical system. The classical
system is called elementary if the symmetry group acts transitively on phase space. It appears that in
this case, the Hamiltonian formalism can be described in group-theoretical terms. To this end, let G be
a Lie group with Lie algebra

[Xα, Xβ] = ic γ
αβ Xγ . (1)

In the Lie algebra, G acts through adjoint representation

Adg(Xα) = gXαg−1 = Dβ
α(g)Xβ . (2)

In the dual space to the Lie algebra, there acts the contragradient representation called the
coadjoint one. Let ζα be the coordinates in the dual space; then

Ad∗g(ζα) = Dβ
α(g−1)ζβ . (3)

The orbit of coadjoint action (3) is called the coadjoint orbit.
In the dual space, one can define a natural Poisson structure

{ζα, ζβ} = c γ
αβζγ . (4)

This Poisson structure is, in general, degenerate, i.e., there exist nonconstant functions having
vanishing Poisson brackets with all ζα. However, the important point is that the Poisson brackets (4) can
be consistently restricted to the orbits, and then they become nondegenerate; the orbits are symplectic
manifolds. Moreover, if G acts transitively on phase space, then, modulo some mild (i.e., fulfilled
in most physical contexts) assumptions, the phase space can be identified with some coadjoint orbit
of G. Therefore, for the elementary systems, the phase space together with its symplectic structure
are described in purely group-theoretical terms. All observables, being the functions over the phase
space, are expressible in terms of the coordinates ζα. One can view them as classical counterparts of
the elements of enveloping algebra of the Lie algebra under consideration. What remains is the choice
of the Hamiltonian, which defines the actual physical system. If G describes the space-time symmetry,
one of its generators is a natural candidate for the Hamiltonian. Then, the group-theoretical description
is complete: all elements of Hamiltonian formalism are expressed in terms of group notions.
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The first step to classify the elementary systems with a given symmetry group is to characterize
the set of coadjoint orbits. The generic orbits are the submanifolds of the dual space to Lie algebra
obtained by fixing the values of all functionally independent Casimir functions (which are classical
counterparts of the Casimir operators). However, there exist also nongeneric orbits of lower dimension
(the extreme case being the trivial orbit). They are characterized by an additional relation, which can
be found as follows. The infinitesimal action of the symmetry group on coadjoint orbit/phase space
is given by the Poisson bracket with a relevant generator. Therefore, if we nullify some ideal in the
Poisson algebra of functions over phase space, the resulting relations will be invariant under the
coadjoint action of G. This is quite a convenient way of characterizing nongeneric orbits. Once the orbit
is explicitly characterized, the next step is to find convenient coordinates (Darboux variables). Finally,
we have to write out the Hamiltonian in terms of independent canonical variables, which completes
the description.

3. Poincaré Symmetry

In an attempt to understand the origin of quantum mechanics of spinning particle (in particular,
spin), various classical models have been proposed [12–37]. Let us sketch the description based on the
ideas presented in the previous section [38].

The relativistic symmetry is described by the Poincaré group. It consists of Lorentz
transformations Λ(ΛTηΛ = η, η = diag(+−−−)) and translations a. The composition law reads

(Λ, a) · (Λ′, a′) = (ΛΛ′, Λa′ + a) . (5)

The relevant Lie algebra consists of Lorentz (Mμν) and translation (Pμ) generators obeying

[Mμν, Pα] = i(ηναPμ − ημαPν) , (6)

[Mμν, Mαβ] = i(ημβ Mνα + ηνα Mμβ − ημα Mνβ − ηνβ Mμα) , (7)

[Pμ, Pν] = 0 . (8)

There are two Casimir operators, mass and spin,

M2 ≡ PμPμ , (9)

W2 ≡ WμWμ , Wμ =
1
2

εμναβPν Mαβ . (10)

The relevant coordinates in the dual space to Lie algebra are ζμ and ζμν = −ζνμ. For physical
reasons, we are interested in the case M2 � 0; then, the coadjoint orbits consist of two disjoint
pieces corresponding to ζ0 ≷ 0; since ζ0, being the counterpart of time translation generator P0,
represents energy, we restrict ourselves to ζ0 > 0 case.

Now, the generic orbits are obtained by fixing M2 and W2. Therefore, they are eight-dimensional.
This is exactly what we expect: there are three components of position and momentum together with
two variables describing the spin of fixed length (due to fixing W2). Explicitly,

m2 = ζμζμ , (11)

−m2s2 = wμwμ , wμ =
1
2

εμναβζνζαβ . (12)
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Note that for m2 = 0, the invariants are no longer independent. Therefore, we start with m2 > 0.
It can be shown that the canonical point on coadjoint orbit can be chosen as [38]:

ζ
μ
= (m,�0) , (13)

ζ0i = −ζ i0 = 0 , (14)

ζ ij = sε3ij . (15)

Any other point of the orbit is obtained from the canonical one by a coadjoint action of the
Poincaré group. By an appropriate choice of parametrization, we find that the general point of the
orbit can be written as [37,38]

ζμ = pμ , (16)

ζ0i = −p0xi +
εilksl pk
m + p0

, (17)

ζij = xi pj − xj pi + skεkij , (18)

while the Kirillov symplectic structure yields

{xi, pj} = δij , (19)

{si, sj} = εijksk , (20)

the remaining Poisson bracket being vanishing. It is quite straightforward to quantize the resulting
symplectic structure. As a result, one obtains the well-known form of generators of unitary irreducible
representations of the Poincaré group describing massive particles [39].

Assume now that m2 = 0. Then, both invariants vanish independently of the value s.
Moreover, in quantum theory of massless particles, spin is no longer a dynamical variable. In fact,
quantum particles are uniquely characterized by chirality, which can be viewed as the projection of
spin on momentum. However, it is a fixed number, not a dynamical variable. Therefore, we expect the
phase space to be six-dimensional. The corresponding orbits must be nongeneric. There is only one
independent Casimir function, so, according to the prescription given above, we have to construct the
relevant ideal in the Poisson algebra. Consider the following functions on phase space.

Iμ(ζ) ≡ wμ − sζμ . (21)

Then

{Iμ, ζν} = 0 , (22)

{Iμ, ζαβ} = gμα Iβ − gμβ Iα , (23)
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so, one can put consistently Iμ = 0. Iμ are the generators of invariant ideal. The relevant coadjoint
orbit is defined by the equations .

ζμζμ = 0 , (24)

Iν = 0 . (25)

Equation (25) is called “enslaving” condition [40,41] (cf. also [9]). Due to ζν Iν = −sζνζν = 0,
only three Equations (25) are independent. Therefore, we obtain six-dimensional orbit. Again, it is not
difficult to identify some canonical point on the orbit.

ζ
μ
= (k, 0, 0, k) ≡ kμ , (26)

ζ
μν

=

⎧⎪⎪⎨
⎪⎪⎩
−s , (μν) = (12)

s , (μν) = (21)

0 , (μν) �= (12), (21) .

(27)

By applying the coadjoint action of the Poincaré group and choosing suitable parametrization,
we find [42]

ζμ = pμ , (28)

ζ0i = −p0xi , (29)

ζij = xi pj − xj pi + s
εijk pk

p0
. (30)

From Equation (30), we conclude that s is the projection of total angular momentum on the
momentum direction.

Equations (28)–(30), when compared with the general form of Poisson brackets (4) and
Equations (6)–(8), yield [42]

{xi, xj} = s
εijk pk

p3
0

, (31)

{xi, pj} = δij . (32)

with the remaining brackets vanishing. Note that the coordinates do not commute any longer (cf. (31)).
This is because we are considering the nongeneric orbit defined by the additional (“enslaving”)
condition. This situation persists on the quantum level. A nice argument can be given [43,44] that it is
not possible to define standard, i.e., commuting, coordinates for massless irreducible representation;
only for reducible representation describing the helicities S = ± 1

2 such a coordinate operator exists [44].
Due to the more complicated form of Poisson brackets, the canonical quantization procedure is

nontrivial. The coordinates cannot be represented by derivatives with respect to momentum; instead,
a covariant derivative in the field of monopole must be used.

The approach described above provides a systematic way of studying symmetries on the level of
classical Hamiltonian formalism. Phase space and dynamical observables are constructed in terms
of group-theoretical notions and put on firm ground. In particular, one can study the transformation
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properties of various observables under the action of the symmetry group. This concerns, for example,
the coordinate variable. It appears that it has “exotic” transformation properties. Consider, as an
example, a massless particle with helicity s. The conserved generator of boosts reads (cf. Equation (29))

ζ0i(t) = p0xi − pit . (33)

By virtue of Equation (31), one finds [40–42,45,46]

δ�x = {�x, δviζ0i(t)} = −δ�vt + �̇x(δ�v ·�x) + s
δ�v × �p

p2
0

. (34)

The first term on the right-hand side corresponds to the standard Lorentz transformation, while
the second appears due to the fact that in the Hamiltonian formalism, time is kept fixed, so one has to
recompute everything back to the initial time. The last term, which is helicity dependent, represents
the so-called “side jump”. The latter leads to the kinematical effect playing a role in impurity scattering
caused by spin-orbit interaction [47] and relativistic Hall effect of light [48–54].

4. The Conformal Group

In four-dimensional space-time, the conformal group provides a fifteen-dimensional extension of
the Poincaré group by scaling and special conformal transformations. It describes the approximate
symmetry at energies large as compared to all dimensionful parameters. It would be interesting to
provide the Hamiltonian description of all elementary conformally invariant dynamical systems.

The dual space to conformal Lie algebra is parametrized by ζμ, ζμν (Poincaré algebra),
η (dilatations) and ημ (special conformal transformations). Apart from the Poisson brackets following
from commutation rules (6)–(8), we have the additional ones

{η, ζμ} = ζμ , (35)

{η, ζμν} = 0 , (36)

{η, ημ} = −ημ , (37)

{ζμν, ηρ} = gνρημ − gμρην , (38)

{ημ, ζν} = 2(ζμν − gμνη) , (39)

{ημ, ην} = 0 . (40)

In order to classify the conformally invariant Hamiltonian system, we have to find all coadjoint
orbits. It is not completely straightforward. The convenient way to do this is to use twistor
formalism [55]. There are coadjoint orbits of dimensions 12 (generic), 10, 8 and 6. The latter case is
particularly interesting: the Poincaré symmetry of quantum massless particles can be extended to the
conformal one [56,57].
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Therefore, we expect that the same holds true classically. In order to characterize six-dimensional
orbits, one has to find nine independent generators of the relevant ideal. We already have four
generators: ζμζμ and Iμ (cf. Equation (21)). The remaining five can be chosen as [58]

J ≡ η +
ζkζ0k

ζ0
, (41)

J0 ≡ η0 +
ζ0kζ0k

ζ0
+

λ2

ζ0
, (42)

Ji ≡ ηi +
ζiζ0kζ0k

ζ2
0

− 2
ζ0iζkζ0k

ζ2
0

− 2sεikl
ζ0kζl

ζ2
0

− s2 ζi

ζ2
0

. (43)

Equations (41)–(43) merely imply that the generators of dilatations and special conformal
transformations are functions on the phase space of Poincaré covariant massless particles

D = +pkxk , (44)

Ki = −pixkxk + 2xixk pk − 2sεikl
xk pl
p0

+
s2 pi

p2
0

. (45)

We conclude that, on the classical Hamiltonian level, the Poincaré symmetry of massless particles of
arbitrary helicity may be extended to the conformal one. One can show [58] that the canonical quantization
of the resulting structure can be performed in a more or less straightforward way, leading to the unitary
irreducible representations of the conformal group belonging to the Mack list [57].

The dynamical systems corresponding to the orbits of higher dimensions will be described
elsewhere [59].

5. Conclusions

Canonical quantization is the textbook method of constructing the quantum dynamics. One starts
with some classical dynamical system defined within the Hamiltonian formalism and applies the
canonical quantization procedure consisting in replacing the Poisson brackets by commutators (divided
by ih̄). With a little bit of luck, a consistent mathematical structure is obtained, which defines the
quantum counterpart of the classical system we have started with.

However, the quantum dynamics should be the primary concept with the classical one emerging
in the appropriate limit. Therefore, the question arises as to how to construct the quantum theory
without referring to classical notions. One (the only?) way to do this is to refer to the symmetry
arguments. According to the basic principles of quantum mechanics, the symmetry transformations
are represented by unitary operators acting in the Hilbert space of states. Given a symmetry group
G, all allowed spaces of states of the physical system can be classified and explicitly described,
provided that the (projective) unitary representations of G are known. Furthermore, by identifying the
elementary systems with irreducible representations one concludes that, in this case, all observables
can be, at least in principle, constructed from the elements of the Lie algebra of G.

When such a construction is performed, one may consider (at least on a formal level) the limit
h̄ → 0, yielding some classical dynamics, and pose the question as to whether the former can be
recovered by applying the canonical quantization to the latter. The answer to this question is affirmative
in the case of relativistic space-time symmetries. We have sketched above the main steps of the relevant
construction. The starting point is the notion of the elementary Hamiltonian system: it is the one
exhibiting the symmetry which acts transitively on the phase space. Then, the candidates for the
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admissible phase spaces are provided by the coadjoint orbits of the symmetry group. It appears that
both generic and nongeneric orbits should be considered; for example, the massless particles are
described by nongeneric orbits of the Poincaré group. Once the orbit is selected, the explicit description
of the resulting classical Hamiltonian system is obtained (one should keep in mind that for space-time
symmetries, the Hamiltonian belongs to the Lie algebra of symmetry group).

Thus far, the above program has been completed for the Poincaré symmetry. The next step is to
extend it to the conformal group. We have already shown [58] that the nongeneric six-dimensional
coadjoint orbits of the conformal group describe massless particles; more precisely, in this case,
the Poincaré symmetry can be extended to the conformal one. Canonical quantization (some care
concerning the ordering problem must be exercised) of the generators of conformal group yields its
unitary representation acting in the space of states of massless particles with fixed helicity; this result
agrees with the one obtained by Mack [57]. It remains to consider the nongeneric orbits which are
eight- and ten-dimensional as well as generic, twelve-dimensional ones. They should provide the
classical counterparts of the remaining representations classified by Mack.
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Abstract: We consider a family of new Higgs–Chern–Simons (HCS) gravity models in 2n + 1
dimensions (n = 1, 2, 3). This provides a generalization of the (usual) gravitational Chern–Simons
(CS) gravities resulting from non-Abelian CS densities in all odd dimensions, which feature
vector and scalar fields, in addition to the metric. The derivation of the new HCS gravitational
(HCSG) actions follows the same method as in the usual-CSG case resulting from the usual CS
densities. The HCSG result from the HCS densities, which result through a one-step descent of
the Higgs–Chern–Pontryagin (HCP), with the latter being descended from Chern-Pontryagin (CP)
densities in some even dimension. A preliminary study of the solutions of these models is considered,
with exact solutions being reported for spacetime dimensions d = 3, 5.

Keywords: gravity models; Chern–Simons gravity; exact solutions

1. Introduction

The study of the Chern–Simons gravities (CSG) derived from non-Abelian Chern–Simons
(CS) densities has started with Witten’s work in Ref. [1], dealing with the 2 + 1 dimensional case.
Subsequently, Witten’s results were extended to all odd dimensions by Chamseddine in Refs. [2,3].
Generic CSG models consist of superpositions of gravitational models of all possible higher order
gravities in the given dimensions (leading to second order equations of motion), each appearing with
a precise real numerical coefficient. These gravitational models are usually referred to as Lovelock
models, which, here, we refer to as p-Einstein gravities. The integer p ≥ 0 is the power of the Riemann
curvature in the Lagrangian; the p = 0 term is the cosmological constant, for p = 1 the Ricci scalar etc.

The recent work [4,5] has proposed a new formulation of the CSG systems, which, different from
the standard case in [1–3], allows for their construction in all, both odd and even dimensions. Following
Ref. [6], let us briefly review this construction. As discussed there, the expression of the new-CS
densities is found following exactly the same method as the usual-CS densities in odd dimensions.
The usual CS density results from the one-step descent of the corresponding Chern–Pontryagin (CP)
density. We recall that the CP density is a total-divergence

ΩCP = ∂iΩi , i = μ, D ; μ = 1, 2, . . . , d ; d = D − 1 ;

then the CS density is defined as the D-th component of Ωi, namely ΩCS
def.
= ΩD.

In the proposal put forward in [4,5], the role of the usual-CP density, which is defined in even
dimensions only, is played by what we refer to as the Higgs–Chern–Pontryagin (HCP) density
(see the Refs. [7,8] and in Appendix A of Ref. [9] for a discussion of HCP models). These are

Symmetry 2020, 12, 2064; doi:10.3390/sym12122064 www.mdpi.com/journal/symmetry111
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dimensional descendents of the nth CP density in N = 2n dimensions, down to residual D dimensions
(D < N = 2n). However, as a new feature, D can be either odd or even. Additionally, the relics of
the gauge connection on the co-dimension(s) are Higgs scalars. The remarkable property of the HCP
density ΩHCP[A, Φ], which is now given in terms of both the residual gauge field A and Higgs scalar
Φ, is that, like the CP density, it is also a total divergence

ΩHCP = ∂iΩi , i = μ, D ; μ = 1, 2, . . . , d ; d = D − 1 .

The corresponding new Chern–Simons density is defined by considering the one-step descent

of the density Ωi, as the D-th component of Ωi, namely ΩHCS
def.
= ΩD. In what follows, the quantity

ΩHCS is referred to as the Higgs–Chern–Simons (HCS) density. As mentioned above, such densities
exist in both odd and even dimensions. Moreover, in any given dimension, there is an infinite family of
HCS densities, following from the descent of a CP density in any dimension N = 2n > D. A detailed
discussion of these aspects is given in Refs. [7–9]. Note that a similar definition for the HCS density
was proposed in Ref. [10], but only in odd dimensions and with the Higgs scalar being a complex
column, not suited to the application here.

With this definition of the HCS densities, the construction of the corresponding gravitational
theories is done in the same spirit as in [1–3]. In any given dimension, there is an infinite family of such
theories, each that result from the infinite family of HCS densities. Working in d = D − 1 dimensions,
the gauge group is chosen to be SO(d), while the Higgs multiplet is chosen to be a D-component
isovector of SO(D) (These choices coincide with the representations that yield monopoles on IRd,
as described in [7]). The central point in the construction of both CS and HCS gravity models is the
identification of the non-Abelian (nA) SO(D) connection in d = D − 1 dimensions (Note that no choice
for the signature of the space is make at this stage), with the spin-connection ωab

μ and the Vielbein ea
μ,

(μ = 1, 2, 3; a=1,2,3). Following the prescription presented in [1–3], we define

Aμ = −1
2

ωab
μ γab + κ ea

μ γaD ⇒ Fμν = −1
2

(
Rab

μν − κ2 ea
[μ eb

ν]

)
γab , (1)

(γab, γaD) being the Dirac gamma matrices that are used in the representation of the algebra of SO(D).
Note that the presence of the constant κ in the above expression (with dimensions L−1), compensating
the difference of the dimensions of the spin-connection and the Dreibein. In (1),

Rab
μν = ∂[μωab

ν] + (ω[μων])
ab

is the Riemann curvature.
In the HCS case, in addition to (1), we supplement (1) with the prescription for the Higgs scalar Φ,

2−1Φ = (φa γa,D+1 + ψ γD,D+1) ⇒ 2−1DμΦ = (Dμφa − κ ea
μ ψ)γa,D+1 + (∂μψ + κ ea

μ φa)γD,D+1 (2)

which clearly displays the iso-D-vector (φa, φD), which is split into the D component frame-vector field
φa and the scalar field ψ ≡ φD. Additionally, we define the covariant derivative DμΦ of the Higgs
scalar

Dμφa = ∂μφa + ωab
μ φb . (3)

Additionally, note that φa is a vector field (with φμ = ea
μφa in a coordinate frame), which, however, has

rather unusual dynamics, as will be seen below. As such, φa is not a gauge (masless or massive) field;
it has rather a geometric content.

In fact, one remarks that the fields (φa, ψ) are not usual matter fields, like gauge fields or Higgs
scalar in the Standard Model of particle physics. In the latter cases, the covariant derivatives are not
defined by the (gravitational) spin-connection, while, here, they are, as seen in (2). Thus, in this sense,
(φa, ψ) are like spinor fields (although their action look different). As such, theories like the one that is
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proposed here can support solutions with torsion, a possibility, which, however, is not explored in this
work. However, the analogy with spinors is incomplete, since the fields (φa, ψ) are rather ’gravitational
coordinates’, as they originate from the Higgs field Φ of the nA gauge theory. Thus, as seen from (2),
(φa, ψ) are on the same footing as the usual ‘gravitational coordinates’ (ωab

μ , ea
μ). In fact, this provides

the main physical motivation for their study, since such models can be seen as extensions of the usual
CSG’s (reducing to them in the limit of vanishing (φa, ψ)). Therefore, it is interesting to see what are
the new features introduced by extending the CSG’s to allow for nonzero (φa, ψ). Moreover, finding
how the BTZ-like CSG’s black hole solutions in Ref. [11–13] are deformed by the (φa, ψ)-fields is an
interesting mathematical problem in itself.

The gravitational models resulting from the Higgs–CS (HCS) densities via (1) and (2) are referred
to as HCS gravities [4] (HCSG). In this report, we restrict our study to the simplest HCSG models in
2n + 1 dimensions, namely to the HCSG models that result from the HCS density descended from the
HCP densities in 6, 8, and 10 dimensions. These models are extensions of the usual Chern–Simons
gravities [1–3], possessing an additional sector in terms of (φa, ψ).

This paper is organized, as follows. In the next Section, we present the explicit form of the
resulting HCSG Langrangians for d = 3, 5, 7, with the connection with the usual CSG also being
reviewed. A preliminary investigation of the simplest solutions in d = 3, 5 dimensions is considered
in Section 3, extending the study (for the n = 1 case) in Ref. [6]. Section 4 presents the concluding
remarks.

2. HCSG Models in 2n + 1 Dimensions, n = 1, 2, 3

2.1. General Expressions

The Higgs–Chern–Simons densities (HCS) considered here are the “simplest” examples in
2 + 1, 4 + 1, 6 + 1 dimensions. Simply, we mean that the Higgs–Chern–Simons (HCS) density
that is employed to construct the HCS gravity (HCSG) is the one resulting from the “simplest”
Higgs–Chern–Pontryagin (HCP) density, which is defined in one dimension higher, namely in f our,
six, and eight dimensions, respectively. Now, in any dimension, HCP densities can be constructed as
dimensional descendants of a CP density in 2n > 4 dimensions; hence, it is reasonable to describe
the “simplest” cases here to be the HCP densities in 4, 6, 8 dimensions, which descend from the CP
densities in 2n = 6, 8, 10 dimensions, respectively, i.e., those descended by the minimal (nontrivial)
number of dimensions, namely by two dimensions.

Because, like the CP density, the HCP density is a total divergence, then the corresponding HCS
density results from the usual one-step descent, which, in the cases at hand, are those from 4, 6, 8 to
3, 5, 7 dimensions, with the corresponding expressions

Ω(3,6)
HCS = η2Ω(3)

CS + εμνλTr γ5DλΦ(ΦFμν + FμνΦ) , (4)

Ω(5,8)
HCS = η2Ω(5)

CS + εμνρσλ Tr γ7DλΦ
(
ΦFμνFρσ + FμνΦFρσ + FμνFρσΦ

)
, (5)

Ω(7,10)
HCS = η2Ω(7)

CS + εμνρστλκ Tr γ9DκΦ(ΦFμνFρσFτλ + FμνΦFρσFτλ

+FμνFρσΦFτλ + FμνFρσFτλΦ) . (6)

Let us remark that the HCS densities (4)–(6) are the “simplest” examples in these dimensions,
which arise from the descents of the Chern–Pontryagin densities in 6, 8, and 10 dimensions, respectively.
It may also be interesting to display HCS densities that arise from CP densities in higher dimensions.
To this end, we consider the HCS density in 3 dimensions that result from the descent from the CP
in 8 dimensions

Ω(3,8)
HCS = 2η4Ω(3)

CS + (2η2 − |φa|2 − φ2) εμνλ Tr γ5 DλΦ(ΦFμν + FμνΦ) (7)
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The leading term Ω(3)
CS in (4) and (7), and the leading terms Ω(5)

CS and Ω(7)
CS in (5) and (6) are the

usual CS densities for the SO(D), D = 4, 6, 8 gauge connection,

Ω(3)
CS = ελμνTr γ5 Aλ

[
Fμν − 2

3
Aμ Aν

]
, (8)

Ω(5)
CS = ελμνρσTr γ7 Aλ

[
FμνFρσ − Fμν Aρ Aσ +

2
5

Aμ Aν Aρ Aσ

]
, (9)

Ω(7)
CS = ελμνρστκTr γ9 Aλ

[
FμνFρσFτκ − 4

5
FμνFρσ Aτ Aκ − 2

5
Fμν Aρ AσFτκ

+
4
5

Fμν Aρ Aσ Aτ Aκ − 8
35

Aμ Aν Aρ Aσ Aτ Aκ

]
. (10)

In (4)–(6), the Higgs scalar Φ, the gauge connection, and the constant η have the dimensions of L−1.
Applying the prescriptions (1) and (2) to (4)–(7) yields the required HCS gravitational (HCSG)

models. In order to express these compactly, we adopt the abbreviated notation

R̄ab
μν = Rab

μν − κ2 ea
[μeb

ν], (11)

together with

φa
μ = Dμφa − κ ea

μψ, (12)

ψμ = ∂μψ + κ ea
μφa , (13)

where Rab
μν is the Riemann curvature and Dμφa is the covariant derivative (3), of the frame-vector

field φa.
In terms of which the HCSG Lagrangians in d = 3, 5, and 7 dimensions, which result from the

HCS densities (4)–(6), are

L(3)
HCSG = η2κ L(3)

CSG + εμνλεabcR̄ab
μν(ψ φc

λ − φcψλ), (14)

L(5)
HCSG = η2κ L(5)

CSG − 3
4

εμνρσλεabcdeR̄ab
μνR̄cd

ρσ(ψ φc
λ − φcψλ), (15)

L(7)
HCSG = η2κ L(7)

CSG + 2εμνρστλκεabcde f gR̄ab
μνR̄cd

ρσR̄e f
τλ(ψ φc

λ − φcψλ), (16)

while, the gravitational model that arises from (7) is

L(3,8)
HCSG = 2η4κ L(3)

CSG + εμνλεabc(2η2 − |φd|2 − ψ2) R̄ab
μν(ψ φc

λ − φcψλ) . (17)

In (14)–(16), L(3)
CSG, L(5)

CSG and L(7)
CSG are the usual Chern–Simons gravities (CSG)

L(3)
CSG = −εμνλεabc

(
Rab

μν −
2
3

κ2ea
μeb

ν

)
ec

λ, (18)

L(5)
CSG = εμνρσλεabcde

(
3
4

Rab
μν Rcd

ρσ − κ2 Rab
μν ec

ρed
σ +

3
5

κ4ea
μeb

νec
ρed

σ

)
ee

λ, (19)

L(7)
CSG = −εμνρστκλεabcde f g

(
1
8

Rab
μν Rcd

ρσ Re f
τκ − 1

4
κ2 Rab

μν Rcd
ρσ ee

τe f
κ (20)

+
3
10

κ4 Rab
μν ec

ρed
σee

τe f
κ − 1

7
κ6ea

μeb
νec

ρed
σee

τe f
κ

)
eg

λ .

It is easy to express the HCSG Lagranian for all n by the extrapolation of (14)–(16).
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Given the models (14)–(16) , the corresponding equations of motion are found by taking the
variation of the action w.r.t., the vielbein ea

λ, together with (φa, ψ). However, these equations have a
simple enough expression for d = 3 only, see Ref. [6].

2.2. The General CSG Lagrangians and the Connection with the Einstein–Lovelock Hierarchy

Following the previous study [6], we consider a spacetime with Minkowskian signature,
and replace

κ → iκ , h → −ih . (21)

in the Lagrangians (14)–(16). With this choice, setting φ = φa = 0 results in (pure gravity) CS
Lagrangian in d = 2n + 1 dimensions, with a negative cosmological constant Λ. Additionally, note
that one can η = 1 without any loss of generality, a choice that we employ for the rest of this work.

The CS Lagrangian in d = 2n + 1 dimensions can be viewed as a particular case of a generic
model that consists in a superposition of all allowed Einstein–Lovelock terms in that dimension, with

L(2n+1)
CSG =

n

∑
p=0

α(p)L(p), (22)

with the following definition for the p−th term in the Lovelock hierarchy.

L(p) =
p!
2p δ

μ1
[ρ1

· · · δ
μp
ρp ]

R ρ1σ1
μ1ν1 · · · R

ρpσp
μpνp . (23)

The normalization of each term in (23) has been chosen in order to make contact with the usual
conventions in the literature on Lovelock gravities solutions. As such, L(p) = Rp + . . . , the first terms
(up to d = 7) being

L(0) = 1, L(1) = R, L(2) = R2 − 4RμνRμν + RμνρσRμνρσ, (24)

L(3) = R3 − 12RRμνRμν + 16RμνRμ
ρRνρ + 24RμνRρσRμρνσ + 3RRμνρσRμνρσ

− 24RμνRμ
ρσκ Rνρσκ + 4RμνρσRμνηζ Rρσ

ηζ − 8RμρνσRμ ν
η ζ Rρησζ . (25)

Additionally, to make contact with the usual GR conventions, we take

α(0) = −2Λ, α(1) = 1. (26)

In general, the coefficients α(p) are arbitrary. However, they are fixed in a CGS model, with the
general expression

α(p) = (−1)p+1 1
Λp−1

(d − 2)p

2p−1 p!(d − 2p)
(d − 2p)!!
(d − 2)!!

, (27)

where Λ = −2(d − 2)κ2.

3. The Solutions

Given the above models (14)–(16), it is interesting to inquire which are the simplest solutions
with nonvanishing fields (φa, ψ). In what follows, we study this question for the first two dimensions
d = 3, 5, and then contrast the results.

3.1. The d = 3 Case

We consider a static line element with

ds2 =
dr2

N(r)
+ r2dϕ2 − N(r)e−2δ(r)dt2 (28)
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where r, t are the radial and time coordinates, respectively, while ϕ is the azimuthal coordinate.
Working in a coordinate basis, a consistent Ansaz for the fields (φa, ψ) reads

φ = f (r)dr + g(r)dt, ψ ≡ h(r). (29)

Subsequently, a straightforward computation leads to the following exact solution of the full set
of equations of motion:

N(r) = κ2r2 − n0, δ(r) = 0, (30)

f (r) =
c0

κ
+

c1

N
, g(r) =

√
c2

1 + c2N(r), ψ ≡ h(r) = c0r, (31)

with n0, c0, c1, c2 arbitrary constants. This provides a generalization of the solution that was reported
in [6], which is recovered (note that the solution presented in [6] is expressed in a dreibein basis with
er = 1/

√
N, eϕ = rdϕ, et =

√
Ndt), for c1 = c2 = 0.

One can see that the choice n0 = −1 corresponds to a globally AdS3 geometry, while, for n0 > 0,
the BTZ black hole (BH) geometry [14] is recovered. In both cases, the fields (φa, ψ) do not backreact on
the spacetime (thus, their contribution to the r.h.s. of the Einstein equations with negative cosmological
constant vanishes (the analogy of these solutions with self-dual Yang–Mills instantons in a curved space
geometry [15–17], was noticed in Ref. [6]. There, we dubbed these closed form solutions as effectively
vacuum confiurations. Another interesting analogy is provided by the ’stealth’ BH solutions in various
alternative models of gravity (see e.g., [18,19] and references therein). Such configurations feature a
nontrivial scalar field, while the geometry is still that of the (vacuum) general relativity solutions)).
However, (φa, ψ) possess a nonstandard behaviour (e.g., both ψ and |�φ|2 diverge as r → ∞). Moreover,
Ref. [6] has given arguments that (at least in the c1 = c2 limit), solutions (30) and (31) appear to be
unique. Because the discussion here in d = 3 is similar to that in the d = 5 case, we restrict to the
discussion of the latter, as below.

Finally, we mention the existence of a generalization of the solution in Ref. [6] for a spinning BTZ
background. The line element in this case reads

ds2 =
dr2

N(r)
+ r2(dϕ − W(r)dt)2 − N(r)dt2, where N(r) = κ2r2 − n0 +

J2

r2 , W(r) =
J

r2 , (32)

with J representing the angular momentum. While the expression of the scalar field remains the same,
the function is more complicated,

h(r) = c0r, f (r) =
c0

κ

(
1 +

J
r
√

N

)
. (33)

One can easily see that all of the unusual features noticed in the static case for functions f h are present
also in this case.

3.2. The d = 5 Case

3.2.1. An Exact Solution

The metric Ansatz here is more complicated, with the S1 direction in the d = 3 line-element (28)
being replaced with a surface of constant curvature. As such, we consider a general line-element

ds2 =
dr2

N(r)
+ r2dΣ2

k,3 − N(r)e−2δ(r)N(r)dt2 (34)
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with k = 0,±1, while the three-dimensional metric dΣ2
k,3 is

dΣ2
k,3 =

⎧⎪⎨
⎪⎩

dΩ2
3 for k = +1

∑3
i=1 dx2

i for k = 0
dΞ2

3 for k = −1 .
(35)

In the above relation, dΩ2
3 is the unit metric on S3 (k = 1); for k = 0, we have a flat three-surface;

while, for k = −1, one considers a three-dimensional hyperbolic space, whose unit metric dΞ2
3 can be

obtained by analytic continuation of that on S3.
The ansatz for the fields (φa, ψ) is still given by (29). Within this framework, the following

closed-form solution of the field equations has been found

N(r) = κ2r2 + k, δ(r) = 0, (36)

together with

h(r) =
c0

r
, f (r) =

c0

κr2

(
−1 + (k2 + k − 1)

√
1 +

3κ2r2

N(r)

)
, g(r) = 0 , (37)

with c0 being an arbitrary constant. The corresponding line elements, as implied by (36), are well
known, which correspond to three different parametrization of AdS5 spacetime. Although they possess
the same (maximal) number of Killing symmetries, they present different global properties, the case
k = 0 corresponding to a Poincaré patch and the globally AdS5 spacetime being found for k = 1 (see
e.g., the discussion in Ref. [20]).

As with the d = 3 case presented above, the fields (φa, ψ) do not backreact on the spacetime
geometry, i.e., their effective energy-momentum tensor vanishes again. However, while, this time,
both ψ and |�φ|2 are finite as r → ∞, they diverge at the minimal value of r (which is r = 0 for k = 0, 1
and r = 1/κ for k = −1).

Finally, let us remark that the expressions (37) for (φa, ψ) are also compatible with a different
background, as described by the line-element (where k = 0,±1)

ds2 =
dr2

N(r)
+ r2dΣ2

k,2 + r2dz2 − N(r)dt2, with N(r) = κ2r2 +
k
3

. (38)

where −∞ < z < ∞, while dΣ2
k,2 the metric on a two-dimensional surface of constant 2k-curvature.

For k = 0 the Poincaré patch of AdS5 spacetime is recovered; the case k = 1 corresponds to a
vortex-type geometry, while a black string is recovered for k = −1. As with the line-element (34), this is
also a solution of the equations of motion for f = g = h = 0, whose existence is noted in Ref. [21].

3.2.2. No Backreacting Solutions on a Fixed Black Hole Background

For φa = ψ = 0, the CSG equations of motion (with the line-element (34)) possess the
exact solution

N(r) = κ2r2 − n0, δ(r) = 0, (39)

with n0 being an arbitrary constant. The AdS5 line-element that is discussed above is a particular case
here, corresponding to the choice n0 = −k. However, n0 > 0 leads to a BTZ-like BH geometry [11–13],
with an horizon being located at

√
n0/κ. Moreover, one can show that the same expression of the

metric functions N(r), δ(r) solves the CS gravity equation in all d = 2n + 1 dimensions (for a choice of
the line element that is similar to (34), dΣ2

k,3 being replaced with its higher dimensional generalization);
see the discussion in the recent work [22] and the references there.
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A major difference between the d = 3 and d = 5 cases appear to be that, for d = 5, we could not
extend (36) to include the case of a BH solution, n0 �= k. However, this result follows directly from the
structure of the field equations, which is different for d = 3 and d = 5. Let us assume that the geometry
(34) with (N, δ), as given by (39)), is a solution of the d = 5 model. Subsequently, the equations for
the functions f , g, h take the simple form (note that the relations below are for k = 1, only; however,
a similar result is also found for k = 0,−1):

h′ − κ f − κ

2
(1 − 1

N2 )g = 0,

h′ − 1
2

κ(1 − N2) f − n0 + κ2r2N2

2rN
h − κg = 0, (40)

g′ − N2 f ′ + κ2r2N2 − 2N − 3n0

2rN
g − 2n0 + 3N

r
f + 3κNh = 0.

It directly follows that both f and g can be expressed in terms of h, with

f =
1
2
(−1 +

1
N2 )g +

h′

κ
, (41)

and

g =
2N2

κ(1 + N2)
h′ − 2N(n0 + κ2r2N2)

κr(1 + N2)2 h = 0 . (42)

The scalar h is a solution of an equation of the form

(1 + n0)hU(r) = 0, with U(r) =
5

∑
k=0

ck(κ, n0)r2k, (43)

with the explicit form of ck being irrelevant. As such, for h �= 0, the only choice is n0 = −1, i.e., a
globally AdS5 spacetime. Subsequently, the matter fields equations are satisfied, the functions f and g
being fixed by h. The expression of the scalar h is found by imposing the gravity equations that are to
be satisfied for the above choice of the geometry, which result in the solution (37).

A similar computation for d = 3 leads again to a set of three equations for (φa, ψ), which, again,
reduce to a single equation for h(r). However, this time, this equation is multiplied with a factor
N′ − 2κ2r. Therefore, the choice N = κ2r2 − n0, with n0 arbitrary, is now allowed. The solution (31) is
recovered when imposing the Einstein equation also to be satisfied.

Returning to the d = 5 case, one may ask whether a more general solution exists, with the
functions (φa, ψ) backreacting on the spacetime metric and being finite everywhere. The answer
seems to be negative, although we do not have a definite proof. An indication comes from our
attempt to construct a numerical solution. Here, one starts by noticing that, starting with the general
framework (29) and (34), the function f can be eliminated (as found from the field equations), with

f (r) =
h′(r)

κ
, (44)

where we assume that globally AdS spacetime is not a solution. Additionally, one can prove that g = 0
is a consistent truncation of the model. As such, we are left with three ordinary differential equations
for the functions h, N, and δ. Restricting to the most interesting k = 1 case (i.e., a globally AdS5

background), we have attempted to construct deformations of the line element (36), with a regular
origin and usual AdS5 asymptotics, which would represent particle-like solitonic configurations. In our
approach, we assume that the small-r solution possesses a power series expansion, with

N(r) = ∑
k≥0

n(k)r
k, δ(r) = ∑

k≥0
δ(k)r

k and h(r) = ∑
k≥0

h(k)r
k, (45)
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where n(k), δ(k), and h(k) are real numbers (and n0 = 1) subject to a tower of algebraic conditions,
as implied by the field equations. Starting with the above small-r expansion, we have integrated the
HCS equations of motion, searching for solutions with N(r) → κ2r2 + const., δ → 0 and h(r) → h0

(with h0 a constant), as r → ∞. However, we have failed to find any numerical indication for the
existence of such configurations, the solutions that possess a pathological behavious for any considered
set of initial conditions at r = 0, typically with the occurence of a divergence at some finite r.

A similar result also holds for BH configurations, in which case we assume the existence of an
horizon at some r = rH > 0, with N(rH) = 0, while δ(rH) and h(rH) are nonzero and finite.

Finally, let us remark that, although a definite proof is missing, the above (numerical) results
follow the spirit of the ’no hair’ theorems [23–25], as expressed in the conjecture that there are no BH
solutions with matter fields that do not possess (asymptotically) measured quantities that are subject
to a Gauss Law.

4. Conclusions

Chern–Simons gravity (CSG) models in d = 2n + 1 dimensions were extensively studied in the
literature, starting with Witten’s work for d = 3 [1], where the gravitational model is described by the
Einstein–Hilbert Lagrangian with a cosmological constant. In the d > 3 case, such systems consist
of specific superpositions of gravitational Lagrangians featuring all possible powers of the Riemann
curvature of the given dimension, each appearing with a precise numerical coefficient. The main
purpose of this paper was to propose a generalization of the CSG model, with a Lagrangian, which, in
addition to the (standard) CSG Lagrangian, features new terms that are described by a frame-vector
field φa and a scalar field ψ. Like the CSG, which result from the non-Abelian (nA) Chern–Simons (CS)
densities, these new Lagrangians result from a new class of CS densities, which, in addition to the nA
gauge field, feature an algebra-valued Higgs scalar. Like the usual nA CS densities, which result from
the usual Chern–Pontryagin (CP) densities, these new CS densities are constructed in the same way,
but now from the dimensional descendents of the CP densities that feature the Higgs scalar. The latter
are referred to as Higgs–Chern–Pontryagin (HCS) [7–9] densities, and they are the building blocks for
the generalised CSG’s, namely the HCSG’s [4,5] studied here.

It should be noted at this stage that the construction of HCSG’s is not only confined to odd
dimensions, since the HCS from which they are constructed are defined is both odd and even
dimensions. The main reason that we have restricted our attention to odd dimensions in these
preliminary investigations is that only in odd dimensions there exist CSG’s, which can provide a
background for the new gravitational field configurations. In even dimensional spacetimes, the HCSG
models, as typified by the 3 + 1 dimensional examples in Refs. [4,5], also consist of frame-vector and
scalar fields (φa, ψ) that interact with the gravitational Vielbein ea

μ (or the metric). These Lagrangians
are invariant under gravitational gauge transformations; however, different from the odd dimensional
case in this work, they do not feature (gauge-variant, pure gravity) CSG terms, with their action mixing
the contribution of (φa, ψ), ea

μ fields.
The new fields (φa, ψ) display non-standard dynamics, in that they feature linear ‘velocity

coordinates’, rather than the standard ‘velocity squared’ kinetic terms. It may be relevant to stress that
(φa, ψ) can be seen as ‘gravitational coordinates’, rather than usual matter fields, since, on the level
of the HCS densities from which the HCSG result, the Higgs scalar is on the same footing as the non
Abelian gauge connection.

The present work, which is a continuation of that done in Ref. [6] for the the lowest dimension
d = 3, provides the explicit expression of the HCS Lagrangians up to d = 7, together with an
investigation of the simplest solutions for d = 3, 5. These solutions have the property that they do
not backreact on the spacetime geometry in common, i.e., their effective energy-momentum tensor
vanishes. However, while, for d = 3, this includes the case of BTZ BH, for d = 5 only a maximally
symmetric AdS background is allowed. We attribute this feature to the fact that the BTZ BH possesses
the same amount of symmetries as pure AdS3, being a global identification of it [14,26]. On the other
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hand, the case of d > 3 BHs in CSG are different; although their line-element is still BTZ-like [22], they
are less symmetric than the AdSd background.

Finally, for d = 3, the Ref. [6] has provided (numerical) evidence for the existence of BTZ-like BH
also with standard asymptotics for the fields (φa, ψ), provided that the action is supplemented with
a Maxwell field. We conjecture that a similar property holds in the higher dimensional case. In this
respect, it may be interesting to consider the HCSG systems in the presence of non-Abelian matter
(in d > 3), or Skyrme scalars, in order to search for regular solutions.
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