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Abstract 
A simple model for anaerobic digestion (AD) is developed using data from the ADM1 model as our 
virtual plant. The reduction methodology consists in a systematic data driven-approach, which uses 
principal component analysis to deduce the dimension of the minimal reaction subspace explaining 
the data, followed by an identification of the kinetic parameters in the least-squares sense. The 
reduced-model includes variables widely available in waste treatment plants. Particularly, it contains 
hydrogen which has been found to be an important intermediate during AD and a key variable for 
process monitoring and control. The suitability of the model for control purposes is tested using two 
different hydrogen-based control strategies. 
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INTRODUCTION 
Anaerobic Digestion (AD) is an environmentally sustainable technology to treat waste (water) by 
biological means. Despite its numerous advantages, AD is still not used at its full potential, due to the 
high complexity of the process and its dependence on many operational variables. Moreover, under 
certain circumstances the stability of the AD process can be disturbed. Therefore, an important step 
towards an optimal operation and control is a better understanding of the interplay between the 
process dynamics and the operational conditions, which may be achieved by means of a reliable 
model. One of the most detailed and well-accepted description of the process is provided by ADM1 
model (Batstone et al., 2002). However, from a control and optimization viewpoint, ADM1 is too 
complex. The present work presents a step-by-step methodology to derive a simplified dynamic 
model. The resulting mathematical model is envisioned as a good basis for an advanced (model-
based) monitoring and control approach of the process. To date, most of the control strategies are 
based on COD, VFA and/or methane and only a few hydrogen-based control strategies have been 
proposed. In this study, two representative works, e.g., Rodriguez et al. (2006) and Dochain et al. 
(1991), are exploited to test our dynamic model and its consistency with respect to ADM1. 

MODEL DERIVATION 
ADM1 is used to generate synthetic data which are used to infer a low-dimensional dynamic model 
involving the main variables of interest. The model development method consists of 6 steps: (1) 
selection of the model variables and data collection, (2) determination of the minimum number of 
reactions and pseudo-stoichiometric matrix using principal component analysis, (3) model definition, 
(4) kinetic parameters identification and re-estimation of stoichiometric parameters, (5) sensitivity 
analyses for further model simplification and (6) model validation. 

 

 



Model variable selection and data collection  
ADM1 model is used as a plant emulator to generate virtual data. The advantage of using a simulator 
(over a real plant) is that informative data can be easily generated in various situations. This is a 
favorable situation to develop a reduced-order model that can capture the main process dynamics. 
Simulations are performed considering a 1 m3 reactor operating in continuous mode and treating 
mainly soluble waste matter with 50% biomass retention. Two data sets are built, one for parameter 
identification which runs over a period of 120 days, and another one for cross-validation over 170 
days, both with a sampling time of 3.6 hours.  

Six state variables of our reduced model, namely X1, X2, S1, S2, CH4, H2, are sampled from ADM1, 
and for the sake of realism are corrupted with independent, normally-distributed, additive white 
noises, with standard deviation of 1% of the error-free values for biogases and 5% for the rest of the 
variables. 

 

Figure 1: Model direct validation (red: ADM1 prediction; blue: reduced-order model prediction) 

 

Reaction number, pseudo-stoichiometric matrix estimation and model definition 
The minimum number of reactions and stoichiometric matrix are obtained using the Maximum 
Likelihood Principal Component Analysis (MLPCA) as described by Mailier et al. (2013). MLPCA 
is a systematic, optimization-based, model reduction procedure, which takes into account the noise 
corrupting the data. Test shows that a two-reaction scheme would be sufficient to represent the given 
data set. The following reaction scheme is obtained: 
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Parameter identification and model validation 
Identification of the kinetic parameters and re-identification of the stoichiometric parameters is 
performed using the maximum likelihood method, which consists in minimizing the prediction error 
between the experimental data and the model prediction (quadratic form in which the model deviation 
is weighted by the inverse of the covariance matrix of the measurement noise). Figure 1 shows direct 



validation of the model, which is overall satisfactory, hydrogen being the component whose evolution 
is the most delicate to capture. 

HYDROGEN-BASED CONTROLLERS 
Two hydrogen-based controllers, which employ different principles are implemented and tested on 
the simplified model and ADM1, respectively. The first controller is developed based on experimental 
evidence; hence its development does not require the availability of the process model. The second 
controller is a linearizing feedback controller, which specifically employs the process model to 
develop the control law. 

 

Heuristic-based controller 
First, the control proposed by Rodriguez et al. (2006) is considered. One of the advantages of this 
control strategy is that it relies only on on-line sensors for the hydrogen concentration and methane 
flow rate, which are available on the market. The control described in Equation (1) is a proportional 
controller with variable gain, which uses the hydrogen concentration in the gas phase (ppmH2) and 
the methane flow rate ( 4CHQ ) to determine the appropriate change in the inlet flow rate (D) to drive 

the process to the desired set-points.  

4 2CH H
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  (1) 

In this expression, 4CHf  and 2Hf  are described by Equations (2) and (3), respectively,  
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4CHf  is a decaying function of the methane flow rate QCH4. Hence, when a high methane productivity 

as defined by the parameter 
4

*
CHQ , is achieved, this factor decreases to a low value, close to   (which 

is usually chosen around 0.1), dampening the control action. On the contrary, when this factor 
increases (when the production decreases), the controller becomes more agressive. On the other hand, 

the hydrogen factor 2Hf  is zero at the setpoint *
2ppmH  and defines the direction of change in the 

dilution rate, correcting deviations from the hydrogen set-point with a reactivity depending on the 
shape parameters m  and n .  
Figure 2 shows a typical controller test. The hydrogen setpoint is well tracked but there are some 
discrepancies in the model prediction of the other variables, which highlight the limits of validity of 
the reduced-order model. 
 

Model-based controller 
The model-based controller belongs to the class of adaptive linearizing controllers introduced by 
(Bastin and Dochain, 1991). In this study, the algorithm proposed by (Dochain et al., 1991) is adapted 
to the structure of the developed model. More details on this implementation can be found in 
(Sbarciog et al., 2017). 



 

Figure 2. Heuristic controller and system responses with ADM1 (red dashed line) and reduced-order model 
(blue continuous line). 

CONCLUSIONS 
The reduced-order model derived from ADM1 predicts satisfactorily the dynamics of the state 
variables of interest, and can be exploited for model-based control. 
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