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Abstract – In this paper, a non-destructive method is proposed for measuring the density
of a very thin lubricant layer (weight and spatial) on an industrial surface. We considered
spectroscopic ellipsometry measurements on rough tinplated steel substrates protected by
a lubrication layer. The thickness of the coating was less than the roughness parameter
characterizing the metallic surface. As the optical properties of the substrates could not be
modelled in a conventional way due to the roughness and the complex structure of the
metal, the variations of one of the ellipsometric angle (Δ) were evaluated as a function of
the lubricant film surface density. After identification of the potential outliers using a mul-
tivariate analysis technique based on the Mahalanobis distance, we interpreted the data
using the Drude’s approximation for thin dielectric films. The values of Δ linearly decrease
with the lubricant surface density, allowing us to evaluate locally the lubricant surface den-
sity and its point-to-point variations.

T inplate steels (TPS) combine the phys-
ical strength and relatively low price
of steel with the corrosion resistance

of tin. They are manufactured by electroplat-
ing a tin layer over a mild steel substrate
having low carbon content (<1%). Tin-plated
substrates are protected against corrosion
by electro-spraying of a very thin layer of
lubricant (about 4 to 10 nm-thick) [1]. The
structure of the material is rather complex
(Fig. 1a): oxide layers are present at a low
level at the steel-tin interface due to selective
oxidation during the steel annealing process
prior to tinning and an iron-tin alloy is ex-
pected to be formed during the tin melting
process due to an interdiffusion mechanism
between iron and tin. This operation is re-
quired for reducing the intrinsic steel rough-
ness. As a consequence, iron can be detected
at the surface of TPS. After being cooled,
the TPS is protected by a passivation treat-
ment and an oiling process, resulting in a
temporary protection and lubrication of the
surface.

Over-lubrication of the surface due to
the impact of larger oil drops creates some-
times oil spots that do not level out with
time and can induce disturbances in the fur-

ther surface processing such as the dewet-
ting of the varnish layer used at the inner
surface of cans used in food industry. Iden-
tifying such an excess of lubricant remains
a challenge: as a matter of a fact, standard
optical techniques are not really adapted be-
cause the thickness of the lubricant layer is
smaller than the roughness of the TPS sub-
strate. Moreover, in industry, only the to-
tal amount of lubricant per m2 can be ob-
tained by burning the oil in oxygen and
measuring the amount of CO2 produced
during the combustion. This latter method
is of course destructive and there is need for
non-destructive alternatives.

In this paper, we consider the analy-
sis of spectroscopic ellipsometry (SE) data
recorded between 1.5–2.5 eV to identify the
presence of an excess of lubricant on in-
dustrial tin plated steel surfaces. Assuming
multidimensional distribution of the ellipso-
metric parameters, we use robust estimation
of the principal components to identify the
multivariate outliers and the lubricant spots
as explained hereafter.

Although well-defined for univariate
data, the problem of identifying multivariate
outliers is rather complex especially when
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Fig. 1. (a) Schematic view of the cross section of a TPS sample (redrawn from [1], thickness of the
layers not to scale); (b) topography of the TPS surface determined by optical profilometry (area:
600 μm × 450 μm, magnification 10.4 x, VSI mode) (Inset: global view of the surface and location
of the profiles); (c) thickness profiles along the yellow dashed lines represented in the inset of
Figure 1b.

both the number of data points and the num-
ber of variables are high. In the univariate
case, many methods have been proposed
and most of them are based on a (robust)
estimation of the location and of the scat-
ter of the data (see e.g. [2, 3], and the ref-
erences therein). Nevertheless, the difficulty
of identifying data with abnormal behaviour
from the extremes of a regular distribution
remains.

In multivariate data, the key feature is
the Mahalanobis distance (DM,i) defined for
each data point xi (i = 1, n) by

DM,i =
[(

xi − μ)T C−1 (xi − μ)] 1
2 (1)

where μ is the multivariate estimated lo-
cation and C the estimated covariance
matrix [4]. If the covariance matrix is the
identity matrix, the Mahalanobis distance re-
duces to the Euclidian distance while in the
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case of a diagonal covariance matrix, the DM,i

is the normalized Euclidian distance to the
location

Ddiag
M,i =

⎡⎢⎢⎢⎢⎣∑i

(
xi−μ)2
σ2

i

⎤⎥⎥⎥⎥⎦
1
2

(2)

where σi is the standard deviation of the
data.

The standard method for outlier detec-
tion in a multivariate data set is usually a
two-steps procedure: (i) robust estimation
of the Mahalanobis parameters μ and C and
(ii) comparison of the DM distribution with
a χ2

p distribution with p degrees of freedom
if p is the number of variables [5]. As in-
troduced by Garret [6], a break in the tails
of the distribution is an indication for out-
liers. In 2005, Filzmoser and co-workers pro-
posed an adaptive outlier detection method
in which the critical values for distinguish-
ing between outliers and extremes values of
the distribution was derived from simula-
tion data [7].

Spectroscopic ellipsometry (SE) is a non-
destructive optical analysis method which
aims in the determination of the thickness
of films and of their optical properties given
by the complex refractive index [8]. In SE,
a beam of polarized light is reflected by a
planar surface or a planar layered system
and the change of polarization is measured.
More precisely, one measures the ellipticity
ρ defined as

ρ =
rp

rs
= tanΨeiΔ (3)

where rp and rs are the complex reflectance
coefficients of the p− and the s−components
of the electrical field associated to the light
wave. Ψ and Δ are the ellipsometric angles
defined as

tanΨ =

∣∣∣rp

∣∣∣
|rs| and Δ = δp − δs (4)

δp and δs being the phase difference of both
components. The ellipticity is a function of
the incidence angle, of the optical properties
of the constitutive layers, of their thickness
and of the wavelength of the incident radi-
ation. The ellipsometric spectra are usually
processed according to an optical model as-
suming the existence of flat and sharp inter-
faces between the layers. Although micro-
scopic roughness (i.e. roughness less than

the wavelength of the incident light) can
be taken into account using effective me-
dia approximations [9], substrates used for
SE analysis (e.g. silicon wafers, glass slides,
electropolished steel plates) are usually of
optical quality and can therefore be consid-
ered as ideally flat. On such surfaces, the sen-
sitivity of SE measurements is of the order
of several angstroems. As it will be shown
hereafter, this is obviously not the case in
the analysis of the TPS optical response and
a statistical post processing of the data is re-
quired.

1 Experimental procedures

1.1 Materials

Disks of 5 cm in diameter were cut from TPS
sheets. They were degreased by sonication in
methyl ethyl ketone (MEK, Sigma-Aldrich,
≥99.0%) during 10 min and dried after rins-
ing in MEK under a nitrogen flow. To pre-
pare samples with known lubricant weight,
the degreased disks were dipped and with-
drawn from a lubricant solution in MEK at
controlled speed using a NIMA dip coater to
achieve the required lubricant weights: 4, 9
and 13 mg/m2. After coating the solvent was
let to evaporate for 10 min at room temper-
ature prior to SE analysis.

1.2 Optical profilometry

Topography of the degreased samples has
been controlled by optical profilometry us-
ing a Wyko NT1100 optical profilometer
in VSI mode (Magnification: 10.4x). The
samples were characterized by their aver-
age roughness (Ra), their root-mean squared
roughness (Rq) and their average peak-to-
valley roughness (Rz) whose definitions are
given hereafter

Ra =
1
N

∑
i
|zi−z̄| (5)

Rq =

√√
1
N

N∑
i=1

(zi−z̄)2 (6)

Rz =
1
10

⎡⎢⎢⎢⎢⎢⎣
10∑
i=1

Hi−
10∑
i=1

Li

⎤⎥⎥⎥⎥⎥⎦ (7)
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where N is the number of pixels in the im-
age, zi is the height of the point i and z̄ the
average height of the surface. The Hi and
Li are the 10 highest and lowest points of
the surface. An 11 × 11 region is excluded
around each H or L point to avoid all peak
or valley points emanating from one spike
or hole. Unless otherwise stated, the imaged
surfaces were 450μm large and 600μm long.
The data were processed with the Vision 4.10
software (Veeco Instruments Inc., USA). Be-
sides the global surface parameters, the line
roughness parameters were determined for
two orientations: parallel and perpendicu-
lar to the laminating rolls, as conventionally
measured in metallurgy.

1.3 Spectroscopic ellipsometry

The ellipsometric spectra were recorded us-
ing a SOPRA GESP5 spectroscopic ellip-
someter between 1.49 eV and 2.51 eV, with
a fixed analyzer and a rotating polarizer
(10 Hz). The ellipsometer was operated at
an angle of incidence of 70 degrees. For each
sample, 1941 data points were sampled on
a rectangular grid superseded to the circu-
lar shape of the sample. The grid resolu-
tion was 1 mm in both X and Y directions.
The light beam was focused on the sample
surface to achieve a lateral resolution bet-
ter than 1 mm and to ensure no overlap of
consecutive spots in the direction perpendic-
ular to the incidence plane. The light inten-
sity was recorded using a 512 channels in-
tensified photodiode array detector (IPDA).
This method (i.e. scanning the samples over
a grid and measuring at each place the el-
lipsometric spectra) is not suitable to in-line
detection because of the time required to
record the data (about 60 min). Nevertheless,
the method for outlier detection combined
to ellipsometry analysis is not related to the
acquisition method and, as the technology
evolves towards imaging ellipsometry, the
acquisition will be drastically reduced to
several seconds and could be applied to in-
line detection in a near future.

1.4 Statistical analysis

The statistical analysis of the data was car-
ried out using the R statistical software

Table 1. Profile roughness parameters (in nm)
of the TPS samples as measured by optical pro-
filometry.

Profile (∗) Roughness parameters (nm)
Ra Rq Rt

a 74 96 580
b 88 113 640
c 148 176 1166

(∗) Lines corresponding to the labels are given in
Figure 1b.

(version 2.12.1) [10]. The robustbase [11]
and mvoutlier [12] packages were used for
the identification of the outliers and the
akima [13] package to simultaneously visu-
alize the outlier spatial distribution and the
ellipsometric data.

2 Results and discussion

2.1 Surface topography

A typical image of the degreased TPS surface
as seen by optical profilometry is given in
Figure 1b. The marks left by the laminating
rolls are clearly apparent and induce a pref-
erential orientation for the optical analysis.
The height profiles were measured along the
dashed lines given in the inset of Figure 1c.
For clarity, the profiles are shifted vertically
by 0.5 μm from each other. Profiles labelled
“a” and “b” correspond to profiles measured
parallel to the laminating rolls marks. Pro-
file labelled “c” is a profile measured per-
pendicularly to the marks. The roughness is
obviously different between the “a” and “b”
profiles and the “c” one (Tab. 1): Ra and Rt

are about twice larger in the perpendicular
direction than in the parallel one. In order
to characterize the roughness parameters by
global values, the surface roughness param-
eters were also measured. Their values are
given in Table 2 for 6 different samples. Ra is
about 153±24 nm and Rq about 193±28 nm.
As expected, the value of Rz is much higher
(1856± 211 nm) and close to the total rough-
ness of the surface Rt (2341± 417 nm), show-
ing the importance of the peaks and valleys
left by the rolls on the surface (Tab. 2).

Going back to the electro-spraying of the
lubricant in the industrial process, it be-
comes obvious that an explicit treatment of
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Table 2. Surface roughness parameters.

Roughness parameters (nm)
Ra Rq Rt Rz

Sample 01 123 161 1981 1622
Sample 02 144 188 2146 1834
Sample 03 178 221 2499 2002
Sample 04 121 153 1803 1527
Sample 05 178 221 2499 2002
Sample 06 159 201 3071 1909

Mean 153 193 2341 1856
Stand. Dev. 24 28 417 211

the SE data is not possible due to the com-
plex structure of the samples (Fig. 1a) and to
its roughness, even when the sample is po-
sitioned in such a way that the lamination
marks are parallel to the incidence plane.
This experimental configuration is indeed
the one for which the effect of the surface
roughness has the least effect.

2.2 Spectroscopic ellipsometric
analysis

2.2.1 Influence of the roughness and
of the lubricant film thickness on
the raw ellipsometric data

It is well known that the roughness of the
sample considerably influences the results
of SE analysis: for macroscopic roughness,
only a part of the probed surface contributes
to the ellipsometric signal due to the local
character of the laws of reflection. On the
other hand, for microscopic roughness (i.e.
when the roughness parameters are of the
order of the wavelength of the light), re-
flected light contains information relevant to
the surface topography. This phenomenon
is usually accounted for by considering the
rough surface as a flat one with some poros-
ity or void inclusions. This consideration is
at the basis of the effective medium approx-
imations (EMA) [9]. The effect of roughness
is therefore more important in the UV part
of the spectrum than in the IR one. For that
reason, the first part of the presentation of
our results will be focused on the SE data
recorded at 1.49 eV, i.e. at the limit between
the visible and the near-infrared ranges

Figure 2 presents the spatial distribu-
tion of the Cos Δ values for the degreased
surface (a) and for three different lubricant

weight (b to d): 4, 9 and 13 mg/m2. Except
for the sample c that will be discussed later,
the data are relatively homogeneous. The
Cos Δ values increase with the weight of the
lubricant layer but stay negative, showing
that the relative phase shift between the p−
and the s−components is greater than 90 de-
grees. From these spatial distributions, aver-
age of the Cos Δ for each wavelength in the
1.5–2.5 eV energy range can be calculated
(Fig. 3a), as well as their standard deviations
(Fig. 3b). At a given lubricant weight, the
Cos Δ values increase with energy and at
a given energy, they also increase with the
lubricant weight, i.e. with the thickness of
the lubrication layer, as already evidenced
by Figure 2. More interesting is the fact that
the scattering of the data, measured by their
standard deviations, also increases with en-
ergy and film thickness. The increase is about
0.01 unit of Cos Δ over the probed energy
range and is relatively more important for
the thinner films or in the absence of lu-
bricant. It should be kept in mind that two
mechanisms are possibly the cause of the sta-
tistical scattering of the data: the roughness
of the sample and the inhomogeneity of the
lubricant film.

2.2.2 Influence of the outliers
on the optical response

For each sample, the data matrix consisted
in 1941 spectra of 2×103 data points. Prior to
the identification of the outliers, it was im-
portant to evaluate the spectral range over
which the identification could be carried out.
Starting from the data represented in Fig-
ure 3b, the limit between multivariate data to
be considered and the ones to be kept aside
was not clear. To that purpose, we ran the
outlier detection algorithm over increasing
spectral ranges and monitored the number
of outliers (Noutliers). We expected that num-
ber to progressively increase when extend-
ing the spectral range to the data recorded in
the near-UV. The number of outliers is repre-
sented in a typical case in Figure 4. Increas-
ing the data range from 1.5 eV to 2.16 eV only
leads to fluctuations of the number of out-
liers around 230, i.e. about 12% of the data.
But increasing the energy of the photons
above 2.16 eV led to a step in the variations
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Fig. 2. Maps of the Cos Δ values at 1.49 eV as a function of the lubricant weight (a: 0 mg/m2; b:
4 mg/m2; c: 9 mg/m2; d: 13 mg/m2).

Fig. 3. (a) Mean of the Cos Δ values as a function of the wavelength; (b) standard deviation of the
Cos Δ values (a : 0 mg/m2; b: 4 mg/m2; c: 9 mg/m2; d: 13 mg/m2).
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Fig. 4. Dependence of the number of outliers on
the spectral domain for the degreased case.

of Noutliers. This corresponds in only consid-
ering 60 data over the 103 recorded for each
spectrum. This value was considered as an
empirical threshold for the rest of our study.

Samples were prepared in duplicate for
the following lubricant density: 0, 4, 9
and 13 mg/m2 and their optical response
recorded at 70 degrees of incidence at 1941
locations over the 1.5–2.5 eV spectral range
(103 energies). The potential outliers were
identified using the method proposed by
Filzmoser et al. [7] and histograms of the
optical responses were build, differentiating
the potential outliers from the regular data.
An example of results is presented in Fig-
ure 5.

This sample was prepared in a slightly
different way from the others: during the
dipping process, a soon as the contact line of
the liquid reached the middle of the sample,
the withdrawal speed was increased during
a couple of seconds. As the speed increased,
the thickness of the entrained liquid film also
increased according to the Landau-Levich
equation [14,15] and after evaporation of the
solvent, the lubricant film was expected to be
higher on a band than on the remaining part
of the TPS disk.

Figure 5a shows the spatial distribution
of the Cos Δ values at 1.49 eV and the po-

sition of the potential outliers (blue circles).
The correlation between both types of in-
formation is completely satisfactory. Regular
points as well as outliers could be extracted
from the raw data: the last ones correspond
to the more negative values of Cos Δ which
span from –0.55 to –0.37 (Figs. 5b and 5c).

Let us now briefly come back to the in-
fluence of the energy on the scattering of the
data and to the advantage of considering
multi- instead of univariate data. Figure 6
presents the distribution of the Cos Δ values
at four different energies (1.49 eV, 1.69 eV,
2.19 eV and 2.50 eV). For clarity, the val-
ues are randomly scattered in the horizontal
direction. To overcome the differences be-
tween the data ranges of the different vari-
ables, the data were first centred and scaled
to highlight the influence of the energy on
the outlier detection. The data are shown
for the degreased sample (top) and for the
sample already presented in Figure 5 (bot-
tom). The potential outliers appear in red
in the graphs while the regular data appear
in green. The two first energies are below
the empirical threshold value discussed at
the beginning of this section, while the two
last are greater than the threshold value. It
can be seen for both samples that although
the outliers determined from the multivari-
ate data correspond to the extremes data of
the distributions at low energy, both red and
green clusters of points strongly interpene-
trate each other at higher energies. Consid-
ering only data in this energy range would
lead to an underestimation of the number of
potential outliers.

Once the outliers identified, SE data
could be averaged on the regular points.
The influence of the lubricant weight on
the Cos Δ values at 1.49 eV is presented
in Figure 7a. Those data are linearly cor-
related and the comparison between the
linear regression results of the raw (un-
corrected) and of the corrected data (plain
and dashed lines, respectively) shows that
the identification of the outliers contributes
to a statistically significant decrease of the
slope: 0.0135 ± 0.0009 for the raw data
and 0.0126 ± 0.0008 for the corrected ones.
Converting the corrected data to Δ values
gives us also a straight line with negative
slope (Fig. 7b): −0.9113± 0.0871. This linear
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a)

 )c )b

Fig. 5. Spatial repartition of the outliers and histograms of the Cos Δ values at 1.53 eV and for a
lubricant weight of 4 mg/m2.

variation can be understood in terms of the
Drude’s approximation for thin films [9,16].
This approximation allows the calculation
of the thickness of the layer once its optical
properties are known as explained hereafter.
Fresnel’s equations applied to optical stack
with one substrate and one dielectric film
were solved to the first order, yielding a lin-
ear relation between Δ and the thickness of
the film d:

Δ = Δ0 − CXd (8)

where Δ and Δ0 are the ellipsometric angles
measured on the optical stack and on the
film-free substrate, respectively and where
CX is a parameter which only depends on
the optical properties of the film and of the
substrate. The approximations of Drude and
Saxena are valid for optically flat dielectric
films whose thickness is less than 4 nm.
The data presented in this study trend to
show that the thickness range can be slightly

88



L. Abdessemed and M. Voué: Revue de Métallurgie 109, 81–91 (2012)

a)

b)

Fig. 6. Scatterplots of the Cos Δ values (after centring and scaling) as a function of the energy of
the incident light (top: degreased sample; bottom: sample of Fig. 5). Green circles: regular data –
Red circles: potential outliers.

extended to 10 nm and to substrates exhibit-
ing some roughness.

3 Conclusion

In this study, we considered SE measure-
ments on rough metallic substrates coated
with a dielectric layer whose thickness is less

than the roughness parameter characteriz-
ing the metallic surface. As the optical prop-
erties of the substrates could not be mod-
elled in a conventional way due the rough-
ness and the complex structure of the metal,
the variations of one of the ellipsometric an-
gle (Δ) were evaluated as a function of the
lubricant film surface density expressed in
mg/m2. After identification of the potential
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Fig. 7. (a) Weighted regression on the Cos Δ values at 1.49 eV (mean ± standard deviation). Plain
line: regular values only. Dashed line: complete data set. (b) Drude’s approximation of the data
(Eq. (8)): linear variation of Δ values with negative slope as a function of the lubricant weight.
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outliers using a multivariate analysis tech-
nique based on the Mahalanobis distance,
we interpreted the data using the Drude’s
approximation for thin dielectric films. The
values of Δ decrease with the lubricant sur-
face density, allowing us to evaluate locally
the lubricant surface density and its point-
to-point variations.
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