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In this paper, the cover printing problem, which consists in the grouping of book covers on offset plates in
order to minimize the total production cost, is discussed. As the considered problem is hard, we discuss
and propose a greedy random adaptative search procedure (GRASP) to solve the problem. The quality
of the proposed procedure is tested on a set of reference instances, comparing the obtained results
with those found in the literature. Our procedure improves the best known solutions for some of these
instances. Results are also presented for larger, randomly generated problems.
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1. Introduction

Combinatorial optimization problems [4,17] involve finding opti-
mal solutions from a large but finite set of feasible solutions. Many of
these problems cannot be solved to optimality in reasonable compu-
tation times, due to their inner nature or to their size. It is the case of
the cover printing problem treated in this paper. The use of heuris-
tic methods is then the natural choice for solving these problems.
The goal of heuristics [18] is to quickly produce good approximate
solutions, without necessarily providing any guarantee of solution
quality. The effectiveness of these methods depends upon their abil-
ity to adapt to a particular realization, avoid entrapment at a local
optima, and exploit the basic structure of the problem.

Metaheuristics are techniques that have widespread success
in providing high-quality near-optimal solutions to many real-life
complex optimization problems in diverse areas. Among them, we
find simulated annealing, tabu search, greedy random adaptative
search procedure (GRASP), genetic algorithms, scatter search, VNS,
ant colonies, and others. We refer to [15,18] for an introduction,
[16] for a bibliography and [11,12] for an overview. The success of
metaheuristics [10,23] motivated us to design and implement the
greedy random adaptative search procedure (GRASP) for the cover
printing problem.

The remaining parts of the paper are organized as follows. In
Section 2 we give a formal statement of the considered problem.
Section 3 consists of the greedy random adaptative search pro-
cedure's presentation. In Section 4 we illustrate efficiency of the
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proposed method by comparing the obtained results to the best-
known results available in the literature. Conclusions are drawn in
Section 5.

2. Problem formulation

In this section, we describe the cover printing problem. This prob-
lem concerns the publishing industry and consists in finding the best
assignment of a set of I book covers to offset plates for print. For
each book cover, a given number Ni, i = 1, . . . , I, of copies has to be
printed. Each offset plate contains four compartments so that each
printed sheet of paper contains four book covers, which may be sim-
ilar or different. We assume that no compartments are left empty.
After printing, the sheets of paper are cut into four parts. The differ-
ent quantities to determine in this problem are:

• the number of offset plates to use,
• the assignment of a book cover to each compartment of each offset

plate,
• the number of sheets of paper to print with each offset plate in

order to produce the required copies for all the book covers.

Once a 4-tuple (i1, i2, i3, i4) of book covers (i1, i2, i3, i4 ∈ {1, . . . , I}) is
assigned to an offset plate j, zj sheets of paper are printed with this
offset plate. Let us call “configuration” of an offset plate j, the cou-
ple (nj, rj), where 1�nj �4 is the number of different book cov-
ers assigned to the offset plate j and 1� rj �nj is the number of
book covers assigned to the offset plate j for which the required
copies are produced after printing. For an offset plate j, 10 differ-
ent configurations (nj, rj) are possible: (4, 4), (4, 3), (4, 2), (4, 1), (3, 3),
(3, 2), (3, 1), (2, 2), (2, 1) and (1, 1).

Some unnecessary copies of book covers may be produced and
this results in sheets of paper losses. Suppose that we have nj
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Fig. 1. A simple example.

Fig. 2. Example of opposite solutions.

different book covers assigned to an offset plate j (noted i1, . . . , inj ),
then the number of wasted sheets of papers can be easily calculated
as follows:

wj =
⎡
⎣ nj∑
k=1

max(0,�ik
zj − N̄ik )

⎤
⎦/4

N̄ik is the remaining number of copies required for the book cover
ik when considering the offset plate j. N̄ik = Nik if the offset plate j
is the first offset plate wherein the book cover ik is assigned. �ik

is
the multiplicity of book cover ik on the offset plate j. We have that
�i1 + · · · + �inj

= 4.

This can be explained with a simple example. Let us consider four
different book covers (I = 4) and the number of copies required for
each book cover: N1 = 10000, N2 = 6000, N3 = 4000, N4 = 2000. A
feasible solution to this problem is illustrated in Fig. 1. The 4-tuple
(1, 1, 2, 3) is assigned to offset plate 1, z1 = 5000 sheets of paper
are printed and the configuration is (n1, r1) = (3, 2). One thousand
unnecessary copies of book cover 3 are produced generatingw1=250
wasted sheets of paper. The 4-tuple (2, 2, 4, 4) is assigned to offset
plate 2 with N̄2=N2−z1=1000 and N̄4=N4=2000. The configuration
is (n2, r2) = (2, 2). One thousand unnecessary copies of book cover 2
are produced generating w2 = 250 wasted sheets of paper.

The cost structure has two main components: Cf , the unit cost
of an offset plate, and Ct , the unit cost of a sheet of paper whatever
the offset plate used for printing it. The cost of one offset plate
is usually very high, while the cost of each printed sheet of paper
is normally low. The best assignment should thus minimize both
the number of offset plates used and the total number of sheets
of paper printed in order to minimize the total production cost.
The problem, then, consists in finding a compromise between two
opposite solutions: one solution using the maximal number of offset
plates and producing the minimal number of printed sheets of paper
(see left part of Fig. 2, four offset plates and 5500 sheets) or a solution
using the minimum number of offset plates and producing a high
number of printed sheets of paper (see right part of Fig. 2, one offset
plate and 10000 sheets). Fig. 1 presents a compromise between these
two opposite solutions.

This problem has been treated in some previous published works.
After the failure of the use of exact resolution methods [14], a sim-
ulated annealing combined with linear programming is proposed in
[22], a tabu search metaheuristic is tested in [3] and two approaches
of genetic algorithms with linear programming solver are presented
in [5]. In [6], a branch and price algorithm is presented but the

results are not quite satisfactory since only boundaries of the opti-
mal solution are provided. In Section 4, we compare our results with
the published results.

A non-linear formulation of the problem in both continuous and
binary variables is presented in [22]. Let i = 1, . . . , I be the index of
the different book covers to be produced in quantity Ni and j=1, . . . , I
be the index of the offset plates that can potentially be used. The
following variables are defined:

zj �0 represents the number of printed sheets of paper from the
offset plate j (I continuous variables).
yij ∈ {0, 1, 2, 3, 4} represents the occurrence of book cover i in offset
plate j (I2 integer variables).

xj =
{
1 if offset plate j is used
0 otherwise (I binary variables)

The problem is then formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minCf

(
I∑

j=1
xj

)
+ Ct

(
I∑

j=1
zj

)

I∑
j=1

zjyij �Ni, i = 1, . . . , I

I∑
i=1

yij = 4xj, j = 1, . . . , I

zj �Mxj, j = 1, . . . , I

where M is an upper bound of the number of copies of each offset
plate to be produced, e.g.,M=maxi=1,. . .,I Ni. This non-linear formula-
tion of the problem involves (2I+ I2) variables (I binary, I continuous
and I2 integer variables) and 3I constraints (I non-linear constraints
and 2I linear constraints). However, a linear programming formula-
tion is also presented in [22], but there are then 8I2 + 2I variables
(4I2 + I binary and 4I2 + I continuous) and 8I2 + 7I constraints. We
used the powerful ILOG CPLEX 9.0 [13] software to solve the linear
programming formulation of the problem and the maximum size
that could be solved in a reasonable time is I = 8 (528 variables and
568 constraints). Since the size I of the number of book covers to be
considered in a real production case is higher than I = 8, we turn to
the use of heuristics. To be more specific, the size I of the number of
book covers in a real production case is varying in general between
10 and 20 but sometimes this size can be much higher. The num-
ber of copies to be printed is varying from a few thousands to a few
hundred thousands.

3. The greedy random adaptative search procedure

The greedy random adaptative search procedure is a multistart
metaheuristic [7,8,19–21], in which each iteration returns a feasible
solution to the problem and consists of two phases: a construction
phase and a local search phase. The best solution over all iterations
is kept as the final result. A generic GRASP pseudo-code is given in
Fig. 3.

In the construction phase, a feasible solution is iteratively con-
structed, one element at a time. At each construction iteration, the
choice of the next element to be added is determined by ordering
all elements in a candidate list with respect to a greedy function.
The method is adaptative because the greedy function takes into ac-
count previous decisions made in the construction. The probabilistic
component of a GRASP is characterized by randomly choosing one of
the best candidates in the list, but not necessarily the top candidate.
The list of best candidates is called restricted candidate list (RCL).
The solutions generated by a GRASP construction are not guaranteed
to be locally optimal with respect to simple neighborhood defini-
tions. Hence, it is almost always beneficial to apply a local search
to attempt to improve each constructed solution. Successful appli-
cations can be found in [1,2,7,9,16].
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Fig. 3. A generic GRASP pseudo-code.

One of the major advantages of the GRASP metaheuristic is how
easy this general schememay be adapted to the solution of particular
problems. In the next sections, we customize a GRASP metaheuristic
for the cover printing problem.

3.1. The construction phase

A feasible solution of the cover printing problem is composed
of a set of offset plates. Each offset plate is characterized by a 4-
tuple (noted i1234 = (i1, i2, i3, i4) with i1, i2, i3, i4 ∈ {1, . . . , I}) of book
covers assigned to the offset plate, which may be similar or different,
and its configuration (n, r), where n is the number of different book
covers in the 4-tuple and r is the number of book covers in the 4-
tuple for which the required copies are produced after printing the
offset plate. We have that 1�n�4 and 1� r�n. One offset plate
is now noted as Op[i1234,n, r]. The number of sheets of paper printed
with the offset plate, noted z(Op[i1234,n, r]), is obtained based on
the value of r and the number of wasted sheets of paper, noted
w(Op[i1234,n, r]), is calculated with the formula given in Section 2.
If we consider the simple example given in Fig. 1, the first offset
plate is characterized by the 4-tuple (1, 1, 2, 3) and the configuration
(n, r) = (3, 2). The number of sheets of paper printed with the first
offset plate z1 = z(Op[(1, 1, 2, 3), 3, 2]) is obtained as follows: to print
all required copies for book cover 1 we need 2∗z1 � N̄1=N1=10000,
for book cover 2 we need z1 � N̄2 = N2 = 6000, for book cover 3 we
need z1 � N̄3 =N3 =4000 and to satisfy r=2, we need z1 �5000 and
we fix z1 =5000. We have that 2 ∗ z1 = N̄1, z1<N̄2, z1>N̄3. z1 − N̄3 =
1000 unnecessary copies of book cover 3 are produced generating
w1 = w(Op[(1, 1, 2, 3), 3, 2]) = 250 wasted sheets of paper. The same
reasoning can be done with the second offset plate.

Fig. 4 illustrates the pseudo-code of the construction phase of the
GRASP metaheuristic. At each iteration of the greedy random con-
struction phase, an offset plate is determined until a feasible solu-
tion is obtained. Initializations are performed in lines 1 and 2. N̄i is
the remaining number of copies required for the book cover i and
Ī is the number of book covers with N̄i >0. COp[n, r](c1234) repre-
sents the best candidate offset plate with configuration (n, r). Solu-
tion is computed from scratch and the loop in lines 3–22 is per-
formed until a feasible solution is obtained. Each iteration starts by
sorting out the book covers in the decreasing order of N̄i, so that
the greedy function takes into account previous decisions made in
the construction. In lines 5 and 6, we extract all 4-tuple from the
m first book covers, where the parameter dS defines a depth search.
The best candidates offset plates for the 10 possible configurations
(n, r) (i.e., (4, 4), (4, 3), (4, 2), (4, 1), (3, 3), (3, 2), (3, 1), (2, 2), (2, 1), (1, 1))
are selected in lines 6–16 and stored in COp[n, r](c1234). In line 17,
the RCL is made up of candidate offset plates with configuration (n, r)
whose number of wasted sheets of paper is lower than a value de-
pending on a parameter � (0���1) and the values of the two costs
Cf and Ct . Once the RCL is available, a candidate is then randomly

Fig. 4. Pseudo-code of the construction phase.

chosen from the restricted list in line 18 and is inserted in the so-
lution under construction in line 19. In lines 20 and 21, we update
the quantities Ī and N̄i.

3.2. The local search phase

Each solution built at the construction phase is the starting point
for a local search procedure in which we try to improve the solution.
In the construction phase, the RCL is made up of candidate offset
plates whose number of wasted sheets of paper is lower than a
given value (see line 17 in Fig. 4). This restriction minimizes the total
sheets of paper printed but it may lead to the use of a high number
of offset plates in the solution. The improvement phase basically
consists of selecting the offset plates with small number of sheets
of paper printed and then of changing the configuration of the other
offset plates in order to reduce the total number of offset plates used.
Fig. 5 illustrates the pseudo-code of the local search phase of the
GRASP metaheuristic.

Initializations are done in lines 1 and 2. The loop in lines 3–22
is performed until all the offset plates, whose number of sheets of
paper printed is lower than a given value (see line 5 in Fig. 5), have
been examinated and no better solution has been found by removing
one of these offset plates. One offset plate is removed by changing
the configuration of the other offset plates. Variable Improve is a
flag that indicates when a better solution is found. Fig. 6 illustrates
the principle of the local search. The left part of Fig. 6 represents
a feasible solution of the simple example defined in Section 2. This
solution has been obtained with the construction phase and contains
three offset plates. In this example, we examine the third offset plate
(see line 5 in Fig. 5). The book cover 3 is already included in the first
offset plate (see line 8 in Fig. 5) and we change the configuration of
the first offset plate from (2, 1) to (2, 2). Now, all the required copies
of book cover 3 can be obtained from the first offset plate. The book
cover 4 is only included in the third offset plate but can be inserted
in offset plate 1 or offset plate 2 (see line 10 in Fig. 5). In order
to minimize the number of wasted sheets of paper, we insert book
cover 4 in offset plate 2 and change the configuration from (1, 1)
to (2, 2). All offset plates are updated and a new feasible solution is
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Fig. 5. Pseudo-code of the local search phase.

Fig. 6. Principle of the local search.

build (see lines 14 and 15 in Fig. 5 and the right part of Fig. 6). Based
on the values of Cf and Ct , the procedure checks if a better solution
is found (see lines 16–19 in Fig. 5).

4. Numerical results

In the first part of the numerical experiments, we have con-
sidered nine instances of the cover printing problem with 3, 4, 5, 8,
12, 15, 30, 40 and 50 book covers. All the test instances are described
in Tables A1–A4 in Appendix A instance data. Instances (P1–4) are
real instances and are reported from [5,22], instance (P5) was gen-
erated by [6] and used in [5], instance (P6) was generated in [5] and
instances (P7–9) were constructed for the purpose of this experi-
ment representing a larger number of book covers (I=30, 40, 50). In
order to be close to the experiments in [5,22], we use the same cost
structure: the unit cost of an offset plate, Cf = 18676, and the unit
cost of a sheet of paper, Ct = 13.44.

In a first step, we used the CPLEX 9.0 software [13] to solve ex-
actly the linear mathematical programming formulation of the prob-
lem (see [22]). The results are presented in Table 1. Columns 1 and
2 indicate the name of the problem and the number of book cov-
ers. Column 3 reports the objective value of the optimal solution.
Columns 4, 5 and 6 indicate the characteristics of the optimal so-
lution: the number of offset plates used, the number of sheets of
paper printed and the number of wasted sheets of paper produced.
The last column indicates the CPU time computation required in
seconds.

Table 1
Optimal solutions obtained with CPLEX.

Problem I Objective #Op #Sp #Ws CPU(s)

P1 3 136 472 2 7375 0 1
P2 4 247 916 2 15 667 292 2
P3 5 1 851 948 3 133 625 500 16
P4 8 264 348 3 15 500 750 705

Table 2
Best results obtained.

Problem I Optimal SA [22] GA [5] GRASP

P1 3 136472 136472 136 472 136 472
P2 4 247916 247916 247 916 247 916
P3 5 1851948 1855872 1 855 872 1 851 948
P4 8 264348 294980 264 348 264 348
P5 12 – – 276 304 269 584
P6 15 – – 523 460 515 256

Table 3
Details on the best results obtained.

GA [5] GRASP

Objective #Op #Sp Objective #Op #Sp CPU(s)

P3 1 855 872 3 133 917 1 851 948 3 133 625 2
P4 264 348 3 15 500 264 348 3 15 500 4
P5 276 304 4 15 000 269 584 4 14 500 6
P6 523 460 5 32 000 515 256 6 30 000 9

The maximum size that could be solved in a reasonable time is
I=8. For problem P5 (I=12)we stopped the computation after 2h CPU
time. The non-linear (quadratic) programming formulation of the
problem presented in Section 2 has also been tested and produced
similar results. Clearly the problem is difficult to solve exactly due
to the exploding complexity. We now turn to the use of a GRASP
heuristic to solve it.

The GRASP procedure was implemented in Visual C++ language
version 6.3 and run on a Centrino Dual Core personal computer with
2GHz and 2Gb RAM. The control parameters of the GRASP heuris-
tic have been fixed to: MaxIterations = 10000, dS = 5, � = 0.5 and
�=0.4. The best results obtained with the instances P1–P6 are sum-
marized in Table 2. This table includes the results obtained with the
CPLEX software, with a simulated annealing combined with linear
programming [22], with a genetic algorithm with linear program-
ming solver [5], and with our GRASP heuristic.

The instances P1 and P2 are easy to solve and all the methods
converge to the optimal solution. We will no longer consider these
instances. However, the GRASP method shows better performance
when dealing with the other instances. Table 3 gives more details
on the best results obtained.

From Table 3 it can be seen that:

• The GRASP heuristic improves the solutions previously reported
in the literature.

• For instances P3 and P5, the two methods find the same num-
ber of offset plates to use but not the same number of sheets of
paper printed. In fact, the GRASP heuristic finds a better assign-
ment of the book covers to the compartments of the offset plates.
Clearly, finding good configurations for the offset plates is strate-
gical and is more complex than finding the number of offset plates
to use.

• For instance P6, the GRASP heuristic improves the best known
solution. In this case, it is namely due to the construction phase
of the method. The restriction of the RCL allows to minimize
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Table 4
Sensitivity of parameter dS .

dS Best result Worst result CPU

Objective #Op #Sp Objective #Op #Sp

P3 4 1 851 948 3 133 625 1 851 948 3 133 625 2
5 1 851 948 3 133 625 1 851 948 3 133 625 2

P4 4 264 348 3 15 500 264 348 3 15 500 4
5 264 348 3 15 500 264 348 3 15 500 4

P5 4 276 304 4 15 000 276 304 4 15 000 5
5 269 584 4 14 500 269 584 4 14 500 6

P6 4 515 256 6 30 000 523 460 5 32 000 8
5 515 256 6 30 000 521 976 6 30 500 9

Table 5
Testing larger instances.

dS Best result Worst result CPU

Objective #Op #Sp Objective #Op #Sp

P7 4 1776040 10 118250 1796592 12 117000 23
5 1759240 10 117000 1781276 11 117250 32
6 1772680 10 118000 1787996 11 117750 46

P8 4 2602040 14 174150 2640736 16 174250 33
5 2585912 14 172950 2607276 15 173150 45
6 2597672 14 173825 2601368 14 174100 64

P9 4 6576472 22 458750 6624716 23 460950 45
5 6538644 21 457325 6603100 19 464900 63
6 6543152 20 459050 6574260 21 459975 87

the total sheets of paper printed but it may lead to the use
of a high number of offset plates in the solution. The solution
proposed for instance P6 contains no wasted sheets of paper
which corresponds to the minimal number of printed sheets of
paper.

• The CPU times are small. The advantage of the GRASP heuristic is
that it does not need the use of a linear programming solver to
compute the number of sheets of paper to print for each offset
plate, as in GA [5] and SA [22].

The choice of a good parameter setting is not always an easy task.
The parameters of the GRASP heuristic have been fixed as follows:

• In GA [5], the CPU time is principally consumed by the linear pro-
gramming solver to evaluate each generated solution and there-
fore the CPU time is evaluated by the number of fitness evalua-
tions. Since 10000 fitness function evaluations were considered,
we fixed MaxIterations = 10000 in order to compare the two
methods.

• A large number of experiments was done with a large range of
variation in the parameters � and �. The best results were obtained
with � = 0.5 and � = 0.4.

• In most instances, the GRASP heuristic with the parameter dS = 5
is the best performer. For each instance, 10 runs were performed
with dS = 4 and 5. Table 4 summarizes the results obtained. The
parameter dS=6was also tested but the solutions are not improved
and the CPU times increase.

The GRASP heuristic is tested further by using the instances (P7–9)
that were constructed for the purpose of this experiment represent-
ing a larger number of book covers (I = 30, 40, 50). These instances
allow us to test more in depth the feasibility and efficiency of our
GRASP heuristic. For each instance, 10 runs were performed with
dS = 4, 5 and 6. The results are summarized in Table 5.

Table 6
Comparison of the GRASP solution with two extreme solutions.

min #Sp GRASP min #Op
#Op = �I/4� #Wp = 0

P7 #Op 8 10 15
#Sp 124 000 117 000 114 375
Objective 1 815 968 1 759 240 1 817 340

P8 #Op 10 14 23
#Sp 188 550 172 950 169 588
Objective 2 720 872 2 585 912 2 708 811

P9 #Op 13 21 29
#Sp 490 700 457 325 455 388
Objective 6 837 796 6 538 644 6 662 019

Turning to more speculative interrogation, one might wonder
how far from the optimal solution our GRASP heuristic does leave
us? We have no indication on what is the best value of the objective
function but from Table 6 we can see that the best solution obtained
with the GRASP heuristic is a good trade-off between two extreme
solutions: the first oneminimizes the total number of sheets of paper
printed subject to the constraint that the number of offset plates
used is minimal (=�I/4�, the smallest integer number larger than
I/4) and the second one minimizes the total number of offset plates
used subject to the constraint that the minimum number of sheets
of paper is printed (no wasted sheets of paper).

If we compare the first solution with the GRASP solution, we
observe:

• for problem P 7: 2 additional offset plates reduce 72.7% of wasted
sheets of paper. On an average, an additional offset plate saves
3500 sheets of paper and reduces the global cost of the solution
of Cf − 3500Ct = Cf − 2.52Cf = −1.52Cf .

• for problem P 8: 4 additional offset plates reduce 82.3% of wasted
sheets of paper. On an average, an additional offset plate saves
3900 sheets of paper and reduces the global cost of the solution
of −1.80Cf .

• for problem P 9: 8 additional offset plates reduce 94.5% of wasted
sheets of paper. On an average, an additional offset plate saves
4172 sheets of paper and reduces the global cost of the solution
of −2.00Cf .

If we compare the GRASP solution with the second (best ex-
treme) solution, we observe that not much improvement can be
expected:

• for problem P 7: 2625wasted sheets of paper (24.7%) remain in the
GRASP solution. Since we have that 2625Ct=1.88Cf , we can deduce
that 11 is an upper bound for the number of offset plates and the
number of offset plates can be bounded as follows: 9�#Op�11.

• for problem P 8: 3362wasted sheets of paper (17.7%) remain in the
GRASP solution. Since we have that 3362Ct = 2.42Cf , the number
of offset plates can be bounded as follows: 11�#Op�16.

• for problem P 9: 1937 wasted sheets of paper (5.5%) remain in the
GRASP solution. Since we have that 1937Ct = 1.39Cf , the number
of offset plates can be bounded as follows: 14�#Op�22.

Clearly, the GRASP heuristic produces a good approximation of the
optimal solution.

The numerical experiments described so far were made on the
basis of a single instance of each size. We used also a unique cost
structure: the unit cost of an offset plate, Cf = 18676, and the unit
cost of a sheet of paper, Ct = 13.44. The reason of this choice was
to be close to the experiments found in the literature, in order to
compare the obtained results with other methods.
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Table 7
Ratio Cf /Ct sensitivity on instances with 30 book covers.

P30-1 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 8 8 8 12 12 13 18
OpUB 9 10 12 13 15
#Sp 124300 124300 124300 117600 117600 117100 116375
WpRD 7925 0% 0% 85% 85% 91% 0

P30-2 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 8 8 9 10 12 12 17
OpUB 9 10 12 13 15
#Sp 116600 116600 113400 111450 109600 109600 108550
WpRD 8050 0% 40% 64% 87% 87% 0

P30-3 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 8 8 8 11 13 14 17
OpUB 9 11 13 14 15
#Sp 134700 134700 134700 128400 126300 125900 125450
WpRD 9250 0% 0% 68% 91% 95% 0

P30-4 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 8 8 9 12 13 14 16
OpUB 10 12 13 14 15
#Sp 177100 177100 174100 165800 165000 164400 163875
WpRD 13225 0% 23% 85% 91% 96% 0

P30-5 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 8 8 11 11 13 16 19
OpUB 10 12 14 15 17
#Sp 187400 187400 175450 175450 172900 171600 171200
WpRD 16200 0% 74% 74% 90% 98% 0

In order to have a more complete computational analysis and
to test the robustness of the GRASP procedure, several instances of
different size will be considered. In particular, the ratio Cf /Ct is a
very important parameter in the GRASP procedure, in the construc-
tion phase (see line 17 in Fig. 4) and in the local search phase (see
line 5 in Fig. 5). Different ratios will also be considered. For these
reasons, 15 new instances were generated randomly (five different
instances of size I = 30, 40 and 50). We denote by PI-k the k-th in-
stance of size I (P30-2 is the second instance of size 30). The num-
ber of copies to be printed for each book cover are generated as
follows:

N1 = 1000

Ni+1 = Ni + Random(0, 1, . . . , I) ∗ Random(25, 50, 75, 100, 125)

We consider five different unit costs of an offset plate, Cf ∗ 4, Cf ∗ 2,
Cf , Cf /2, Cf /4 and a unique cost of sheet of paper Ct , generating in
this way five different ratios Cf /Ct .

For each instance and each unit cost of an offset plate, 10 runs
were performed. The parameters of the GRASP procedure are the
same as those used in Table 6: MaxIterations = 10000, dS = 5,
� = 0.5 and � = 0.4. The best results obtained are summarized in
Table 7 (I = 30), Table 8 (I = 40) and Table 9 (I = 50). Column 1 in-
dicates the name of the problem. Column 2 (E#Op) reports the ex-
treme solution that minimizes the total number of sheets of paper
printed subject to the constraint that the number of offset plates
used is minimal (=�I/4� the smallest integer number larger than
I/4). Columns 3–7 indicate the best solutions obtained correspond-
ing to the different unit costs of an offset plate. Column 8 (E#Wp)
reports the extreme solution that minimizes the total number of
offset plates used subject to the constraint that the minimum num-
ber of sheets of paper is printed (no wasted sheets of paper). For
each solution, we indicate the number of offset plates used (#Op),
an upper bound on the number of offset plates (OpUB), the num-
ber of sheets of paper printed (#Sp), the percentage of reduction in
the amount of wasted sheets of paper (WpRD) and the total number

Table 8
Ratio Cf /Ct sensitivity on instances with 40 book covers.

P40-1 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 10 10 14 15 18 18 21
OpUB 13 15 17 18 19
#Sp 313200 313200 301100 299000 296700 296700 296050
WpRD 17150 0% 71% 83% 96% 96% 0

P40-2 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 10 10 14 15 17 21 21
OpUB 13 15 17 19 21
#Sp 263400 263400 248100 246600 245000 243500 243500
WpRD 19900 0% 77% 84% 92% 100% 0

P40-3 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 10 10 13 16 18 18 21
OpUB 14 16 17 18 19
#Sp 311800 311800 296300 289000 287600 287600 287000
WpRD 24800 0% 63% 92% 98% 98% 0

P40-4 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 10 10 15 17 18 19 22
OpUB 14 16 18 20 22
#Sp 401100 401100 380900 377900 377100 376700 375650
WpRD 25450 0% 79% 91% 94% 96% 0

P40-5 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 10 11 14 17 17 20 23
OpUB 14 17 18 19 21
#Sp 375400 369600 357100 35000 350000 348700 348050
WpRD 27350 21% 67% 93% 93% 98% 0

Table 9
Ratio Cf /Ct sensitivity on instances with 50 book covers.

P50-1 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 13 13 16 16 20 22 26
OpUB 16 18 21 22 24
#Sp 442000 442000 428400 428400 423100 422200 421300
WpRD 20700 0% 66% 66% 91% 96% 0

P50-2 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 13 15 15 18 19 23 25
OpUB 16 18 20 22 25
#Sp 576800 562700 562700 555400 554200 552500 551800
WpRD 25000 56% 56% 86% 90% 97% 0

P50-3 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 13 13 19 21 22 23 28
OpUB 18 21 22 24 26
#Sp 653050 653050 672700 623400 622500 621900 620700
WpRD 32350 0% 78% 92% 94% 96% 0

P50-4 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 13 14 20 21 21 26 31
OpUB 19 21 23 25 27
#Sp 698800 692400 667000 665500 665500 663100 662625
WpRD 36175 18% 88% 92% 92% 99% 0

P50-5 E#Op Cf ∗ 4 Cf ∗ 2 Cf Cf /2 Cf /4 E#Wp
#Op 13 13 21 21 24 24 29
OpUB 20 22 23 26 28
#Sp 733700 733700 697500 697500 695400 695400 694000
WpRD 39700 0% 91% 91% 96% 96% 0

of wasted sheets of paper produced in the case of the two extreme
solutions.

The CPU times are not mentioned because they are in the same
order as the CPU times reported in Table 5.

From Table 7–9, it can be seen that:

• If we consider Cf as the cost of an offset plate (as before), the results
presented in Table 6 are confirmed. The performance is similar



646 D. Tuyttens, A. Vandaele / Computers & Operations Research 37 (2010) 640 -- 648

and similar conclusions can be drawn. It is possible to obtain good
solutions in acceptable time.

• When the cost of an offset plate is varying between the two ex-
treme values Cf ∗ 4 and Cf /4, we clearly observe the trade-off be-
tween the number of offset plates used and the number of sheets
of paper printed (and consequently the amount of wasted sheets
of paper produced). This information is very valuable to a decision
maker.

• When the cost of an offset plate is fixed to Cf ∗ 4, we obtain
most of the time 0% reduction in the amount of wasted sheets
of paper produced. In this case, it is clearly very difficult to
find an assignment of the book covers to the compartments of
each offset plate reducing enough the number of wasted sheets
of paper produced in comparison with the cost of an offset
plate.

• When the cost of an offset plate decreases, additional offset
plates are used in the solutions. We observe that the first offset
plates added are the most interesting ones at the point of view
of reduction of wasted sheets of paper. The problem is clearly
non-linear.
◦ From Cf ∗4 to Cf ∗2, the average percentage reduction of wasted

sheets of paper for an additional offset plate is 27.4% for I= 30,
17.7% for I = 40 and 13.3% for I = 50.

◦ From Cf ∗ 2 to Cf , the average percentage reduction of wasted
sheets of paper for an additional offset plate is 21.8% for I= 30,
8.6% for I = 40 and 8.0% for I = 50.

◦ From Cf to Cf /2, the average percentage reduction of wasted
sheets of paper for an additional offset plate is 9.7% for I = 30,
3.7% for I = 40 and 4.0% for I = 50.

◦ From Cf /2 to Cf /4, the average percentage reduction of wasted
sheets of paper for an additional offset plate is 3.8% for I = 30,
1.9% for I = 40 and 1.8% for I = 50.

◦ From Cf /4 to E#Wp, the average percentage reduction of wasted
sheets of paper for an additional offset plate is 1.8% for I = 30,
1.0% for I = 40 and 0.8% for I = 50.

• When the cost of an offset plate decreases, we observe also that
strong reduction (more than 90%) in the amount of wasted sheets
of paper can be obtained. The complete reduction of wasted sheets
of paper (extreme solution E#Wp) is very expensive in terms of
additional offset plates required.

• The upper bound on the number of offset plates is an indicator of
the difficulty of finding an assignment of the book covers to the
compartments of each offset plate reducing enough the number
of wasted sheets of paper in comparison with the cost of an offset
plate. In most cases, the difference between the upper bound and
the number of offset plates used is small.

5. Conclusion

In the paper we proposed a greedy random adaptative search
procedure to solve the cover printing problem. The problem is
hard and hence heuristic methods are needed. The experimental
results reveal that the procedure outperforms simulated anneal-
ing and genetic algorithms used in previously published results.
Taking into account both the quality of solution and the computa-
tional requirement, we see that the GRASP procedure is particularly
well suited to this problem. Certainly, the proposed method can
still be improved, for example by proposing other local search
algorithms.
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Appendix A. Instance data

Table A1

P1(I = 3) P2(I = 4) P3(I = 5) P4(I = 8) P5(I = 12) P6(I = 15)

N1 16000 20 000 135 500 15 000 12 000 15 000
N2 9000 18 000 114 500 12 000 9000 14 000
N3 4500 15 000 103 500 10 000 7000 13 000
N4 8500 94 500 8000 6000 12 000
N5 84 500 5000 5200 11 000
N6 3000 4500 10 000
N7 3000 3000 9000
N8 3000 2500 8000
N9 2000 7000
N10 2000 6000
N11 1500 5000
N12 1000 4000
N13 3000
N14 2000
N15 1000

Table A2

P7(I = 30)

N1 30 000 N16 15 000
N2 28 000 N17 14 000
N3 27 000 N18 13 500
N4 26 000 N19 13 000
N5 26 000 N20 11 000
N6 23 000 N21 10 500
N7 22 000 N22 10 000
N8 22 000 N23 9000
N9 20 000 N24 9000
N10 20 000 N25 7500
N11 19 000 N26 6000
N12 18 000 N27 5000
N13 17 000 N28 2500
N14 16 000 N29 1500
N15 15 000 N30 1000

Table A3

P8 (I = 40)

N1 50 000 N26 10 000
N2 47 000 N27 10 000
N3 45 500 N28 9100
N4 41 500 N29 8000
N5 37 000 N30 6300
N6 32 500 N31 5000
N7 30 500 N32 5000
N8 29 000 N33 4300
N9 27 000 N34 4200
N10 27 000 N35 4000
N11 26 700 N36 3000
N12 25 000 N37 2650
N13 22 000 N38 1800
N14 19 000 N39 1100
N15 16 100 N40 700
N16 15 000
N17 14 000
N18 13 500
N19 13 000
N20 13 000
N21 12 900
N22 12 000
N23 12 000
N24 11 300
N25 10 700
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Table A4

P9 (I = 50)

N1 95 000 N26 30 000
N2 90 000 N27 30 000
N3 85 500 N28 28 300
N4 80 000 N29 28 000
N5 77 000 N30 26 350
N6 72 300 N31 25 500
N7 70 500 N32 22 400
N8 69 000 N33 21 000
N9 67 000 N34 21 000
N10 67 000 N35 19 000
N11 61 700 N36 16 050
N12 60 000 N37 14 000
N13 57 650 N38 11 900
N14 55 500 N39 11 000
N15 52 100 N40 10 000
N16 51 000 N41 10 000
N17 50 000 N42 7800
N18 43 500 N43 6000
N19 43 000 N44 4500
N20 39 000 N45 4000
N21 38 900 N46 3000
N22 37 000 N47 2900
N23 36 000 N48 1450
N24 34 300 N49 1000
N25 32 700 N50 750

Appendix B. Optimal solutions

Problem P1 (I = 3): total cost = 2 ∗ Cf + 7375 ∗ Ct = 136472.

Problem P2 (I=4): total cost = 2∗Cf +15666.6667∗Ct =247912.

Remark: With z2 = 6667 and w2 = 167, total cost = 247916 as in
[5,22].

Problem P3 (I = 5): total cost = 3 ∗ Cf + 133625 ∗ Ct = 1851948.

Problem P4 (I = 8): total cost = 3 ∗ Cf + 15500 ∗ Ct = 264348.

Remark: The optimal solution is not unique.

Appendix C. Best known solutions

Problem P5 (I = 12): total cost = 4 ∗ Cf + 14500 ∗ Ct = 269584.

Problem P6 (I = 15): total cost = 6 ∗ Cf + 30000 ∗ Ct = 515256.

Problem P7 (I=30): total cost = 10∗Cf +117000∗Ct =1759240.

Problem P8 (I=40): total cost = 14∗Cf +172950∗Ct =2585912.
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Problem P9 (I=50): total cost = 21∗Cf +457325∗Ct =6538644.
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