

Application Of A Method Of 1-D Equivalent Wall To Multidimensional Geometries : Impact On Building Energy Performance

Paper ID : 210182

Julien Quinten; Véronique Feldheim, Thermal Engineering and Combustion, Faculty of Engineering, UMONS, Belgium

Context

A classic simplification in building energy simulation software is to consider the heat flux as being 1-D*. Thermal bridges (2-D or 3-D geometries) are responsible for 4% up to 39% of the heat losses of a building. With this simplification, their real dynamic effects cannot be taken into account. That can lead to inaccurate results and to a wrong sizing of heating and cooling systems,

mainly if the inertia of the thermal bridge is different from that of the clear wall. A new method is needed.

*
$$q_{i,classic}(t) = q_{i,1D}(t) + \Psi \times L \times (T_e(t) - T_i(t))$$

→ Accurate (for evaluation of the heat flux q_i(t) through inside surface of the wall), for any time step and boundary conditions ?
→ Easy to integrate into any existing building energy software ?

→ Requiring low computational resources (avoiding a 2-D/3-D modelling coupled to the building simulation over one year) ?

Determine R_m and C_m (m = 1, 2, 3), fixe e_m and ρ_{m_i} deduce k_m and $c_m \rightarrow$ Energy building software <u>Conditions for the 1-D equivalent wall :</u>

- ✓ Same values of **R** and **C**
- ✓ Same values of structure factors (ϕ_{ii} , ϕ_{ie} , ϕ_{ee})
- ✓ Close response to sinusoidale sollicitations → min. F
 - T_e(t) : sum of representative harmonics
 - T_i(t) : sinus signal (Period = 24h)

Validation of equivalent walls

- T_e, solar heat flux : hourly meteorological data (Brussels)
- T_i : hourly data (variable), error indicators : E_{int} and ε_{moy}

TB	Model	E _{int} (%)	ε _{moy} (W/m)	ε _{moy} . L (W)	Ψ (W/mK)
1	Classic	17	1.5	55	-0.039
	Equiv.	0.01	0.2	5.4	-
C	Classic	5	4.3	160	0.044
2	Equiv.	0.1	0.1	4.7	-
0	Classic	0.47	2.0	73	0.021
3	Equiv.	0.51	0.1	3.7	-
1	Classic	9	0.6	42	0.048
4	Equiv.	0.05	0.4	29	_

- → Impact on building energy performance ?
 - Belgian two-storey detached house : one-zone model
 - Good thermal insulation (U_{wall} < 0.2, U_{window} < 0.6 W/m²K)
 - Good air-tightness (n₅₀ = 0.6 h⁻¹)
 - $V = 558 \text{ m}^3$, $A_{\text{losses}} = 414 \text{ m}^2$, $A_{\text{floor}} = 2 \times 87 \text{m}^2$, $A_{\text{win}} = 27 \text{ m}^2$
 - 1-D heat flux on 43% of external area
 - Air ventilation rate = 0.35 h⁻¹, internal gains = 600 W
 - Heat recovery system, solar protections

Building simulation (Brussels)

- *No TB* : Impact of TB not considered
- Static TB : Steady-state effects of TB considered (Ψ)
- Dynamic TB : Dynamic effects of TB considered (equiv.)

Heating (20-16°C, 4 kW max)			Cooling (25°C, 2 kW max)		
kWh/m²/year			kWh/m²/year		
No TB	TB stat	TB dyn	No TB	TB stat	TB dyn
8.66	9.15	9.04	7.75	7.53	7.07
	+5.7%	+4.4%		-2.8%	-8.8%

5	F	Classic	8	1.1	18	-0.107
	Э	Equiv.	0.04	0.1	1.5	-
6	6	Classic	2	0.4	13	0.005
	Ö	Equiv.	0.3	0.2	7.2	-

 \rightarrow Natural T_i : slightly higher inertia for *Dynamic TB*

- \rightarrow Static vs Dynamic TB : very low impact on heating needs
- → Impact of TB on cooling needs : x3 for *Dynamic* model
 - $\Delta = 0,46 \text{ kWh/m}^2/\text{year}$

Thermal

Engineering &

Combustion Unit

 \rightarrow Power gap up to 450 W (cooling) and 600 W (heating)

→ Study other buildings and compare with 3-D modelling

