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Abstract
Disproportionality indices aim at measuring to what extent the composition of a parliament
differs from the distribution of the votes among parties. Malapportionment indices measure
to what extent the number of parliament seats attached to each district differs from the
distribution of the population among districts. Since there exist many different such indices,
some conditions have recently been proposed for assessing the merits of the various indices.
In this paper, we propose a characterization of two disproportionality and malapportionment
indices: the Duncan and Duncan index (also called Loosemore–Hanby) and the Lijphart
index.

Keywords Disproportionality index · Malapportionment · Proportional representation ·
Duncan and Duncan · Loosemore–Hanby · Lijphart

1 Introduction

Suppose 100 voters are to elect 10 representatives in a parliament. There are 3 political parties
respectively receiving 25, 43 and 32 votes. If we want to achieve proportional representation,
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the three parties should respectively have 2.5 (i.e., 10×25/100), 4.3 and 3.2 representatives.1

This ideal representation is not feasible because it is not integer. Hence, one has to choose
between one of the many different ways to obtain an integer number of representatives. Many
allocation methods (for instance the Hare quota or the Droop quota) for choosing the right
distribution of representatives have been proposed (Balinski and Young 1975). In order to
compare these methods, or more precisely to compare the outcomes of these methods, polit-
ical scientists have proposed several indices to measure the dissimilarity between the perfect
proportional (but usually non-integer) distribution and a feasible one: the so-called dispro-
portionality indices. The first one was the Rae index (Rae 1967), soon followed by many
others (Karpov 2008). Around the year 2000, there were so many disproportionality indices
at hand that political scientists realized that a systematic approach to the analysis of dispro-
portionality indices was necessary.2 This led them to proposing some conditions or properties
that disproportionality indices should ideally satisfy (Bolun 2012; Karpov 2008; Koppel and
Diskin 2009; Taagepera and Grofman 2003), but no characterization of a disproportionality
index has been proposed so far in political sciences.3

A related problem is the apportionment of seats among electoral districts. There also,
some malapportionment indices have been proposed; they are formally equivalent to dis-
proportionality indices and are also discussed by Bolun (2012), Karpov (2008), Koppel and
Diskin (2009) and Taagepera and Grofman (2003).

Another related problem is that of comparing two probability distributions. For instance,
Cha (2007) reviews more than 60 dissimilarity indices between two probability distributions.
If wemodel a parliament bymeans of proportions of seats, then dissimilarity indices (between
two probability distributions) and disproportionality indices (between a seat distribution and
a vote distribution) are formally equivalent. But such a modelling would implicitly assume
a homogeneity hypothesis (i.e. the size of a parliament does not matter; only proportions
matter). We do not consider this homogeneity hypothesis as compelling and we therefore
consider our problem as related but distinct from the measurement of dissimilarity between
two probability distributions.

We will not propose and champion a new disproportionality index or support an existing
one because we think that a single best universal disproportionality index does not exist. For
instance, we probably do not need the same index if we want to measure malapportionment
in a small or in a large country. Instead of supporting a specific index, we will provide a
formal framework in which it is possible to analyze and compare various indices, using clear
and explicit arguments. This is in line with the authors’ previous work in decision theory
(e.g. Bouyssou and Pirlot 2004; Bouyssou and Marchant 2007).

2 Definitions, notation and some indices

In this section, we introduce the notation that will be needed. We also define several dispro-
portionality indices.

1 In a recent paper, (Nurmi 2014) argues that the concept of proportional representation is both vague and
ambiguous. To make things clear, we consider one-option balloting and proportional allocation of seats.
2 Karpov (2008) and Koppel and Diskin (2009) call this an axiomatic approach.
3 No disproportionality index has been characterized, yet several characterizations of allocation methods (i.e.,
techniques to allocate seats to parties in view of the electoral result) are available in the literature (Balinski
and Young 1975).
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2.1 Notation and definitions

The set N = {1, 2, . . . , n}, with n ≥ 2, represents the set of parties or electoral districts.
We will throughout consider that N does not vary. We will consider that the distribution of
votes among parties can adequately be described by a vector with rational components.4 This
distributionwill be called the target distribution or just target. The set of non-negative rational
numbers is denoted by Q+. The set of strictly positive (resp. non-negative) real numbers is
denoted by R++ (resp. R+). The set of natural numbers is denoted by N and N0 = N\{0}.
The target distribution is π = (π1, . . . , πn), with πi ∈ Q+ for all i ∈ N and

∑
i∈N πi = 1.

In the context of proportional seat allocation, π is the vector of the relative vote shares among
the parties; in the context of apportionment, it is the vector of the relative population shares
among the districts.

A parliament is described by the distribution of seats among parties. It is denoted by
x = (x1, . . . , xn), with xi ∈ N for all i ∈ N and where xi represents the number of seats
allocated to party or district i . The size of parliament x is denoted by s(x) = ∑

i∈N xi . The
relative frequency distribution in a parliament x is x/s(x) = (x1/s(x), . . . , xn/s(x)). The
set of all parliaments is X = NN , i.e. the set of all mappings from N to N. The set Π of all
target distributions is a subset of QN+ . Formally, Π = {π ∈ QN+ : ∑

i∈N πi = 1}.
Definition 1 A disproportionality index f is a mapping from X × Π to R+ satisfying
f (x, π) = 0 iff x/s(x) = π .

A disproportionality indexmeasures how far from the targetπ the actual seat distribution x
in the parliament is. It is equal to zero onlywhen the seat distribution is perfectly proportional.

The reader may have the impression that comparisons of disproportionality indices across
different elections are not possible in our setting because the set N of parties is fixed while
the set of parties in real elections is almost never the same. This is not completely correct.
Indeed, we can consider some very large set N (containing e.g. 100 parties) and, when we
want to model a particular election involving a subset M ⊂ N of parties, we just ensure that
the parties in N\M have 0 votes and 0 seats. We will discuss this in detail in Sect. 4.

2.2 Two disproportionality indices

We begin with an additive index: fDD(x, π) = ∑
i∈N |xi/s(x) − πi |. For each party i , we

compute the deviation xi/s(x) − πi between the proportion in the parliament (xi/s(x))
and the target proportion (πi ). We summarize the n such deviations by means of their sum
after taking absolute values in order to avoid compensation between positive and negative
deviations. Index fDD is the Duncan and Duncan (1955) (also called Loosemore and Hanby
1971) index.5

A different index is fL(x, π) = maxi∈N |xi/s(x) − πi |. Here, instead of using the sum
as a summary, we focus on the largest absolute deviation. Index fL (or Lijphart index) has
been proposed in Lijphart (1994).

Indices fDD and fL correspond to L p distances (with p = 1 and ∞ resp.) between the
vectors π and x/s(x). Many more indices can be defined by just considering other values

4 We thus implicitly consider that the size of the set of voters does not matter.
5 TheDuncan andDuncan index is often presented as 1/2×∑

i∈N |πi − xi /s(x)|. The factor 1/2 is convenient
in applications because it scales the index between 0 and 1. We purposefully drop this factor because it makes
the index simpler. The difference between the two forms of the index is not more relevant than the difference
between a length measurement in meters or in feet.
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of p or other distances. If we do not limit ourselves to distances, many other indices can be
thought of. For instance,Taagepera andGrofman (2003) discusses nineteendisproportionality
indices.

3 Characterizations

As already mentioned in the introduction, we do not promote a particular index. For the same
reason, we will not try to justify our properties on normative grounds. Properties need not
be compelling: they should be simple properties, easy to understand and as elementary as
possible. They allow us to break down an index (possibly defined by a complex formula) into
a small number of elementary and simple blocks. And if one of the properties characterizing
an index is easy to understand but the social planner does not find it adequate, then he has
a good reason not to use that index. For a deep discussion about the utility of this kind of
analysis, we refer to Luce et al. (1990, pp. 196–202). See also Bell et al. (1988, Chapter 1)
in which various views on using characterizations are described and compared. Our view,
in the context of disproportionality measurement, is close to that of Thomson (2001), in the
context of game theory and resource allocation.

In this paper, we characterize two simple and popular indices: fDD and fL. These two
characterizations should be considered as examples of what can be achieved and expected
within the framework we propose.

3.1 Characterization of index fDD

3.1.1 Properties

Homogeneity Suppose n = 2 and party 1 has 400 seats in parliament x with size s(x) = 600
and 800 seats in parliament y with s(y) = 1 200. In terms of proportions, x and y are identical
and this suggests that the disproportionality index (given the same target π) should be equal
in the two parliaments. The first property we discuss formalizes this idea: it imposes that the
size of a parliament does not matter, in the sense that scaling up or down a parliament by a
multiplicative factor does not change its index.

P 1 Homogeneity. For all λ ∈ N0 and all x ∈ X, f (λx, π) = f (x, π).

Let us show that index fDD satisfies Homogeneity.

fDD(λx, π) =
∑

i∈N

∣
∣
∣
∣πi − λxi

s(λx)

∣
∣
∣
∣ =

∑

i∈N

∣
∣
∣
∣πi − λxi

λs(x)

∣
∣
∣
∣ =

∑

i∈N

∣
∣
∣
∣πi − xi

s(x)

∣
∣
∣
∣ = fDD(x, π).

Although Homogeneity seems appealing, if we consider very small and very large parlia-
ments, then it is perhaps no longer so compelling. Suppose n = 2, s(x) = 6, s(y) = 600 and
the target is fifty-fifty. Suppose party 1 has 4 seats in parliament x . Then 4 seats for party 1
with respect to a target of 3 seems a very small deviation, not really indicating a representativ-
ity problem. On the contrary, 400 seats for party 1 in parliament y with respect to a target of
300 seems problematic, and it seems reasonable to have a higher disproportionality index for
y than for x , although they are identical in terms of proportions. Even worse: suppose party
1 has two seats in parliament z with s(z) = 3. In terms of proportions, z is identical to x and
y. But a perfect proportionality is impossible in a parliament of size three with a fifty-fifty
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target. It would be unfair to associate the same disproportionality index to parliaments z and
x or y. We move to another property.

Radial Linearity Consider a target π and two parliaments x and y with the same size. Then
s(x)π is a perfectly proportional parliament with the same size as x . Suppose that x and y
lie on the same ray originating in s(x)π . Then, (x + y)/2 lies between x and y, on the same
ray, and a very mild monotonicity requirement is that f ((x + y)/2, π) lies between f (x, π)

and f (y, π). This monotonicity is satisfied by fDD and we could use it to characterize the
ranking induced by fDD (see Sect. 4.2), but we chose to characterize the index fDD. We thus
need a stronger condition, fixing the exact position of f ((x + y)/2, π) between f (x, π) and
f (y, π). The simplest thing we can then do is to say that this position is exactly halfway and
we canmotivate this by a kind of principle of insufficient reason. This is formalized hereafter.

P 2 Radial Linearity. If x and y are two parliaments such that (a) s(x) = s(y), (x+y)/2 ∈ X
and (b) x = αs(x)π + (1 − α)y for some α ∈ [0, 1], then

f

(
x + y

2
, π

)

= f (x, π) + f (y, π)

2
.

Radial Linearity is a necessary condition for fDD. Indeed, fDD(x + y, π)

=
∑

i∈N

∣
∣
∣
∣πi − xi + yi

2s(x)

∣
∣
∣
∣ = 1

2

∑

i∈N

∣
∣
∣
∣2πi − xi + yi

s(x)

∣
∣
∣
∣ = 1

2

∑

i∈N

∣
∣
∣
∣πi − xi

s(x)
+ πi − yi

s(y)

∣
∣
∣
∣ .

Since x = αs(x)π + (1− α)y, we know that {i ∈ N : xi/s(x) ≥ πi } = {i ∈ N : yi/s(y) ≥
πi } and we have fDD(x + y, π)

= 1

2

∑

i∈N

∣
∣
∣
∣πi − xi

s(x)
+ πi − yi

s(y)

∣
∣
∣
∣

= 1

2

(
∑

i∈N

∣
∣
∣
∣πi − xi

s(x)

∣
∣
∣
∣ +

∑

i∈N

∣
∣
∣
∣πi − yi

s(y)

∣
∣
∣
∣

)

= fDD(x, π) + fDD(y, π)

2
.

Radial Linearity may seem a (too) strong condition and characterizing an index with an
additive form such as fDD with Radial Linearity may seem too obvious for being interesting.
Actually, there are many non-additive indices satisfying Radial Linearity. Index fL is such
an index (see Sect. 3.2). The main effect of Radial Linearity is not to make things additive,
but rather to force the index to vary linearly when a parliament deviates from perfect pro-
portionality in a given direction. Notice also that, despite an additive structure, the index fχ2

defined by Nagel (1984) as

fχ2(x, π) =
∑

i∈N

(
(xi/s(x) − πi )

2

πi

)

does not satisfy Radial Linearity.

Substitution Let 1i be an element of X such that 1ik = 0 for all k ∈ N\{i} and 1ii = 1. For
example, 12 = (0, 1, 0, . . . , 0). If we add 1i to a parliament, we obtain a new parliament
where an extra seat has been allocated to party i .

Suppose n = 3, the target π is (1/3, 1/3, 1/3) and consider the parliament x =
(10, 40, 50). Parties 2 and 3 are overrepresented. We move a seat from party 3 to party
2, yielding y = (10, 41, 49). Parties 2 and 3 are still overrepresented. It makes sense to
consider that we did not improve the situation: nothing changed for the underrepresented
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parties; they did not gain a single seat. We may therefore request that f (x, π) = f (y, π).
Put differently, we can move a seat in a parliament from a party to another, without changing
the index value, as long as both parties are in excess (or both in deficit) before and after the
change.

P 3 Substitution. Suppose [(xi − 1)/s(x) ≥ πi and x j/s(x) ≥ π j ] or [0 < xi/s(x) ≤ πi

and (x j + 1)/s(x) ≤ π j ]. Then f (x, π) = f (x − 1i + 1 j , π).

Notice that this condition is vacuous when n = 2. Substitution is satisfied by fDD. We only
show it for the first part of the condition (corresponding to the case of parties in excess).

fDD(x − 1i + 1 j , π) =
∣
∣
∣
∣
xi − 1

s(x)
− πi

∣
∣
∣
∣ +

∣
∣
∣
∣
x j + 1

s(x)
− π j

∣
∣
∣
∣ +

∑

k∈N\{i, j}

∣
∣
∣
∣
xk
s(x)

− πk

∣
∣
∣
∣ .

The dimensions in excess in x and x −1i +1 j are the same. The right-hand side of the above
equation can therefore be rewritten as

∣
∣
∣
∣
xi
s(x)

− πi

∣
∣
∣
∣ +

∣
∣
∣
∣
x j
s(x)

− π j

∣
∣
∣
∣ +

∑

k∈N\{i, j}

∣
∣
∣
∣
xk
s(x)

− πk

∣
∣
∣
∣ = fDD(x, π).

InvarianceWe need an additional condition to characterize fDD when π is not fixed. It says
that, if a parliament is perfectly proportional and if we move a seat from a party to another
(thus moving away from the target), then the value of the index is the same, whatever the
target is.

P 4 Invariance.For any i, j ∈ N and any λ ∈ N0, if λπ, λπ−1i +1 j , λπ ′, λπ ′−1i +1 j ∈ X
then f (λπ − 1i + 1 j , π) = f (λπ ′ − 1i + 1 j , π ′).

Index fDD satisfies Invariance. Indeed,

fDD(λπ − 1i + 1 j , π) =
∣
∣
∣
∣
λπi − 1

λ
− πi

∣
∣
∣
∣ +

∣
∣
∣
∣
λπ j + 1

λ
− π j

∣
∣
∣
∣ = 2

λ
.

In the same way, fDD(λπ ′ − 1i + 1 j , π ′) = 2/λ. This proves that fDD(λπ − 1i + 1 j , π) =
fDD(λπ ′ − 1i + 1 j , π ′).
Invariance is a kind of symmetry condition. It is, to some extent, a desirable property, but

it comes at a cost. Suppose indeed π = (1/3, 1/3, 1/3), π ′ = (1/300, 149/300, 150/300),
x = (99, 101, 100), y = (0, 150, 150) and consider the following situations: (a) parliament
x combined with target π and (b) parliament y combined with π ′. In both situations, party
one has one seat less than what it deserves. In situation (a), the relative deviation for party
1 is 1/100 (it deserves 100 seats); in situation (b), the relative deviation for party 1 is 1/1.
One could therefore argue that f (x, π) should be smaller than f (y, π ′). Yet Invariance (with
λ = 300, i = 1 and j = 2) implies f (x, π) = f (y, π ′).

3.1.2 Results

We can now state a first characterization theorem.6

6 A characterization of the L1 distance (obviously linked to index fDD) already exists (Fields and Ok 1996).
It is not completely relevant to our problem because the authors consider it as a distance between two points
in Rn while we are interested in the ‘distance’ between a point in NN and a point in QN with the constraint
that the sum of the coordinates be 1.
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Theorem 1 A disproportionality index f satisfies Homogeneity, Radial Linearity and
Substitution iff, for all π ∈ Π , there exists γπ ∈ R++ such that

f (x, π) = γπ

∑

i∈N

∣
∣
∣
∣
xi
s(x)

− πi

∣
∣
∣
∣ = γπ fDD(x, π). (1)

If Invariance is added to the list of necessary and sufficient conditions, then γπ = γπ ′ for all
π, π ′ ∈ Π . The properties are logically independent, but Substitution can be omitted when
n = 2.

The first part of this result (without Invariance) is useful when π is not allowed to vary.
The second part allows us to make comparisons of indices across parliaments in different
countries or across time, where π is not constant.

The idea of the proof7 is as follows.We first assumeπ is fixed andwe show that f depends
only on the relative distribution x/s(x), thanks to Homogeneity. Any parliament can then be
described by its position (x/s(x)) in the simplex Π . We then partition the set Π into several
domains. Each domain is characterized by a set of parties in excess (i.e., with a proportion
xi/s(x) larger than πi ). Using Radial Linearity, we show that f varies linearly on each line
segment in Π having π as an endpoint. Notice that such a line segment always belongs to
a single domain. We then show that, within a domain, the set of all points with equal value
of the index is a hyperplane, by Substitution. It follows that f is an affine function in each
domain and it can therefore be represented by (1).

3.2 Characterization of index fL

3.2.1 Properties

It is easy to check that fL does not satisfy Substitution. Does this imply that fL is a bad index?
We do not think so, because it is not that obvious that Substitution is a compelling condition in
all contexts, as illustrated in the following example. Suppose π = (1/4, 1/4, 1/4, 1/4); then,
according to Substitution, x = (0, 20, 25, 55) and y = (0, 20, 40, 40) must have the same
disproportionality.Yet peoplemay have a different opinion and reason as follows: parliaments
x and y do an equally bad job with respect to parties 1 and 2, but x does also discriminate
between parties 3 and 4, while y does not. So, one could argue that the disproportionality
index of y should be lower than that of x . In such a case, Substitution could be questioned.
We will therefore propose a slightly different condition, after introducing a new piece of
notation.

For every i ∈ N ,π being fixed, define P(i) = {x ∈ X : xi
s(x) −πi ≥

∣
∣
∣

x j
s(x) − π j

∣
∣
∣ ∀ j ∈ N }.

In words, P(i) is the set of all parliaments such that party i is in excess and has the maximal

deviation in absolute value. Similarly, M(i) = {x ∈ X : πi − xi
s(x) ≥

∣
∣
∣

x j
s(x) − π j

∣
∣
∣ ∀ j ∈ N }.

The set M(i) interprets similarly. For every i , P(i) and M(i) cannot be both empty.
Suppose n = 3, the target π is (1/3, 1/3, 1/3) and consider the parliament x =

(30, 30, 40). The largest deviation w.r.t. the target occurs for party 3. We move a seat from
party 1 to party 2, yielding y = (29, 31, 40). The largest deviation w.r.t. the target still occurs
for party 3. It makes sense to consider that we did not improve the situation: nothing changed
for the party with the maximal deviation; it did not gain or loose a single seat. We may
therefore request that f (x, π) = f (y, π). Put differently, we can move a seat in a parliament

7 All proofs are deferred to Sect. 5.

123

Author's personal copy



Annals of Operations Research

from a party to another, without changing the index value, as long as the parties with maximal
deviations remain so after the change. Formally,

P 5 Substitution*. Suppose that x and x − 1i + 1 j ∈ P(k) or x and x − 1i + 1 j ∈ M(k),
with k /∈ {i, j}. Then f (x, π) = f (x − 1i + 1 j , π).

Notice that this condition is vacuous when n = 2. Substitution* is satisfied by fL. We
show it only for the first part of the condition, the other part being similar. Since x and
x − 1i + 1 j ∈ P(k), with k /∈ {i, j}, we have

fL(x − 1i + 1 j , π) =
∣
∣
∣
∣
xk
s(x)

− πk

∣
∣
∣
∣ = fL(x, π).

3.2.2 Results

Proposition 1 (Particular case) If n = 2 or 3, then indices fDD and fL are identical, up to a
multiplicative constant. More precisely, fL = fDD/2.

Proposition 1 no longer holds when n ≥ 4. Indeed, let x = (30, 35, 20, 15), y =
(32, 37, 19, 12) and π = (1/4, 1/4, 1/4, 1/4). Then fL(x, π) = 0.1 and fL(y, π) = 0.13
while fDD(x, π) = 0.3 and fDD(y, π) = 0.38. So, there is no λ such that fL = λ fDD. We
now turn to the general case.

Theorem 2 A disproportionality index f satisfies Homogeneity, Radial Linearity and

Substitution* iff,∀π ∈ Π ,∃γπ ∈ R++ s.t. f (x, π) = γπ maxi∈N
∣
∣
∣

xi
s(x) − πi

∣
∣
∣ = γπ fL(x, π).

If Invariance is added to the list of necessary and sufficient conditions, then γπ = γπ ′ for all
π, π ′ ∈ Π . The properties are logically independent, but Substitution* can be omitted when
n = 2.

4 Discussion

We have shown that fL and fDD both satisfy Homogeneity, Radial Linearity and Invariance,
while they differ only by the kind of substitution they satisfy.

4.1 Properties for themeasurement of disproportionality in the literature

We mentioned in Sect. 1 the existence of some papers presenting properties for indices
of disproportionality. In this discussion, we will focus on the eight properties presented in
Koppel and Diskin (2009) because they largely overlap with properties in other papers and
they are more precisely stated than in the other papers (notice though that they are stated
for a proportionality index and not a disproportionality index, but it is easy to adapt them).
For space reasons, we will not discuss the eight properties individually. Let us just make two
remarks.

The eight properties are not strong enough to obtain a characterization. Indeed, the cosine
measure discussed in Koppel and Diskin (2009) satisfies all eight properties, but the square
or the square root of the cosine measure also satisfies all eight properties. So, we definitely
need to define some new ones in order to characterize some index. But, of course, we use
some of the properties proposed in Koppel and Diskin (2009) (their Scale Invariance is our
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Homogeneity) and some of our new properties, taken individually or jointly, imply or are
implied by someproperties inKoppel andDiskin (2009). For instance, theirDalton’s principle
of transfers is implied by our Radial Linearity.

Second, we find some of the properties used in Koppel and Diskin (2009) irrelevant for
characterizing an index. In particular, that the maximal value of the index should be 1. A
maximal value equal to 100 (or any positive number) would be equally fine. It is just a matter
of convenience, without any substantial consequence.

4.2 Index versus ranking

There are cases where we need a ranking of the parliaments and not an index. Since many
indices induce the same ranking,8 we need stronger properties for characterizing an index
than for characterizing a ranking. In particular, the ranking induced by fDD (resp. fL) is
characterized by Homogeneity, Substitution (resp. Substitution*), Invariance (all restated in
terms of rankings) and a monotonicity condition much weaker than Radial Linearity.

4.3 Comparisons across elections

Our setting assumes that the set N of parties does not vary. Yet, if we want to compare the
disproportionality of two parliaments after two different elections (in the same country at
time t1 and t2 or in different countries), we will probably face different sets of parties. We
saw in Sect. 2 that this problem can be tackled by adopting a large set N of parties so that
any realistic situation can be modelled by imposing πi = 0 = xi for some i’s. This raises
some questions.

Is an election with 4 parties equivalent to an election with the same 4 plus 96 other parties
having zero vote? If we want to analyze indices like the Rae index,9 where the number of
parties plays a role in the definition of the index, then our setting is not adequate, because
the number of parties is some large number without any real meaning and it does not vary.
Yet, for the indices characterized in this paper and for most popular indices, adding dummies
does not impact the value of the disproportionality index. So, although not perfect, our setting
seems fine for analyzing many interesting indices.

Is there a better setting? There is at least a more general one. We can consider a universal
set Ω of parties, for instance Ω = N, and, for each particular election, a specific subset
N of Ω . The index f is then a function with three arguments: N , x and π . We can then
compare f (N , x, π) with f (N ′, x ′, π ′). In such a setting, it would be tempting to impose
the following condition: f (N , x, π) = f (N ′, x ′, π ′) whenever i /∈ N , N ′ = N ∪ {i},
x ′
i = 0 = π ′

i , x
′
j = x j and π ′

j = π j for all j ∈ N . This amounts to saying that adding a party
without votes nor seats to an election does not modify the disproportionality index. This is
of course not the case for the Rae index, but it holds for most popular indices. If we impose
this property, then the remaining set of indices is exactly the set we can analyze in our setting
with N fixed. This justifies the use of our setting. If we do not impose this property, then
we can analyze a larger set of indices. We can also state some interesting properties saying,
for instance, what should happen when several parties merge into a bigger one, inheriting all
votes issued in favor of the original parties (as in Independence from split, Karpov 2008).

8 Notice that fDD, f
2
DD and exp( fDD) all induce the same ranking. Actually, all strictly increasing functions

of a given index induce the same ranking as that index.
9 The Rae index is defined as fDD/n.
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This is not possible in our setting with N fixed. This shows the superiority of themore general
setting, but it comes at a price: a heavier formalism.

In conclusion, no setting is perfect. Thanks to the simplicity of our setting, we can use a
simple notation and focus on some simple ideas underlying the Duncan and Duncan index
as well as the Lijphart index.

5 Proofs

Lemma 1 Suppose π is fixed. If a diversity index f satisfies Homogeneity, then f (x, π) =
F(x/s(x)), for some mapping F : Π → R+.

Proof Since π is fixed, we can define a mapping g : X → R+ such that f (x, π) = g(x).
Define the mapping F : Π → R+ as follows. For any p ∈ Π , F(p) = g(x) if there is
x ∈ X such that p = x/s(x). The mapping F is defined everywhere because p has rational
components and, hence, there is always x ∈ X such that p = x/s(x). The mapping F is
well defined. Indeed, suppose there are x, y such that p = x/s(x) and p = y/s(y). By
Homogeneity, f (x, π) = f (y, π). Therefore, F(p) = g(x) = g(y). �


Thanks to this lemma, whenπ is fixed, we can consider f as amapping defined on the (n−
1)dimensional simplexΠ (more precisely, the points in the simplexwith rational coordinates)
and we can therefore use a graphical representation when there are three categories, as in
Fig. 1.

Lemma 2 Suppose p, q are two elements of Π such that p = απ + (1 − α)q for some
α ∈ [0, 1]. If f satisfies Homogeneity and Radial Linearity, then

F

(
p + q

2

)

= F(p) + F(q)

2
, (2)

with F defined as in Lemma 1.

Proof Clearly, (p + q)/2 belongs to Π . Since F is defined everywhere, there are two
parliaments x, y such that x/s(x) = p and y/s(y) = q . Hence F(p) = f (x, π) and
F(q) = f (y, π). By Homogeneity, F(p) = f (x, π) = f (2s(y)x, π) and F(q) =
f (y, π) = f (2s(x)y, π). The two parliaments s(y)x and s(x)y have the same size, i.e.,
s(x)s(y). Moreover, s(y)x = αs(s(y)x)π + (1 − α)s(x)y for some α ∈ [0, 1] and
(2s(y)x + 2s(x)y)/2 ∈ X . Hence we can apply Radial Linearity and we find

F(p) + F(q)

2
= f (2s(y)x, π) + f (2s(x)y, π)

2
Rad.Lin.= f

(
s(y)x + s(x)y, π

)
.

By definition of F ,

f (s(y)x + s(x)y, π) = F

(
s(y)x + s(x)y

2s(x)s(y)

)

= F

(
p + q

2

)

,

from which we easily infer (2). �

Let us consider a non-empty strict subset J ⊂ N and define

ΠJ = {p ∈ Π : pi ≥ πi ∀i ∈ J and pi ≤ πi ∀i /∈ J }.
All these subsets are represented in Fig. 1 left (in case n = 3). Notice that the union of all such
sets (letting J vary) covers Π ; formally,

⋃
∅�=J�N ΠJ = Π. But these sets do not partition
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π

∏
{1,2}

∏
{1}

∏
{2}∏

{2,3}

∏
{3}

∏
{1,3}

(1,0,0)

(0,1,0)(0,0,1)

π

P(p,{1,2})

(1,0,0)

(0,1,0)(0,0,1)

p

Fig. 1 Left: the domains ΠJ . The set Π consists of all points in the triangle with rational coordinates. Right:
an affine subspace P(p, J )

Π because they intersect (when some pi = πi ). In particular, ∀J ⊂ N , J �= ∅, π ∈ ΠJ .
Notice also that ΠJ contains only one point in some cases. More precisely, ΠJ = {π} iff
πi = 0 for all i /∈ J .

Lemma 3 Suppose π is fixed. For every non-empty J ⊂ N, the set ΠJ is rational convex,
i.e., ∀p, q ∈ ΠJ , ∀α ∈ [0, 1] ∩ Q, α p + (1 − α)q ∈ ΠJ .

Proof This results from the fact thatΠJ is the intersection of two rational convex sets: (1) the
polyhedral conewith vertexπ , defined by the inequalities pi ≥ πi ∀i ∈ J and pi ≤ πi ∀i /∈ J
and (2) the set Π . �


Given a point p ∈ Π , there can be several non-empty sets J ⊂ N such that p ∈ ΠJ (this
is the case when pi = πi for some i ∈ N ). For every p ∈ Π , if p ∈ ΠJ , we define the

set P(p, J ) =
{
q ∈ ΠJ : ∑

j∈J q j = ∑
j∈J p j

}
. The set P(p, J ) is the intersection of the

convex set ΠJ , located in the hyperplane {q ∈ QN : ∑
j∈N q j = 1}, with the hyperplane

{q ∈ QN : ∑
j∈J q j = ∑

j∈J p j }.WheneverΠJ is not reduced to {π}, these twohyperplanes
are distinct and, hence, P(p, J ) is located in an affine subspace of dimension n − 2 in QN .
A set P(p, J ) is depicted in Fig. 1 right (with n = 3). The sets P(p, J ) with p varying in
ΠJ form a partition of ΠJ because, for all p, p′ ∈ ΠJ , we have P(p, J ) �= P(p′, J ) iff∑

j∈J p j �= ∑
j∈J p′

j .

Lemma 4 Suppose π is fixed. If ΠJ �= {π}, then
min
p∈ΠJ

∑

j∈J

p j =
∑

j∈J

π j < max
p∈ΠJ

∑

j∈J

p j = 1.

The maximum is attained by all p ∈ ΠJ such that p j = 0 for all j /∈ J .

Proof If ΠJ �= {π}, there is p ∈ ΠJ such that p �= π . Hence, for some j ∈ J , p j > π j

and, consequently,
∑

j∈J p j >
∑

j∈J π j . Since π ∈ ΠJ , this establishes that
∑

j∈J π j =
minp∈ΠJ

∑
j∈J p j < maxp∈ΠJ

∑
j∈J p j .

Clearly, if p is such that p j = 0 for all j /∈ J , then
∑

j∈J p j = 1 and this sum is maximal.
Such a p always exists, since J �= N . �

Lemma 5 Suppose π is fixed and f satisfies Homogeneity and Substitution. For every non-
empty J ⊂ N, ∀p ∈ ΠJ , ∀q ∈ P(p, J ), we have F(p) = F(q).
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Proof Consider some p, q as in the statement of the lemma. By definition of F , there are
x, y such that p = x/s(x) and q = y/s(y). By Homogeneity, f (x, π) = f (s(y)x, π) and
f (y, π) = f (s(x)y, π). The two parliaments s(y)x and s(x)y have the same size. More-
over

∑
j∈J q j = ∑

j∈J p j and
∑

j /∈J q j = ∑
j /∈J p j . We therefore have

∑
j∈J s(x)y j =∑

j∈J s(y)x j and
∑

j /∈J s(x)y j = ∑
j /∈J s(y)x j . This means that we can ‘move’ from

s(x)y to s(y)x by a series of successive exchanges between pairs of dimensions in excess
or between pairs of dimension in deficit, as in the statement of Substitution. Therefore,
f (s(x)y, π) = f (s(y)x, π) and F(p) = F(q). �

Lemma 6 Suppose π is fixed and f satisfies Homogeneity and Radial Linearity. Let J be a
non-empty subset of N , and p be an element of ΠJ such that

∑
j∈J p j = 1. Then F varies

linearly along the rational segment rJ joining π to p. More precisely, for p = α p+(1−α)π ,
with α ∈ [0, 1] ∩Q, F(p) = αF(p). Furthermore, we have F(p) = γ J

π

∑
i∈N |pi − πi | for

some real number γ J
π .

Proof If ΠJ = {π}, there is nothing to prove. Otherwise, using Lemma 4, there is p ∈ ΠJ

such that
∑

j∈J p j = 1 = maxp∈ΠJ

∑
j∈J p j . Let p = α p + (1 − α)π , for some α ∈

[0, 1] ∩ Q. Such a point belongs to ΠJ since ΠJ is rational convex. We define the function
G : [0, 1] ∩ Q → R+ by G(α) = F(p). Consider another point q = β p + (1 − β)π ,
β ∈ [0, 1] ∩ Q. We have (p + q)/2 ∈ ΠJ and

p + q

2
= α + β

2
p +

(

1 − α + β

2

)

π.

Hence (2) can be rewritten as G
(

α+β
2

)
= G(α)+G(β)

2 . This is Jensen’s equation and it holds

for all rational α, β ∈ [0, 1]. Its unique solution is G(α) = aα + b (Aczél 1966, p. 43).
Hence F(α p + (1 − α)π) = αa + b.

Letting α = 0, we obtain F(π) = 0 = b. Letting α = 1, F(p) = a obtains. Hence,
F(α p + (1 − α)π) = αF(p). This proves that F varies linearly along the rational segment
rJ joining π to p.

If p = α p + (1 − α)π , then

∑

j∈J

p j =
∑

j∈J

(α p j + (1 − α)π j ) = α
∑

j∈J

p j + (1 − α)
∑

j∈J

π j =
∑

j∈J

π j + α

⎛

⎝1 −
∑

j∈J

π j

⎞

⎠ .

Hence α =
∑

j∈J (p j−π j )

1−∑
j∈J π j

. Since
∑

j∈J (p j − π j ) + ∑
j /∈J (p j − π j ) = 0, we get

α =
∑

j∈J (p j − π j ) − ∑
j /∈J (p j − π j )

2
(
1 − ∑

j∈J π j

) =
∑

j∈J (p j − π j ) + ∑
j /∈J

∣
∣p j − π j

∣
∣

2
(
1 − ∑

j∈J π j

)

=
∑

j∈N
∣
∣p j − π j

∣
∣

2
(
1 − ∑

j∈J π j

)

and

F(α p + (1 − α)π) =
∑

j∈N
∣
∣p j − π j

∣
∣

2
(
1 − ∑

j∈J π j

) F(p).

Letting γ J
π = F(p)

2
(
1−∑

j∈J π j

) , we obtain F(α p + (1 − α)π) = γ J
π

∑
j∈N

∣
∣p j − π j

∣
∣ . �
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Lemma 7 ∀J ⊂ N , J �= ∅, ∀q ∈ ΠJ , ∃p = α p + (1 − α)π s.t. q ∈ P(p, π).

Proof Let α =
∑

j∈J (q j−π j )∑
j /∈J π j

. For p = α p + (1 − α)π , straightforward calculations show

that
∑

j∈J p j = ∑
j∈J q j and therefore q ∈ P(p, π). �


Lemma 8 Suppose π is fixed and f satisfies Homogeneity, Substitution and Radial Linearity.
For every J ⊂ N , J �= ∅, ∀p ∈ ΠJ , F(p) = γ J

π

∑
i∈N |pi − πi | for some real number γ J

π .

Proof Fix J . If ΠJ = {π}, there is nothing to prove. We suppose henceforth that ΠJ �= {π}.
For any p ∈ ΠJ , by Lemma 7, there is q = α p + (1 − α)π such that p ∈ P(q, π) and, by
Lemma 5, F(p) = F(q). By Lemma 6, F(p) = F(q) = γ J

π

∑
i∈N |qi − πi |.

Since p and q both belong to ΠJ and
∑

j∈J q j = ∑
j∈J p j (see proof of Lemma 7), we

have
∑

i∈N |qi − πi | = ∑
i∈N |pi − πi |. Therefore, F(p) = F(q) = γ J

π

∑
i∈N |qi − πi | =

γ J
π

∑
i∈N |pi − πi |. �


Lemma 9 Suppose π is fixed and f satisfies Homogeneity, Substitution and Radial Linearity.
There is some γπ ∈ R++ such that, ∀J ⊂ N , J �= ∅ and for every p ∈ ΠJ , we have
F(p) = γπ

∑
i∈N |pi − πi |.

Proof Let I ⊆ N be such that |I | ≥ 2 and j ∈ I . Define J = I\{ j}. If ΠJ = {π}, then we
can choose γ J

π equal to γ I
π without any consequence. Otherwise, there exists p ∈ ΠI ∩ ΠJ ,

with p �= π . It is such that p j = π j . Because p ∈ ΠI ∩ ΠJ , we can write (by Lemma 8)

F(p) = γ I
π

∑

i∈N
|pi − πi | = γ J

π

∑

i∈N
|pi − πi | .

Since
∑

i∈N |pi − πi | �= 0 (because p �= π ), we obtain γ I
π = γ J

π .
Consider now a set I ⊆ N such that |I | ≤ n − 2 and i /∈ I . Define J = I ∪ {i}. The same

reasoning as above shows that γ I
π = γ J

π .
Let I and K be two arbitrary non-empty subsets such that I �= N �= K . We want to show

that γ I
π = γ K

π . We consider two exclusive cases.

1. I ∩ K �= ∅. We rename the elements of I\K so that I\K = {y1, . . . , yk}. Using the
reasoning in the first part of this proof, we find γ I

π = γ
I\{y1}
π = γ

I\{y1,y2}
π = · · · =

γ
I\(I\K )
π = γ I∩K

π . We rename the elements of K\I so that K\I = {z1, . . . , zl}. Using
the reasoning in the first part of this proof, we find γ I

π = γ I∩K
π = γ

(I∩K )∪{z1}
π =

γ
(I∩K )∪{z1,z2}
π = · · · = γ

(I∩K )∪(K\I )
π . Since (I ∩ K )∪ (K\I ) = K , we have proven that

γ I
π = γ K

π .
2. I ∩K = ∅. We rename the elements of I so that I = {y1, . . . , yk}. Using the reasoning in

the first part of this proof , we find γ I
π = γ

I\{y1}
π = γ

I\{y1,y2}
π = · · · = γ

I\{y1,...,yk−1}
π =

γ
{yk }
π . Notice we have not removed yk from I to avoid considering an empty set. We will

remove yk later.

We rename the elements of K so that K = {z1, . . . , zl}. Using again the reasoning in the
first part of the proof of this lemma, we find γ I

π = γ
{yk }
π = γ

{yk }∪{z1}
π = γ

{yk }∪{z1,z2}
π =

γ
{yk }∪{z1,...,zl }
π = γ {z1,...,zl } = γ K

π .

This proves that γ I
π = γ J

π for all non-empty subsets I , J of N . Finally, γπ ∈ R++ because
we have imposed in our definition of the diversity index that f (x, π) ≥ 0 for all x ∈ X and
f (x, π) = 0 iff x/s(x) = π . �
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Proof of Theorem 1 Necessity has already been proved.We first assumeπ is fixed. According
to Lemma 9 and to the definition of F and g (see Lemma 1), we can write f (x, π) = g(x) =
γπ

∑
i∈N |xi/s(x) − πi |.

Suppose now π is allowed to vary. By the first part of Theorem 1, we have f (x, π) =
γπ

∑
i∈N

∣
∣
∣

xi
s(x) − πi

∣
∣
∣, for every π ∈ Π . Let π∗ ∈ Π be a target such that π∗

i > 0 for all

i ∈ N . We will show that, for any π ∈ Π , we have γπ = γπ∗ .
Let λ be a natural number such that λπ, λπ∗ ∈ NN and λπ j , λπ∗

j ≥ 1 for some j ∈ N .
By Invariance,

f (λπ + 1i − 1 j , π) = 2γπ/λ = f (λπ∗ + 1i − 1 j , π∗) = 2γπ∗/λ.

Hence γπ = γπ∗ . This proves that γπ does actually not depend on π .
For the logical independence of the properties in Theorem 1, we provide four examples

violating one and only one property.

– Invariance f (x, π) = γπ

∑
i∈N

∣
∣
∣

xi
s(x) − πi

∣
∣
∣, with γπ non-constant and positive. For

instance, we could choose γπ in such a way that f be normalized between 0 and 1, i.e.,
such that maxx∈X f (x, π) = 1.

– Homogeneity f (x, π) = ∑
i∈N |xi − s(x)πi | . This index is similar to fDD but is based

on deviations between absolute frequencies instead of deviations between relative fre-
quencies.

– Substitution (when n ≥ 3): f (x, π) = fL(x, π).

– Radial Linearity f (x, π) =
(∑

i∈N
∣
∣
∣

xi
s(x) − πi

∣
∣
∣
)2

.

�

Proof of Proposition 1 Case n = 2. Suppose x ∈ ΠJ , with J ⊂ N and J �= ∅. We assume

w.l.o.g. J = {1}. Then
∣
∣
∣ x1
s(x) − π1

∣
∣
∣ =

∣
∣
∣ x2
s(x) − π2

∣
∣
∣ = max

(∣
∣
∣ x1
s(x) − π1

∣
∣
∣ ,

∣
∣
∣ x2
s(x) − π2

∣
∣
∣
)
. Hence,

∑
i∈N

∣
∣
∣

xi
s(x) − πi

∣
∣
∣ = 2maxi∈N

∣
∣
∣

xi
s(x) − πi

∣
∣
∣ .

Case n = 3. Suppose x ∈ ΠJ , with J ⊂ N and J non-empty. Two cases can arise: (1)

J = {i} or (2) J = {i, j}. In case (1), we assume w.l.o.g. J = {1}. Then
∣
∣
∣ x1
s(x) − π1

∣
∣
∣ =

∣
∣
∣ x2
s(x) − π2

∣
∣
∣ +

∣
∣
∣ x3
s(x) − π3

∣
∣
∣ and

∣
∣
∣ x1
s(x) − π1

∣
∣
∣ ≥ max

(∣
∣
∣ x2
s(x) − π2

∣
∣
∣ ,

∣
∣
∣ x3
s(x) − π3

∣
∣
∣
)
. Hence,

∑

i∈N

∣
∣
∣
∣
xi
s(x)

− πi

∣
∣
∣
∣ =

∣
∣
∣
∣
x1
s(x)

− π1

∣
∣
∣
∣ +

∣
∣
∣
∣
x2
s(x)

− π2

∣
∣
∣
∣ +

∣
∣
∣
∣
x3
s(x)

− π3

∣
∣
∣
∣

= 2

∣
∣
∣
∣
x1
s(x)

− π1

∣
∣
∣
∣ = 2 max

i∈N

∣
∣
∣
∣
xi
s(x)

− πi

∣
∣
∣
∣ .

In case (2), the reasoning is similar. �

Lemma 10 (necessity of some conditions for fL) Index fL satisfies Homogeneity, Radial
Linearity, Substitution* and Invariance.

Proof We already proved that Substitution* is necessary and Homogeneity obviously holds.
Let us show the necessity of Radial Linearity. We have

fL

(
x + y

2
, π

)

= max
i∈N

∣
∣
∣
∣πi − xi + yi

2s(x)

∣
∣
∣
∣ = 1

2
max
i∈N

∣
∣
∣
∣2πi − xi + yi

s(x)

∣
∣
∣
∣

= 1

2
max
i∈N

∣
∣
∣
∣πi − xi

s(x)
+ πi − yi

s(y)

∣
∣
∣
∣ .
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Using x = αs(x)π + (1 − α)y and the fact that πi − xi/s(x) ≥ 0 iff πi − yi/s(y) ≥ 0, we
have fL

( x+y
2 , π

)

= 1

2
max
i∈N

∣
∣
∣
∣πi − xi

s(x)
+ πi − yi

s(y)

∣
∣
∣
∣ = 1

2
max
i∈N

(∣
∣
∣
∣πi − xi

s(x)

∣
∣
∣
∣ +

∣
∣
∣
∣πi − yi

s(y)

∣
∣
∣
∣

)

= 1

2

(

max
i∈N

∣
∣
∣
∣πi − xi

s(x)

∣
∣
∣
∣ + max

i∈N

∣
∣
∣
∣πi − yi

s(y)

∣
∣
∣
∣

)

= fL(x, π) + fL(y, π)

2
.

Necessity of Invariance: fL(λπ + 1i − 1 j , π) =
∣
∣
∣
λπi+1

λ
− πi

∣
∣
∣ = 1/λ. In the same way,

fL(λπ ′ +1i −1 j , π ′) = 1/λ. This proves that fL(λπ +1i −1 j , π) = fL(λπ ′ +1i −1 j , π ′).
�


For every i ∈ N ,π being fixed, defineΠ+
i = {p ∈ Π : pi −πi ≥ ∣

∣p j − π j
∣
∣ ∀ j ∈ N\{i}}

and Π−
i = {p ∈ Π : πi − pi ≥ ∣

∣p j − π j
∣
∣ ∀ j ∈ N\{i}}. If n = 2 or 3, then, ∀i ∈ N ,

Π+
i = Π{i} and Π−

i = ΠN\{i} (Π{i} has been defined just after the proof of Lemma 2). But
these identities are no longer true when n > 3. Notice that

⋃
i∈N (Π+

i ∪ Π−
i ) = Π. These

sets do not partition Π because they intersect. In particular, ∀i ∈ N , the point π belongs
to Π+

i and Π−
i . Notice also that Π+

i and Π−
i contain only one point in some cases. More

precisely, Π+
i = {π} if πi = 1. Similarly, Π−

i = {π} if πi = 0.

Lemma 11 Suppose π is fixed. For i ∈ N, the set Π+
i is rational convex, i.e., ∀p, q ∈ Π+

i ,
∀α ∈ [0, 1] ∩ Q, α p + (1 − α)q ∈ Π+

i . Π−
i is also rational convex.

Proof This results from the fact that Π+
i is the intersection of n rational convex sets: (1)

n − 1 sets corresponding to the inequalities pi − πi ≥ ∣
∣p j − π j

∣
∣ ∀ j ∈ N\{i} and (2) the

set Π . The proof for Π−
i is similar �


Given a point p ∈ Π , there can be several i ∈ N such that p ∈ Π+
i or p ∈ Π−

i . For every
p ∈ Π , if p ∈ Π+

i , we define the set P+(p, i) = {
q ∈ Π+

i : qi = pi
}
and, if p ∈ Π−

i ,
we define the set P−(p, i) = {

q ∈ Π−
i : qi = pi

}
. Notice that P+(p, i) and P−(p, i) are

included in an affine subspace of dimension n − 2 containing p. This affine subspace is the
intersection of the hyperplane

∑
i∈N pi = 1 with the hyperplane defined by qi = pi .

Lemma 12 Suppose π is fixed and the diversity index f satisfies Homogeneity and
Substitution*. For every i ∈ N, for every p ∈ Π+

i (resp. Π−
i ),

1. ∀q ∈ P+(p, i) (resp. P−(p, i)), we have F(p) = F(q), with F as in Lemma 1;
2. F(p) depends only on pi .

Proof We prove it only for p ∈ Π+
i and q ∈ P+(p, i).

(1) Consider some p, q as in the statement of the lemma. By definition of F , there are
x, y such that p = x/s(x) and q = y/s(y). By Homogeneity, f (x, π) = f (s(y)x, π) and
f (y, π) = f (s(x)y, π). The two parliaments s(y)x and s(x)y have the same size. Moreover
qi = pi . We therefore have s(x)yi = s(y)xi . This means that we can ‘move’ from s(x)y to
s(y)x by a series of successive exchanges between pairs of dimensions different from i , as in
the statement of Substitution*. Therefore, f (s(x)y, π) = f (s(y)x, π) and F(p) = F(q).

(2) For every q ∈ P+(p, i), F(q) = F(p). Besides, q ∈ P+(p, i) iff qi = pi . Therefore,
F(q) only depends on qi and F(p) only depends on pi . �

Lemma 13 Suppose π is fixed. Define the line segment r i (resp. si ) with endpoints π and 1i

(resp. π and (π − (πi1i ))/(1 − πi )). For every p ∈ Π+
i , the set P+(p, i) intersects r i . For

every p ∈ Π−
i , the set P−(p, i) intersects si .
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Proof By construction, r i ∈ Π+
i and si ∈ Π−

i . For every p ∈ Π+
i , we have πi ≤ pi ≤ 1. By

construction, there is q ∈ r i such that qi = pi . Hence q ∈ P+(p, i). For every p ∈ Π−
i , we

have 0 ≤ pi ≤ πi . By construction, there is q ∈ si such that qi = pi . Hence q ∈ P−(p, i).
�


Lemma 14 Suppose π is fixed and f satisfies Homogeneity and Radial Linearity. For each
i ∈ N, F varies linearly along ri in Π+

i (resp. si in Π−
i ).

Proof We prove it only for Π+
i . If Π+

i = {π}, there is nothing to prove. We suppose
henceforth that Π+

i �= {π}. Every point of r i can be written as απ + (1 − α)p, with
α ∈ [0, 1] ∩ Q. Define the mapping G : [0, 1] ∩ Q → R+ by G(α) = F(p) if p =
απ + (1 − α)p. G is clearly well-defined. Consider any two points p, q ∈ r i , the position
of which on r i is characterized by α and β respectively. Clearly, (p + q)/2 ∈ r i and
p+q
2 = α+β

2 π +
(
1 − α+β

2

)
p with (α + β)/2 ∈ [0, 1] ∩ Q. Hence (2) can be written as

G
(

α+β
2

)
= G(α)+G(β)

2 . This is Jensen’s equation and it holds for all α, β ∈ [0, 1] ∩ Q. Its

unique solution is G(α) = aα + b (Aczél 1966, p. 43). Hence, F varies linearly along the
line segment r i . �

Lemma 15 Suppose π is fixed and the diversity index f satisfies Homogeneity, Substitution*
and Radial Linearity. For every i ∈ N, for every p ∈ Π+

i , F(p) = γ +
i,π maxi∈N |pi − πi |

for some positive real number γ +
i,π . Similarly, for every i ∈ N, for every p ∈ Π−

i , F(p) =
γ −
i,π maxi∈N |pi − πi | for some positive real number γ −

i,π .

Proof We prove it only for Π+
i . Fix i . If Π+

i = {π}, there is nothing to prove. We suppose
henceforth thatΠ+

i �= {π}. We know fromLemma 12 that F is constant in each set P+(p, i),
for all p ∈ Π+

i , and depends only on pi . By Lemma 13, we know that each set P+(p, i)
intersects the line segment r i . Finally, Lemma 14 tells us that F varies linearly along r i .

In conclusion, F(p) = γ +
i,π pi + δ+

i for some real numbers γ +
i,π , δ+

i . Notice that these

real numbers are indexed by i because they can be different in every set Π+
i . The definition

of a diversity index imposes that F(π) = γ +
i,ππi + δ+

i = 0. Hence, δ+
i = −γ +

i,ππi and

F(p) = γ +
i,π (pi − πi ) = γ +

i,π max j∈N
∣
∣p j − π j

∣
∣. �


Lemma 16 Suppose n ≥ 3, π is fixed and the diversity index f satisfies Homogeneity,
Substitution* and Radial Linearity. There exists γπ ∈ R++ such that, for every i ∈ N and
for every p ∈ Π+

i , F(p) = γπ maxi∈N |pi − πi |.
Proof Choose some i ∈ N with Π+

i �= {π}. Choose some other j ∈ N . If Π−
j = {π},

then we can choose γ −
j,π equal to γ +

i,π without any consequence. Otherwise, define p by
pi = πi + ε, p j = π j − ε and pk = πk for every k �= i, j . If we choose ε small enough, we
are sure that p ∈ Π+

i ∩ Π−
j , with p �= π . Because p ∈ Π+

i ∩ Π−
j , we have (by Lemma 15)

F(p) = γ +
i,π maxi∈N |pi − πi | = γ −

j,π maxi∈N |pi − πi | . Since maxi∈N |pi − πi | �= 0

(because p �= π), we obtain γ +
i,π = γ −

j,π . We can repeat the same reasoning and we then find

for instance γ +
i,π = γ −

j,π = γ +
k,π = γ −

i,π = · · · This proves that γ +
i,π = γ +

j,π = γ −
i,π = γ −

j,π
for all i, j ∈ N . Finally, γπ ∈ R++ because, by definition of the diversity index, f (x, π) ≥ 0
for all x ∈ X and f (x, π) = 0 iff x/s(x) = π . �

Proof of Theorem 2 Necessity has been proved in Lemma 10. If n = 2, Substitution and
Substitution* are vacuous and, hence, the properties of Theorems 1 and 2 are equivalent.
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We therefore know that f = γπ fDD for some γπ . By Proposition 1, we also know that
fDD = 2 fL. In conclusion, f = 2γπ fL.
We now assume π is fixed and n ≥ 3. Thanks to Lemma 16 and the definition of F and

g (Lemma 1), we find f (x, π) = g(x) = γπ maxi∈N |xi/s(x) − πi |.
We turn to the case where π is allowed to vary. By Theorem 2, we know that, for every

π ∈ Π , f (x, π) = γπ maxi∈N
∣
∣
∣

xi
s(x) − πi

∣
∣
∣. Let π∗ ∈ Π be a target such that π∗

i > 0 for all

i ∈ N . We will show that, ∀π ∈ Π , we have γπ = γπ∗ . Let λ be a natural number such that
λπ, λπ∗ ∈ NN and λπ j , λπ∗

j ≥ 1 for some j ∈ N . By Invariance, f (λπ + 1i − 1 j , π) =
γπ/λ = f (λπ∗ +1i −1 j , π∗) = γπ∗/λ.Hence γπ = γπ∗ . This proves that γπ does actually
not depend on π and that f can be written as in the statement of Theorem 2.

For the logical independence of the properties in Theorem 2, we provide four examples
violating one and only one property.

– Invariance f (x, π) = γπ maxi∈N
∣
∣
∣

xi
s(x) − πi

∣
∣
∣ , with γπ > 0 and non-constant.

– Homogeneity f (x, π) = maxi∈N |xi − s(x)πi | .
– Substitution*: f (x, π) = fDD(x, π).

– Radial Linearity f (x, π) =
(
maxi∈N

∣
∣
∣

xi
s(x) − πi

∣
∣
∣
)2

. �
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