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The Lane-Emden problem

Let Q c RN be open and bounded, N> 2, and 2 < p < 2" := 2. We
consider

( )—Au—i-u:lulp‘zu, in Q
P o,u=0, on 9.

Solutions are critical points of the functional
& H(@ R um § VU421 [ P
Q Q
0Ep(u) H'(Q) -»R:ve f VuVv + Uv_f|U|p_2UV
Q Q

Notation: 1 = A1 < A2 < --- denote the eigenvalues of —A + 1
E; denote the corresponding eigenspaces

Remark: 0 is always a (trivial) solution.
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Outline

p ~ 2: ground state solutions

p ~ 2: positive solutions

p large: symmetry breaking of the ground state
p large: bifurcations from 1

p large: multiplicity results (radial domains)
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Dirichlet boundary conditions

—~Au+u=|uP?u inQ,
u=20 on 9.

m The ground state solution is positive and is
even w.r.t. any hyperplane leaving Q invariant
(when Q is convex). In particular, it is radially
symmetric on a ball.

m Uniqueness of the positive solution when Q2 is a
ball.

m If Q is strictly starshaped and p > 2*, no
solution exist.
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Existence of ground state solutions (p < 2%)

Theorem (Z. Nehari, A. Ambrosetti, P.H. Rabinowitz)

For any p € ]2,2*|, there exists a ground state solution to (Pp). Itis a
one-signed function.
Sketch of the proof.

m The functional &, possesses a mountain pass
structure.

®m dup #0, Ep(ug) = lljr;g n;floxap(/lu)

= inf &p(u)
ueNp Au e
where N, is the Nehari manifold of &,. o u
m For any sign-changing solution u: if u*™ # 0, u* € N, Np

and Ep(u™) < Ep(u), where u* := +max{+u,0}.
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p ~ 2: symmetry of ground state solutions

Theorem (D. Bonheure, V. Bouchez, C. Grumiau, C. T., J. Van Schaftingen, 08)

For p close to 2 and any R € O(N) s.t. R(2) = €2, ground state solutions
to (Pp) are symmetric w.r.t. R.

E.g. if Q is radially symmetric, so must the the ground state solution be.

Remark that the seminal method of moving planes is not applicable.
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Unigueness of the positive solution

Theorem
1 is the unique positive solution for p small.
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Unigueness of the positive solution

Theorem

1 is the unique positive solution for p small.

Let v := Pg, up (constant function) and w := Pg.up

/lzfﬂw2<f|Vw|2+w2
= JjuP =
‘fn( “D(v+Ipw)PEwE - (9p€]0,1))
< (p=1)(V+IWile)P~ fﬂw < (p-1)KP- fw

Q
As A1 =1< s, forp~2,w=0andthenu, =v=1.
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A priori bounds for positive solutions

Lemma
Positive solutions (up) are bounded in L* as p ~ 2.

m Integration & Holder: f ug_1 = f up <€ (recall up > 0).
Q Q

m Brezis-Strauss: from the bound on uﬁ‘1, we deduce a bound on

lupllwragay, 1 <q<N/(N-1).
m Sobolev embedding: (up) bounded in L"(2), 1 <r < N/(N-2).
m Bootstrap: lupllwar () is bounded for some r > N/2 when p ~ 2.
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A priori bounds for positive solutions

Proposition

Let2 < p < 2*. There exists Cp > 0 such that any positive solution to ()
with 2 < p < p satisfies max{||u||H1 , ||u||Loo} < Gp.
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A priori bounds for positive solutions

Proposition
Let2 < p < 2*. There exists Cp > 0 such that any positive solution to ()
with 2 < p < p satisfies max{||u||H1 , IIUIILw} < Gp.

It remains to obtain a bound for 2 < p < p <2* in L*. Blow up argument
(Gidas-Spruck). Suppose on the contrary that there is a sequence

(Pn) € [p.p] and (up,) s.t.
Up,(Xp,) :=llUp,llLe = +c0 and  p, — p* € [p,p].
(Drop index n.) Define

Vo(y) ::ppup(pép_z)/2y+xp) where pp 1= 1/||up|lL~ — 0.

Note: vp(0) = [[vpllL~ = 1.
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A priori bounds for positive solutions
The rescaled function v, satisfies

with NBC. By elliptic regularity, (v,) is bounded in W2 and C'%, 0 <a < 1
on any compact set. Thus, taking if necessary a subsequence,

Vo — V" in W2" and C"*® on compact sets of Q* = RN or RN xR, ,.
One has v* >0, v*(0) = 1 =||v|l.~ and v* satisfies

. ~Av* = (v )P inRN-TxR
AV =(v)P! inRN or v =(v") ! >a
onv' =0 when xy = a

Liouville theorems imply v* = 0.

Christophe Troestler (UMONS)



p =~ 2: ground state solutions p ~ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: symmetry breaking of the ground state
Theorem

As p — 2%, least energy solutions go to 0 everywhere except around a
single peak located at a point Q* € 92 where the bondary is most curved.
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p large: symmetry breaking of the ground state

Corollary

1 cannot remain the ground state for all p.
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p large: symmetry breaking of the ground state

Corollary

1 cannot remain the ground state for all p.

Lemma
1 cannot remain the ground state solution for p > 1+ Ap.

Proof. The Morse index of 1 is the sum of the dimension of the
eigenspaces corresponding to negative eigenvalues A of

-Av+v=(p-1)v+av, inQ,
J,v=0, on 09.

i.e. eigenvalues of —A + 1 less than p—1. When p > 1+ A, the Morse
index of the solution 1 is > 1. O
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p large: symmetry breaking of the ground state
Proposition (Lopez, '96)

On radial domains, the ground state is either constant or (e.g. when
p > 1+ A2) not radially symmetric.
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p large: symmetry breaking of the ground state

Proposition (Lopez, '96)

On radial domains, the ground state is either constant or (e.g. when
p > 1+ A2) not radially symmetric.

Proposition

When Q is a ball or an annulus, the Morse index of a non-constant positive
radial solution is at least N+ 1.

Based on: A. Aftalion, F. Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, CRAS, 339(5), '04.

Let u be non-constant positive radial solution of (#,). We have to show

that
Lv:=-Av+v—(p-1)uP?v

with NBC possesses N + 1 negative eigenvalues.
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;. Q.
i +

NI,

Xi
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;. Q.
Let x € Q" s.t. dyu(x) #0. Let D be the connected Q7 _—-
component of {d,,u(X) # 0} containing X. D € Q"

Xi
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;. Q.
Let X € Q" s.t. dyu(x) #0. Let D be the connected Q-
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD. X;
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p =~ 2: ground state solutions p ~ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= A4(L,D,DBC) =0
= 44(L,Q,DBC) <0

Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= 44(L,D,DBC) =0
= 44(L,Q,DBC) <0
= pj = A1(L,Q;",DBC on Q; and NBC on 42, \ Q) < 0

I
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= A4(L,D,DBC) =0
= (L, ", DBC) <0
= i == A1(L,9;",DBC on ©; and NBC on 4Q;"\ ;) <0

If ¥; > 0 is the first eigenfunction of L on er with DBC on €2; and NBC on
o0\ Q, its odd extension y; to Q satisfies

L)) =mv), onQ,  dyi=0, ondQ.
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= A4(L,D,DBC) =0
= (L, ", DBC) <0
= i == A1(L,Q;",DBC on ©; and NBC on 4Q;" \ ;) <0

If ¥; > 0 is the first eigenfunction of L on er with DBC on €2; and NBC on
o0\ Q, its odd extension y; to Q satisfies

L)) =), onQ,  duf=0, ondQ.

Al g, j # i vanish on the axis x; = the family (;b;‘)}" ; is lin. indep.
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p large: symmetry breaking of the ground state

u radial = dy,u =0 on 92 and on ;.
Let X € Q" s.t. d5u(X) # 0. Let D be the connected
component of {d,,u(X) # 0} containing X. D € Q"

L(dxu)=0, onD; dxu=0, ondD.

= A4(L,D,DBC) =0
= (L, ", DBC) <0
= i == A1(L,Q;",DBC on ©; and NBC on 4Q;" \ ;) <0

If i > 0 is the first eigenfunction of L on QI?L with DBC on €2; and NBC on
8(27r \ ©2;, its odd extension ¢} to (2 satisfies

L) =wy;, onQ,  dyi=0, ondQ.

All g7, j # i vanish on the axis x; = the family (gb]f‘)j’\’:1 is lin. indep.
None of the (y;), is a first eigenfunction.
Christophe Troestler (UMONS)
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p large: symmetry breaking of the ground state

Theorem (Lopes, '96)

On radial domains, ground state solutions are symmetric w.r.t. any
hyperplane containing a line L passing through the origin.

Theorem (J. Van Schaftingen, '04)
On radial domains, ground state solutions are foliated Schwarz symmetric.

d

There exists a unit vector d s.t. u depends
only on r = |x| and ¥ = arccos(ﬁ -d) and is
non-increasing in 9.
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p large: non radially symmetric ground state

p=255

p=65

p=38
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Symmetry breaking at exactly p =1+ 12?
The linearisation of the equation around u=1,
Lv:=-Av+v—-(p-1)v

is not invertible iff p =1+ 24;, i > 2.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?
The linearisation of the equation around u=1,
Lv:=-Av+v—-(p-1)v

is not invertible iff p =1+ 24;, i > 2.
Eigenfunctions of —A + 1 with NBC have the form:

= N-2
u(x) = 1% J,(Vir) Pe (%) where v — k+ 2=2,

r = x|, and Px : RN = R is an harmonic homogenous polynomial of degree
k for some k € N. To satisfy the boundary conditions:

ViR is aroot of z - (k —v)Jd,(2) + 20J,(2) = kdy(2) — 2dy+1(2).

=>Ai=1+u

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

In particular, a basis of E is

. Xi
xn—>r‘¥JN/2(\/ﬁr)7’|, j=1,...,N.
There is single function (up to a multiple) that is invariant under rotation in
(X2,...,XN)-

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

In particular, a basis of E is
_N-2 Xj .
X2 JN/2(\/ﬁr)7|, j=1,...,N.
There is single function (up to a multiple) that is invariant under rotation in
(Xg, . ,XN).
Theorem (Ambrosetti-Prodi)

Let X and Y two Banach spaces, u* € X, and a function F :Rx X — Y :
(p,u) — F(p,u) such thatV¥p e R, F(p,u") =0. Let p* € R be such that
ker(duF(p*,u*)) = spanf{¢*} has a dimension 1 and

codim(lm(auF(p u ))) =1. Lety : Y — R be a continuous linear map
such that Im(d,F(p*,u*))={y e Y : (y,y) =0}.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

Theorem (Ambrosetti-Prodi (cont'd))

Ifa:=(,0puF(p",u*)[¢’]) # 0, then (p*,u*) is a bifurcation point for F. In
addition, the set of non-trivial solutions of F = 0 around (p*,u*) is given by
a unique C' curve p — up,. The local behavior of the branch (p, up) for p
close to p* is as follows.

wlfb:= —21—a<;0, 2F(p*, u*)[go*,ga*]> # 0 then the branch is transcritical and

— p* u
UpZU*+pbp " +o(p—p°).

p* P

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

Bifurcations Multiplicity

Theorem (Ambrosetti-Prodi (cont'd))

Ifa:=(,0puF(p",u*)[¢’]) # 0, then (p*,u*) is a bifurcation point for F. In
addition, the set of non-trivial solutions of F = 0 around (p*,u*) is given by
a unique C' curve p — up,. The local behavior of the branch (p, up) for p
close to p* is as follows.

wlfb:= —21—a<;0, 2F(p*, u*)[ga*,go*]> # 0 then the branch is transcritical and

— p* u
UpZU“rpbp " +o(p—p°).

In our case,

Christophe Troestler (UMONS)
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Bifurcations Multiplicity
Symmetry breaking at exactly p =1+ 12?
Theorem (Ambrosetti-Prodi (cont'd))
= Ifb =0, let us define u
. 1 3 k% % % % * P
Cc:= _a(<'~/”auF(p »u )[90 PP ]> p
+3<‘”’65F(p*’“*)[¢*’w]>) Supercritical
where w € X is any solution of the equation
duF (p*,u")[w] = —35F(p*,u*)[¢".¢"]. Ifc #0
then b
p*
_p*\1/2
up:u*i(p p ) ) +o(|p p |1/2)
¢ Subcritical

In particular, the branch is supercritical if ¢ > 0
and subcritical if ¢ < 0.

Christophe Troestler (UMONS)



p =~ 2: ground state solutions p =~ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Symmetry breaking at exactly p =1+ 12?

In our case,

02%12(12—1)(—(/12—2)L 90‘2‘—3/12(/12—1)f8 soSW)

where (—A +1-12)w = ¢3 with NBC on Bg.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

In our case,

c=%12(42—1)(—(12—2)f8 ¢g—3az(42—1)f8 ¢§w)

where (—A +1-12)w = ¢3 with NBC on Bg.

1_ Ho Ho
= EMQR (N+2)(1 + ﬁ)((ﬁ—a)ﬁ —i—[o’—i-a/)

wherea::f@‘z‘, ﬁ::—Sﬁgf gaw,
B, B,

(=A —fiz)W = 3 with NBC on B,
{2 and po > 0 are the second eigenfunction and eigenvalue
of —A with NBC on By s.t. |p2];2 = 1.

Christophe Troestler (UMONS)
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Symmetry breaking at exactly p =1+ 12?

We numerically have

N @ B L—a Bb+a
0.5577 0.5884 0.0306 1.1461
0.4632 0.3096 -0.1536 0.7728
0.4222 0.1694 -0.2528 0.5916
0.4171 0.0858 -0.3313 0.5029
0.4421 0.0250 -0.4171 0.4671

RN+2

- N W s

LS
I

Ao

4 R, radius of the ball
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Symmetry breaking at exactly p =1+ 12?

Conjecture

When R is large enough or N = 2, 1 is the ground state of

—~Au+u=|uP2u, inBg
(Pp) B
aVu - Oa On 6BR.

iff p <1+ Aa.
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p large: bifurcations from 1

Lemma

When p > 2 is increasing,
a bifurcation sequence start from 1 iff p crosses 1+ 4;;
this is actually a continuum if A; has odd muiltiplicity.

2 1+ 4 144 p

Christophe Troestler (UMONS)
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Krasnoselskii-Boehme-Marino theorem (1/2)

Theorem (Krasnoselskii-Boehme-Marino)

LetF:IxH— K:(t,u) — F(t,u) be a continuous function, where | CR is
an interval, and H and K are Banach spaces, such that F(21,0) = 0 for any
Ael.

m IfFis of class C' in a neighborhood of (1,0) and (1,0) is a bifurcation
point of F then d,F(4,0) is not invertible.

m Let assume that for each (1,u) € Ix H,
F(A,u)=L(Au)=N(A,u), L(A,-)=A1-T and N(A,u)=o(||ull),

with T linear, T and N compact, and the last equality being uniform on
each compact set of A.

If A, is an eigenvalue of T with odd multiplicity, then (A.,0) is a global
bifurcation point for F(t,u) = 0.

Christophe Troestler (UMONS)
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Krasnoselskii-Boehme-Marino theorem (2/2)

Theorem (Krasnoselskii-Boehme-Marino (cont’d))

m Let assume that H is a Hilbert space and that for each (1,u) € IxR,
F(a,u) =V h(a,u) where

h(a,u) = J(L(A,u),u)-g(a,u),
L(A,-)=21-T, and Vg(a,u)=o(|lul),

with T linear and symmetric, g(A,-) € C? for all A, and the last equality
being uniform on each compact set of A.

If A, is an eigenvalue of T with finite multiplicity and h(4,-) verifies the
Palais-Smale condition for each A, then (A.,0) is a bifurcation point for
F(t,u)=0.

Christophe Troestler (UMONS)
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p large: transcritical radial bifurcations

Airad €igenvalues that possess a radial eigenfunction (simple in H:ad).
Proposition

On balls, two branches radial solutions in C>*(Q) of

—~Au+u=|uP?2u, inQ
(Pp) B
o,u=0, on 09).
start from each (p,u) = (1+ Ajrag, 1), i > 1. Locally, these branches form a

unique C'-curve. Moreover, for i large enough independent of the
measure of €, the bifurcation is transcritical.

u
|~
‘ /+ Ai’rad p

Christophe Troestler (UMONS)
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p large: transcritical radial bifurcations

Proof. Q2 = Br. Using Ambrosetti-Prodi theorem, one has to show

b= —%/l,'(/l; -1 )f gofrad #0.
Br

Given that radial eigenfunctions are given by constant spherical harmonics
(k =0, v=(N-2)/2), this amounts to

Vl_‘i,rad
f t'=rJ3(t)dt £ 0

fﬂ(_2J(r\/,u,ra /R) NTdr£0 ie.
0

where Ajraq = 1+ fiirad/R?. This is true for large i because

o 2r71(3/16)1/2
f tJ3(t)dt = 2387y, 0
0 A20(v+1/2)

0

Christophe Troestler (UMONS)
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p large: transcritical radial bifurcations

Numerical computations indicate that
Z
Vz€]0,+o0], f tB3(H)dt>0,  v=(N-2)/2
0

and therefore that radial bifurcations are transcritical for all i.

061t N=2

0.5 N=3

0.4 .
0.3 .
0.2 N=4 N=5 .
0.1 f\ N=6 )
0.0 -y

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 © Z
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p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.

SketcH: If it was not the case, there would be a point solution along the
branch with a double root, hence = 0. There is no bifurcation from 0. |

Christophe Troestler (UMONS)
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p large: positive transcritical radial bifurcations

Corollary
The branches consist of positive functions.

SketcH: If it was not the case, there would be a point solution along the
branch with a double root, hence = 0. There is no bifurcation from 0. |

Theorem

Radial bifurcations obtained for the C>*(2)-norm are unbounded and do
not intersect each other. Moreover, along bifurcations starting from

(14 Airag, 1), the solutions always possess the same number of
intersections with 1.

SketcH: The number of crossings with 1 stays constant because otherwise
a non-constant radial solution u s.t. u—1 has a double root would exists.
Since the branches do not intersect each other, Rabinowitz’s principle

says they must be undounded.
Christophe Troestler (UMONS)
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p large: multiplicity results (radial domains)

Theorem
Assume Q2 is a ball.
m In dimension 2, for any n € Ng, there exists p, > 2 such that, for any
p > pp, at least n positive solutions exist
m In dimension > 3, for any 2 < p < 2* and n € Ny, at least n different
positive solutions exist if the measure of the ball 2 is large enough.

Christophe Troestler (UMONS)
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p large: multiplicity results (radial domains)

Theorem
Assume (2 is a ball.

m In dimension 2, for any n € Ng, there exists p, > 2 such that, for any
p > pp, at least n positive solutions exist

m In dimension > 3, for any 2 < p < 2* and n € Ny, at least n different
positive solutions exist if the measure of the ball 2 is large enough.

Theorem

On balls, there exists a degenerate positive radial solution for some p
provided that the measure of Q is large enough.

Christophe Troestler (UMONS)
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p>2°

Multiplicity

Theorem (Serra & Tilli, ’11)

Assume a € L'(]0, R[) is increasing, not constant and satisfies a > 0 in
10, R[, then for any p € ]2, +oo[, —Au+ u = a(|x|)|ulP~2u with NBC
possesses a positive radially increasing solution.

Trick: work on the space of radially increasing functions.

Christophe Troestler (UMONS)
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k
p>2
Proposition

Assume (2 is a ball of radius R. If u is a radial solution of (Pp) such that
u(0) <1, then ||ull.~ < exp(1/2).

Christophe Troestler (UMONS)
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p>2°

Proposition

Assume (2 is a ball of radius R. If u is a radial solution of (Pp) such that
u(0) < 1, then ||ull.~ < exp(1/2).

Proor. In radial coordinates, the equation writes

7

N-1
—u —Tu'-i-u:u’H.

Multiplying by v/, we get
d N-1

_h - 12 <O,
Zh(r) = - u*(r)

where V) () ()
h(r) := 5 b —

In particular, this means that h(r) < h(0) for any r.

Christophe Troestler (UMONS)
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p =~ 2: positive solutions

Symmetry breaking Bifurcations Multiplicity
k
p>2

ProoF (conT’d). The assumption u(0) < 1 implies

o) =200 o) 0 <

p 2
Thus

1
lull < (3

u= (p/2)1/(P—2)

Christophe Troestler (UMONS)
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p ~ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Theorem

Assume 2 is a ball. Then, for any n € Ny, there exists p, s.t., for any
p € [pn, +oo[, (Pp) has at least n positive radially symmetric solutions.
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p=>2°

Theorem

Assume 2 is a ball. Then, for any n € Ng, there exists py s.t., for any
p € [pn, +oo[, (Pp) has at least n positive radially symmetric solutions.

SketcH: Radial bifurcations are transcritical, thus, as p ~ 1 + A rag,

p—1—jrad

Pirad +0(P— 1= Ajrad)-

Along the left or right branch u,(0) < 1. This later property persists along
the whole branch. Thus all u belonging to that branch must satisfy

llullL~ < exp(1/2). Since 1 is the only solution for p ~ 2, the branch must
exist for all p large. O
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R EEEEECSRRRRRRRRRRRRRL
p =~ 2: ground state solutions p ~ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Thank you for your attention.

Christophe Troestler (UMONS)
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