Multiplicity and symmetry of positive solutions to semi-linear elliptic problems with Neumann boundary conditions

Christophe Troestler (Joint work with D. Bonheure \& C. Grumiau)

Institut de Mathématique Université de Mons

Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems, June 6-9, 2012

The Lane-Emden problem

Let $\Omega \subseteq \mathbb{R}^{N}$ be open and bounded, $N \geqslant 2$, and $2<p<2^{*}:=\frac{2 N}{N-2}$. We consider

$$
\left(\mathcal{P}_{p}\right) \begin{cases}-\Delta u+u=|u|^{p-2} u, & \text { in } \Omega \\ \partial_{\nu} u=0, & \text { on } \partial \Omega .\end{cases}
$$

Solutions are critical points of the functional

$$
\begin{aligned}
& \mathcal{E}_{p}: H^{1}(\Omega) \rightarrow \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega}|\nabla u|^{2}+u^{2}-\frac{1}{p} \int_{\Omega}|u|^{p} \\
& \partial \mathcal{E}_{p}(u): H^{1}(\Omega) \rightarrow \mathbb{R}: v \mapsto \int_{\Omega} \nabla u \nabla v+u v-\int_{\Omega}|u|^{p-2} u v
\end{aligned}
$$

Notation: $1=\lambda_{1}<\lambda_{2}<\cdots$ denote the eigenvalues of $-\Delta+1$
E_{i} denote the corresponding eigenspaces
Remark: 0 is always a (trivial) solution.

Outline

$1 p \approx 2$: ground state solutions
$2 p \approx 2$: positive solutions

3 p large: symmetry breaking of the ground state

4 p large: bifurcations from 1

5 p large: multiplicity results (radial domains)

Dirichlet boundary conditions

$$
\begin{cases}-\Delta u+u=|u|^{p-2} u & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega .\end{cases}
$$

- The ground state solution is positive and is even w.r.t. any hyperplane leaving Ω invariant
 (when Ω is convex). In particular, it is radially symmetric on a ball.
- Uniqueness of the positive solution when Ω is a ball.
- If Ω is strictly starshaped and $p \geqslant 2^{*}$, no solution exist.

Existence of ground state solutions ($p<2^{*}$)

Theorem (Z. Nehari, A. Ambrosetti, P.H. Rabinowitz)

For any $p \in] 2,2^{*}\left[\right.$, there exists a ground state solution to $\left(\mathcal{P}_{p}\right)$. It is a one-signed function.

Sketch of the proof.

- The functional \mathcal{E}_{p} possesses a mountain pass structure.

■ $\exists u_{0} \neq 0, \mathcal{E}_{p}\left(u_{0}\right)=\inf _{u \neq 0} \max _{\lambda>0} \mathcal{E}_{p}(\lambda u)$

$$
=\inf _{u \in \mathcal{N}_{p}} \mathcal{E}_{p}(u)
$$

where \mathcal{N}_{p} is the Nehari manifold of \mathcal{E}_{p}.
\square For any sign-changing solution u : if $u^{ \pm} \neq 0, u^{ \pm} \in \mathcal{N}_{p}$

and $\mathcal{E}_{p}\left(u^{ \pm}\right)<\mathcal{E}_{p}(u)$, where $u^{ \pm}:= \pm \max \{ \pm u, 0\}$.

$p \approx 2$: symmetry of ground state solutions

Theorem (D. Bonheure, V. Bouchez, C. Grumiau, C. T., J. Van Schaftingen, '08)
For p close to 2 and any $R \in O(N)$ s.t. $R(\Omega)=\Omega$, ground state solutions to $\left(\mathcal{P}_{p}\right)$ are symmetric w.r.t. R.
E.g. if Ω is radially symmetric, so must the the ground state solution be. Remark that the seminal method of moving planes is not applicable.

Uniqueness of the positive solution

Theorem

1 is the unique positive solution for p small.

Uniqueness of the positive solution

Theorem

1 is the unique positive solution for p small.
Let $v:=P_{E_{1}} u_{p}$ (constant function) and $w:=P_{E_{1}^{\perp}} u_{p}$.

$$
\begin{aligned}
\lambda_{2} \int_{\Omega} w^{2} & \leqslant \int_{\Omega}|\nabla w|^{2}+w^{2} \\
& =\int_{\Omega}\left|u_{p}\right|^{p-1} w=\int_{\Omega}\left((v+w)^{p-1}-v^{p-1}\right) w \\
& =\int_{\Omega}(p-1)\left(v+\vartheta_{p} w\right)^{p-2} w^{2} \quad\left(\vartheta_{p} \in\right] 0,1[) \\
& \leqslant(p-1)\left(|v|+\|w\|_{\infty}\right)^{p-2} \int_{\Omega} w^{2} \leqslant(p-1) K^{p-2} \int_{\Omega} w^{2} .
\end{aligned}
$$

As $\lambda_{1}=1<\lambda_{2}$, for $p \approx 2, w=0$ and then $u_{p}=v=1$.

A priori bounds for positive solutions

Lemma

Positive solutions (u_{p}) are bounded in L^{∞} as $p \approx 2$.

- Integration \& Hölder: $\int_{\Omega} u_{p}^{p-1}=\int_{\Omega} u_{p} \leqslant|\Omega|\left(\right.$ recall $\left.u_{p}>0\right)$.
- Brezis-Strauss: from the bound on $\int_{\Omega} u_{p}^{p-1}$, we deduce a bound on $\left\|u_{p}\right\|_{W^{1, q(\Omega)}}, 1 \leqslant q<N /(N-1)$.
- Sobolev embedding: (u_{p}) bounded in $L^{r}(\Omega), 1<r<N /(N-2)$.
- Bootstrap: $\left\|u_{p}\right\|_{W^{2}, r}(\Omega)$ is bounded for some $r>N / 2$ when $p \approx 2$.

A priori bounds for positive solutions

Proposition

Let $2<\bar{p}<2^{*}$. There exists $C_{\bar{p}}>0$ such that any positive solution to $\left(\mathcal{P}_{p}\right)$ with $2<p \leqslant \bar{p}$ satisfies $\max \left\{\|u\|_{H^{1}},\|u\|_{L^{\infty}}\right\} \leqslant C_{\bar{p}}$.

A priori bounds for positive solutions

Proposition

Let $2<\bar{p}<2^{*}$. There exists $C_{\bar{p}}>0$ such that any positive solution to $\left(\mathcal{P}_{p}\right)$ with $2<p \leqslant \bar{p}$ satisfies $\max \left\{\|u\|_{H^{1}},\|u\|_{L^{\infty}}\right\} \leqslant C_{\bar{p}}$.

It remains to obtain a bound for $2<p<\bar{p}<2^{*}$ in L^{∞}. Blow up argument (Gidas-Spruck). Suppose on the contrary that there is a sequence $\left(p_{n}\right) \subseteq[p, \bar{p}]$ and $\left(u_{p_{n}}\right)$ s.t.

$$
u_{p_{n}}\left(x_{p_{n}}\right):=\left\|u_{p_{n}}\right\|_{L^{\infty}} \rightarrow+\infty \quad \text { and } \quad p_{n} \rightarrow p^{*} \in[p, \bar{p}] .
$$

(Drop index n.) Define

$$
v_{p}(y):=\mu_{p} u_{p}\left(\mu_{p}^{(p-2) / 2} y+x_{p}\right) \quad \text { where } \mu_{p}:=1 /\left\|u_{p}\right\|_{L^{\infty}} \rightarrow 0 .
$$

Note: $v_{p}(0)=\left\|v_{p}\right\|_{L^{\infty}}=1$.

A priori bounds for positive solutions

The rescaled function v_{p} satisfies

$$
-\Delta v_{p}+\mu_{p}^{p-2} v_{p}=v_{p}^{p-1} \quad \text { on } \Omega_{p}:=\left(\Omega-x_{p}\right) / \mu_{p}^{(p-2) / 2}
$$

with NBC. By elliptic regularity, $\left(v_{p}\right)$ is bounded in $W^{2, r}$ and $C^{1, \alpha}, 0<\alpha<1$ on any compact set. Thus, taking if necessary a subsequence,

$$
v_{n} \rightarrow v^{*} \text { in } W^{2, r} \text { and } C^{1, \alpha} \text { on compact sets of } \Omega^{*}=\mathbb{R}^{N} \text { or } \mathbb{R}^{N-1} \times \mathbb{R}_{>a} .
$$

One has $v^{*} \geqslant 0, v^{*}(0)=1=\|v\|_{L^{\infty}}$ and v^{*} satisfies

$$
-\Delta v^{*}=\left(v^{*}\right)^{p^{*}-1} \quad \text { in } \mathbb{R}^{N} \quad \text { or } \quad \begin{cases}-\Delta v^{*}=\left(v^{*}\right)^{p^{*}-1} & \text { in } \mathbb{R}^{N-1} \times \mathbb{R}_{>a} \\ \partial_{N} v^{*}=0 & \text { when } x_{N}=a\end{cases}
$$

Liouville theorems imply $v^{*}=0$.

p large: symmetry breaking of the ground state

Theorem

As $p \rightarrow 2^{*}$, least energy solutions go to 0 everywhere except around a single peak located at a point $Q^{*} \in \partial \Omega$ where the bondary is most curved.

p large: symmetry breaking of the ground state

Corollary

1 cannot remain the ground state for all p.
p large: symmetry breaking of the ground state

Corollary

1 cannot remain the ground state for all p.

Lemma

1 cannot remain the ground state solution for $p>1+\lambda_{2}$.
Proof. The Morse index of 1 is the sum of the dimension of the eigenspaces corresponding to negative eigenvalues λ of

$$
\begin{cases}-\Delta v+v=(p-1) v+\lambda v, & \text { in } \Omega, \\ \partial_{\nu} v=0, & \text { on } \partial \Omega .\end{cases}
$$

i.e. eigenvalues of $-\Delta+1$ less than $p-1$. When $p>1+\lambda_{2}$, the Morse index of the solution 1 is >1.

p large: symmetry breaking of the ground state

Proposition (Lopez, '96)

On radial domains, the ground state is either constant or (e.g. when $p>1+\lambda_{2}$) not radially symmetric.

p large: symmetry breaking of the ground state

Proposition (Lopez, '96)

On radial domains, the ground state is either constant or (e.g. when $p>1+\lambda_{2}$) not radially symmetric.

Proposition

When Ω is a ball or an annulus, the Morse index of a non-constant positive radial solution is at least $N+1$.

Based on: A. Aftalion, F. Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, CRAS, $339(5)$, '04.
Let u be non-constant positive radial solution of $\left(\mathcal{P}_{p}\right)$. We have to show that

$$
L v:=-\Delta v+v-(p-1)|u|^{p-2} v
$$

with NBC possesses $N+1$ negative eigenvalues.

p large: symmetry breaking of the ground state

 u radial $\Rightarrow \partial_{x_{i}} u=0$ on $\partial \Omega$ and on Ω_{i}.

p large: symmetry breaking of the ground state

 u radial $\Rightarrow \partial_{x_{i}} u=0$ on $\partial \Omega$ and on Ω_{i}.Let $\bar{x} \in \Omega_{i}^{+}$s.t. $\partial_{x_{i}} u(\bar{x}) \neq 0$. Let D be the connected component of $\left\{\partial_{x_{i}} u(\bar{x}) \neq 0\right\}$ containing \bar{x}. $D \subseteq \Omega_{i}^{+}$.

p large: symmetry breaking of the ground state

 u radial $\Rightarrow \partial_{x_{i}} u=0$ on $\partial \Omega$ and on Ω_{i}.Let $\bar{x} \in \Omega_{i}^{+}$s.t. $\partial_{x_{i}} u(\bar{x}) \neq 0$. Let D be the connected component of $\left\{\partial_{x_{i}} u(\bar{x}) \neq 0\right\}$ containing \bar{x}. $D \subseteq \Omega_{i}^{+}$.

$$
L\left(\partial_{x_{i}} u\right)=0, \quad \text { on } D ; \quad \partial_{x_{i}} u=0, \quad \text { on } \partial D .
$$

p large: symmetry breaking of the ground state

 u radial $\Rightarrow \partial_{x_{i}} u=0$ on $\partial \Omega$ and on Ω_{i}.Let $\bar{x} \in \Omega_{i}^{+}$s.t. $\partial_{x_{i}} u(\bar{x}) \neq 0$. Let D be the connected component of $\left\{\partial_{x_{i}} u(\bar{x}) \neq 0\right\}$ containing \bar{x}. $D \subseteq \Omega_{i}^{+}$.

$$
\begin{aligned}
& L\left(\partial_{x_{i}} u\right)=0, \quad \text { on } D ; \quad \partial_{x_{i}} u=0, \quad \text { on } \partial D . \\
\Rightarrow & \lambda_{1}(L, D, D B C)=0 \\
\Rightarrow & \lambda_{1}\left(L, \Omega_{i}^{+}, \mathrm{DBC}\right) \leqslant 0
\end{aligned}
$$

p large: symmetry breaking of the ground state u radial $\Rightarrow \partial_{x_{i}} u=0$ on $\partial \Omega$ and on Ω_{i}.
Let $\bar{x} \in \Omega_{i}^{+}$s.t. $\partial_{x_{i}} u(\bar{x}) \neq 0$. Let D be the connected component of $\left\{\partial_{x_{i}} u(\bar{x}) \neq 0\right\}$ containing \bar{x}. $D \subseteq \Omega_{i}^{+}$.

$$
\begin{aligned}
& L\left(\partial_{x_{i}} u\right)=0, \quad \text { on } D ; \quad \partial_{x_{i}} u=0, \quad \text { on } \partial D \\
\Rightarrow & \lambda_{1}(L, D, D B C)=0 \\
\Rightarrow & \lambda_{1}\left(L, \Omega_{i}^{+}, \mathrm{DBC}\right) \leqslant 0 \\
\Rightarrow & \mu_{i}:=\lambda_{1}\left(L, \Omega_{i}^{+}, \mathrm{DBC} \text { on } \Omega_{i} \text { and NBC on } \partial \Omega_{i}^{+} \backslash \Omega_{i}\right)<0
\end{aligned}
$$

p large: symmetry breaking of the ground state u radial $\Rightarrow \partial_{x_{i}} u=0$ on $\partial \Omega$ and on Ω_{i}.
Let $\bar{x} \in \Omega_{i}^{+}$s.t. $\partial_{x_{i}} u(\bar{x}) \neq 0$. Let D be the connected component of $\left\{\partial_{x_{i}} u(\bar{x}) \neq 0\right\}$ containing \bar{x}. $D \subseteq \Omega_{i}^{+}$.

$$
\begin{aligned}
& L\left(\partial_{x_{i}} u\right)=0, \quad \text { on } D ; \quad \partial_{x_{i}} u=0, \quad \text { on } \partial D . \\
\Rightarrow & \lambda_{1}(L, D, D B C)=0 \\
\Rightarrow & \lambda_{1}\left(L, \Omega_{i}^{+}, \mathrm{DBC}\right) \leqslant 0 \\
\Rightarrow & \mu_{i}:=\lambda_{1}\left(L, \Omega_{i}^{+}, \mathrm{DBC} \text { on } \Omega_{i} \text { and NBC on } \partial \Omega_{i}^{+} \backslash \Omega_{i}\right)<0
\end{aligned}
$$

If $\psi_{i}>0$ is the first eigenfunction of L on Ω_{i}^{+}with DBC on Ω_{i} and NBC on $\partial \Omega_{i}^{+} \backslash \Omega_{i}$, its odd extension ψ_{i}^{*} to Ω satisfies

$$
L\left(\psi_{i}^{*}\right)=\mu_{i} \psi_{i}^{*}, \quad \text { on } \Omega, \quad \partial_{\nu} \psi_{i}^{*}=0, \quad \text { on } \partial \Omega .
$$

p large: symmetry breaking of the ground state

 u radial $\Rightarrow \partial_{x_{i}} u=0$ on $\partial \Omega$ and on Ω_{i}.Let $\bar{x} \in \Omega_{i}^{+}$s.t. $\partial_{x_{i}} u(\bar{x}) \neq 0$. Let D be the connected component of $\left\{\partial_{x_{i}} u(\bar{x}) \neq 0\right\}$ containing \bar{x}. $D \subseteq \Omega_{i}^{+}$.

$$
L\left(\partial_{x_{i}} u\right)=0, \quad \text { on } D ; \quad \partial_{x_{i}} u=0, \quad \text { on } \partial D .
$$

$\Rightarrow \lambda_{1}(L, D, D B C)=0$

$\Rightarrow \lambda_{1}\left(L, \Omega_{i}^{+}, \mathrm{DBC}\right) \leqslant 0$
$\Rightarrow \mu_{i}:=\lambda_{1}\left(L, \Omega_{i}^{+}\right.$, DBC on Ω_{i} and NBC on $\left.\partial \Omega_{i}^{+} \backslash \Omega_{i}\right)<0$
If $\psi_{i}>0$ is the first eigenfunction of L on Ω_{i}^{+}with DBC on Ω_{i} and NBC on $\partial \Omega_{i}^{+} \backslash \Omega_{i}$, its odd extension ψ_{i}^{*} to Ω satisfies

$$
L\left(\psi_{i}^{*}\right)=\mu_{i} \psi_{i}^{*}, \quad \text { on } \Omega, \quad \partial_{\nu} \psi_{i}^{*}=0, \quad \text { on } \partial \Omega .
$$

All $\psi_{j}^{*}, j \neq i$ vanish on the axis $x_{i} \Rightarrow$ the family $\left(\psi_{j}^{*}\right)_{j=1}^{N}$ is lin. indep.

p large: symmetry breaking of the ground state

 u radial $\Rightarrow \partial_{x_{i}} u=0$ on $\partial \Omega$ and on Ω_{i}.Let $\bar{x} \in \Omega_{i}^{+}$s.t. $\partial_{x_{i}} u(\bar{x}) \neq 0$. Let D be the connected component of $\left\{\partial_{x_{i}} u(\bar{x}) \neq 0\right\}$ containing \bar{x}. $D \subseteq \Omega_{i}^{+}$.

$$
L\left(\partial_{x_{i}} u\right)=0, \quad \text { on } D ; \quad \partial_{x_{i}} u=0, \quad \text { on } \partial D
$$

$\Rightarrow \lambda_{1}(L, D, D B C)=0$

$\Rightarrow \lambda_{1}\left(L, \Omega_{i}^{+}, D B C\right) \leqslant 0$
$\Rightarrow \mu_{i}:=\lambda_{1}\left(L, \Omega_{i}^{+}, \mathrm{DBC}\right.$ on Ω_{i} and NBC on $\left.\partial \Omega_{i}^{+} \backslash \Omega_{i}\right)<0$
If $\psi_{i}>0$ is the first eigenfunction of L on Ω_{i}^{+}with DBC on Ω_{i} and NBC on $\partial \Omega_{i}^{+} \backslash \Omega_{i}$, its odd extension ψ_{i}^{*} to Ω satisfies

$$
L\left(\psi_{i}^{*}\right)=\mu_{i} \psi_{i}^{*}, \quad \text { on } \Omega, \quad \partial_{\nu} \psi_{i}^{*}=0, \quad \text { on } \partial \Omega .
$$

All $\psi_{j}^{*}, j \neq i$ vanish on the axis $x_{i} \Rightarrow$ the family $\left(\psi_{j}^{*}\right)_{j=1}^{N}$ is lin. indep. None of the $\left(\psi_{j}^{*}\right)_{j=1}^{N}$ is a first eigenfunction.

p large: symmetry breaking of the ground state

Theorem (Lopes, '96)

On radial domains, ground state solutions are symmetric w.r.t. any hyperplane containing a line L passing through the origin.

Theorem (J. Van Schaftingen, '04)

On radial domains, ground state solutions are foliated Schwarz symmetric.

There exists a unit vector d s.t. u depends only on $r=|x|$ and $\vartheta=\arccos \left(\frac{x}{|x|} \cdot d\right)$ and is non-increasing in ϑ.

p large: non radially symmetric ground state

Symmetry breaking at exactly $p=1+\lambda_{2}$?

The linearisation of the equation around $u=1$,

$$
L v:=-\Delta v+v-(p-1) v
$$

is not invertible iff $p=1+\lambda_{i}, i \geqslant 2$.

Symmetry breaking at exactly $p=1+\lambda_{2}$?

The linearisation of the equation around $u=1$,

$$
L v:=-\Delta v+v-(p-1) v
$$

is not invertible iff $p=1+\lambda_{i}, i \geqslant 2$.
Eigenfunctions of $-\Delta+1$ with NBC have the form:

$$
u(x)=r^{-\frac{N-2}{2}} J_{v}(\sqrt{\mu} r) P_{k}\left(\frac{x}{|x|}\right), \quad \text { where } v=k+\frac{N-2}{2}
$$

$r=|x|$, and $P_{k}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is an harmonic homogenous polynomial of degree k for some $k \in \mathbb{N}$. To satisfy the boundary conditions:
$\sqrt{\mu} R$ is a root of $z \mapsto(k-v) J_{v}(z)+z \partial J_{v}(z)=k J_{v}(z)-z J_{v+1}(z)$.
$\Rightarrow \lambda_{i}=1+\mu$

Symmetry breaking at exactly $p=1+\lambda_{2}$?

In particular, a basis of E_{2} is

$$
x \mapsto r^{-\frac{N-2}{2}} J_{N / 2}(\sqrt{\mu} r) \frac{x_{j}}{|x|}, \quad j=1, \ldots, N
$$

There is single function (up to a multiple) that is invariant under rotation in $\left(x_{2}, \ldots, x_{N}\right)$.

Symmetry breaking at exactly $p=1+\lambda_{2}$?

In particular, a basis of E_{2} is

$$
x \mapsto r-\frac{N-2}{2} J_{N / 2}(\sqrt{\mu} r) \frac{x_{j}}{|x|}, \quad j=1, \ldots, N .
$$

There is single function (up to a multiple) that is invariant under rotation in $\left(x_{2}, \ldots, x_{N}\right)$.

Theorem (Ambrosetti-Prodi)

Let X and Y two Banach spaces, $u^{*} \in X$, and a function $F: \mathbb{R} \times X \rightarrow Y$: $(p, u) \mapsto F(p, u)$ such that $\forall p \in \mathbb{R}, F\left(p, u^{*}\right)=0$. Let $p^{*} \in \mathbb{R}$ be such that $\operatorname{ker}\left(\partial_{u} F\left(p^{*}, u^{*}\right)\right)=\operatorname{span}\left\{\varphi^{*}\right\}$ has a dimension 1 and $\operatorname{codim}\left(\operatorname{lm}\left(\partial_{u} F\left(p^{*}, u^{*}\right)\right)\right)=1$. Let $\psi: Y \rightarrow \mathbb{R}$ be a continuous linear map such that $\operatorname{lm}\left(\partial_{u} F\left(p^{*}, u^{*}\right)\right)=\{y \in Y:\langle\psi, y\rangle=0\}$.

Symmetry breaking at exactly $p=1+\lambda_{2}$?

Theorem (Ambrosetti-Prodi (cont'd))

If a $:=\left\langle\psi, \partial_{p, u} F\left(p^{*}, u^{*}\right)\left[\varphi^{*}\right]\right\rangle \neq 0$, then $\left(p^{*}, u^{*}\right)$ is a bifurcation point for F. In addition, the set of non-trivial solutions of $F=0$ around $\left(p^{*}, u^{*}\right)$ is given by a unique C^{1} curve $p \mapsto u_{p}$. The local behavior of the branch $\left(p, u_{p}\right)$ for p close to p^{*} is as follows.

- If $b:=-\frac{1}{2 a}\left\langle\psi, \partial_{u}^{2} F\left(p^{*}, u^{*}\right)\left[\varphi^{*}, \varphi^{*}\right]\right\rangle \neq 0$ then the branch is transcritical and

$$
u_{p}=u^{*}+\frac{p-p^{*}}{b} \varphi^{*}+o\left(p-p^{*}\right)
$$

Symmetry breaking at exactly $p=1+\lambda_{2}$?

Theorem (Ambrosetti-Prodi (cont'd))

If a $:=\left\langle\psi, \partial_{p, u} F\left(p^{*}, u^{*}\right)\left[\varphi^{*}\right]\right\rangle \neq 0$, then $\left(p^{*}, u^{*}\right)$ is a bifurcation point for F. In addition, the set of non-trivial solutions of $F=0$ around $\left(p^{*}, u^{*}\right)$ is given by a unique C^{1} curve $p \mapsto u_{p}$. The local behavior of the branch $\left(p, u_{p}\right)$ for p close to p^{*} is as follows.
-If $b:=-\frac{1}{2 a}\left\langle\psi, \partial_{u}^{2} F\left(p^{*}, u^{*}\right)\left[\varphi^{*}, \varphi^{*}\right]\right\rangle \neq 0$ then the branch is transcritical and

$$
u_{p}=u^{*}+\frac{p-p^{*}}{b} \varphi^{*}+o\left(p-p^{*}\right)
$$

In our case,

$$
a=-\int_{\Omega} \varphi_{2}^{2}=-1 \quad \text { and } \quad b=-\frac{1}{2} \lambda_{2}\left(\lambda_{2}-1\right) \int_{\Omega} \varphi_{2}^{3}=0
$$

Symmetry breaking at exactly $p=1+\lambda_{2}$?

Theorem (Ambrosetti-Prodi (cont'd))

- If $b=0$, let us define

$$
\begin{aligned}
& c:=-\frac{1}{6 a}\left(\left\langle\psi, \partial_{u}^{3} F\left(p^{*}, u^{*}\right)\left[\varphi^{*}, \varphi^{*}, \varphi^{*}\right]\right\rangle\right. \\
&\left.+3\left\langle\psi, \partial_{u}^{2} F\left(p^{*}, u^{*}\right)\left[\varphi^{*}, w\right]\right\rangle\right)
\end{aligned}
$$

Supercritical
where $w \in X$ is any solution of the equation $\partial_{u} F\left(p^{*}, u^{*}\right)[w]=-\partial_{u}^{2} F\left(p^{*}, u^{*}\right)\left[\varphi^{*}, \varphi^{*}\right]$. If $c \neq 0$ then

$$
u_{p}=u^{*} \pm\left(\frac{p-p^{*}}{c}\right)^{1 / 2} \varphi^{*}+o\left(\left|p-p^{*}\right|^{1 / 2}\right)
$$

Subcritical In particular, the branch is supercritical if $c>0$ and subcritical if $c<0$.

Symmetry breaking at exactly $p=1+\lambda_{2}$?

In our case,

$$
c=\frac{1}{6} \lambda_{2}\left(\lambda_{2}-1\right)\left(-\left(\lambda_{2}-2\right) \int_{B_{R}} \varphi_{2}^{4}-3 \lambda_{2}\left(\lambda_{2}-1\right) \int_{B_{R}} \varphi_{2}^{2} w\right)
$$ where $\left(-\Delta+1-\lambda_{2}\right) w=\varphi_{2}^{2}$ with NBC on B_{R}.

Symmetry breaking at exactly $p=1+\lambda_{2}$?

In our case,

$$
c=\frac{1}{6} \lambda_{2}\left(\lambda_{2}-1\right)\left(-\left(\lambda_{2}-2\right) \int_{B_{R}} \varphi_{2}^{4}-3 \lambda_{2}\left(\lambda_{2}-1\right) \int_{B_{R}} \varphi_{2}^{2} w\right)
$$

$$
\text { where }\left(-\Delta+1-\lambda_{2}\right) w=\varphi_{2}^{2} \text { with NBC on } B_{R} \text {. }
$$

$$
=\frac{1}{6} \bar{\mu}_{2} R^{-(N+2)}\left(1+\frac{\bar{\mu}_{2}}{R^{2}}\right)\left((\beta-\alpha) \frac{\bar{\mu}_{2}}{R^{2}}+\beta+\alpha\right)
$$

$$
\text { where } \alpha:=\int_{B_{1}} \bar{\varphi}_{2}^{4}, \quad \beta:=-3 \bar{\mu}_{2} \int_{B_{1}} \bar{\varphi}_{2}^{2} \bar{w},
$$

$$
\left(-\Delta-\bar{\mu}_{2}\right) \bar{w}=\bar{\varphi}_{2}^{2} \text { with NBC on } B_{1},
$$

$\bar{\varphi}_{2}$ and $\bar{\mu}_{2}>0$ are the second eigenfunction and eigenvalue of $-\Delta$ with NBC on B_{1} s.t. $\left|\bar{\varphi}_{2}\right|_{L^{2}}=1$.

Symmetry breaking at exactly $p=1+\lambda_{2}$?

We numerically have

N	α	β	$\beta-\alpha$	$\beta+\alpha$
2	0.5577	0.5884	0.0306	1.1461
3	0.4632	0.3096	-0.1536	0.7728
4	0.4222	0.1694	-0.2528	0.5916
5	0.4171	0.0858	-0.3313	0.5029
6	0.4421	0.0250	-0.4171	0.4671
$R^{N+2} C$				

Symmetry breaking at exactly $p=1+\lambda_{2}$?

Conjecture

When R is large enough or $N=2,1$ is the ground state of

$$
\left(\mathcal{P}_{p}\right) \begin{cases}-\Delta u+u=|u|^{p-2} u, & \text { in } B_{R} \\ \partial_{\nu} u=0, & \text { on } \partial B_{R} .\end{cases}
$$

iff $p \leqslant 1+\lambda_{2}$.

p large: bifurcations from 1

Lemma

When $p>2$ is increasing,
1 a bifurcation sequence start from 1 iff p crosses $1+\lambda_{i}$;
2 this is actually a continuum if λ_{i} has odd multiplicity.

Krasnoselskii-Boehme-Marino theorem (1/2)

Theorem (Krasnoselskii-Boehme-Marino)

Let $F: I \times H \rightarrow K:(t, u) \mapsto F(t, u)$ be a continuous function, where $I \subseteq \mathbb{R}$ is an interval, and H and K are Banach spaces, such that $F(\lambda, 0)=0$ for any $\lambda \in I$.

- If F is of class C^{1} in a neighborhood of $(\lambda, 0)$ and $(\lambda, 0)$ is a bifurcation point of F then $\partial_{u} F(\lambda, 0)$ is not invertible.
- Let assume that for each $(\lambda, u) \in I \times H$,
$F(\lambda, u)=L(\lambda, u)-N(\lambda, u), \quad L(\lambda, \cdot)=\lambda \mathbb{1}-T \quad$ and $\quad N(\lambda, u)=o(\|u\|)$,
with T linear, T and N compact, and the last equality being uniform on each compact set of λ.
If λ_{*} is an eigenvalue of T with odd multiplicity, then $\left(\lambda_{*}, 0\right)$ is a global bifurcation point for $F(t, u)=0$.

Krasnoselskii-Boehme-Marino theorem (2/2)

Theorem (Krasnoselskii-Boehme-Marino (cont'd))

\square Let assume that H is a Hilbert space and that for each $(\lambda, u) \in I \times \mathbb{R}$, $F(\lambda, u)=\nabla_{u} h(\lambda, u)$ where

$$
\begin{aligned}
h(\lambda, u) & =\frac{1}{2}\langle L(\lambda, u), u\rangle-g(\lambda, u), \\
L(\lambda, \cdot) & =\lambda \mathbb{1}-T, \quad \text { and } \quad \nabla g(\lambda, u)=o(\|u\|)
\end{aligned}
$$

with T linear and symmetric, $g(\lambda, \cdot) \in C^{2}$ for all λ, and the last equality being uniform on each compact set of λ.
If λ_{*} is an eigenvalue of T with finite multiplicity and $h(\lambda, \cdot)$ verifies the Palais-Smale condition for each λ, then $\left(\lambda_{*}, 0\right)$ is a bifurcation point for $F(t, u)=0$.

p large: transcritical radial bifurcations

$\lambda_{i, \text { rad }}$ eigenvalues that possess a radial eigenfunction (simple in $H_{r a d}^{1}$).

Proposition

On balls, two branches radial solutions in $C^{2, \alpha}(\Omega)$ of

$$
\left(\mathcal{P}_{p}\right) \begin{cases}-\Delta u+u=|u|^{p-2} u, & \text { in } \Omega \\ \partial_{\nu} u=0, & \text { on } \partial \Omega\end{cases}
$$

start from each $(p, u)=\left(1+\lambda_{i, \text { rad }}, 1\right), i>1$. Locally, these branches form a unique C^{1}-curve. Moreover, for i large enough independent of the measure of Ω, the bifurcation is transcritical.

p large: transcritical radial bifurcations

Proof. $\Omega=B_{R}$. Using Ambrosetti-Prodi theorem, one has to show

$$
b=-\frac{1}{2} \lambda_{i}\left(\lambda_{i}-1\right) \int_{B_{R}} \varphi_{i, \text { rad }}^{3} \neq 0 .
$$

Given that radial eigenfunctions are given by constant spherical harmonics ($k=0, v=(N-2) / 2)$, this amounts to

$$
\int_{0}^{R}\left(r^{-\frac{N-2}{2}} J_{v}(r \sqrt{\bar{\mu}, \text { rad }} / R)\right)^{3} r^{N-1} \mathrm{~d} r \neq 0 \text { i.e. } \quad \int_{0}^{\sqrt{\overline{\mu_{i, \text { rad }}}}} t^{1-v} J_{v}^{3}(t) \mathrm{d} t \neq 0
$$

where $\lambda_{i, \text { rad }}=1+\bar{\mu}_{i, \text { rad }} / R^{2}$. This is true for large i because

$$
\int_{0}^{\infty} t^{1-v} J_{v}^{3}(t) \mathrm{d} t=\frac{2^{\nu-1}(3 / 16)^{v-1 / 2}}{\pi^{1 / 2} \Gamma(v+1 / 2)}>0 .
$$

p large: transcritical radial bifurcations

Numerical computations indicate that

$$
\forall z \in] 0,+\infty\left[, \quad \int_{0}^{z} t^{1-v} J_{v}^{3}(t) \mathrm{d} t>0, \quad v=(N-2) / 2,\right.
$$

and therefore that radial bifurcations are transcritical for all i.

p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.
Sкетсн: If it was not the case, there would be a point solution along the branch with a double root, hence $=0$. There is no bifurcation from 0 .

p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.
Sкетсн: If it was not the case, there would be a point solution along the branch with a double root, hence $=0$. There is no bifurcation from 0 .

Theorem

Radial bifurcations obtained for the $C^{2, \alpha}(\Omega)$-norm are unbounded and do not intersect each other. Moreover, along bifurcations starting from $\left(1+\lambda_{i, \text { rad }}, 1\right)$, the solutions always possess the same number of intersections with 1.

Sкетсн: The number of crossings with 1 stays constant because otherwise a non-constant radial solution u s.t. $u-1$ has a double root would exists. Since the branches do not intersect each other, Rabinowitz's principle says they must be undounded.

p large: multiplicity results (radial domains)

Theorem

Assume Ω is a ball.

- In dimension 2, for any $n \in \mathbb{N}_{0}$, there exists $p_{n}>2$ such that, for any $p>p_{n}$, at least n positive solutions exist
- In dimension $\geqslant 3$, for any $2<p<2^{*}$ and $n \in \mathbb{N}_{0}$, at least n different positive solutions exist if the measure of the ball Ω is large enough.
p large: multiplicity results (radial domains)

Theorem

Assume Ω is a ball.

- In dimension 2, for any $n \in \mathbb{N}_{0}$, there exists $p_{n}>2$ such that, for any $p>p_{n}$, at least n positive solutions exist
- In dimension $\geqslant 3$, for any $2<p<2^{*}$ and $n \in \mathbb{N}_{0}$, at least n different positive solutions exist if the measure of the ball Ω is large enough.

Theorem

On balls, there exists a degenerate positive radial solution for some p provided that the measure of Ω is large enough.
$p \geqslant 2^{*}$

Theorem (Serra \& Tilli, '11)

Assume $a \in L^{1}(] 0, R[)$ is increasing, not constant and satisfies $a>0$ in $] 0, R[$, then for any $p \in] 2,+\infty\left[,-\Delta u+u=a(|x|)|u|^{p-2} u\right.$ with NBC possesses a positive radially increasing solution.

Trick: work on the space of radially increasing functions.

$p \geqslant 2^{*}$

Proposition

Assume Ω is a ball of radius R. If u is a radial solution of $\left(\mathcal{P}_{p}\right)$ such that $u(0)<1$, then $\|u\|_{L^{\infty}} \leqslant \exp (1 / 2)$.

$p \geqslant 2^{*}$

Proposition

Assume Ω is a ball of radius R. If u is a radial solution of $\left(\mathcal{P}_{p}\right)$ such that $u(0)<1$, then $\|u\|_{L^{\infty}} \leqslant \exp (1 / 2)$.

Proof. In radial coordinates, the equation writes

$$
-u^{\prime \prime}-\frac{N-1}{r} u^{\prime}+u=u^{p-1}
$$

Multiplying by u^{\prime}, we get

$$
\frac{\mathrm{d}}{\mathrm{~d} r} h(r)=-\frac{N-1}{r} u^{\prime 2}(r) \leqslant 0,
$$

where

$$
h(r):=\frac{u^{2}(r)}{2}+\frac{u^{p}(r)}{p}-\frac{u^{2}(r)}{2} .
$$

In particular, this means that $h(r) \leqslant h(0)$ for any r.
$p \geqslant 2^{*}$
Proof (cont'd). The assumption $u(0)<1$ implies

$$
h(0)=\frac{u^{p}(0)}{p}-\frac{u^{2}(0)}{2}=u^{2}(0)\left(\frac{u^{p-2}(0)}{p}-\frac{1}{2}\right) \leqslant 0 .
$$

Thus

$$
\|u\|_{L^{\infty}} \leqslant\left(\frac{p}{2}\right)^{1 /(p-2)} \leqslant \exp (1 / 2) .
$$

$p \geqslant 2^{*}$

Theorem

Assume Ω is a ball. Then, for any $n \in \mathbb{N}_{0}$, there exists p_{n} s.t., for any $p \in\left[p_{n},+\infty\left[,\left(\mathcal{P}_{p}\right)\right.\right.$ has at least n positive radially symmetric solutions.
$p \geqslant 2^{*}$

Theorem

Assume Ω is a ball. Then, for any $n \in \mathbb{N}_{0}$, there exists p_{n} s.t., for any $p \in\left[p_{n},+\infty\left[,\left(\mathcal{P}_{p}\right)\right.\right.$ has at least n positive radially symmetric solutions.

Sкетсн: Radial bifurcations are transcritical, thus, as $p \approx 1+\lambda_{i, \text { rad }}$,

$$
u_{p}=1+\frac{p-1-\lambda_{i, \mathrm{rad}}}{b} \varphi_{i, \mathrm{rad}}+o\left(p-1-\lambda_{i, \mathrm{rad}}\right)
$$

Along the left or right branch $u_{p}(0)<1$. This later property persists along the whole branch. Thus all u belonging to that branch must satisfy $\|u\|_{L^{\infty}} \leqslant \exp (1 / 2)$. Since 1 is the only solution for $p \approx 2$, the branch must exist for all p large.

Thank you for your attention.

