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Abstract—Relational databases (DB) play a critical role in many
information systems. For different reasons, their schemas gather
not only tables and columns but also views, triggers or stored
functions (i.e., fragments of code describing treatments). As for
any other code-related artefact, software quality in a DB schema
helps avoiding future bugs. However, few tools exist to analyse DB
quality and prevent the introduction of technical debt. Moreover,
these tools suffer from limitations like the difficulty to deal with
some entities (e.g., functions) or dependencies between entities.
This paper presents research issues related to assessing the
software quality of a DB schema by adapting existing source code
analysis research to database schemas. We present preliminary
results that have been validated through the implementation of
DBCritics, a prototype tool to perform static analysis on the
SQL source code of a database schema. DBCritics addresses
the limitations of existing DB quality tools based on an internal
representation considering all entities of the database and their
relationships.

Keywords—database software quality, database critics, design
smells, quality assessment

I. INTRODUCTION

Relational databases represent the heart of numerous infor-
mation systems. Information Systems have been defined as
“the software and hardware systems that support data-intensive
applications”1. These systems query, update, and present large
sets of data with treatments that can reside in the source code
of the applications accessing the database (DB), or be directly
included in the DB schema (e.g., views or stored functions).
These systems and their databases have often been built
decades ago. Their requirements changed continuously, leading
to evolution in the application code but also in the database
structure (which again impacted the application code). After
years of evolution, the quality of the database structure and the
behaviour it includes may have deteriorated, resulting (as for
the application) in a difficulty to perform further evolution or
in increased risk of future errors. For example, a query using
SELECT * in a database view will easily accept any change
in the underlying table definition (addition or removal of a
column), but can result in an execution error when the result
of the query is manipulated.

1From https://www.journals.elsevier.com/information-systems/ with our
emphasis. Last consulted on 5 January 2017

The usual answer to DB evolution is to rely on metadata
describing the DB schema. But these metadata do not consider,
for example, the body of internal functions nor the requests
building views. As a consequence the issues described above
(similar to code smells), cannot be detected. Yet they may
have important impact on the application using the DB. Quality
analysis should therefore go beyond metadata only, and also
consider internal treatments (e.g. stored procedure, triggers).

This paper adopts a software engineering approach by
considering a DB similarly to a program and proposing to
adapt existing software quality tools and techniques to it. Such
an approach should be language dependent as is the case
for most static analysis techniques in reverse engineering. It
requires to reverse engineer the DB schema and to analyse its
properties. Adaptation of software engineering approaches to
DB have already shown their efficiency [4], [9], [10] but these
approaches never take into account views and functions and
do not detect smells.

It is important to stress that this paper does not consider
the quality of the DB in terms of query efficiency or data
consistency, but in terms of quality of the code they embed.
This paper proposes to assess the database software quality for
example to minimize the technical debt of a DB schema. We
present some first results through the description of a research
prototype tool, called DBCritics, that addresses these issues.

The remainder of the paper is organized as follows. Section
II presents some scenarios in which assessing DB schema qual-
ity is relevant and highlights some underlying issues. Section
III describes our tool. Section IV evaluates the usefulness of
the tool on two DB. Section V positions our tool against other
existing solutions. Finally, Section VI concludes this paper and
discusses some perspectives.

II. DB CODECRITICS USAGE SCENARIOS AND
UNDERLYING ISSUES

This paper proposes a code critics approach and tool ded-
icated to DB schemas. The purpose is to assess the code
quality of an existing DB schema through static analysis. It
is the structure and treatments of the schema itself that will
be studied, and not the code of the application using the
DB. In this section, we present three scenarios in which code
critics can be used on a DB schema, and we highlight some
underlying issues that such an approach raises.



A. Detecting Smells in Database
Database administrators (DBA) need tools to highlight

smells, anti-patterns and violations of business rules. The
spaghetti query antipattern [8] aims to detect queries that are
too complex to understand, maintain or debug. Some naming
convention could need to be checked like prefixing all key
columns names with k_. This first example is a generic
smell applicable to any database and even to any database
management system (DBMS). In contrast, company-specific
or DB-specific smells depend on their domain and their use. A
DB code critics checking tool can provide a snapshot of the
DB schema quality, and could be used before and/or after each
commit to detect possible deterioration of the DB quality.

B. Migrating from a DBMS Version to Another One
DBMS (e.g., PostgreSQL, MySQL or Oracle) are constantly

evolving and new versions are regularly released to introduce
new features or to fix bugs. In theory, the new version of a
DBMS should be backward compatible with older versions.
In practice, it may happen that the behaviour or name of an
instruction has been changed from one version to the next.
Upgrade migration patches are rarely provided due to the risk
of breaking a database and all the applications that rely on it.
In case of open source DBMS like PostgreSQL, new releases
only come with a textual change log. The task of DB schema
migration is left to the DBA. He must identify what impact the
changes will have on his schema, and correct them accordingly.
For example, PostgreSQL documents that for versions after
9.0, PL/PgSQL variables will take preference over a table or
view column with the same name2. If behaviour of the same
code was changed after migration, this may lead to errors.
In this case, detecting occurrences of variables with the same
name that columns used in requests in the same function may
prevent future errors.

C. Maintaining Consistency between Different Forks of a
Database Schema

A DB schema may be used as a basis for multiple software
projects, each one adapting the schema to its needs. For
example, the tool corresponding to the DB schema of our
research laboratory managing members, teams or funding is
shared with another laboratory, together with all the applica-
tions using the DB. Each laboratory has its own DB based
on the initial schema. However, some modifications have been
performed on the initial schema to adapt the DB to the needs of
new users. The laboratory that adopted the tool also benefits
from maintenance to accommodate new features and/or bug
fixes. Each change in the master DB needs to be ported
to the slave DB with the risk that both DB continue to
evolve separately, thus drifting further apart. Ensuring naming
convention between forks reduces maintenance efforts.

D. Underlying Issues
Based on these scenarios, general issues relative to the

assessment of DB schema quality can be highlighted. First,

2https://wiki.postgresql.org/wiki/What’s new in PostgreSQL 9.0

a DB schema contains table and column descriptions but also
views, functions, sequences, triggers and constraint definitions.
All these entities and the relationships between them are
potentially subject to quality defects.

Second, it has been shown that checking for domain-specific
or system-specific smells in software provides better defect
prevention than checking for generic smells [7]. We expect
the same to happen with DB schema smells.

Finally, automatic detection of quality problems is impor-
tant, but the ultimate goal is to resolve them, preferably in
an automatic way. Moreover, resolving an issue on an entity
may imply changes on other entities. Renaming a column c1
in a table tA that is used by a view vA implies to change
the definition of vA (i.e., drop it and create a new version).
Furthermore, if vA is used in another view vB the second also
needs to be temporarily dropped and then recreated possibly
exactly as it was before if it does not use c1. This change
impact depends on the entities and the changes. Such impact
analysis is an issue by itself.

III. DBCRITICS

This section presents our approach to statically analyse
database schema quality and avoid future quality problems.
It is implemented in a prototype tool called DBCritics.

A. DBCritics Overview
DBCritics takes into account any type of DB entity: tables,

views, columns, functions, triggers, indexes, constraints, etc.
DBCritics takes as input an abstract representation of the DB
schema (including its structure and treatment), conform to a
PL/SQL (Procedural Language / Structured Query Language)
meta-model that extends the FAMIX meta-model [6].

Each DBMS defines and uses its own PL/SQL. For example
Oracle and PostgreSQL syntax are very close but nevertheless
slightly different. Currently, DBCritics supports PostgreSQL.
The generation of a model relies on the parsing of a Post-
greSQL dump of the DB schema. Using a dump guarantees
a certain degree of syntactic validity of the schema and also
allows to focus on a standard way to define the schema. For
example, with PostgreSQL, primary key definitions are not
specified in the CREATE TABLE requests but are separated
in an ALTER TABLE request.

Concretely, DBCritics allows a user to select and evaluate
rules on a model of the DB schema. The result of the evaluation
is stored in a report that includes the state of each rule
evaluation (violation or success). Figure 1 shows a screenshot
of the graphical user interface of DBCritics main widget.

B. Rules
DBCritics relies on the notion of rules. A rule describes

a property the DB schema should satisfy. Some rules are
mandatory because they identify plain errors. Some rules are
optional as they identify quality problems that may hamper
future maintenance or evolution. A severity criterion allows
to classify the rules, helping the user to concentrate his
correction efforts. Three severity levels are provided by default:
information, warning and error. Others may be added by the
user if needed.



Fig. 1. The DBCritics GUI. Left panel: Rules that have been run on the
model. Right panel: Entities violating the selected rule.

Fig. 2. UML class diagram of the rule implementation in DBCritics.

Figure 2 presents the concept of rule as defined in DBCritics.
Each rule holds the list of entities violating it. This list can
be reviewed by the user to mark false positives that are also
stored to ignore future detections of these violations.

The acceptedEntityTypes() method specifies
the entity types that the rule checks. The method
check(anEntity) specifies the violation constraints.
The abstract Rule class has been extended to be able to
define rules using a threshold (RuleWithThreshold).
These rules can be parametrized by the user to fit his needs.
For example, a Table is considered too big if it has ≥ n
columns, where n is specified by the user.

C. Examples of Rules

Next to the severity criterion, other means exist to classify
rules, such as the entity type on which the rule is applied.
Some rules are generic (i.e., applicable to any DB) or specific
(i.e., only applicable to a particular DB or DBMS). Some rules
concern the code, while others focus on the entity structures
and the relationships between entities.

DBCritics is a research prototype developed in Pharo3. A
first set of rules has been defined with a focus on diversity
(e.g. focus on code, entity, relationship, or severity, . . . ).
Rules are not prepared automatically. They have been defined
by extending either Rule or RuleWithThreshold and
overriding the methods presented in the previous section.
These rules have been created based on a combination of the
experience of DBA, related works and adaptation of existing
rules for code smells detection.
Rule 1: Detect use of * in SELECT request. Using * in the
request selects all the columns of the used tables. The structure
of the request result thus changes after column addition or

3http://pharo.org

removal in one of these tables, what can cause problems to
the program using it.
Rule 2: Foreign key referencing a non primary key. Uniqueness
of the reference is not guaranteed and leads to semantic errors.
Rule 3: Too many columns in SELECT request. This rule
identifies queries that may be complex to maintain (spaghetti
query anti-pattern).
Rule 4: Table without primary key. A table should always have
a primary key.
Rule 5: Column not key (PK/FK) using the name convention
for key (e.g.“k ” in name). If a naming convention exists, it
is as important to use it for key columns as not to use it for
non-key columns.
Rule 6: Stub entities are used but not defined in the DB
schema. This rule detects for example the call of functions not
defined in the schema either intentionally if they correspond
to system entity like pg_class table or count() function
or involuntarily if the name of the function is misspelled or a
removed function is still called.
Rule 7: Isolated table. A table that is referenced by no entity
and does not use any table cannot be accessed through natural
join (based on foreign keys). It is certainly not used, or with
other criteria that foreign keys what can lead to semantic errors.
Rule 8: Unused functions could be removed (if it is not used
by an external program). This rule does not detect issue but
may help in the cleaning of the schema.
Rule 9: View using another view is a poor design for the future
evolution of the database. For example, if a view vA uses a
view vB and vB needs to be modified, vB has to be deleted
as well as vA and both views need to be recreated in an order
satisfying usage dependencies between the views.
Rule 10: View using only one table has no reason to exist
since a simple SELECT request can do the job.
Rule 11: Too many columns in a table may be an illustration
that the table has several concerns and should be decomposed.

Rule 5 is specific to our concrete example. The other rules
are generic. Rule 3 and 11 have a threshold that must be
defined by the user. Rule 4 represents an error because it means
that the DB schema is not in the first normal form. Rule 6
can correspond to an error if the undefined entity is not a
system one. All other presented rules correspond to warnings
or information. Rules 1 and 3 focus on the code whereas all
others focus on entities and their relationships.

D. False Positives
Sometimes, rules can be too strict: some issues can be

acceptable in certain contexts. For example, referencing the
pg_class while using inheritance between tables is normal.
Yet, it will appear as a violation of rule 6. It may also happen
that a DBA voluntarily leaves known smells in the schema
because of lack of time or too high level of risk to fix them.
In DBCritics, these bad smells can be tagged as false positives
for a given rule.

IV. CASE STUDIES

This section evaluates the usefulness of DBCritics on
two case studies: the PostgreSQL version of the WikiMedia
database [2] and, AppSI, a database used at the Université de



Lille. Table I summarises the sizes of these databases with the
minimum and maximum number of entities of each kind over
all analysed versions.

WikiMedia is an open source collaborative editing software
project that runs Wikipedia. It currently has three versions
of its database schema for three DBMS: MySQL/MariaDB,
PostgreSQL and SQLite. We analysed 25 different versions
of the PostgreSQL database schema representing the different
versions available on Github [1] modified by 23 contributors.

AppSI aims to manage members, teams, funding support,
etc. in departments of the Université de Lille. It is a proprietary
DB developed by a single DBA. We analysed 12 consecutive
versions of the database schema.
TABLE I. MIN/MAX NUMBER OF ENTITIES PER TYPE AND MIN/MAX

LINES OF CODE FOR EACH DATABASE.

Tables Columns Views Functions Triggers LOC
WikiMedia 30/51 196/353 0/1 3/5 2/3 1,435/2,453
AppSI 71/91 583/974 30/52 46/67 12/16 4,910/7,006

DBCritics has been used to analyse the quality of the differ-
ent versions of these two DBs. Three aspects were analysed:
the number of rule violations per version; the proportion of
“violating entities” (i.e., entities that violate at least one rule);
and the “time-to-fix” of a rule violation (only for violations that
actually get fixed). For this experiment, we applied the rules
described in the previous section. WikiMedia had 67 violations
on average over all considered versions, while AppSI had 76
violations on average.

A. Violation Count Per Version
Figure 3 shows the evolution of the number of violations

(i.e., unique pairs (entity, rule)) over time. We observe that
the number of violations tends to increase (from 37 to 66
for WikiMedia and from 54 to 87 for AppSI). A possible
explanation would be that contributors are unaware of these
violations because of the lack of tools similar to DBCritics.

Fig. 3. Violation count per version for WikiMedia and AppSI.

B. Violating Entities Proportion
Figure 4 shows the proportion of violating entities (black

bars) against the total number of entities (grey bars) in each DB
schema. On average, WikiMedia has more rule violations than
AppSI (respectively 14% and 6%). The proportion of violating
entities is globally stable over time (whereas the total number
of entities is increasing). More analyses on more databases are
required to check this impression.

Fig. 4. Violating entities (dashed) proportion against entities count (solid)
per version for WikiMedia and AppSI.

C. Time-to-fix of a Rule Violation
Only 3 of the 85 rule violations were corrected in AppSI on

the 12 versions analysed, and 21 of the 87 rule violations for
WikiMedia. Table II summarises the “time-to-fix” in number
of days for those rule violations that got resolved. The table
reveals that corrections occur faster for AppSI than for Wiki-
Media. An interpretation would be that when the unique DBA
of AppSI is aware of a violation, he corrects it very quickly,
since he knows his DB very well. When several contributors
work on the same DB, knowledge is shared and more diffused.

TABLE II. MINIMUM, FIRST QUANTILE, MEDIAN, THIRD QUANTILE
AND MAXIMUM OF THE “TIME-TO-FIX” OF RESOLVED RULE VIOLATIONS.

Min First quantile Median Third quantile Max
WikiMedia 95 1227 1833 2403 3644
AppSI 3 / 125 / 278

These three experiments show that (1) there are rule viola-
tions in real life DBs; (2) their number increases over time with
the number of entities; and (3) only few violations are fixed.
A tool like DBCritics is thus needed to help in the violation
correction. A deeper comparison between open-source and
closed DB would be relevant. Moreover, it would be interesting
to check whether the number of contributors really impacts the
speed at which a rule is corrected.

D. Discussion About False Positives
Three categories of violations can be distinguished: (i) real

design issues that require modifications of the schema, (ii)
issues that the DBA considers correct despite the rule violation
and (iii) issues due to limitations of DBCritics. Concerning the
second category, in AppSI, table person contains 26 columns
and violates rule 11 for which the threshold is 25. However,
this table contains 4 columns corresponding to computed
values that are saved in the DB for performance reasons.
Concerning the third category, DBCritics cannot yet manage
views appearing in the schema as a table with an associated
rule4; they are considered as tables by the tool although
they are views. Some false violations are caused by these
restrictions.

We have discussed with the DBA of AppSI to examine in
detail the violations on one arbitrarily chosen version of its
schema to get an idea of the proportion of each of these three

4https://www.postgresql.org/docs/9.5/static/rules-views.html



categories. In version v10, there were 81 rule violations, 51
fell in the first category, 8 in the second and 22 in the last one.
Even if this proportion cannot be extrapolated to all versions
of AppSI or any database, it gives a first idea. Deeper analysis
should be done to generalise this result.

V. RELATED WORK

In the context of traditional programs, several approaches
have been proposed and tools implemented to detect bad smells
and avoid possible future bugs, like Lint5 for C source code
analysis and its variants for others programming languages:
PyLint6 for Python, JSLint7 for Javascript, etc.

Normal forms ensure good practices in term of relational
database design [5]. They describe how to organize tables,
columns and primary/foreign keys to avoid data redundancy.
It is relevant to check that they are still satisfied after schema
evolutions. To check them, specifications, lists of functional
dependencies or the way data is inserted in tables are needed.
Unfortunately, such information is rarely embedded in the
schema. Only data insertions or updates through triggers (i.e.,
functions that are automatically launched before or after other
insertions or modifications in the database) are present in the
schema and may help to detect normal form violations by
computed data. Most other normal form violations cannot be
detected by static analysis of the DB schema. While they are
certainly relevant, they require external information that cannot
be obtained by reverse engineering.

Weber et al. [11] studied the foreign key (FK) technical
debt on the OSCAR Electronic Medical Record system and
proposed to use the technical debt metaphor for developing
processes related to missing FKs implementation. This work
is related to ours in the sense that it aims to use software
engineering methods on relational databases. But exactly as for
normal forms, only data are used to measure the FK technical
debt.

The concepts of smells and anti-patterns have also been
used for databases [8]. Some software exists to detect database
smells and anti-patterns. For example SonarQube8 has a
PL/SQL plugin [3] which allows to create rules that check the
AST of the SQL source code using XPath queries. In contrast
to DBCritics, relationships between entities are not taken into
account.

Al-Barak and Bahsoon [4] did a work similar to the one
in this paper by exploring the database design debt concept
and manually analysing successive versions of MediaWiki’s
database schema. DBCritics aims to automate the process
of database smell/debt detection when the model allows it.
This automation allows one to check for smells regularly in
a limited amount of time. Moreover, DBCritics also takes
functions into account.

VI. CONCLUSION

Relational databases are at the core of many information
systems. As any other artefact, their schemas evolve with

5www.unix.com/man-page/freebsd/1/LINT/
6https://www.pylint.org/
7http://jslint.com/
8http://www.sonarqube.org

time to implement new requirements or to resolve bugs.
However, these evolutions can introduce new errors or smells
in the database schema. In this paper we presented different
scenarios where the analysis of database schema is relevant.
We also introduced DBCritics, a tool to detect errors, smells or
anti-pattern by applying software engineering methods. More
specifically, SQL schemas are statically analysed and a set of
rules that can be parametrized are run. DBCritics takes into
account any kind of entity in the schema: tables, columns,
views, triggers and functions. As a preliminary evaluation, we
studied multiple versions of two DBs: WikiMedia and AppSI.
This analysis shows that (i) rule violations can be found in
open source as well as in proprietary DB schemas; (ii) the
number of violations evolves with the number of entities; (iii)
on both DBs some violations are fixed but not all of them.

Future work is twofold. First, we aim to provide more
detailed empirical studies to evaluate for example (i) the
difference of open-source and proprietary DB schemas; (ii)
the relation between the number of contributors and the time
to fix rule violations; (iii) the relation between the number
of rule violations and the number of bugs in a DB schema
and; (iv) the impact of using DBCritics. Second, next to the
automatic detection of violations, we also aim to support
automatic correction of them. Such an automation would
require impact analysis of each correction and the effect of
cascaded corrections.
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