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a b s t r a c t

Necessary and sufficient conditions under which semiorders on uncountable sets can be represented
by a real-valued function and a constant threshold are known. We show that the proof strategy that
we used for constructing representations in the case of denumerable semiorders can be adapted to the
uncountable case. We use it to give an alternative proof of the existence of strict unit representations.
In contrast to the countable case, semiorders on uncountable sets that admit a strict unit representation
do not necessarily admit a nonstrict unit representation, and conversely. By adapting the proof strategy
used for strict unit representations, we establish a characterization of the semiorders that admit a
nonstrict representation. Conditions for the existence of other special unit representations are also
obtained.
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1. Introduction

Semiorders were introduced as a way of representing stimuli
ntensities as they are perceived by a subject. A stimulus is not
erceived as more intense than another, unless it is more intense
y at least some minimal value called just noticeable difference
JND). The relation on a set of stimuli, comparing their intensities,
as the peculiarity that indifference (i.e., stimuli indistinctness)
ay be intransitive. Luce (1956) defined and studied relations al-

owing to capture such comparisons, that he called semiorders. We
efer to Aleskerov et al. (2007), Fishburn (1970, 1985), Monjardet
1978), Pirlot and Vincke (1997), Roubens and Vincke (1985) and
uppes et al. (1989) for detailed studies of various properties of
emiorders.
All such relations, provided they are defined on finite sets

f objects (e.g., stimuli), admit a numerical representation using
eal numbers and a positive constant threshold. This constant
hreshold is closely related to the just noticeable difference. More
ecently, authors have considered semiorders on denumerable
i.e., finite or countably infinite) and on uncountable sets of
bjects, respectively. Not all semiorders on infinite sets can be
epresented by a value function and a constant threshold. Beja
nd Gilboa (1992) and Manders (1981) have given an additional
ecessary and sufficient condition guaranteeing that semiorders
n denumerable sets can be represented in this way. Bouyssou
nd Pirlot (2021) give an alternative proof of this result. The latter
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proof is, in a sense, constructive. It relies on a double decom-
position of the set of objects. This set is first decomposed into
connected components of the indifference relation. Second, each
connected component is partitioned into maximal indifference
classes. One of these classes is selected as a ‘‘baseline’’ in which
a representative (which we call ‘‘ghost’’) of each other object
is inserted in an appropriate order. Finally, using a numerical
representation of the order on the baseline, we construct a nu-
merical representation of the semiorder with unit threshold. In
the present paper, we follow the same ideas of proof to deal with
uncountable sets of objects.1

There are actually (at least) two inequivalent ways of defin-
ing constant threshold real valued numerical representations of
semiorders. Scott and Suppes (1958) consider numerical repre-
sentations (u, k) consisting of a real-valued function u defined on
the set of objects and a constant threshold k > 0. The fact that
stimulus x is definitely perceived as more intense than stimulus y
is represented by the following strict inequality: u(x) > u(y) + k.
he threshold k can thus be interpreted as the largest unnotice-
ble difference. Alternatively, it can be decided to represent the
ame fact by the nonstrict inequality: u(x) ≥ u(y) + k. Here k
an be interpreted as the least noticeable difference. We shall
all the former type of representation strict; the latter shall be
alled nonstrict. While the existence of one type of representation
mplies that of the other type for semiorders on finite sets (Pirlot
Vincke, 1997, p. 72) and countably infinite sets (Beja & Gilboa,
992, Th. 3.8, p. 436), this is no longer the case for semiorders on
ncountable sets.

1 We emphasize that the present paper is self-contained and can be read
ndependently of the one dealing with denumerable semiorders.
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In the general case, two different sets of necessary and suf-
ficient conditions for the existence of a strict representation
(also called a Scott–Suppes representation) have been estab-
lished by Beja and Gilboa (1992) and by Candeal and Induráin
(2010) (see also Giarlotta & Watson, 2016, who derive Candeal
and Induráin’s result from of a more general analysis). Both
characterizations have in common a condition that guarantees
the existence of a strict representation in the denumerable case
(we call it the Bounded P-chain condition below). On the top
of it, Candeal and Induráin impose a new separability condition
that they name s-separability. In this work, we factorize the s-
eparability condition into the usual Debreu-separability of the
race (i.e., of the complete preorder induced by the semiorder
n the set of objects) and another condition that is easily inter-
retable. This analysis clarifies the relationships between Candeal
nd Induráin’s and Beja and Gilboa’s characterizations. Then,
sing the same strategy of proof as in Bouyssou and Pirlot (2021),
e give an alternative proof of Candeal and Induráin (2010)’s
esult. We shall discuss later the interest of this method.

Semiorders on uncountable sets that admit a nonstrict rep-
esentation have been characterized by Beja and Gilboa (1992)
while Candeal and Induráin (2010) did not tackle this question).
e establish another characterization, relying on the same proof

trategy as before, using a condition similar to s-separability.
he new type of separability can also be factorized into Debreu-
eparability of the trace and another easily interpretable con-
ition. The latter also clarifies the relationships with Beja and
ilboa’s characterization. Note that the conditions that have to
e added to Debreu-separability for obtaining either strict or
onstrict representations use the notions of noses and hollows
hat were fruitful in the study of finite semiorders (Balof et al.,
013; Doignon, 1988; Pirlot, 1990, 1991).
The paper is organized as follows. In the next section, we

ntroduce the notation and recall the characterization by Candeal
nd Induráin (2010). In Section 3, we show how one of the
onditions used by Candeal and Induráin (2010) in their char-
cterization theorem can be split into a conjunction of simpler
onditions. In Section 4, we give an alternative proof of the
xistence of a strict unit representation for semiorders under
hree simple conditions. These are necessary and sufficient. We
o the same in Section 5 for semiorders admitting nonstrict unit
epresentations. In the latter two sections, we also characterize
he semiorders that admit some special types of representations,
amely hollows-faithful, noses-faithful and strict–nonstrict unit
epresentations. We conclude with a discussion.

. Notation and previous results

.1. Notation and definitions

We use the same notation as in Bouyssou and Pirlot (2021). Let
be a binary relation on a set X . The relation S is a semiorder if

t is complete2 (xSy or ySx, for all x, y ∈ X), Ferrers (xSy and zSw
xSw or zSy, for all x, y, z, w ∈ X) and semi-transitive (xSy and

Sz ⇒ xSw or wSz, for all x, y, z, w ∈ X). In the sequel, we
hall often write the semiorder S as a pair (P, I) of relations,
here P (resp. I) denotes the asymmetric (resp. symmetric) part
f S. P is a partial order on X , i.e., an asymmetric and transitive
elation, which is also Ferrers and semitransitive. I is called the
ndifference relation; it is reflexive and symmetric but not neces-
arily transitive. A complete preorder on X is a complete, reflexive,
nd transitive relation. It is a particular case of a semiorder. A

2 Imposing that S is reflexive, instead of complete, would suffice since
elations that are both reflexive and Ferrers are complete.
2

linear order (or total order) on X is a complete, antisymmetric
and transitive relation.

The trace ≿S of a semiorder S on X is the relation defined as
ollows: for all x, y ∈ X , x ≿S y if for all z ∈ X , ySz implies xSz and
zSx implies zSy. The subscript S will be omitted whenever there
is no ambiguity regarding the associated semiorder. We use ≻, ≾,
, ∼ as is usual. It is well-known that the trace of a semiorder is
complete preorder. Two elements x, y ∈ X such that x ≿ y and
≿ x, i.e., x ∼ y, are said to be equivalent. If x ∼ y, then, for all
∈ X , we have zSx iff zSy and xSz iff ySz.

efinition 1 (Strict and Nonstrict Unit Representations). A strict
nit representation of the semiorder S = (P, I) on the set X is

a function u from X to R such that, for all x, y ∈ X ,

u(x) > u(y) + 1 if xPy
1 ≤ u(x) − u(y) ≤ 1 if xIy (1)

nonstrict unit representation of the semiorder S = (P, I) on the
et X is a function u from X to R such that, for all x, y ∈ X ,

u(x) ≥ u(y) + 1 if xPy
1 < u(x) − u(y) < 1 if xIy (2)

⌟

Strict unit representations are the special case of the Scott–
uppes representations (Candeal & Induráin, 2010), in which k =

. When dealing with the existence of a Scott–Suppes represen-
ation, it is not restrictive to focus on strict unit representations
ecause the latter exists iff the former exists. Nonstrict unit
epresentations have been less studied (Beja & Gilboa, 1992, is
n exception), probably because, a semiorder defined on a denu-
erable set admits a strict representation iff it admits a nonstrict

epresentation. This is no longer the case in the uncountable
ase as will be shown in Section 5. In contrast, for other ordered
tructures, the conditions for the existence of nonstrict represen-
ations are well-known. It is the case for biorders (Aleskerov et al.,
007; Beja & Gilboa, 1992; Doignon et al., 1984) and for interval
rders (see Aleskerov et al., 2007, Ch. 6).
We shall only consider strict and nonstrict representations

hat assign the same value to equivalent elements of X w.r.t. the
race ≿ (i.e., regular representations, Roberts & Franke, 1976).
onsequently, we may assume henceforth that the equivalence
lass of each element of X w.r.t. the trace of the semiorder is
educed to a singleton. In other words, for all x, y ∈ X , x ≿ y and
≿ x imply x = y. This assumption can be made w.l.o.g. (Candeal
Induráin, 2010, Lemma 3.2). Therefore, the trace ≿ is a linear

rder on X . Its asymmetric part is denoted by ≻ and its symmetric
art by ∼.
In Bouyssou and Pirlot (2021, Section 2.5) (see also Manders,

981), we have shown that every semiorder S = (P, I), be it on
denumerable or uncountable set, can be decomposed into con-
ected components of the indifference relation I . An I-connected
omponent of (X, S) is a maximal subset Y of X such that, for
ach pair x, y ∈ Y , there is an I-chain joining them, i.e., there
re x1, x2, . . . , xn ∈ Y such that xIx1Ix2I . . . IxnIy. Furthermore, the
elation P induces a linear order (called ‘‘macro-ordering’’ by Gia-
lotta and Watson (2016)) on the set of I-connected components
f (X, S).
A necessary condition for the existence of a strict or a nonstrict

unit representation of a semiorder is the Bounded P-chain condi-
tion (see Property 1). Before stating it, we need some definitions.

A P-chain is a family of elements (xj, j ∈ J) indexed by a set
J ⊆ Z of consecutive integers, such that xjPxj+1, for all j ∈ J with
j + 1 ∈ J . The P-chain is bounded if there are elements a and b
such that bPxjPa, for all j ∈ J .
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roperty 1 (Bounded P-chain Condition). Every bounded P-chain is
inite.

The semiorder S on the set X satisfies the Bounded P-chain
condition if every P-chain (xj, j ∈ J) (J a set of consecutive
integers), that is contained in an interval [a, b] of (X,≿) has
only finitely many elements (|J| < ∞) (Bouyssou & Pirlot, 2021,
Cor. 51).

Bouyssou and Pirlot (2021, Proposition 53) establishes that the
Bounded P-chain condition is equivalent to the necessary and
sufficient condition of Manders (1981) for the existence of a unit
representation of a semiorder on a denumerable set. The Bounded
P-chain condition is also equivalent to Beja and Gilboa (1992)’s
condition (Bouyssou & Pirlot, 2021, Sections 5.2 and 5.3). Can-
deal and Induráin (2010) call this property regularity.3 If X is
I-connected, it is clear that (X, S) always satisfies the Bounded
P-chain condition (Bouyssou & Pirlot, 2021, Proposition 52).

The strategy followed in Bouyssou and Pirlot (2021) to prove
the existence of a unit representation for a semiorder defined
on a denumerable set is to prove the existence of such a repre-
sentation on each I-connected component of the semiorder and
then, assuming the Bounded P-chain condition, to show that it is
possible to assemble these representations into a representation
of the whole semiorder. We shall adopt the same strategy in
case the semiorder is defined on an uncountable set. Under an
additional condition, we show that a strict unit representation
exists on each I-connected component and we assemble these
representations assuming the Bounded P-chain condition.4 This
an be done also for nonstrict unit representations. A different
ondition, suitable for nonstrict representations, has to be added
o those used in the denumerable case.

In the next subsection, we recall Candeal and Induráin’s (2010)
esult and the additional condition that they have to impose
n semiorders in order to prove the existence of a strict unit
epresentation.

.2. Candeal and Induráin’s (2010) result

Candeal and Induráin (2010) assume the following additional
ondition that they call s-separability.

efinition 2 (s-separability). A semiorder S = (P, I) on X is s-
eparable if there is a denumerable set E, E ⊆ X , such that, for all
a, b ∈ X with aPb, there are

c ∈ E such that aPc ≿ b
nd d ∈ E such that a ≿ dPb

⌟

The main result in Candeal and Induráin (2010, Theorem 3.6)
an be rephrased as follows.

heorem 3 (Candeal & Induráin, 2010). A semiorder S on a set X
dmits a strict unit representation iff it satisfies the Bounded P-chain
ondition and is s-separable.

Notice that the trace of an s-separable semiorder is d-separable
r Debreu-separable (Candeal & Induráin, 2010, Lemma 3.4),
hich is a condition guaranteeing the existence of a numerical
epresentation of the trace (i.e., the existence of a function v :

3 This regularity property should not be confused with the regularity property
f representations introduced by Roberts and Franke (1976).
4 As observed in Bouyssou and Pirlot (2021, Remark 62) assembling represen-

ations on I-connected components of a semiorder is possible for uncountable
emiorders, under the same conditions as for denumerable semiorders.
 a

3

X → R such that x ≿ y iff v(x) ≥ v(y)). It can be assumed w.l.o.g.
that a representation of the semiorder also represents its trace.
Indeed, a numerical representation u of the semiorder must give
distinct values to elements that are not equivalent w.r.t. the trace.
Therefore u must represent the trace since we assumed that no
elements are equivalent w.r.t. the trace. We recall the definition
of Debreu-separability below.

Definition 4 (d-separability). A semiorder S = (P, I) is d-separable
if its trace ≿ is d-separable. The trace is d-separable if it admits
a denumerable order-dense set, i.e., there is a denumerable set
D ⊆ X , such that, for all a, b ∈ X with a ≻ b, there is d ∈ D, such
that a ≿ d ≿ b. ⌟

The d-separability of the trace is a necessary condition for
the existence of both a strict and a nonstrict (see Section 5)
representation of a semiorder.

3. Another formulation of s-separability

In this section we revisit the s-separability condition and fac-
torize it into d-separability and another condition. The latter is
expressed in terms of noses, a notion introduced in Pirlot (1990,
1991), together with that of hollows. These have proved useful in
the study of the unit representations of finite semiorders (Balof
et al., 2013; Doignon, 1988; Pirlot, 1990, 1991).

The results in this section have appeared in Section 3.2 of
Bouyssou and Pirlot (2020). For the ease of reading, we recall
them here.

3.1. Noses and hollows

Let S = (P, I) be a semiorder on X . A nose of S is a pair
(a, b) such that aPb and a is the least element (w.r.t. ≻) which
is preferred to b and b is the greatest element (w.r.t. ≻) which a
is preferred to. A hollow is a pair (a, b), with aIb and a ≿ b such
that a is the greatest element (w.r.t. ≻) which is indifferent to
b and b is the least element (w.r.t. ≻) which is indifferent to a.
More formally, we have:

Definition 5 (Noses and Hollows). The ordered pair (a, b) ∈ X × X
is a nose of S = (P, I) if aPb and there is no c ∈ X such that
aPc ≻ b and there is no d ∈ X such that a ≻ dPb.

The ordered pair (a, b) ∈ X × X is a hollow of S = (P, I) if aIb,
a ≻ b, and there is no c ∈ X such that bIc ≻ a and there is no
d ∈ X such that b ≻ dIa. ⌟

Remark 6. A hollow can be equivalently defined in terms of the
relation S. The pair (a, b), with a ≻ b, is a hollow iff bSa, for all
d ≺ b, Not[dSa], and for all c ≻ a, Not[bSc]. Indeed, since a ≻ b,
there is c with c ≻ a and bIc iff there is c with ≻ a and bSc;
likewise, there is d with b ≻ d and dIa iff there is d with b ≻ d
and dSa. ⋄

Noses play a special role w.r.t. s-separability as shown by the
following lemma.

Lemma 7. If the semiorder S = (P, I) on X is s-separable by the
denumerable set E, then a and b belong to E whenever (a, b) is a
nose.

Proof. Let (a, b) be a nose, so that aPb. By the s-separability
property, there is c ∈ E such that aPc ≿ b. By definition of a
nose, we have c = b and therefore, b ∈ E. Using s-separability,
there is also d ∈ E such that a ≿ dPb, which implies a = d and
∈ E since (a, b) is a nose. □
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Before presenting conditions equivalent to s-separability, we
need to establish some auxiliary results related to variants of
noses.

Definition 8 (Half-noses). The pair (a, b) ∈ X × X is a lower half-
ose (l-h-nose) of S = (P, I) if aPb and there is no c ∈ X such
hat aPc ≻ b. The pair (a, b) can be a nose. If it is not, we say it is
a proper l-h-nose if it is a l-h-nose and there is d ∈ X such that
a ≻ dPb. The pair (a, b) ∈ X × X is an upper half-nose (u-h-nose)
of S = (P, I) if aPb and there is no d ∈ X such that a ≻ dPb. The
air (a, b) can be a nose. If it is not, we say it is a proper u-h-nose

if it is an u-h-nose and there is c ∈ X such that aPc ≻ b. We
denote by LHN (resp. UHN) the set of right endpoints b (resp. left
endpoints a) of all proper l-h-noses (resp. u-h-noses) (a, b). ⌟

The notion of lower half-nose is closely related to that of P-
gap-edge point (Beja & Gilboa, 1992, Definition P6 (a), p. 438). The
element b ∈ X is a P-gap-edge-point if and only if there is a ∈ X
such that (a, b) is a lower half-nose. We have the following result.

Lemma 9. If the semiorder S = (P, I) is d-separable, then the sets
LHN and UHN are denumerable.

Proof. We give the proof for LHN . The case of UHN is similar.
Let (a, b) be a proper l-h-nose. We define the set N(b) = {x ∈

X : xPb and ∀c ≻ b,Not[xPc]}. In other words, for all x ∈ N(b),
(x, b) is a l-h-nose. It is clear that a ∈ N(b). Moreover, since (a, b)
is proper, N(b) contains an element d ̸= a such that a ≻ dPb.
We now prove that N(b) is an interval w.r.t. ≻. Let x, x′

∈ N(b).
If x′′ is such that x ≻ x′′

≻ x′, then x′′
∈ N(b). Indeed, x′′Pb since

x′Pb and for all c ≻ b, Not[x′′Pc] since Not[xPc]. Let (a, b) and
(a′, b′) be two proper l-h-noses, with b ̸= b′

∈ LHN . It is clear
that the associated intervals N(b) and N(b′) are disjoint. Each of
these intervals contains at least two distinct points and therefore
at least an element from the denumerable set D that d-separates
S = (P, I). Consequently, the set LHN is denumerable. □

3.2. A reformulation of s-separability

We are in position to prove an equivalent formulation for
s-separability.

Proposition 10. A semiorder S = (P, I) on X is s-separable iff ≿ is
d-separable and the set of noses is denumerable.

Proof. Assume that the semiorder is s-separable. By Lemma 7, the
set of noses is denumerable. The s-separability property implies
that ≿ is d-separable (Candeal & Induráin, 2010, Lemma 3.4). We
include the proof of this for completeness. Let x, y ∈ X be such
that x ≻ y. There is z ∈ X such that xPz and zSy and/or w ∈ X
such that wPy and xSw. In the former case, s-separability entails
that there is d ∈ E such that x ≿ dPz and, since zSy, we have
x ≿ d ≻ y. In the latter case, there is c ∈ E such that wPc ≿ y
and, since xSw, we have x ≻ c ≿ y.

Reciprocally, let D be a denumerable set that d-separates ≻.
Let x, y ∈ X be such that xPy. If (x, y) is not a nose,

1. either there is x′
≺ x such that x′Py

2. or there is y′
≻ y such that xPy′.

In Case 1, by the d-separability of ≻, there is d ∈ D such that
x′ ≾ d ≾ x. Therefore we have x ≿ dPy. Further, there are two
cases. Either there is y′

≻ y such that xPy′ or for all y′
≻ y,

we have Not[xPy′
]. In the former case, d-separability implies that

there is c ∈ D such that y′ ≿ c ≿ y. Then, we have xPc ≿ y.
Otherwise, (x, y) is a proper l-h-nose. In order to have c ∈ E such
4

that xPc ≿ y, we set c = y and include the denumerable set LHN
of right endpoints of the proper l-h-noses in E.

In Case 2, by the d-separability of ≻, there is c ∈ D such that
y′ ≿ c ≿ y. Therefore we have xPc ≿ y. Further, either there
is x′

≺ x such that x′Py or for all x′
≺ x, we have Not[x′Py]. In

the former case, d-separability implies that there is d ∈ D such
that x′ ≾ d ≾ x. Otherwise, (x, y) is a proper u-h-nose. In order
to have d ∈ E such that x ≿ dPy, we set d = x and include the
denumerable set UHN of left endpoints of the proper u-h-noses
in E.

Finally, by considering E as the union of D, LHN , UHN and
the set of elements a, b such that (a, b) is a nose, which is de-
numerable by hypothesis, we obtain a denumerable set E, which
s-separates the semiorder (P, I). □

Remark 11. It is easy to show that having a denumerable
set of noses is a necessary condition for a semiorder to have a
strict unit representation. Indeed, assume that u is a strict unit
representation of the semiorder S = (P, I) and (a, b) is a nose
of S. Since aPb, we have u(a) > u(b) + 1. Let εab be the positive
number u(a)−u(b)−1. By definition of a nose, there is no element
c ̸= b such that aPc ≻ b and therefore, there is no c such that
u(c) ∈]u(b), u(a) − 1], an interval of length εab > 0. To each nose
(a, b) is associated such an interval of positive length and all these
intervals are disjoint. Since there is only a denumerable number
of disjoint intervals of positive length in R, the number of noses
is denumerable. ⋄

Remark 12. For proving the existence of a strict unit repre-
sentation, we shall use d-separability and the condition that the
number of noses is denumerable, instead of s-separability. In the
proof, we shall only use the denumerable set D that is dense in the
trace ≿ and the denumerable set of noses endpoints. We do not
need to add the half-noses or the half-hollows as we had to do in
the second part of the proof of Proposition 10. In other words, we
do not use all the points in the set E involved in the s-separability
property (see Definition 2). In the same vein, we do not need to
impose that the set of all P-gap-edge-points (Beja & Gilboa, 1992,
p. 438) is denumerable. Only the cardinality of the set of P-gap-
edge-points that correspond to noses needs to be controlled. Our
condition that the set of noses has to be denumerable refines
both the s-separability condition and the denumerability of the
set of P-gap-edge-points (Beja & Gilboa, 1992, Theorem 4.5 (a),
p. 439). Its interpretation is straightforward and it bridges the
gap between the conditions imposed by Candeal and Induráin
(2010) and those imposed by Beja and Gilboa (1992). A similar
analysis will be helpful in the study of nonstrict representations
(see Section 5.1). ⋄

4. Semiorders admitting a strict unit representation

In this section, we adapt the method proposed in Bouyssou
and Pirlot (2021) for building a unit representation to the case of
uncountable semiorders. In the denumerable case, we select an
initial maximal indifference class I0 of an I-connected component
of the semiorder and we insert a ‘‘ghost’’ of each other element
of this connected component at an appropriate position in I0. The
set of all ghosts is denoted Ĩ0 and ≿ϕ is a preorder on Ĩ0 extending
the trace on I0. This insertion procedure has to be refined in the
uncountable case. The main constraint is to insert the ghosts of
all elements while ensuring the d-separability of the complete
preorder ≿ϕ on the set of ghosts Ĩ0. Moreover, in contrast to
the denumerable case, it is no longer possible to insert ghosts
sequentially since X is uncountable. Notice that, unlike in the
denumerable case, we shall not attempt to keep the possibility of
generating all possible unit representations. We concentrate on
proving there is at least one.



D. Bouyssou and M. Pirlot Journal of Mathematical Psychology 103 (2021) 102568

4

i
S
s
T
s
a
p
v

(

(

F
T

a
s
‘
a
≿
o
r
r
≿
w

a

.1. Results on the partition into maximal indifference classes

We assume that the semiorder (X, S) has been decomposed
nto its I-connected components. In Bouyssou and Pirlot (2021,
ection 3), we showed that any I-connected component of a
emiorder can be partitioned into maximal indifference classes.
his was proved in the general case, without assuming that the
emiorder is defined on a denumerable set. Such a partition gives
particular role to a baseline maximal indifference class I0. This
artition is not unique in general, but the results that follow are
alid for any such partition.
Let D be any I-connected component of the semiorder S =

P, I) on the set X . We abuse notation also using S = (P, I) for
denoting the restriction of the semiorder to the set D ⊆ X . Let
(Im,m ∈ M), with M ⊆ Z, M ∋ 0, be a partition of D into
maximal indifference classes, as described in Bouyssou and Pirlot
(2021, Section 3). We shall also use the more explicit notation
. . . , I−l, . . . , I−1, I0, I1, . . . , Ik, . . . for this partition, with indices
k, l ≥ 0 such that k ∈ M and −l ∈ M . Note that the set
of indices M may be bounded or unbounded. We recall below
Proposition 24 in Bouyssou and Pirlot (2021) that collects useful
properties of such a partition.

Proposition 13. The sets (Im,m ∈ M) have the following proper-
ties:

1. They are disjoint nonempty convex subsets of D.
2. Their elements are pairwise indifferent, i.e., for all x, y ∈ Im,

we have xIy.
3. They form an ordered partition w.r.t. ≻, i.e. for all x ∈ Im−1

and z ∈ Im, we have z ≻ x.
4. For all m ≥ 0 for which Im and Im+1 exist, for all w ∈ Im+1,

there is z ∈ Im such that we have wPz.
5. For all m < 0 for which Im and Im+1 exist, for all v ∈ Im, there

is z ∈ Im+1 such that we have zPv.
6. For all m ∈ M for which Im and Im+2 exist, for all w ∈ Im+2,

for all v ∈ Im, we have wPv.
7. D = ∪m∈M Im.

In the process of constructing a unit representation, we make
the hypothesis that the trace ≿ of the semiorder S on X is d-
separable and that the semiorder has a denumerable set of noses.
These properties of the semiorder on X are inherited by its restric-
tion to each I-connected component. The trace of the restriction
of the semiorder to an I-connected component is the restriction
of the trace of the semiorder to this component (because all
elements in an I-connected component compare identically to the
elements of the other components).

Let E = E ′
∪ E ′′ denote the union of E ′, an order-dense

denumerable subset w.r.t. ≿, and the set E ′′ of all noses endpoints.
The set E is thus at most denumerable.

4.2. Notation

In order to describe the construction process of a strict unit
representation, we need to introduce some notation and defini-
tions.

Ordered bipartitions play an important role in the sequel.
Therefore, we recall some precise definitions (following Bridges
& Mehta, 1995, p. 17). Let ≿ be a linear order on a set Y and ≻

its asymmetric part. We call (A, B) an ordered bipartition of Y if
A ∩ B = ∅, A ∪ B = Y and x ≻ y for all x ∈ A, y ∈ B. One
of the classes may be empty. An ordered bipartition (A, B), with
A, B ̸= ∅,

• is a jump if A has a least element and B has a
greatest element;
 ‘

5

Fig. 1. Partitions determined by an element x ∈ Im .

• is a cut if either A has least element or B has a
greatest element (but not both);

• is a gap if neither A has a least element nor B has a
greatest element.

Note that, in the absence of ambiguity, we shall write ‘‘biparti-
tion’’ for ‘‘ordered bipartition’’.5

Each element x ∈ Im determines a bipartition (Am−1
x , Bm−1

x ) of
Im−1 (provided Im−1 exists) and a bipartition (Cm+1

x ,Dm+1
x ) of Im+1

provided Im+1 exists). We have (see also Fig. 1):

• Am−1
x = {y ∈ Im−1 : xIy};

• Bm−1
x = {y ∈ Im−1 : xPy};

• Cm+1
x = {y ∈ Im+1 : yPx};

• Dm+1
x = {y ∈ Im+1 : yIx}.

or m > 0, Bm−1
x is non-empty; for m ≤ 0, Cm+1

x is non-empty.
his follows from Proposition 13.4 and 13.5.
The construction of a representation proceeds by selecting
baseline maximal indifference class I0 and inserting a repre-

entative of each element of Im,m ∈ M \ {0} into I0 at an
‘appropriate location’’, i.e., by positioning the representatives
mong the elements of I0. In this way, we shall extend the trace
on I0 into a complete preorder on I0 and the representatives

f all other elements in D. In the sequel, we shall refer to the
epresentatives as ghosts (like in Bouyssou & Pirlot, 2021). We
ecall that E denotes a denumerable set that d-separates the trace
and contains all noses endpoints. Here is some notation that
ill be used in the sequel:

ϕm(Im), for m ∈ M ⊆ Z, is the set of ghosts of the elements in
Im;

ϕm(x), for m ∈ M, x ∈ Im, is the ghost of the element x in Im;
ϕ0(I0) = I0; ϕ0(x) = x, for all x ∈ I0;

I0,1 = I0 ∪ ϕ1(I1);
I0,k = I0 ∪ ϕ1(I1) ∪ · · · ∪ ϕk(Ik), for k ∈ M, k > 0;
I−l,k = I0 ∪ ϕ1(I1) ∪ · · · ∪ ϕk(Ik) ∪ ϕ−1(I−1) . . . ∪ ϕ−l(I−l), for

k, l ∈ M, k, l > 0;
Em = E ∩ Im;
E0,1 = E0 ∪ ϕ1(E1);
E0,k = E0 ∪ ϕ1(E1) ∪ · · · ∪ ϕk(Ek), for k ∈ M, k > 0;
E−l,k = E0 ∪ ϕ1(E1)∪ · · · ∪ ϕk(Ek)∪ ϕ−1(E−1) . . . ∪ ϕ−l(E−l), for

k, l ∈ M, k, l > 0;
≿0,1 is a complete preorder on I0,1, with ≻0,1, its asymmetric

part, and ∼0,1, its symmetric part;
≿0,k is a complete preorder on I0,k, with ≻0,k, its asymmetric

part, and ∼0,k, its symmetric part, for k ∈ M, k > 0;
≿−l,k is a complete preorder on I−l,k, with ≻−l,k, its asymmet-

ric part, and ∼−l,k, its symmetric part, for k, l ∈ M, k, l >
0.

5 We shall not adopt the term ‘‘decomposition’’, which is used by Bridges
nd Mehta (1995) as synonymous to ‘‘ordered bipartition’’ because we use
‘decomposition’’ for other purposes.
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.3. Construction of I0,1

The set I0,1 is the union of I0 and the set of the ghosts of the
elements of I1. The ghost ϕ1(x) for x ∈ I1 is distinct from all
elements of I0. It is defined as being positioned between the two
classes of the bipartition (A0

x , B
0
x ), i.e., above all elements in B0

x and
elow all elements in A0

x . More precisely, we define the relation
0,1 on I0,1 as an extension of the order ≿ on I0 which satisfies
≿0,1 ϕ1(x) ≻0,1 b, for all a ∈ A0

x and b ∈ B0
x .

In case several elements of I1 determine the same bipartition,
their ghosts all have to be inserted in between the classes of the
bipartition. Let J(x) denote the set of all elements in I1 which
etermine the same bipartition (A0

x , B
0
x ) as x. For all x1, x2 ∈ J(x),

ith x1 ≻ x2, we have a ≿0,1 ϕ1(x1) ≻0,1 ϕ1(x2) ≻0,1 b, for all
∈ A0

x and b ∈ B0
x . At this stage, the only case in which we place

a ghost ϕ1(x1) and an element b of I0 in the same equivalence
class of the relation ≿0,1 is when (x1, a) is a hollow. In such a case,
we set a ∼0,1 ϕ1(x1). Note that we are not forced to make these
elements equivalent in all cases,6 but we shall systematically
choose this option in the rest of this section. We emphasize that
a and ϕ1(x1) are distinct elements in I0,1, yet they are equivalent
.r.t. ∼0,1.
The relation ≿0,1 just defined has the following properties.

emma 14. ≿0,1 is a preorder on I0,1 which extends ≿ on I0, satisfies
1(x) ≻0,1 ϕ1(y) for all x, y ∈ I1 with x ≻ y, and is d-separable using
0,1.

roof. The fact that relation ≿0,1 is complete and transitive is
an easy consequence of the corresponding properties of ≿ and of
the construction of I0,1. By construction, we have that ≿0,1 is an
extension of ≿ on I0, i.e., for all a, b ∈ I0, a ≿0,1 b iff a ≿ b and
that the bijection ϕ1 mapping I1 onto ϕ1(I1) respects the order
induced by ≿ on I1, i.e., for all x, y ∈ I1, x ≻ y iff ϕ1(x) ≻0,1 ϕ1(y).
The fact that relation ≿0,1 is complete and transitive is an easy
consequence of the corresponding properties of ≿ and of the
construction of I0,1.

The relation ≿0,1 is d-separable. Let z1 ≻0,1 z2 with z1, z2 ∈ I0,1.
Four cases can be distinguished.

Case 1 If z1, z2 ∈ I0 then we have z1 ≻0,1 z2 iff z1 ≻ z2. These z1
and z2 can be separated by an element from E0.

Case 2 If z1 = ϕ1(x1) and z2 = ϕ1(x2) for some x1, x2 ∈ I1, we
know that z1 ≻0,1 z2 implies x1 ≻ x2. Since ≿ is d-separable,
there is an element in E1 separating x1 from x2. Therefore,
z1 and z2 are separated by an element in ϕ1(E1).

Case 3 If z1 = ϕ1(x1) and z2 ∈ I0, we have that z1 ≻0,1 z2 implies
z2 ∈ B0

x1 . If z2 is not the greatest element in B0
x1 (w.r.t. ≻),

then there is z ∈ B0
x1 such that z1 ≻0,1 z ≻ z2. By hypothesis,

z2 can be separated from z, and therefore from z1 by an
element from E0. If z2 is the greatest element in B0

x1 and
there is x ∈ J(x1) with x1 ≻ x, then ϕk(x1) ≻0,1 ϕk(x) ≻0,1 z2
and we can use the separability of ≿. Therefore, z1 and z2
are separated by an element in ϕ1(E1). Finally, we consider
the case in which z2 is the greatest element in B0

x1 and x1 is
the least element in J(x1). In such a case, (x1, z2) is a nose.
Since z2 is a nose endpoint, it belongs to E0 and it separates
z1 from z2.

6 In case (x1, a) is a hollow (with x1 ∈ I1 and a ∈ I0), we may decide to set
a ≻0,1 ϕ1(x1) instead of ϕ1(x1) ∼0,1 a. In such a case, a and x1 have to be added
to E0,1 . The latter option can be taken as long as it preserves the denumerable
character of the separating set, i.e., for at most a denumerable set of hollows
(x , a).
1

6

Case 4 If z1 ∈ I0 and z2 = ϕ1(x2), we have that z1 ≻0,1 z2 implies
that z1 ∈ A0

x2 . If z1 is not the least element in A0
x2 (w.r.t. ≿),

then there is z ∈ A0
x2 such that z1 ≻ z ≻0,1 z2. By hypothesis,

z1 can be separated from z, and therefore from z2, by an
element from E0. If z1 is the least element in A0

x2 and there
is x ∈ J(x2) such that x ≻ x2, then z1 ≿0,1 ϕ1(x) ≻0,1 ϕ1(x2).
Using the separability of ≿, we can separate z1 and z2 by
an element in ϕ1(E1). Finally, the case in which z1 is the
least element in A0

x2 and x2 is the greatest element such
that z1 ≿0,1 ϕ1(x2) does not occur since this would mean
that (x2, z1) is a hollow; in such a case, by construction,
ϕ1(x2) ∼0,1 z1 (note that, in the next steps, this situation
will not necessarily occur for hollows). □

4.4. Construction of I0,k

We assume that I0,k−1 has been constructed as well as the
complete preorder ≿0,k−1 on it. The set I0,k is the union of I0,k−1
and the set of the ghosts of the elements of Ik. The ghost ϕk(x) for
x ∈ Ik is an element which is distinct from all elements of I0,k−1.
It is defined as being positioned in between the classes of the
bipartition (Ax, Bx) of the set I0,k−1, endowed with the complete
preorder ≿0,k−1, with Ax ⊇ ϕk−1(Ak−1

x ) and Bx ⊇ ϕk−1(Bk−1
x ).

There is some arbitrariness in the definition of the bipartition
(Ax, Bx), since there may be elements of I0,k−2 lying in between
ϕk−1(Ak−1

x ) and ϕk−1(Bk−1
x ). We can choose to define the biparti-

tion in different ways, for instance, we may assign to Bx all the
elements of I0,k−2 lying in between ϕk−1(Ak−1

x ) and ϕk−1(Bk−1
x ).

Instead, we may assign them all to Ax.
In the rest of this section, we select one of the possible options

and show that it leads to the definition of a d-separable complete
preorder on I0,k.

For x ∈ Ik, let now J(x) denote the set of elements of Ik
determining the same bipartition (Ak−1

x , Bk−1
x ) in Ik−1 as x. Let L(x)

be the set of elements7 of I0,k−1 which lie between ϕk−1(Ak−1
x )

and ϕk−1(Bk−1
x ), i.e., y ∈ L(x) ⇔ a ≻0,k−1 y ≻0,k−1 b, for all

a ∈ ϕk−1(Ak−1
x ) and b ∈ ϕk−1(Bk−1

x ). We define the bipartition
(Ax, Bx) as follows:

Ax = L(x) ∪ {z ∈ I0,k−1 : ∃a ∈ ϕk−1(Ak−1
x )

such that z ≿0,k−1 a}, (3)
Bx = I0,k−1 \ Ax = {y ∈ I0,k−1 : ∃b ∈ ϕk−1(Bk−1

x )
such that b ≿0,k−1 y}.

We insert ghosts as follows. We set a ≿0,k ϕk(x′) ≿0,k ϕk(x′′) ≻0,k
b, for all a ∈ Ax, b ∈ Bx and x′, x′′

∈ J(x) with x′ ≿ x′′. We also
impose ϕk(x′) ≻0,k ϕk(x′′) whenever x′

≻ x′′ (see Fig. 2). In the
particular case in which Ax has a least element a (w.r.t. ≿0,k−1)
and J(x) has a greatest element x (w.r.t. ≿), we set8 ϕk(x) ∼0,k a.
he relation ≿0,k on I0,k is completely defined as follows. For all

z1, z2 ∈ I0,k, we have the following cases:

Case 1 if z1, z2 ∈ I0,k−1, we have z1 ≿0,k z2 iff z1 ≿0,k−1 z2, hence
≿0,k extends ≿0,k−1;

Case 2 if z1 = ϕk(x1) and z2 = ϕk(x2) for some x1, x2 ∈ Ik,
we set z1 ≻0,k z2 iff x1 ≻ x2; note that this definition is
compatible with the construction above also in case x1 and
x2 determine the same bipartition in Ik−1;

7 Actually, L(x) is empty in case k = 1 and L(x) ⊆ I0,k−2 if k ≥ 2.
8 Note that a is not necessarily the ghost of an element y ∈ Ik−1 such that

(x, y) is a hollow. It can happen that a least element in Ax is a ∈ L(x), which
s the ghost of an element of Il , for 0 ≤ l < k − 1 (for more on this case, see
Section 4.9).
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Fig. 2. Ghost insertion for the elements of Ik .

ase 3 if z1 = ϕk(x1) and z2 ∈ I0,k−1, we have z1 ≻0,k z2 iff
z2 ∈ Bx1 and z2 ≿0,k z1 iff z2 ∈ Ax1 . Furthermore, z2 ∼0,k z1
iff z2 is a least element in Ax1 (w.r.t. ≿0,k−1) and x1 is the
greatest element in J(x1) (w.r.t. ≿).

With this definition, we have the following result, which gen-
eralizes Lemma 14.

Lemma 15. ≿0,k is a complete preorder on I0,k which extends
≿0,k−1, satisfies ϕk(x) ≿0,k ϕk(y) for all x, y ∈ Ik with x ≿ y, and
is d-separable by E0,k.

Proof. It is easy to check that the relation ≿0,k defined above is
complete, transitive, and extends ≿0,k−1. It reproduces on ϕk(Ik)
the order induced by the trace ≿ on Ik.

We prove that relation ≿0,k is d-separable. We know by
Lemma 14 that ≿0,1 is d-separated by E0,1. We prove the result
by induction, assuming that ≿0,k−1 is d-separated by E0,k−1. Let
z1, z2 ∈ I0,k be such that z1 ≻0,k z2.

Case 1 If z1, z2 ∈ I0,k−1 and z1 ≻0,k z2, we have z1 ≻0,k−1 z2. By
the induction hypothesis, we know that z1 and z2 can be
separated by an element from E0,k−1.

Case 2 If z1 = ϕk(x1) and z2 = ϕk(x2) for some x1, x2 ∈ Ik, we
know that z1 ≻0,k z2 implies x1 ≻ x2. Since ≿ is d-separable,
there is an element in Ek separating x1 from x2. Therefore,
z1 and z2 are separated by an element in ϕk(Ek).

Case 3 If z1 = ϕk(x1) and z2 ∈ I0,k−1, we have that z1 ≻0,k z2
implies that z2 ∈ Bx1 . If z2 is not a greatest element in
Bx1 (w.r.t. ≿0,k−1), then there is z ∈ Bx1 such that z1 ≻0,k
z ≻0,k−1 z2. By the induction hypothesis, z2 can be separated
from z, and therefore from z1, by an element from E0,k−1. If
z2 is a greatest element in Bx1 and there is x ∈ J(x1) such
that x1 ≻ x, then ϕk(x1) ≻0,k ϕk(x) ≻0,k z2 and we can
use the separability of ≿. Therefore, z1 and z2 are separated
by an element in ϕk(Ek). Finally, we have to consider the
case in which z2 is a greatest element in Bx1 and x1 is the
least element in J(x1). In this case, there is y ∈ Ik−1 such
that (x1, y) is a nose and ϕk−1(y) ∼k−1 z2. Since y is a nose
endpoint, it belongs to Ek−1 and ϕk−1(y) ∈ E0,k separates z1
from z2.

Case 4 If z1 ∈ I0,k−1 and z2 = ϕk(x2), we have that z1 ≻0,k z2 im-
plies that z1 ∈ Ax2 . If z1 is not the least element in Ax2 (w.r.t.
≿0,k−1), then there is z ∈ Ax2 such that z1 ≻0,k z ≻0,k−1 z2.
By the induction hypothesis, z1 can be separated from z, and
therefore from z1, by an element from E0,k−1. If z1 is a least
element in A and there is x ∈ J(x ) with x ≻ x , then
x2 2 2
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z1 ≻0,k ϕk(x) ≻0,k ϕk(x2), and we can use the separability
of ≿. Therefore, z1 and z2 are separated by an element in
ϕk(Ek). Finally, we have to consider the case in which z1 is a
least element in Ax2 and x2 is the greatest element in J(x2).
This is incompatible with z1 ≻0,k z2. Indeed, we decided to
place z2 = ϕk(x2) in the equivalence class of z1. We thus
have z2 ∼k z1, which contradicts z1 ≻0,k z2. □

4.5. Construction of I−1,k

We assume that I0,k has been constructed as well as the com-
plete preorder ≿0,k on it. The set I−1,k is the union of I0,k and the
set of the ghosts of the elements in I−1. The ghost ϕ−1(x) for x ∈

I−1 is an element which is distinct from all elements in I0,k. It is
defined as being positioned in between the classes of a bipartition
(Cx,Dx) of the set I0,k, endowed with the complete preorder ≿0,k,
with Cx ⊇ C0

x and Dx ⊇ D0
x . There is some arbitrariness in the

definition of the bipartition (Cx,Dx), since there may be elements
of I0,k lying in between C0

x and D0
x .

We select one of the possible options and show that it leads
to the definition of a d-separable complete preorder on I−1,k.
For x ∈ I−1, let now K (x) denote the set of elements of I−1
determining the same bipartition (C0

x ,D0
x ) in I0 as x. Let M(x)

be the set of elements in I0,k which lie between C0
x and D0

x , i.e.,
y ∈ M(x) ⇔ c ≻0,k y ≻0,k d, for all c ∈ C0

x and d ∈ D0
x . We define

the bipartition (Cx,Dx) as follows:

Cx = {z ∈ I0,k : ∃c ∈ C0
x such that z ≿0,k c}, (4)

Dx = I0,k \ Cx = M(x) ∪ {y ∈ I0,k : ∃d ∈ D0
x such that d ≿0,k y}.

We insert ghosts as follows. We set c ≿−1,k ϕ−1(x′) ≿−1,k
ϕ−1(x′′) ≿−1,k d, for all c ∈ Cx, d ∈ Dx and x′, x′′

∈ K (x) with
x′ ≿ x′′. We also impose ϕ−1(x′) ≻−1,k ϕ−1(x′′) whenever x′

≻ x′′

(see Fig. 3). In the particular case in which Dx has a greatest
element d (w.r.t. ≿0,k) and K (x) has a least element x (w.r.t. ≿),
e set9 ϕ−1(x) ∼−1,k d. The relation ≿−1,k on I−1,k is completely

defined as follows. For all z1, z2 ∈ I−1,k, we have the following
cases:

Case 1 if z1, z2 ∈ I0,k, we have z1 ≿−1,k z2 iff z1 ≿0,k z2, hence
≿−1,k extends ≿0,k;

Case 2 if z1 = ϕ−1(x1) and z2 = ϕ−1(x2) for some x1, x2 ∈ I−1,
we set z1 ≻−1,k z2 iff x1 ≻ x2; note that this definition is
compatible with the construction above also in case x1 and
x2 determine the same bipartition in I0;

Case 3 if z1 = ϕ−1(x1) and z2 ∈ I0,k, we have z1 ≿−1,k z2
iff z2 ∈ Dx1 , and z2 ≻−1,k z1 iff z2 ∈ Cx1 . Furthermore,
z2 ∼−1,k z1 iff z2 is a greatest element in Dx1 (w.r.t. ≿0,k)
and x1 is the least element in K (x1) (w.r.t. ≿).

With this definition, the following lemma, which extends
Lemma 15, holds.

Lemma 16. ≿−1,k is a complete preorder on I−1,k which extends
≿0,k, satisfies ϕk(x) ≿−1,k ϕk(y) for all x, y ∈ I−1 with x ≿ y, and is
d-separable by E−1,k.

Proof. It is easy to check that the relation ≿−1,k defined above
is complete, transitive, and extends ≿0,k. It reproduces on ϕk(I−1)
the order induced by the trace ≿ on I−1.

We prove that relation ≿−1,k is d-separable. We know by
Lemma 15 that ≿0,k is d-separated by E0,k. Let z1, z2 ∈ I−1,k be
such that z1 ≻−1,k z2.

9 Note that (d, x) is a hollow only if d ∈ I0 . Actually, d could belong to M(x)
and be the ghost of an element in Il , for 1 ≤ l ≤ k. In such a case (d, x) is no
hollow.
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Fig. 3. Ghost insertion for I−1 into I0,k .

ase 1 If z1, z2 ∈ I0,k and z1 ≻−1,k z2, we have z1 ≻0,k z2. By
Lemma 15, we know that z1 and z2 can be separated by an
element from E0,k.

Case 2 If z1 = ϕ−1(x1) and z2 = ϕ−1(x2) for some x1, x2 ∈ I−1,
we know that z1 ≻−1,k z2 implies x1 ≻ x2. Since ≿ is d-
separable, there is an element in E−1 separating x1 from
x2. Therefore, z1 and z2 are separated by an element in
ϕ−1(E−1).

Case 3 If z1 = ϕ−1(x1) and z2 ∈ I0,k, we have that z1 ≻−1,k z2
implies that z2 ∈ Dx1 . If z2 is not a greatest element in
Dx1 (w.r.t. ≿0,k), then there is z ∈ Dx1 such that z1 ≻−1,k
z ≻0,k z2. By Lemma 15, z2 can be separated from z,
and therefore from z1, by an element from E0,k. If z2 is
a greatest element in Dx1 and there is x ∈ M(x1) such
that x1 ≻ x, then ϕ−1(x1) ≻−1,k ϕ−1(x) ≻−1,k z2, and
we can use the separability of ≿. Therefore, z1 and z2 are
separated by an element in ϕ−1(E−1). Finally, we have to
consider the case in which z2 is a greatest element in Dx1
and x1 is the least element in K (x1). This is incompatible
with z1 ≻−1,k z2 because, in this case, we have decided that
z1 = ϕ−1(x1) ∼−1,k z2.

ase 4 If z1 ∈ I0,k and z2 = ϕ−1(x2), we have that z1 ≻0,k z2
implies z1 ∈ Cx2 . If z1 is not a least element in Cx2 (w.r.t.
≿0,k), then there is z ∈ Cx2 such that z1 ≻−1,k z ≻0,k z2. By
Lemma 15, z1 can be separated from z, and therefore from
z2, by an element from E0,k. If z1 is a least element in Cx2
and there is x ∈ I−1 with z2 ≻0,k ϕ−1(x) ≻0,k ϕ−1(x2), then
we can use the separability of ≿. Therefore, z1 and z2 are
separated by an element in ϕ−1(E−1). Finally, we have to
consider the case in which z1 is a least element in Cx2 and x2
is the greatest element in K (x2). In this case, there is y ∈ I0
such that (y, x2) is a nose and y ∼0,k z1. Since y is a nose
endpoint, it belongs to E0 and it separates z1 from z2. □

.6. Construction of I−l,k

This is the general step of the construction. Actually, depend-
ng on the order in which we perform the ghosts insertions, we
ay need to build I−l,k starting either from I−l+1,k or from I−l,k−1.
e describe the construction of I−l,k starting from I−l+1,k, leaving

he construction starting from I−l,k−1 to the reader.
We assume that I−l+1,k has been constructed as well as the

omplete preorder ≿−l+1,k on it. The set I−l,k is the union of I−l+1,k
nd the set of the ghosts of the elements in I−l. The ghost ϕ−l(x)
or x ∈ I−l is an element which is distinct from all elements of

. It is defined as being positioned in between the classes of
−l+1,k T

8

Fig. 4. Ghost insertion for I−l into I−l+1,k .

a bipartition (Cx,Dx) of the set I−l+1,k, endowed with the complete
preorder ≿−l+1,k, with Cx ⊇ ϕ−l+1(C−l+1

x ) and Dx ⊇ ϕ−l+1(D−l+1
x ).

There is some arbitrariness in the definition of the bipartition
(Cx,Dx), since there may be elements of I−l+1,k lying in between

−l+1(C−l+1
x ) and ϕ−l+1(D−l+1

x ).
We select one of the possible options and show that it leads

o the definition of a d-separable complete preorder on I−l,k. For
∈ I−l, let K (x) denote the set of elements of I−l determining

the same bipartition (C−l+1
x ,D−l+1

x ) in I−l+1 as x. Let M(x) be the
set of elements of I−l+1,k which lie between ϕ−l+1(C−l+1

x ) and
ϕ−l+1(D−l+1

x ), i.e., y ∈ M(x) ⇔ c ≻0,k y ≻0,k d, for all
c ∈ ϕ−l+1(C−l+1

x ) and d ∈ ϕ−l+1(D−l+1
x ). We define the bipartition

(Cx,Dx) as follows:

Cx = {z ∈ I−l+1,k : ∃c ∈ ϕ−l+1(C−l+1
x )

such that z ≿−l+1,k c}, (5)
Dx = I−l+1,k \ Cx = M(x) ∪ {y ∈ I−l+1,k : ∃d ∈ ϕ−l+1(D−l+1

x )
such that d ≿−l+1,k y}.

We insert ghosts as follows. We set c ≿−l,k ϕ−l(x′)
≿−l,k ϕ−1(x′′) ≿−l,k d, for all c ∈ Cx, d ∈ Dx and x′, x′′

∈ K (x)
with x′ ≿ x′′. We also impose ϕ−l(x′) ≻−l,k ϕ−l(x′′) whenever
x′

≻ x′′ (see Fig. 4). In the particular case in which Dx has a
greatest element d (w.r.t. ≿−l+1,k) and K (x) has a least element
(w.r.t. ≿), we set10 ϕ−l(x) ∼−l,k d. The relation ≿−l,k on I−l,k is

completely defined as follows. For all z1, z2 ∈ I−l,k, we distinguish
the following cases:

Case 1 if z1, z2 ∈ I−l+1,k, we have z1 ≿−l,k z2 iff z1 ≿−l+1,k z2,
hence ≿−l,k extends ≿−l+1,k;

Case 2 if z1 = ϕ−l(x1) and z2 = ϕ−l(x2) for some x1, x2 ∈ I−l,
we set z1 ≻−l,k z2 iff x1 ≻ x2; note that this definition is
compatible with the construction above also in case x1 and
x2 determine the same bipartition in I−l+1;

Case 3 if z1 = ϕ−l(x1) and z2 ∈ I−l+1,k, we have z1 ≿−l,k z2
iff z2 ∈ Dx1 , and z2 ≻−l,k z1 iff z2 ∈ Cx1 . Furthermore,
z2 ∼−l,k z1 iff z2 is a greatest element in Dx1 (w.r.t. ≿−l+1,k)
and x1 is the least element in K (x1) (w.r.t. ≿).

With this definition, the following lemma, which extends
Lemma 16, holds.

10 The pair (d, x) is a hollow if and only if d is the ghost of an element of I−l+1 .
his is not always the case since d can belong to M(x) (see also footnote 9).
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emma 17. ≿−l,k is a complete preorder on I−l,k which extends
−l+1,k, satisfies ϕk(x) ≿−l,k ϕk(y) for all x, y ∈ I−l with x ≿ y, and

is d-separable by E−l,k.

Proof. It is easy to check that the relation ≿−l,k defined above is
complete, transitive, and extends ≿−l+1,k. It reproduces on ϕk(I−l)
the order induced by the trace ≿ on I−l.

We prove that relation ≿−l,k is d-separable. We know by
Lemma 16 that ≿−1,k is d-separated by E−1,k. We prove the result
by induction, assuming that ≿−l+1,k is d-separable by E−l+1,k. Let
z1, z2 ∈ I−l,k be such that z1 ≻−l,k z2.

Case 1 If z1, z2 ∈ I−l+1,k and z1 ≻−l,k z2, we have z1 ≻−l+1,k z2.
By the induction hypothesis, z1 and z2 can be separated by
an element from E−l+1,k.

Case 2 If z1 = ϕ−l(x1) and z2 = ϕ−l(x2) for some x1, x2 ∈ I−l,
we know that z1 ≻−l,k z2 implies x1 ≻ x2. Since ≿ is d-
separable, there is an element in E−l separating x1 from x2.
Therefore, z1 and z2 are separated by an element in ϕ−l(E−l).

Case 3 If z1 = ϕ−l(x1) and z2 ∈ I−l+1,k, we have that z1 ≻−l,k z2
implies that z2 ∈ Dx1 . If z2 is not a greatest element in Dx1
(w.r.t. ≿−l+1,k), then there is z ∈ Dx1 such that z1 ≻−l,k
z ≻−l+1,k z2. By Lemma 15, z2 can be separated from z,
and therefore from z1, by an element from E−l+1,k. If z2 is
a greatest element in Dx1 and there is x ∈ M(x1) such that
x1 ≻ x, then ϕ−l(x1) ≻−l,k ϕ−1(x) ≻−l,k z2, and we can
use the separability of ≿. Therefore, z1 and z2 are separated
by an element in ϕ−l(E−l). Finally, we have to consider the
case in which z2 is a greatest element in Dx1 and x1 is the
least element in K (x1). This is incompatible with z1 ≻−l,k z2
because, in this case, we decided that z1 = ϕ−l(x1) ∼−l,k z2.

Case 4 If z1 ∈ I−l+1,k and z2 = ϕ−l(x2) for some x2 ∈ I−l, we
have that z1 ≻−l,k z2 implies z1 ∈ Cx2 . If z1 is not a least
element in Cx2 (w.r.t. ≿−l+1,k), then there is z ∈ Cx2 such
that z1 ≻−l+1,k z ≻−l,k z2. By the induction hypothesis,
z1 can be separated from z, and therefore from z2, by an
element from E−l+1,k. If z1 is a least element in Cx2 and there
is x ∈ K (x2) with x ≻ x2, then z2 ≻−l,k ϕ−l(x) ≻−l,k ϕ−l(x2),
and we can use the separability of ≿. Therefore, z1 and z2
are separated by an element in ϕ−l(E−l). Finally, we have to
consider the case in which z1 is a least element in Cx2 and x2
is the greatest element in K (x2). In this case, there is y ∈ I0
such that (y, x2) is a nose and ϕ−l+1(y) ∼−l+1,k z1. Since y is
a nose endpoint, it belongs to E−l+1 and ϕ−l+1(y) ∈ E−l+1,k
separates z1 from z2. □

At the end of this construction process, involving at most a
countably infinite number of steps, we obtain the set

Ĩ0 = I0 ∪ (
⋃
k≥0

ϕk(Ik)) ∪ (
⋃
l>0

ϕ−l(I−l)) = I0 ∪ (
⋃
m∈M

ϕm(Im)),

ordered by ≿ϕ , which is an extension of the linear order ≿ on I0.
It also extends the complete preorder ≿−l,k, for all k, −l ∈ M . The
restriction of ≿ϕ to ϕm(Im), for m ∈ M,m ̸= 0, is an isomorphic
image of the linear order ≿ on Ik. The denumerable set Ẽ0 = E0 ∪

(
⋃

m∈M ϕm(Em)) d-separates the complete preorder ≿ϕ . Indeed, for
all x ̸= y ∈ Ĩ0, x and y belong to I−l,k for some −l, k ∈ M and
by Lemma 17, they are separated by some element in E−l,k. Note
that, while ≿ is a linear order on X (provided no pair of distinct
elements are equivalent in the semiorder, an hypothesis that
was made w.l.o.g. in Section 2.1), ≿ϕ is a complete preorder, in
general. The equivalence class of an element may not be reduced
to a singleton since there are cases in which we set a ghost
equivalent to another element or another ghost in the course
of the construction of (Ĩ0,≿ϕ) (see also Remark 35 in Bouyssou
and Pirlot (2021) for other possible cases of equivalence of ghosts
corresponding to elements in consecutive sets Im and Im+1).
9

Remark 18. Starting from I0,1 we may construct the ghosts of all
the elements of a connected semiorder. In case the decomposition
in subsets (. . . , I−l, . . . , I0, . . . , Ik, . . .) involves finitely many sub-
sets, the construction may proceed by first exhausting all positive
indices k, i.e., by constructing I0,k (using Section 4.4) and then
building I

−l,k, for l = 1, . . . , l (using Sections 4.5 and 4.6). In case
there are a countably infinite number of subsets in the decompo-
sition, one may proceed by addressing alternatively the positive
and the negative labels. For instance: I0,1, I−1,1, I−1,2, I−2,2, . . ..
he previous sections allow to do that provided we consider
s established the option left to the reader in Section 4.6, i.e.,
uilding I−l,k from I−l,k−1. ⋄

4.7. Construction of a representation on an I-connected component

Since the complete preorder ≿ϕ on Ĩ0 is d-separable, there
xists a numerical representation f : Ĩ0 → R of ≿ϕ such that
(x) ≥ f (y), for all x, y ∈ Ĩ0 such that x ≿ϕ y.
In order to build a unit representation of the semiorder S =

P, I), we select a numerical representation f of ≿ϕ into the ]0, 1[
eal interval and we define the function u on D as follows:

(x) = f (ϕm(x)) + m for all x ∈ Im, (6)

or all m ∈ M , and interpreting ϕ0 as the identity function.

roposition 19. If f : X →]0, 1[⊂ R is a numerical representation
f ≿ϕ on Ĩ0, then the function u defined by (6) is a unit representation
f the semiorder S = (P, I) restricted to D, i.e., for all x, y ∈ D,

u(x) > u(y) + 1 iff xPy
1 ≤ u(x) − u(y) ≤ 1 iff xIy

roof. Let x, y be such that xPy. If y belongs to Ik (k ∈ M), we
ave that x belongs to Im for m ≥ k + 1 (by Proposition 13,
tems 13.4, 13.5 and 13.6). If x ∈ Ik+1, we have u(x) − u(y) =

(ϕk+1(x)) + k + 1 − f (ϕk(y)) − k > 1, since ϕk+1(x) ≻ϕ ϕk(y) by
onstruction, and therefore f (ϕk+1(x)) > f (ϕk(y)).
If x ∈ Im, for m ≥ k+ 2, we have u(x)− u(y) = f (ϕm(x))+m−

(ϕk(y)) − k ≥ 1 since m − k ≥ 2 and |f (ϕm(x)) − f (ϕk(y))| ≤ 1.
ctually, u(x) − u(y) > 1. Assume for contradiction that u(x) −

(y) = 1. This implies thatm = k+2 and f (ϕm(x))−f (ϕk(y)) = −1.
he latter means that ϕm(x) is the least element in (Ĩ0,≿ϕ) and
k(y) is the largest. Consider first the case in which m > 0. Since
m(x) is the least element in Ĩ0, we have that ϕm(x) ≾ϕ ϕm−1(z),
or all z ∈ Im−1. Therefore, xIz, for all z ∈ Im−1. This implies that
∈ Im−1, by construction of Im−1, a contradiction. Turning to the
ase in which m ≤ 0, i.e., k ≤ −2, we deduce similarly that yIw,
or all w ∈ Ik+1. This implies that y ∈ Ik+1, a contradiction.

Consider now a pair x, y ∈ D such that xIy. We assume w.l.o.g.
hat x ≻ y and y ∈ Ik (k ∈ M). By Proposition 13, items 13.2, 13.3
nd 13.5, we know that x ∈ Ik or x ∈ Ik+1. In the former case,
< u(x)−u(y) = f (ϕk(x))+ k− f (ϕk(y))− k ≤ 1, since 0 ≤ f ≤ 1.

n the latter case, we have 0 < u(x)− u(y) = f (ϕk+1(x))+ k+ 1−

(ϕk(y)) − k < 1 because f (ϕk+1(x)) − f (ϕk(y)) ≤ 0. To establish
his, we consider the following two possible cases:

• k ≥ 0. By construction of the ghosts and the extension ≿ϕ

of ≿ for k ≥ 0, we have ϕk(a) ≿ϕ ϕk+1(x) ≻ϕ ϕk(b) for all
a ∈ A = {z ∈ Ik : xIz} and all b ∈ B = {z ∈ Ik : xPz}.
Since y belongs to A and f represents ≿ϕ , we have that
f (ϕk(y)) > f (ϕk+1(x)).

• k = −l < 0. By construction of the ghosts and the extension
≿ϕ of ≿ for k = −l < 0, we have ϕ−l+1(c) ≻ϕ ϕ−l(y) ≿ϕ

ϕ−l+1(d) for all c ∈ C = {z ∈ I−l+1 : zPy} and all d ∈

D = {z ∈ I−l+1 : zIy}. Since x belongs to D and f represents
≿ϕ , we have that f (ϕ−l(y)) = f (ϕk(y)) ≥ f (ϕ−l+1(x)) =

f (ϕ (x)). □
k+1
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emark 20. Choosing a representation f ranging in the ]0, 1[
interval is restrictive, as observed in Bouyssou and Pirlot (2021,
Sec. 4.2). In contrast to the latter paper, we do not intend here
to guarantee that all possible numerical representations of the
semiorder can be obtained by our construction. Such an opportu-
nity was already lost in the procedure we followed for inserting
the ghosts, which is described in Sections 4.4–4.6 . We indeed
selected a particular way of inserting the new ghosts in the
previously constructed extension of I0. Therefore, in the sequel
we just aim at showing the existence of a representation. ⋄

The next result gives necessary and sufficient conditions for
an I-connected semiorder to have a strict unit representation. It
is thus a generalization of Bouyssou and Pirlot (2021, Prop. 36)
and Manders (1981, Prop. 8, p. 237), which deal with denumer-
able semiorders. Note that the Bounded P-chain condition is im-
plied by I-connectedness (see Bouyssou & Pirlot, 2021, Prop. 52).
Hence it need not be imposed here.

Proposition 21. Let S = (P, I) be an I-connected semiorder on the
set X and let ≿ be its trace. S admits a strict unit representation u,
i.e., satisfying (1), iff the complete preorder ≿ is d-separable and S
has an at most denumerable set of noses.

Proof. Both conditions are necessary. If u is a numerical repre-
sentation of S and x ≻ y then u(x) > u(y). We may impose that
u assigns the same value to all the elements in the same equiv-
alence class of ∼. In such a case u is a numerical representation
of the complete preorder ≿. It is well-known that the existence
of a denumerable set d-separating ≿ is a necessary and sufficient
condition for the existence of a numerical representation of this
complete preorder (Krantz et al., 1971, Th. 2, p. 40). We showed
in Remark 11 that no representation satisfying (1) exists when
the set of noses is uncountable.

The construction of Ĩ0 endowed with the complete preorder
≿ϕ , jointly with Proposition 19, establishes the existence of a
numerical representation of S satisfying (1). □

4.8. Assembling representations on I-connected components

We now consider the general case in which the semiorder
S = (P, I) on X is not necessarily I-connected. The strategy
followed in the denumerable case can also be used in the general
case (Bouyssou & Pirlot, 2021, Remark 62). Assuming that a strict
unit representation exists for the restrictions of the semiorder
to each of its I-connected components, we assemble them into
a strict unit representation of the whole semiorder. In order
to do so, we need assuming that the semiorder satisfies the
Bounded P-chain condition. The next proposition is our main
result concerning strict unit representations. It is a reformulation
of Candeal and Induráin (2010, Th. 3.6, p. 487) in which the
s-separability condition is factorized into d-separability of the
trace and denumerability of the set of noses. We emphasize that
this factorization refines both the s-separability condition and
the P-gap-edge-points condition of Beja and Gilboa (1992) (see
Remark 12).

Theorem 22. Let S = (P, I) be a semiorder on the set X and let ≿
be its trace. S admits a unit numerical representation u satisfying (1)
iff the semiorder S satisfies the Bounded P-chain condition, the com-
plete preorder ≿ is d-separable and S has an at most denumerable
set of noses. The latter three conditions are independent.

Proof. The necessity of the Bounded P-chain condition (Prop-
erty 1) is obvious. If there were an infinite P-chain in a interval
[a, b] (i.e., the set {x : a ≾ x ≾ b}), it would not be possible to
 (

10
assign a finite value to both u(a) and u(b). A numerical represen-
ation u of the semiorder satisfies u(a) > u(b) whenever a ≻ b. A
epresentation of the semiorder might not be a representation of
he trace ≿ in the sense that it might distinguish some equivalent
lements, i.e., one might have that u(a) > u(b) for some a ∼ b.
n such a case one may always transform u in a representation
′ of the semiorder that gives the same value to all elements of
ach equivalence class of ≿. As a result u′ is a numerical repre-
entation of ≿, which cannot exist if ≿ is not d-separable (Krantz
t al., 1971, Th. 2, p. 40). It was shown in Remark 11 that a
epresentable semiorder has an at most denumerable set of noses.

We now show the sufficiency of the conditions. Assuming
roperty 1, Proposition 59 in Bouyssou and Pirlot (2021) implies
hat a representation of a semiorder can be built whenever there
s a representation of the restrictions of the semiorder to each
f its I-connected components. If the whole semiorder has an at
ost denumerable set of noses, it is also the case of its restric-

ions to all I-connected components. If the trace ≿ is d-separable
o are its restrictions to all I-connected components. Therefore,
pplying Proposition 21, we know that there exists a numerical
epresentation on each I-connected component. Using Remark 62
n Bouyssou and Pirlot (2021), we know how to assemble them
nto a representation of the whole semiorder.

To prove the independence of the three conditions, consider
he following three examples.

xample 23. Let X = R2. Consider the binary relation S such
hat S = P ∪ I with (x1, x2) P (y1, y2) if x1 > y1 +1 or [x1 = y1 +1
nd x2 > y2], while I is the symmetric complement of P (i.e.,
Iy ⇐⇒ Not[x P y] and Not[y P x]).
It is not difficult to show that S is a semiorder (that is not a

omplete preorder). It is clear that for all x, y ∈ X , there is an
-chain joining them, so that this semiorder is I-connected and
herefore the Bounded P-chain condition holds. The set of noses
f S is easily seen to be empty. The trace of S is the lexicographic
reorder on R2. Hence, d-separability is violated (see Beardon
t al., 2002; Bridges & Mehta, 1995). ⋄

xample 24. Let S= (P, I) be the semiorder on R defined by
Py ⇐⇒ x ≥ y + 1, while I is the symmetric complement of
. For all x, y ∈ R, there is a P-chain joining them, so that the
ounded P-chain condition holds. The trace ≿ of S is ≥ on R, so
hat the trace is d-separable. All ordered pairs (x, y) ∈ R2 such
hat x = y + 1 are noses, which violates the denumerable noses
ondition. ⋄

xample 25. Let X = N ∪ {ω}. Consider the binary relation S
uch that ω P x, for all x ∈ N and x P y iff x > y + 1, for all
, y ∈ N, while I is the symmetric complement of P . Since X is
enumerable, d-separability and the condition on noses trivially
old. The Bounded P-chain condition is violated. ⋄ □

.9. Hollows-faithful representations

In this section (which the reader may wish to skip without
isadvantage for the understanding of the rest of the paper) we
nvestigate the existence of a special type of strict representation
hat we shall call hollows-faithful representations. The latter is
strict unit representation in which the values associated to

he endpoints of each hollow differ by exactly one unit. In the
onstruction of the set Ĩ0 and the complete preorder ≿ϕ detailed
n Sections 4.3 to 4.6 , we placed, in some particular cases, the
host of an element in Ik, k > 1 (resp. in I−l, l > 1) into the
quivalence class (w.r.t. ≿ϕ) of the ghost of an element in Ik−1

resp. in I−l+1). In the construction of I0,1 (see Section 4.3), the
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host ϕ1(x) of an element x in I1 is set equivalent to an element
∈ I0 if and only if (x, a) is a hollow (see also footnote 6).
hen applying (6) to a numerical representation of the complete
reorder ≿ϕ on Ĩ0, we obtain a strict representation u, with u(x) =

(a) + 1 for all hollows (x, a), x ∈ I1, a ∈ I0.
However, in all the other steps of the construction of (Ĩ0,≿ϕ

, there is no guarantee that ghosts put in the same equiva-
ence class always correspond to hollows. This is emphasized in
ootnotes 8, 9 and 10.

We shall prove below that a semiorder admits a hollows-
aithful representation as soon as the semiorder has a strict unit
epresentation. The proof will imply to slightly modify the ghost
nsertion procedure (Sections 4.4 to 4.6 ). It also requires to bring
ome change in the partitions (Im,m ∈ M) to avoid that both
ndpoints of a hollow might belong to the same class Im.

roposition 26 (Existence of Hollows-faithful Representations). Let
= (P, I) be a semiorder on the set X and let ≿ be its trace. If the

emiorder S satisfies the Bounded P-chain condition, the complete
reorder ≿ is d-separable and S has an at most denumerable set
f noses, then S admits a strict unit numerical representation u
atisfying:

(x) − u(y) = 1 iff (x, y) is a hollow. (7)

roof. For proving the result, it suffices to establish the exis-
ence of a special strict unit representation satisfying (7) for each
-connected component D of (X, S). Indeed, assembling represen-
ations that fulfill (7) as described in Section 4.8 preserves this
roperty. We thus consider any I-connected component D of the
emiorder. There are two problems with the current construction
f a strict unit representation that need to be solved in view of
onstructing a representation satisfying (7): (i) both hollow end-
oints belonging to consecutive classes of a partition (Im,m ∈ M)

should be assigned to the same equivalence class of the complete
preorder ≿ϕ; (ii) hollow endpoints should not belong to the same
class of the partition. We first show how to solve (i) by slightly
modifying the ghost insertion procedure described in Sections 4.3
to 4.6 . Then we show how to modify a partition (Im,m ∈ M) in
rder to solve (ii) by avoiding the presence of both endpoints of
hollow in the same class.

i) Hollows-faithful insertion procedure.

0,1: no modification.

0,k: only the insertion of the ghosts of elements x ∈ Ik such
that (x, y) is a hollow for some y ∈ Ik−1. In such a case,
x is the largest element in J(x) and ϕk−1(Ak−1

x ) has a least
element ϕk−1(y). Instead of inserting ϕk(x) between Ax and
Bx as described in Section 4.4, we set ϕk(x) ∼0,k ϕk−1(y). This
means that we insert ϕk(x) in between Ax\L(x) and Bx∪L(x),
setting it indifferent to a least element in A(x) \ L(x). With
this modified insertion, Lemma 15 remains true. Its proof
need only be adapted in Cases 3 and 4. Regarding Case 3,
nothing changes unless x1 is the endpoint of a hollow (x1, y)
with y ∈ Ik−1. In such a case, we have ϕk(x1) ∼0,k ϕk−1(y).
If z1 = ϕk(x1) and z2 ∈ I0,k−1, we have that z1 ≻0,k z2
implies that z2 ∈ Bx1 ∪ L(x1). By the induction hypothesis,
there is z ∈ E0,k−1 which separates ϕk−1(y) and z2, i.e.,
ϕk−1(y) ≿0,k−1 z ≿0,k−1 z2. Since z1 ∼0,k ϕk−1(y) and ≿0,k
extends ≿0,k−1, we have that z ∈ E0,k−1 also separates z1
and z2 in (I0,k,≿0,k). A similar argument applies in Case 4.

−1,k: only the insertion of the ghosts of elements x ∈ I−1 such
that (y, x) is a hollow for some y ∈ I0. In such a case,
x is the least element in J(x) and ϕ−1(D−1

x ) has a largest
element y. Instead of inserting ϕ (x) between C and D as
−1 x x
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described in Section 4.5, we set ϕ−1(x) ∼−1,k y. This means
that we insert ϕ−1(x) in between Dx \ M(x) and Cx ∪ M(x),
setting it indifferent to a largest element in D(x)\M(x). With
this modified insertion, Lemma 16 remains true. Its proof
need only be adapted in Cases 3 and 4. Regarding Case 3,
nothing changes unless x1 is the endpoint of a hollow (y, x1)
with y ∈ I0. In such a case, we have ϕ−1(x1) ∼−1,k y. If
z1 = ϕ−1(x1) and z2 ∈ I0,k, we have that z1 ≻−1,k z2 implies
that z2 ∈ Dx1 ∪ M(x1). By the induction hypothesis, there is
z ∈ E0,k which separates y and z2, i.e., y ≿0,k z ≿0,k z2. Since
z1 ∼−1,k y and ≿−1,k extends ≿0,k, we have that z ∈ E0,k
also separates z1 and z2 in (I−1,k,≿−1,k). A similar argument
applies in Case 4.

I−l,k: only the insertion of the ghosts of elements x ∈ I−l such
that (y, x) is a hollow for some y ∈ I−l+1. In such a case,
x is the least element in J(x) and ϕ−l+1(D−l+1

x ) has a largest
element ϕ−l+1(y). Instead of inserting ϕ−l(x) between Cx and
Dx as described in Section 4.6, we set ϕ−l(x) ∼−l,k ϕ−l+1(y).
This means that we insert ϕ−l(x) in between Dx \ M(x)
and Cx ∪ M(x), setting it indifferent to a largest element in
D(x)\M(x). With this modified insertion, Lemma 17 remains
true. Its proof need only be adapted in Cases 3 and 4.
Regarding Case 3, nothing changes unless x1 is the endpoint
of a hollow (y, x1) with y ∈ I−l+1. In such a case, we have
ϕ−l(x1) ∼−l,k ϕ−l+1(y). If z1 = ϕ−l(x1) and z2 ∈ I−l+1,k,
we have that z1 ≻−l,k z2 implies that z2 ∈ Dx1 ∪ M(x1).
By the induction hypothesis, there is z ∈ E−l+1,k which
separates ϕ−l+1(y) and z2, i.e., ϕ−l+1(y) ≿−l+1,k z ≿−l+1,k z2.
Since z1 ∼−l,k y and ≿−l,k extends ≿−l+1,k, we have that
z ∈ E−l+1,k also separates z1 and z2 in (I−l,k,≿−l,k). A similar
argument applies in Case 4.

Applying the usual construction of a representation described
in Section 4.7, we obtain a strict unit representation of the
semiorder restricted to the I-connected component D. Such a
representation fulfills (7) for all hollows (x, y) for which x and
y belong to different indifference classes Im and Im+1.

(ii) Modifying the partition (Im,m ∈ M).
With the construction of the partition (Im,m ∈ M) described

in Bouyssou and Pirlot (2021, Section 3), it may happen that both
endpoints of a hollow belong to the same indifference class Im (see
Example 27). In order to obtain a partition (I ′m,m ∈ M ′) without
hollows inside a class I ′m, for all m ∈ M ′, we may restructure the
initial partition as follows.

• Search for the smallest k ≥ 0 such that Ik contains both
endpoints x, y of a hollow (x, y). If this is the case for Ik,
let I ′k = Ik \ {x}. Transfer x to I ′k+1 and, define I ′k+1 as
the maximal indifference class whose least element is x;
however, if this class has a greatest element z, and (z, x)
is a hollow, then transfer z to Ik+2. Continue in this way,
adapting the construction principles explained in Bouyssou
and Pirlot (2021, Section 3) in order to avoid the existence of
hollows with both endpoints in the same class. If no Ik, k ≥ 0
containing both endpoints of a hollow is found, keep the
classes (Ik, k ≥ 0) unchanged.

• Search for the smallest l > 0 such that I−l contains both
endpoints x, y of a hollow (x, y). If this is the case for I−l,
let I ′

−l = I−l \ {y}. Transfer y to I ′
−l−1 and, define I ′

−l−1 as
the maximal indifference class whose largest element is y;
however, if this class has a least element w, and (y, w) is
a hollow, then transfer w to I−l−2. Continue in this way,
adapting the construction principles explained in Bouyssou
and Pirlot (2021, Section 3) in order to avoid the existence
of hollows with both endpoints in the same class. If no
I−l, l > 0 containing both endpoints of a hollow is found,

keep the classes (I−l, l ≥ 0) unchanged.
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Fig. 5. Partition into indifference classes for the semiorder (X, S). An empty
(resp. filled) circle indicates that the segment is open (resp. closed).

Fig. 6. Modified partition (I ′m,m = −1, . . . , 5) for the semiorder (X, S).

he obtained partition (I ′m,m ∈ M ′) has no class which contains
both endpoints of a hollow. Applying the modified ghost insertion
procedure described in the beginning of this proof to the parti-
tion (I ′m,m ∈ M ′) yields a strict unit representation that fulfills
ondition (7). □

We illustrate the previous result and its proof in the following
example.

Example 27. Consider the semiorder S = (P, I) defined on a
et X as follows. Let X be the following union of real intervals:
= [−0.5, 1.9[∪[2.1, 2.9]∪]3.1, 5.1] endowed with the restric-

ion to X of the usual strict unit semiorder on R. Assume that the
artition Im,m = −1, 0, . . . , 5 is the one represented in Fig. 5.
The pair (2.9, 2.1) in I2 is a hollow. In the numerical repre-

entation that defines the semiorder, the difference between the
alues associated to the endpoints of this hollow is equal to 0.8.
he question we want to solve is whether there is a strict unit
epresentation of this semiorder in which the endpoints values
f all hollows differ by exactly one unit. Below, we modify the
artition (Im,m = −1, . . . , 4) in order to avoid having hollow
ndpoints in the same class (see Fig. 6). Then we illustrate the
pplication of the modified ghost insertion procedure described
n the proof of Proposition 26.

Let us start with I0. This class contains the hollow (1, 0). We
move 1 to I ′ . I ′ = [1, 1.9[. In I , (2.9, 2.1) is a hollow. We move
1 1 2
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2.9 to I ′3, leaving I ′2 = [2.1, 2.9[. I ′3 starts with 2.9 up to 3.9. We
do not include 3.9 in I ′3 in order to avoid including the hollow
(3.9, 2.9) in a class. So I ′3 = {2.9} ∪ [3.1, 3.9[. I ′4 = [3.9, 4.9[.
Finally, I ′5 = [4.9, 5.1]. There is one more class than in the original
partition.

The modified ghost insertion procedure, applied to (I ′m,m =

−1, . . . , 5), yields Ĩ0 = I−1,5 ordered by ≿ϕ , as represented in
Table 1. We start with the insertion of the ghosts of the elements
of I ′1 into I ′0. All elements of I ′1 are the upper endpoint of a hollow,
the other endpoint being in I ′0. Therefore, for all x ∈ I ′1 = [1, 1.9[,
its ghost ϕ1(x) is equivalent to the other endpoint y of the hollow
(x, y), i.e., ϕ1(x) ∼0,1 y = x − 1. This is shown in the rows
labeled I ′0 and I ′1 in Table 1. Important elements of I ′0 have been
singled out, namely, 0, 0.1, 0.5 and 0.9, because they correspond
to transitions in Ĩ0 (0.3 does not correspond to a particular el-
ement in I ′0; it is used to create a gap in which some ghosts
from I ′4 and I ′5 need to be inserted). We see that the endpoints of
each hollow are inserted in the same column of the table (single
hollow endpoints in the columns headed by singular values;
intervals coupled in the hollow relation in intervals between
singular values). Each element in I ′2 = [2.1, 2.9[ is associated to
an element of [1.1, 1.9[⊂ I ′1 by the hollow relation. Therefore,
we have, for all x ∈ I ′2, ϕ2(x) ∼0,2 ϕ1(x − 1) ∼0,2 x − 2. The row
labeled I ′2 in Table 1 shows that the elements in I ′2 are assigned to
the same columns as their associate elements through the hollow
relation. The insertion of the ghosts of I ′3 is similarly constrained
by the hollow relation. The least element 2.9 is associated to 2.1
because they form a hollow. Therefore the ghosts of 2.9, 2.1, 1.1
and 0.1 are indifferent w.r.t. ∼0,3. The elements of ]3.1, 3.9[ are
coupled to those of ]2.1, 2.9[. This is shown in Table 1 where
the elements of ]3.1, 3.9[ are assigned to the columns between
0.3 and 0.9 just as the corresponding elements of ]2.1, 2.9[. It
is the insertion of I ′4 that creates the gap in the table. The least
element 3.9 is coupled to 2.9 and placed in the column headed
by 0.1. The elements in ]3.9, 4.1] are not upper endpoints of a
hollow. Their ghosts have to be inserted between those of 2.9
and those of all the elements of the interval ]3.1, 3.9[. Therefore,
they are positioned in the table in the column between 0.1 and
0.3 and 4.1 is assigned to the column headed (arbitrarily) by 0.3.
The elements I ′5 are coupled to these in [3.9, 4.1] ⊂ I ′4. Their
position in the table results from this constraint. Finally, since
the elements of I ′

−1 = [−0.5, 0[ are coupled to the elements in
[0.5, 1[⊂ I ′0 by the hollow relation, forcing the position indicated
in the table.

We are now in position to explain the headings row in the
table. The row label f refers to a representation of the complete
preorder ≿−1,5=≿ϕ on Ĩ0. If we assign the heading value to the
ghosts of the elements in the columns having a heading and if we
linearly interpolate between these values to assign values to the
ghosts in the intervals between the headed columns, we obtain a
representation of ≿ϕ . From this, we build a representation of the
semiorder, which fulfills condition (7), by using definition (6).

Fig. 7 represents in an obvious manner the semiorder as well
as the hollows-faithful strict unit representation obtained by
applying (6) to the numerical representation f of the complete
preorder ≿ϕ on Ĩ0.

Remark 28. The result in Proposition 26, i.e., the existence of
hollows-faithful representations as soon as strict unit represen-
tations exist, is not limited to uncountable semiorders. Of course
it holds – and so does the proof – for denumerable semiorders
under the Bounded P-chain condition, which guarantees the ex-
istence of a strict unit representation (Bouyssou & Pirlot, 2021,
Th. 63). We did not mention this result in Bouyssou and Pirlot
(2021) because our goal there was mainly to study the ‘‘unique-
ness’’ of the representation. Therefore we did not focus on special
representations but tried to show how to construct all possible
representations. ⋄
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˜0 and a function f that represents the complete preorder ≿ϕ on Ĩ0 .

f 0 0.1 0.3 0.5 0.9 1

I ′0 0 ]0,0.1[ 0.1 ]0.1,0.5[ 0.5 ]0.5,0.9[ 0.9 ]0.9,1[

I ′1 1 ]1,1.1[ 1.1 ]1.1,1.5[ 1.5 ]1.5,1.9[

I ′2 2.1 ]2.1,2.5[ 2.5 ]2.5,2.9[
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Fig. 7. Hollows-faithful strict unit representation of the semiorder (X, S).

.10. Summary of results

In Section 4:

• We gave interpretable conditions for the existence of a
strict unit representation of a semiorder in the general case.
Our denumerable set of noses condition refines both the s-
separability condition of Candeal and Induráin (2010) and
the P-gap-edge-points of Beja and Gilboa (1992). The rela-
tionship between the latter two conditions is thus clarified.

• We showed that the technique for constructing a strict unit
representation, that we developed in Bouyssou and Pirlot
(2021) in the denumerable case, can be adapted to deal with
the general case. In addition, we showed that such a con-
struction gives control on the representation. This assertion
is illustrated by establishing the existence of special repre-
sentations, namely the hollows-faithful representations.

he benefit of giving a particular role to noses and hollows will
e further emphasized in the next section, which studies the
xistence of nonstrict unit representations. We shall see that, for
onstrict unit representations, the hollows play the role played
y the noses in the case of strict unit representations.

. Nonstrict unit representations

Conditions guaranteeing that a semiorder has a nonstrict unit
epresentation, i.e., a representation satisfying (2), have been
stablished by Beja and Gilboa (1992, Th. 4.5.b, p. 439). Candeal
nd Induráin (2010) did not study nonstrict unit representations
ut a condition ‘‘dual’’ to their s-separability condition can be for-
ulated. The latter will play the role of s-separability for nonstrict
13
unit representations. We shall write down such a condition and
factorize it into d-separability of the trace and another condition,
in the spirit of what we did for strict unit representations. The lat-
ter condition refines both the condition dual to s-separability and
the condition of denumerability of the set of I-upper-edge-points
used by Beja and Gilboa (1992) in their characterization.

In the case X is finite, all semiorders have both strict and
onstrict representations (see, e.g., Pirlot and Vincke (1997), Sec-
ion 4.2). In case X is countably infinite, every semiorder that
dmits a strict unit representation has also a nonstrict unit rep-
esentation, and conversely (Beja and Gilboa (1992, Th. 3.8); this
as already been observed by Roberts (1979, footnote, p. 36)). It is
ven true (Bouyssou & Pirlot, 2021, Th. 63) that a semiorder on a
enumerable set that admits a unit representation also has a unit
epresentation u that is simultaneously strict and nonstrict (i.e.,
u(x) − u(y)| ̸= 1, for all x, y). The Bounded P-chain condition is a
necessary and sufficient condition for a semiorder on a denumer-
able set to have both strict and nonstrict unit representations. For
a semiorder on an uncountable set it is no longer the case that it
has a strict unit representation if and only if it has a nonstrict one.
Consider for instance the nonstrict unit semiorder on the reals
(Example 24). It has a trivial nonstrict unit representation. The
set of its noses is not denumerable. Therefore, by Theorem 22,
this semiorder has no strict unit representation. So, the two types
of representation are not equivalent when X is not denumerable.

Our goal in this section is to establish a new characterization
of the semiorders that admit a nonstrict unit representation.

5.1. Separability for nonstrict unit representations

We introduce another form of separability that can be viewed
as ‘‘dual’’ w.r.t. s-separability (Candeal & Induráin, 2010) and
is useful to characterize semiorders that admit a nonstrict unit
representation.

Definition 29 (s′-separability). A semiorder S = (P, I) is s′-
separable if there is a denumerable set F , F ⊆ X , such that, for all
a, b ∈ X with aSb, there are

c ∈ F such that aSc ≿ b
nd d ∈ F such that a ≿ dSb.

⌟

This notion of separability implies that the number of hollows
see Definition 5) of the semiorder is at most denumerable. The
ollowing lemma is the counterpart of Lemma 7 in the context of
′-separability.

emma 30. If the semiorder S = (P, I) on X is s′-separable by the
enumerable set F , then a and b belong to F whenever (a, b) is a

hollow.
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roof. Let (a, b) be a hollow, thus satisfying bIa hence bSa. By
he s′-separability property, there is c ∈ F such that bSc ≿ a. By
efinition of a hollow, for all c ≻ a, we have cPb. Therefore, c = a
nd a ∈ F . Using s′-separability, there is also d ∈ F such that
≿ dSa, which implies b = d and b ∈ F . □

Before proving a factorization result similar to Proposition 10,
e introduce the notion of half-hollow, adapting the notion of
alf-noses introduced in Definition 8.

efinition 31 (Half-hollows). The ordered pair (a, b) ∈ X × X is a
ower half-hollow (l-h-hollow) of S = (P, I) if aIb, a ≻ b, and there
s no d ∈ X such that b ≻ dIa. (a, b) is a proper l-h-hollow if it is a
-h-hollow and there is c ∈ X such that bIc ≻ a. (a, b) ∈ X × X is
n upper half-hollow (u-h-hollow) of S = (P, I) if aIb, a ≻ b, and
here is no c ∈ X such that bIc ≻ a. (a, b) is a proper u-h-hollow
f it is an u-h-hollow and there is d ∈ X such that b ≻ dIa.

Let LHH (resp. UHH) denote the set of right endpoints b (resp.
left endpoints a) of all proper l-h-hollows (resp. u-h-hollow)
(a, b). ⌟

The notion of upper half-hollow is closely related to that of
I-upper-edge point (Beja & Gilboa, 1992, Definition P6 (b), p.438).
The element a ∈ X is an I-upper-edge-point if and only if there
is b ∈ X such that (a, b) is an upper half-hollow. We have the
following result. It is the counterpart of Lemma 9 and its proof is
similar. We give it for the reader’s convenience.

Lemma 32. If the semiorder S = (P, I) is d-separable, then the sets
LHH and UHH are denumerable.

Proof. We only prove the result for LHH . The other case is dealt
with similarly.

Let (a, b) be a proper l-h-hollow. We define the set H(b) =

{x ∈ X : xIb, x ≻ b and ∀d ≺ b,Not[xId]}. In other words, for all
x ∈ H(b), (x, b) is a l-h-hollow. It is clear that a ∈ H(b). Moreover,
since (a, b) is proper, H(b) contains at least one other element c
such that bIc ≻ a. H(b) is an interval w.r.t. ≻. To show this let
x, x′

∈ H(b). If x′′ is such that x ≻ x′′
≻ x′, then x′′

∈ H(b). Indeed,
x′′Ib since xIb and for all d ≺ b, Not[x′′Id] since Not[x′Ic].

Let (a, b) and (a′, b′) be two proper l-h-hollows, with b ̸= b′
∈

LHH . It is clear that the associated intervals H(b) and H(b′) are dis-
joint. Each of these intervals contains at least two distinct points
and therefore at least an element from the denumerable set D that
d-separates S = (P, I). Consequently, LHH is denumerable. □

Proposition 33. A semiorder S = (P, I) on X is s′-separable iff ≿
is d-separable and the set of hollows is denumerable.

Proof. Assume that the semiorder is s′-separable. By Lemma 30,
the set of hollows is denumerable. The s′-separability property
implies that ≿ is d-separable. Let x, y ∈ X be such that x ≻ y.
There is z ∈ X such that xPz and zSy and/or w ∈ X such that wPy
and xSw. In the former case, s′-separability entails that there is
c ∈ F such that zSc ≿ y and, since xPz, we have x ≻ c ≿ y. In the
latter case, there is d ∈ F such that x ≿ dSw and, since wPy, we
have x ≿ d ≻ y.

Reciprocally, let D be a denumerable set that d-separates ≿.
Let x, y ∈ X be such that ySx. We first deal with the case y ≻ x.
By d-separability, there is z ∈ D such that x ≾ z ≾ y, which
implies ySz and zSx. Therefore we have ySz ≿ x and y ≿ zSx. The
other case is when x ≻ y. If (x, y) is a hollow, the s′-separability
condition is trivially satisfied. Assuming that (x, y) is not a hollow,
we have that

1. either there is x′
≻ x such that ySx′
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2. or there is y′
≺ y such that y′Sx.

In Case 1, by the d-separability of ≻, there is c ∈ D such that
x′ ≿ c ≿ x. Therefore we have ySc ≿ x. Further, there are two
cases. Either there is y′

≺ y such that y′Sx or for all y′
≺ y, we have

Not[y′Sx]. In the former case, d-separability implies that there is
d ∈ D such that y′ ≾ d ≾ y. Then, we have y ≿ dSx. Otherwise,
(x, y) is a proper l-h-hollow. In order to have d ∈ F such that
y ≿ dSx, we set d = y and include the denumerable set LHH of
ight endpoints of the proper l-h-hollows in F .

In Case 2, by the d-separability of ≻, there is d ∈ D such that
′ ≾ d ≾ y. Therefore we have xSc ≾ y. Further, either there is
′
≻ x such that ySx′ or for all x′

≻ x, we have Not[ySx′
]. In the

former case, d-separability implies that there is c ∈ D such that
x′ ≿ c ≿ x. Then, we have ySc ≿ x. Otherwise, (x, y) is a proper
u-h-hollow. In order to have c ∈ F such that ySc ≿ x, we set
c = x and include the denumerable set UHH of left endpoints of
the proper u-h-hollows in F .

Finally, by considering F as the union of D, LHH , UHH and
the set of elements a, b such that (a, b) is a hollow, which is
denumerable by hypothesis, we obtain a denumerable set F ,
which s′-separates the semiorder (P, I). □

Remark 34. It is easy to show that having a denumerable set
of hollows is a necessary condition for a semiorder to have a
nonstrict unit representation. Indeed, assume that u is a nonstrict
unit representation of the semiorder S = (P, I) and (a, b) is a
hollow of S. Since bSa, we have u(b) > u(a) − 1. Let εab be the
positive number u(b) − u(a) + 1. By definition of a hollow, there
is no element c ∈ X such that b ≻ cSa and therefore, there is no
c such that u(c) ∈]u(a)−1, u(b)], an interval of length εab > 0. To
each hollow (a, b) is associated such an interval of positive length
and all these intervals are disjoint. Since sets of disjoint intervals
of positive length in R have a finite or denumerable number of
elements, the number of hollows is denumerable. ⋄

Remark 35. For proving the existence of a nonstrict unit rep-
resentation, we shall use d-separability and the condition that
the number of hollows is denumerable. We could do it under
the s′-separability assumption, but, in the proof, we shall only
use the denumerable set D that is dense in the trace ≿ and the
denumerable set of hollows endpoints. We do not need to add the
half-noses or the half-hollows as we had to do in the second part
of the proof of Proposition 33. In other words, we do not use all
the points in the set F involved in the s′-separability property (see
Definition 29). In the same vein, we do not need to impose that
the set of all I-upper-edge-points (Beja & Gilboa, 1992, p. 438)
is denumerable. Only the cardinality of the set of I-upper-edge-
points that correspond to hollows needs to be controlled. Our
condition that the set of hollows has to be denumerable refines
both the s′-separability condition and the denumerability of the
set of I-upper-edge-points (Beja & Gilboa, 1992, Theorem 4.5 (b),
p. 439). Its interpretation is straightforward and it clarifies the
relationship between s′-separability and the conditions imposed
by Beja and Gilboa (1992). ⋄

5.2. Characterization of the semiorders admitting a nonstrict unit
representation

The insertion process leading to prove the existence of a
strict unit representation of a semiorder can be slightly modi-
fied to accommodate nonstrict unit representations. In nonstrict
representations the hollows play the role of the noses in strict
representations and vice versa. We shall prove that there is a non-

strict representation of a semiorder if and only if the semiorder
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atisfies the Bounded P-chain condition, its trace is d-separable
nd the semiorder has a denumerable set of hollows.
As in Section 4, we start by proving that these conditions are

ufficient. We first assume that the semiorder S = (P, I) on X has
been decomposed into I-connected components. Let D be such a
connected component. Assuming that the restriction to D of the
emiorder has a denumerable set of hollows and that its trace
s d-separable, we adapt the construction of (Ĩ0,≿ϕ) described
n Sections 4.4 to 4.6 in order to prove that the restriction to
of the semiorder admits a nonstrict unit representation (as in

ection 4.7). Let E = E ′
∪ H be the denumerable set that is the

nion of all hollows endpoints H and a denumerable subset E ′ of
which d-separates the trace ≿. Using the notation defined in

ection 4.2, we describe the changes in the construction of I−l,k,
or all −l, k ∈ M with l > 0, k ≥ 0, below.

Construction of I0,1 Ghost insertion goes as described in Sec-
tion 4.3. The only difference relates to the positioning
of the ghosts of the noses left endpoints (instead of the
hollows left endpoints). Whenever (x1, b) is a nose, with
x1 ∈ I1 and b ∈ I0, we place the ghost ϕ1(x1) of x1 in the
equivalence class of b in the relation ≿0,1. Note that, for
a hollow (x1, a), the ghost ϕ1(x1) is positioned strictly in
between the classes of the bipartition (A0

x1 , B
0
x1 ), i.e., in such

a way that we have a ≻0,1 ϕ1(x1) ≻0,1 b, for all b ∈ B0
x1 .

There is no change in the proof that the relation ≿0,1 that
is obtained is a complete preorder on I0,1 extending the
trace ≿ on I0 and reproducing on ϕ1(I1) the trace order on
I1. Slight adaptation is needed to show that this complete
preorder is d-separated by E0,1. The required modifications
occur in Cases 3 and 4 in the proof of Lemma 14. Let
z1 ≻0,1 z2 with z1, z2 ∈ I0,1.

Case 3 We consider the case z1 = ϕ1(x1) and z2 ∈ I0. We
have that z1 ≻0,1 z2 implies z2 ∈ B0

x1 . The only
subcase that differs from Lemma 14 is when x1, z2
is a nose, i.e., when z2 is the greatest element in B0

x1
and x1 is the least element in J(x1). Actually, such
a case does not occur since we have chosen to put
z1 = ϕ1(x1) in the equivalence class of z2, i.e., to set
ϕ1(x1) ∼0,1 z2.

Case 4 This case deals with z1 ∈ I0 and z2 = ϕ1(x2). We
have that z1 ≻0,1 z2 implies that z1 ∈ A0

x2 . The only
subcase that differs from Lemma 14 is when z1 is the
least element in A0

x2 and x2 is the greatest element
such that z1 ≿0,1 ϕ1(x2). This means that (x2, z1) is
a hollow. Since x2 is a hollow endpoint, it belongs
to E0, z2 = ϕ1(x2) belongs to E0,1 and it separates z1
from z2.

This establishes Lemma 14 in the construction process of a
nonstrict unit representation.

Construction of I0,k Ghosts are inserted as in Section 4.4. The
bipartition (Ax, Bx) of I0,k−1 associated to element x in Ik
is defined slightly differently. We choose to include in Bx
(instead of Ax) the set L(x) of elements of I0,k−2 which lie
between ϕk−1(Ak−1

x ) and ϕk−1(Bk−1
x ). We have accordingly:

Ax = {y ∈ I0,k−1 : ∃a ∈ ϕk−1(Ak−1
x ) such that y ≿0,k−1 a},(8)

Bx = I0,k−1 \ Ax = L(x) ∪ {z ∈ I0,k−1 : ∃b ∈ ϕk−1(Bk−1
x )

such that b ≿0,k−1 z}.

The definition of ≿0,k is the same as in Section 4.4 except
for Case 3, i.e., when z1 = ϕk(x1) and z2 ∈ I0,k−1. Like in
Section 4.4, we have z ≻ z iff z ∈ A and z ≿ z iff
1 0,k 2 2 x1 2 0,k 1

15
z2 ∈ Bx1 . The only difference is the following. When z2 is
a greatest element in Bx1 (w.r.t. ≿0,k−1) and x1 is the least
element in J(x1) (w.r.t. ≿), we set z2 ∼0,k z1.

The proof of Lemma 15 requires adaptation only in Cases 3
and 4. Let z1, z2 ∈ I0,k be such that z1 ≻0,k z2.

Case 3 If z1 = ϕk(x1) and z2 ∈ I0,k−1, we have that z1 ≻0,k z2
implies that z2 ∈ Bx1 . The only subcase that differs
from Lemma 15 is when z2 is the greatest element
in Bx1 and x1 is the least element in J(x1). Actually,
in such a case, we chose to put z1 = ϕk(x1) in the
equivalence class of z2, i.e., to set ϕk(x1) ∼0,k z2,
which is not compatible with z1 ≻0,k z2.

Case 4 If z1 ∈ I0,k−1 and z2 = ϕk(x2), we have that z1 ≻0,k z2
implies that z1 ∈ Ax2 . The only subcase that differs
from Lemma 15 is when z1 is a least element in
Ax2 and x2 is the greatest element in J(x2) such that
z1 ≿0,k ϕk(x2). By definition of Ax2 , z1 = ϕk−1(x1)
for some x1 ∈ Ik−1. This means that (x2, x1) is a
hollow. Since x2 is a hollow endpoint, it belongs to
Ek, z2 = ϕk(x2) belongs to E0,k and it separates z1
from z2.

Construction of I−1,k Ghosts are inserted in I0,k as in Section 4.5.
The bipartition (Cx,Dx) of I0,k associated to element x in I−1
is defined slightly differently. We choose to include in Cx
(instead of Dx) the set M(x) of elements of I0,k which lie
between C0

x and D0
x , i.e., M(x) = {y ∈ I0,k : c ≻0,k y ≻0,k

d, ∀c ∈ C0
x , d ∈ D0

x}. We have accordingly:

Cx = M(x) ∪ {z ∈ I0,k : ∃c ∈ C0
x such that z ≿0,k c}, (9)

Dx = I0,k−1 \ Cx = {y ∈ I0,k : ∃d ∈ D0
x such that d ≿0,k y}.

The definition of ≿−1,k is the same as in Section 4.5 except
for Case 3, i.e., when z1 = ϕ−1(x1) and z2 ∈ I0,k. Like in
Section 4.5, we have z1 ≻−1,k z2 if z2 ∈ Dx1 , and z2 ≿−1,k z1
if z2 ∈ Cx1 . The only difference is the following. Let K (x1)
denote the set of elements in I−1 determining the same
bipartition (C0

x1 ,D
0
x1 ) as x1. When z2 is a least element in Cx1

(w.r.t. ≿0,k) and x1 is the greatest element in K (x1) (w.r.t.
≿), we set z2 ∼−1,k z1.

The proof of Lemma 16 requires adaptation only in Cases 3
and 4. Let z1, z2 ∈ I−1,k be such that z1 ≻−1,k z2.

Case 3 If z1 = ϕ−1(x1) and z2 ∈ I0,k, we have that z1 ≻−1,k z2
implies that z2 ∈ Dx1 . The only subcase that differs
from Lemma 16 is when z2 is a greatest element in
Dx1 and x1 is the least element in K (x1). By defini-
tion (9) of the bipartition, z2 ∈ Dx1 , hence (z2, x1) is a
hollow. Therefore z2 ∈ E−1,k and it trivially separates
z1 from z2.

Case 4 If z1 ∈ I−1,k and z2 = ϕ−1(x2), we have that z1 ≻−1,k
z2 implies that z1 ∈ Cx2 . The only subcase that
differs from Lemma 16 is when z1 is a least element
in Cx2 and x2 is the greatest element in K (x2). By
construction, in such a case, z1 ∼−1,k z2 = ϕ−1(x2),
which contradicts z1 ≻−1,k z2.

Construction of I−l,k As in Section 4.6, we only deal with the
construction of I−l,k starting from I−l+1,k. Ghost insertion
proceeds as in Section 4.6. The bipartition (Cx,Dx) of I−l+1,k
associated to element x in I−l is defined slightly differently.
We choose to include in Cx (instead of Dx) the set M(x)
of elements of I which lie between ϕ (C−l+1) and
−l+1,k −l+1 x
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ϕ−l+1(D−l+1
x ), i.e., M(x) = {y ∈ I−l+1,k : c ≻−l+1,k y ≻−l+1,k

d, ∀c ∈ C−l+1
x , d ∈ D−l+1

x }. We have accordingly:

Cx = M(x) ∪ {z ∈ I−l+1,k : ∃c ∈ ϕ−l+1(C−l+1
x )

such that z ≿−l+1,k c}, (10)
Dx = I−l+1,k \ Cx = {y ∈ I−l+1,k : ∃d ∈ ϕ−l+1(D−l+1

x )
such that d ≿−l+1,k y}.

The definition of ≿−l+1,k is the same as in Section 4.6
except for Case 3, i.e., when z1 = ϕ−l(x1) and z2 ∈ I−l+1,k.
Like in Section 4.6, we have z1 ≻−l,k z2 iff z2 ∈ Dx1 and
z2 ≻−l,k z1 iff z2 ∈ Cx1 . The only difference is the following.
Let K (x1) denote the set of elements in I−l determining the
same bipartition (C−l+1

x1 ,D−l+1
x1 ) as x1. When z2 is a least

element in Cx1 (w.r.t. ≿−l+1,k) and x1 is the least element
in K (x1) (w.r.t. ≿), we set z2 ∼−l,k z1.

The proof of Lemma 16 requires adaptation only in Cases
3 and 4. Let z1, z2 ∈ I−l,k be such that z1 ≻−l,k z2.

Case 3 If z1 = ϕ−l(x1) and z2 ∈ I−l+1,k, we have that z1 ≻−l,k
z2 implies that z2 ∈ Dx1 . The only subcase that differs
from Lemma 17 is when z2 is a greatest element in
Dx1 and x1 is the least element in K (x1). By definition
(10) of the bipartition, z2 ∈ Dx1 , hence (z2, x1) is a
hollow. Therefore z2 ∈ E−l,k and it trivially separates
z1 from z2.

Case 4 If z1 ∈ I−l+1,k and z2 = ϕ−l(x2), we have that z1 ≻0,k
z2 implies that z1 ∈ Cx2 . The only subcase that
differs from Lemma 17 is when z1 is a least element
in Cx2 and x2 is the greatest element in K (x2). By
construction, in such a case, z1 ∼−l,k z2 = ϕ−l(x2),
which contradicts z1 ≻−l,k z2.

At the end of this construction process, involving at most
a countably infinite number of steps, we obtain, abusing nota-
tion, the set Ĩ0 = I0 ∪ (

⋃
k≥0 ϕk(Ik)) ∪ (

⋃
l>0 ϕ−l(I−l)) = I0 ∪

(
⋃

m∈M ϕm(Im)), ordered by ≿ϕ , which is an extension of the
complete preorder ≿ on I0. It also extends the order ≿−l,k, for
all k, −l ∈ M . The denumerable set Ẽ0 = E0 ∪

⋃
m∈M ϕm(Em) d-

separates the complete preorder ≿ϕ . Indeed, for all x ̸= y ∈ Ĩ0, x
and y belong to I−l,k for some −l, k ∈ M and by Lemma 17, they
are separated by some element in E−l,k. The complete preorder
≿ϕ thus admits a numerical representation on the real numbers.

Leaning on this construction, we prove the following proposi-
tion, which is the counterpart of Proposition 19.

Proposition 36. If f : X →]0, 1[⊂ R is a numerical representation
of the complete preorder ≿ϕ on Ĩ0, then the function u defined by
(6) is a nonstrict unit representation of the semiorder S = (P, I)
restricted to D, i.e., for all x, y ∈ D,

u(x) ≥ u(y) + 1 iff xPy
−1 < u(x) − u(y) < 1 iff xIy

Proof. The proof is very similar to that of Proposition 19. We give
it for the reader’s convenience.

Let x, y be such that xPy. If y belongs to Ik (k ∈ M), we have
that x belongs to Im for m ≥ k+ 1 (by Proposition 13, items 13.4,
13.5 and 13.6). If x ∈ Ik+1, we have u(x) − u(y) = f (ϕk+1(x)) +

k + 1 − f (ϕk(y)) − k ≥ 1, since ϕk+1(x) ≿ϕ ϕk(y) by construction,
and therefore f (ϕk+1(x)) ≥ f (ϕk(y)). Equality occurs when (x, y) is
a nose, since, by construction, the ghost of x is set equivalent to
the ghost of y in the complete preorder ≿ϕ on Ĩ0.

If x ∈ Im, for m ≥ k+ 2, we have u(x)− u(y) = f (ϕm(x))+m−

f (ϕ (y)) − k > 1 since m − k ≥ 2 and |f (ϕ (x)) − f (ϕ (y))| < 1.
k m k

16
Consider now a pair x, y ∈ D such that xIy. We assume w.l.o.g.
that x ≻ y and y ∈ Ik (k ∈ M). By Proposition 13, items 13.2, 13.3
and 13.5, we know that x ∈ Ik or x ∈ Ik+1. In the former case,
0 < u(x)−u(y) = f (ϕk(x))+k− f (ϕk(y))−k < 1, since 0 < f < 1.
In the latter case, we have 0 < u(x)− u(y) = f (ϕk+1(x))+ k+ 1−

f (ϕk(y)) − k < 1 because f (ϕk+1(x)) − f (ϕk(y)) < 0. To establish
this, we consider the following two possible cases:

• k ≥ 0. By construction of the ghosts and the extension ≿ϕ

of ≿ for k ≥ 0, we have ϕk(a) ≻ϕ ϕk+1(x) ≻ϕ ϕk(b) for all
a ∈ A = {z ∈ Ik : xIz} and all b ∈ B = {z ∈ Ik : xPz}.
Since y belongs to A and f represents ≿ϕ , we have that
f (ϕk(y)) > f (ϕk+1(x)).

• k = −l < 0. By construction of the ghosts and the extension
≿ϕ of ≿ for k = −l < 0, we have ϕ−l+1(c) ≻ϕ ϕ−l(y) ≻ϕ

ϕ−l+1(d) for all c ∈ C = {z ∈ I−l+1 : zPy} and all d ∈

D = {z ∈ I−l+1 : zIy}. Since x belongs to D and f represents
≿ϕ , we have that f (ϕ−l(y)) = f (ϕk(y)) > f (ϕ−l+1(x)) =

f (ϕk+1(x)). □

To save space, we do not write down explicitly the counter-
art of Proposition 21 for I-connected components. It obviously
olds and we leave its proof to the reader. The following result
tates necessary and sufficient conditions for the existence of a
onstrict unit representation of a semiorder. It is a counterpart
f Theorem 22.

heorem 37. Let S = (P, I) be a semiorder on the set X and let ≿
e its trace. The following conditions are equivalent.

1. S admits a nonstrict unit numerical representation u, i.e.,
satisfying (2);

2. S satisfies the Bounded P-chain condition, the complete pre-
order ≿ is d-separable and S has a denumerable set of hol-
lows;

3. S satisfies the Bounded P-chain condition and is s′-separable.

he conditions listed in item 2 are independent.

roof. The equivalence of the second and third items results
rom Proposition 33. The conditions stated in item 2 are necessary
or a semiorder to admit a nonstrict unit representation. The
ecessity of Property 1 and of the d-separability of the trace ≿
s shown exactly as for strict representations (see the proof of
heorem 22). A semiorder that has a nonstrict unit representation
annot involve an uncountable set of hollows. This is shown in
emark 34.
Regarding the sufficiency of these conditions, consider any I-

onnected component D of the semiorder. If the semiorder has
denumerable set of hollows and its trace is d-separable, these
roperties are inherited by the restrictions of the semiorder and
f its trace to D. Therefore, we may apply the construction of
Ĩ0,≿ϕ) detailed in the beginning of the present section. Using
roposition 36, we obtain a nonstrict unit representation of the
estriction of the semiorder to D. Such a representation can be
btained for each I-connected component. Under the Bounded P-
hain condition, we know (Bouyssou & Pirlot, 2021, Remark 62)
hat it is possible to assemble the unit representations on all
onnected components into a unit representation of the whole
emiorder.
To prove the independence of the three conditions listed in

tem 2, we slightly modify Examples 23–25.

xample 38. Let X = R2. Consider the binary relation S such
hat S = P ∪ I with (x1, x2) P (y1, y2) if x1 > y1 +1 or [x1 = y1 +1
and x2 ≥ y2], while I is the symmetric complement of P (i.e.,
xIy ⇐⇒ Not[x P y] and Not[y P x]).
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The only difference w.r.t. Example 23 is that the nonstrict
inequality x2 ≥ y2 replaces the strict inequality x2 > y2 in the
definition of P . This results in an empty set of hollows, trivially
implying the condition on hollows. One shows as in Example 23
that the Bounded P-chain condition holds and that d-separability
s violated. ⋄

xample 39. Let S = (P, I) be the semiorder on R defined by
Py if x > y + 1, while I is the symmetric complement of P . This
relation satisfies the Bounded P-chain condition. Its trace is ≥ on
R; it is therefore d-separable. Every pair (x, y) ∈ R2 with x = y+1
is a hollow, hence S does not satisfy the denumerable hollows
condition. ⋄

Example 40. Let X = N ∪ {ω}. Consider the binary relation S
such that ω P x, for all x ∈ N and x P y iff x ≥ y + 1, for
all x, y ∈ N, while I is the symmetric complement of P . Since
X is denumerable, d-separability and the condition on hollows
trivially hold. The Bounded P-chain condition is violated. ⋄ □

Remark 41. We proved in preamble of Section 5 that a semiorder
that has a nonstrict unit representation need not have a strict unit
representation. We are now in a position to prove the converse.
Consider for instance the semiorder in Example 39. The set of
its hollows is not denumerable. Therefore, by Theorem 37, this
semiorder has no nonstrict unit representation. ⋄

Remark 42 (Noses-faithful Representations). In Section 4.9 we
showed that all semiorders that admit a strict unit represen-
tation also admit a special one in which the endpoints of all
hollows are separated by exactly one unit in the representation
(hollows-faithful representation). This result has been established
by modifying the ghost insertion procedure leading to the con-
struction of (Ĩ0,≿ϕ). This modification consists in placing the
ghosts of the hollows in order that they are equivalent w.r.t.
≿ϕ . For any semiorder that admits a nonstrict representation, a
similar trick can be used to construct a nonstrict representation in
which the values assigned to the endpoints of each nose differ by
exactly one unit. We call such a representation noses-faithful. Such
a representation is obtained by modifying the construction of
(Ĩ0,≿ϕ) described in the beginning of Section 5 in the same spirit
as what has been done in Section 4.9 for strict representations.
For nonstrict representations, the insertion procedure should set
the ghosts of noses endpoints as equivalent w.r.t. the ≿ϕ relation.
We leave it to the reader to convince herself that this modifi-
cation is possible and can be done in a way that preserves the
essential properties of ≿ϕ on Ĩ0. ⋄

5.3. Both strict and nonstrict unit representation

A third sort of numerical representation of a semiorder can be
investigated using the tools that we developed to tackle strict unit
representations and nonstrict ones.

Definition 43. A strict–nonstrict unit representation of the
semiorder S = (P, I) on the set X is a function u from X to R
such that, for all x, y ∈ X ,

u(x) > u(y) + 1 if xPy
−1 < u(x) − u(y) < 1 if xIy (11)

⌟

With such a representation, the values of two elements of X
never differ by exactly one unit.
17
For semiorders on a denumerable set, it is well-known that
they have a strict representation if and only if they have a non-
strict one (Beja & Gilboa, 1992). Moreover, if such a semiorder has
a representation (strict or nonstrict), it has a strict–nonstrict one.
This is no longer the case with semiorders on an uncountable set.

Proposition 44. A semiorder on an uncountable set admits a strict–
nonstrict representation iff it satisfies the Bounded P-chain condition
(Property 1), its trace is d-separable and the number of noses and
hollows is at most denumerable.

Proof. Necessity immediately results from Theorems 22 and
37 since a strict–nonstrict representation is both a strict unit
representation and a nonstrict one.

These conditions are also sufficient. This can be proved by
adapting the method used for constructing (Ĩ0,≿ϕ) for strict unit
representations and nonstrict ones. When inserting ghosts of
noses or hollows endpoints, one has to make sure that the ghost
of any nose (resp. hollow) endpoint and the corresponding other
endpoint are never equivalent w.r.t. to the preorder ≿ϕ . It is easy
to check that the construction described in Section 4 actually
allows to do that in case noses and hollows are denumerable (see
also footnote 6). □

6. Discussion

6.1. Summary

In this paper we have investigated the conditions under which
a semiorder on a set of any cardinality admits a unit representa-
tion, either strict or nonstrict.

We have exhibited a set of three independent conditions that
are necessary and sufficient for the existence of a strict unit rep-
resentation of a semiorder. This has been achieved by factorizing
s-separability into d-separability and the condition that the set of
noses is denumerable. We feel that these three conditions have a
clear interpretation.

The bounded P-chain condition deals with the fact that the
threshold is constant and positive. As noted in Bouyssou and
Pirlot (2021, footnote 10), it resembles an Archimedean condition.
It applies as soon as the set X is infinite, even countably infinite. It
is not specific to strict unit representations. It is easy to check that
it is also a necessary condition for nonstrict unit representations.

The d-separability condition ensures that the trace of the
semiorder, which is a complete preorder, has a numerical rep-
resentation. This is clearly necessary for strict unit represen-
tations but is not specific to them. As can be easily checked,
d-separability is also necessary for nonstrict unit representations.

Our final condition states that the set of noses is denumerable.
It is specific to strict unit representations. For obtaining necessary
and sufficient conditions guaranteeing the existence of nonstrict
unit representations, we keep unchanged the first two conditions
used in the case of strict representations. The third condition is
obtained by replacing our condition on ‘‘noses’’ by a condition on
the dual notion of ‘‘hollows’’, in a very natural way.

Our results are linked to the discussion in Candeal and In-
duráin (2010, Sec. 4, p. 489) of Theorem 4.5 in Beja and Gilboa
(1992, p. 439). This theorem asserts that a ‘‘Generalized Nu-
merical Representation’’ (GNR) with S open exists iff S is a
semiorder (for which ≿ is antisymmetric) satisfying d-separability
and the bounded P-chain condition and such that the set of P-
gap-edge-points is denumerable (see Definition 8, for a definition
of P-gap-edge-points).

As noted by Candeal and Induráin (2010), the proof of this
result (see Beja & Gilboa, 1992, p. 446–448) refers to ‘‘positive
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hreshold GNR in which S is open’’. This is tantamount to what
e have called a strict unit representation. Hence, Candeal and

nduráin (2010) wonder whether Beja and Gilboa (1992) were
he first to characterize semiorders having a strict unit represen-
ation. They state (p. 489, last par. of 2nd col.) that the result
n Beja and Gilboa (1992) should be amended by the addition of a
ondition stating, in our terms, that the set of all right endpoints
f lower-half noses should be denumerable.
Our results allow us to be more specific. It is clear that if x

s a P-gap-edge-point, there is a y such that (y, x) is a nose or a
proper lower-half nose (see Definitions 5 and 8). In other terms,
x is the right endpoint of a l-h-nose. A l-h-nose, is either a proper
l-h-nose or a nose. Whenever d-separability is in force, we do
not have to ensure the fact that the set of right endpoints of
proper l-h-noses is denumerable (Lemma 9). We only have to
require that the set of noses is denumerable, which is clearly
implied by the requirement that the set of all right endpoints
of l-h noses is denumerable: requiring that the set of P-gap-
edge-points is denumerable therefore implies that the set of right
endpoints of noses as well as the set of right endpoints of proper
l-h-noses are denumerable. Proposition 10 and Theorem 22 show
that this is sufficient to guarantee the existence of a strict unit
representation. This condition can be weakened however since, as
shown in Lemma 9, d-separability implies that the set of proper
l-h-noses is denumerable. Hence, our result sharpens Beja and
Gilboa’s result discussed in Candeal and Induráin (2010, Sec. 4),
while ensuring its correctness. To bring our result closer to the
one of Beja and Gilboa, we could require that the set of all right
endpoints of noses is denumerable instead of requiring that the
set of all noses is denumerable. Clearly, these two conditions are
equivalent: to the right endpoint of a nose corresponds a unique
nose (see Bouyssou & Pirlot, 2020, Remark 1).

A similar discussion can be written down for nonstrict rep-
resentations. We have shown that Beja and Gilboa’s condition
that the set of I-upper-edge-points is denumerable can be weak-
ened into our condition that the set of hollows is denumerable.
Indeed, an I-upper-edge-point is the left endpoint of an up-
per half-hollow (Definition 31). The latter is either a proper
upper half-hollow or a hollow. By Lemma 32, we know that
the set of proper upper half hollows is denumerable as soon
as the semiorder is d-separable. Therefore, we do not need to
impose that the set of proper upper half-hollows is denumerable.
For a d-separable semiorder, as soon as the set of hollows is
denumerable, the set of upper half-hollows, hence the set of
I-upper-edge-points, is also denumerable. The similarity with
the discussion of the case of strict representations can be made
complete. We formulated a condition in the spirit of Candeal
and Induráin’s s-separability condition, which is necessary for
the existence of nonstrict representations. This s′-separability
condition is equivalent to d-separability of the trace and the
condition that the set of hollows is denumerable. Its relationship
with Beja and Gilboa’s condition that the set of I-upper-edge-
points is denumerable, can be analyzed as we did above for the
case of strict representations.

For characterizing the semiorders that admit either strict
or nonstrict unit representations, we used the same proof idea.
This proof technique is elementary (we only rely on the exis-
tence of numerical representations for complete preorders that
are d-separable) and constructive (at least in the case of finite
semiorders, the ghost construction can be actually implemented
to build numerical representations (see Bouyssou & Pirlot, 2021,
Remark 39). It is also unifying. Variants of the same proof tech-
nique allow to deal with uncountable and denumerable semiord-
ers, and with the case of strict and nonstrict representations. It
allows to prove the existence of various types of special represen-
tation: hollows-faithful (Section 4.9), noses-faithful (Remark 42)
and strict–nonstrict representations (Section 5.3). We believe that
this proof technique can be fruitful for solving other questions.
18
6.2. Some directions for further work

Let us first observe that we have left open the question of
uniqueness of the representation (be it strict or nonstrict) for
semiorders on uncountable sets. This contrasts with what we
did for semiorders on denumerable sets. In Bouyssou and Pirlot
(2021), we sought to keep the construction process of a unit
representation as general as possible, in order to guarantee that
any unit representation can be obtained by this process (see
Bouyssou & Pirlot, 2021, Prop. 46 and Remark 60). This allowed
us to have a good control on the degrees of freedom in the
set of unit representations of a semiorder on a denumerable
set. In the uncountable case, we made an arbitrary choice of a
manner of inserting ghosts that guarantees the d-separability of
the complete preorder defined on the set of ghosts. Since we
do not know how to describe all possible manners of inserting
ghosts that preserve d-separability, we have lost control on the
set of all possible strict (and nonstrict) unit representations in the
uncountable case. Hence, the question of the uniqueness of a unit
representation in the uncountable case remains open.

There is also a number of questions related to previous work
by several authors that require further investigation.

Candeal et al. (2012, Th. 4.11) proved that, for a semiorder,
s-separability is equivalent to any of a series of conditions guar-
anteeing separability for interval orders. These conditions were
introduced in Oloriz et al. (1998) and further studied in Bosi
et al. (2001) (see also the analysis of separability conditions
for biorders in Doignon et al. (1984) and Nakamura (2002)).
It would be useful to examine these conditions, equivalent to
s-separability for semiorders, and see whether some of them,
by way of factorization, could lead to sharper characterization
results.

A second issue of interest is related to the kind of real interval
representations of biorders, interval orders and semiorders intro-
duced and studied by Nakamura (2002). In these representations,
each object is associated an interval, but some objects can be
assigned an open one while others are assigned a closed one. The
author characterizes the biorders, interval orders and semiorders
that admit such ‘‘mixed’’ representations. For semiorders, the
particular case of unit length mixed representations is not specif-
ically investigated. Therefore, characterizing the semiorders that
admit unit length mixed representations is still an open question.

In his study of dense threshold structures, Narens (1994) has
given a characterization of semiorders that are isomorphic to the
classical semiorder on the reals or the rationals. More generally,
one may want to characterize semiorders that are isomorphic
to an interval (bounded or not) of the reals or the rationals,
endowed with the restriction of the classical semiorder on the
reals. The proof technique used in the present paper (and its
companion Bouyssou & Pirlot, 2021) can be adapted to establish
characterizations for such semiorders. This will be the topic of a
future paper.

We also expect that the same idea of proof could be ben-
eficial for the characterization of the semiorders that admit a
continuous unit representation (an issue that has received atten-
tion (Campión et al., 2008; Gensemer, 1987a, 1987b, 1988) but
seems not to be completely solved).
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