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The Lane-Emden problem

Let Ω ⊆ RN be open and bounded, N > 2, and 2 < p < 2∗ := 2N
N−2 . We

consider

(Pp)

−∆u + u = |u|p−2u, in Ω

∂νu = 0, on ∂Ω.

Solutions are critical points of the functional

Ep : H1(Ω)→ R : u 7→ 1
2

∫
Ω
|∇u|2 + u2− 1

p

∫
Ω
|u|p

∂Ep(u) : H1(Ω)→ R : v 7→
∫

Ω
∇u∇v + uv −

∫
Ω
|u|p−2uv

Notation: 1 = λ1 < λ2 < · · · denote the eigenvalues of −∆ + 1
Ei denote the corresponding eigenspaces

Remark: 0 is always a (trivial) solution.

Christophe Troestler (UMONS) Symmetries and symmetry breaking of solutions with NBC June 6–9, 2012 2 / 36



p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Outline

1 p ≈ 2: ground state solutions

2 p ≈ 2: positive solutions

3 p large: symmetry breaking of the ground state

4 p large: bifurcations from 1

5 p large: multiplicity results (radial domains)
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Dirichlet boundary conditions

−∆u + u = |u|p−2u in Ω,

u = 0 on ∂Ω.

The ground state solution is positive and is
even w.r.t. any hyperplane leaving Ω invariant
(when Ω is convex). In particular, it is radially
symmetric on a ball.

Uniqueness of the positive solution when Ω is a
ball.

If Ω is strictly starshaped and p > 2∗, no
solution exist.
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Existence of ground state solutions (p < 2∗)

Theorem (Z. Nehari, A. Ambrosetti, P.H. Rabinowitz)

For any p ∈ ]2,2∗[, there exists a ground state solution to (Pp). It is a
one-signed function.

Sketch of the proof.

The functional Ep possesses a mountain pass
structure.

∃u0 , 0, Ep(u0) = inf
u,0

max
λ>0
Ep(λu)

= inf
u∈Np
Ep(u)

where Np is the Nehari manifold of Ep .

For any sign-changing solution u: if u± , 0, u± ∈ Np

and Ep(u±) < Ep(u), where u± := ±max{±u,0}.

uλuu

∈

Np

0
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p ≈ 2: symmetry of ground state solutions

Theorem (D. Bonheure, V. Bouchez, C. Grumiau, C. T., J. Van Schaftingen, ’08)

For p close to 2 and any R ∈ O(N) s.t. R(Ω) = Ω, ground state solutions
to (Pp) are symmetric w.r.t. R.

E.g. if Ω is radially symmetric, so must the the ground state solution be.

Remark that the seminal method of moving planes is not applicable.
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Uniqueness of the positive solution

Theorem

1 is the unique positive solution for p small.

Let v := PE1up (constant function) and w := PE⊥1
up .

λ2

∫
Ω

w2 6

∫
Ω
|∇w |2 + w2

=

∫
Ω
|up |

p−1w =

∫
Ω

(
(v + w)p−1−vp−1

)
w

=

∫
Ω

(p−1)(v +ϑpw)p−2w2 (ϑp ∈ ]0,1[)

6 (p−1)(|v |+ ‖w‖∞)p−2
∫

Ω
w2 6 (p−1)Kp−2

∫
Ω

w2.

As λ1 = 1 < λ2, for p ≈ 2, w = 0 and then up = v = 1.
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A priori bounds for positive solutions

Lemma

Positive solutions (up) are bounded in L∞ as p ≈ 2.

Integration & Hölder:
∫

Ω
up−1

p =

∫
Ω

up 6 |Ω| (recall up > 0).

Brezis-Strauss: from the bound on
∫

Ω
up−1

p , we deduce a bound on

‖up‖W1,q(Ω), 1 6 q < N/(N−1).

Sobolev embedding: (up) bounded in L r(Ω), 1 < r < N/(N−2).

Bootstrap: ‖up‖W2,r (Ω) is bounded for some r > N/2 when p ≈ 2.
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A priori bounds for positive solutions

Proposition

Let 2 < p̄ < 2∗. There exists Cp̄ > 0 such that any positive solution to (Pp)

with 2 < p 6 p̄ satisfies max
{
‖u‖H1 ,‖u‖L∞

}
6 Cp̄ .

It remains to obtain a bound for 2 < p < p̄ < 2∗ in L∞. Blow up argument
(Gidas-Spruck). Suppose on the contrary that there is a sequence
(pn) ⊆ [p, p̄] and (upn ) s.t.

upn (xpn ) := ‖upn‖L∞ →+∞ and pn→ p∗ ∈ [p, p̄].

(Drop index n.) Define

vp(y) := µpup

(
µ

(p−2)/2
p y + xp

)
where µp := 1/‖up‖L∞ → 0.

Note: vp(0) = ‖vp‖L∞ = 1.
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A priori bounds for positive solutions

The rescaled function vp satisfies

−∆vp +µ
p−2
p vp = vp−1

p on Ωp := (Ω−xp)/µ
(p−2)/2
p

with NBC. By elliptic regularity, (vp) is bounded in W2,r and C1,α, 0 < α < 1
on any compact set. Thus, taking if necessary a subsequence,

vn→ v∗ in W2,r and C1,α on compact sets of Ω∗ = RN or RN−1×R>a .

One has v∗ > 0, v∗(0) = 1 = ‖v‖L∞ and v∗ satisfies

−∆v∗ = (v∗)p∗−1 in RN or

−∆v∗ = (v∗)p∗−1 in RN−1×R>a

∂Nv∗ = 0 when xN = a

Liouville theorems imply v∗ = 0. �
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p large: symmetry breaking of the ground state

Theorem

As p→ 2∗, least energy solutions go to 0 everywhere except around a
single peak located at a point Q∗ ∈ ∂Ω where the bondary is most curved.

−2.5
−2

−1.5
−1

−0.5
0

−1.5

−1

−0.5

0

0.5

1

1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Christophe Troestler (UMONS) Symmetries and symmetry breaking of solutions with NBC June 6–9, 2012 11 / 36



p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: symmetry breaking of the ground state

Corollary

1 cannot remain the ground state for all p.

Lemma

1 cannot remain the ground state solution for p > 1 +λ2.

Proof. The Morse index of 1 is the sum of the dimension of the
eigenspaces corresponding to negative eigenvalues λ of−∆v + v = (p−1)v +λv , in Ω,

∂νv = 0, on ∂Ω.

i.e. eigenvalues of −∆ + 1 less than p−1. When p > 1 +λ2, the Morse
index of the solution 1 is > 1. �
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p large: symmetry breaking of the ground state

Proposition (Lopez, ’96)

On radial domains, the ground state is either constant or (e.g. when
p > 1 +λ2) not radially symmetric.

Proposition

When Ω is a ball or an annulus, the Morse index of a non-constant positive
radial solution is at least N + 1.
Based on: A. Aftalion, F. Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, CRAS, 339(5), ’04.

Let u be non-constant positive radial solution of (Pp). We have to show
that

Lv := −∆v + v − (p−1)|u|p−2v

with NBC possesses N + 1 negative eigenvalues.
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p large: symmetry breaking of the ground state
u radial⇒ ∂xi u = 0 on ∂Ω and on Ωi .

Let x̄ ∈ Ω+
i s.t. ∂xi u(x̄) , 0. Let D be the connected

component of {∂xi u(x̄) , 0} containing x̄. D ⊆ Ω+
i .

L(∂xi u) = 0, on D; ∂xi u = 0, on ∂D.

xi

Ωi
Ω+

iΩ−i

x̄

D

⇒ λ1(L ,D,DBC) = 0

⇒ λ1(L ,Ω+
i ,DBC) 6 0

⇒ µi := λ1(L ,Ω+
i ,DBC on Ωi and NBC on ∂Ω+

i \Ωi) < 0

If ψi > 0 is the first eigenfunction of L on Ω+
i with DBC on Ωi and NBC on

∂Ω+
i \Ωi , its odd extension ψ∗i to Ω satisfies

L(ψ∗i ) = µi ψ
∗
i , on Ω, ∂νψ

∗
i = 0, on ∂Ω.

All ψ∗j , j , i vanish on the axis xi ⇒ the family (ψ∗j )N
j=1 is lin. indep.

None of the (ψ∗j )N
j=1 is a first eigenfunction.
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p large: symmetry breaking of the ground state

Theorem (Lopes, ’96)

On radial domains, ground state solutions are symmetric w.r.t. any
hyperplane containing a line L passing through the origin.

Theorem (J. Van Schaftingen, ’04)

On radial domains, ground state solutions are foliated Schwarz symmetric.

d

r

ϑ

There exists a unit vector d s.t. u depends
only on r = |x | and ϑ = arccos( x

|x | · d) and is
non-increasing in ϑ.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: non radially symmetric ground state
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Symmetry breaking at exactly p = 1+λ2?

The linearisation of the equation around u = 1,

Lv := −∆v + v − (p−1)v

is not invertible iff p = 1 +λi , i > 2.

Eigenfunctions of −∆ + 1 with NBC have the form:

u(x) = r−
N−2

2 Jν(
√
µr)Pk

(
x
|x |

)
, where ν = k +

N−2
2

,

r = |x |, and Pk : RN → R is an harmonic homogenous polynomial of degree
k for some k ∈ N. To satisfy the boundary conditions:

√
µR is a root of z 7→ (k − ν)Jν(z) + z∂Jν(z) = kJν(z)−zJν+1(z).

⇒ λi = 1 +µ
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Symmetry breaking at exactly p = 1+λ2?

In particular, a basis of E2 is

x 7→ r−
N−2

2 JN/2(
√
µr)

xj

|x |
, j = 1, . . . ,N.

There is single function (up to a multiple) that is invariant under rotation in
(x2, . . . ,xN).

Theorem (Ambrosetti-Prodi)

Let X and Y two Banach spaces, u∗ ∈ X, and a function F : R×X → Y :
(p,u) 7→ F(p,u) such that ∀p ∈ R, F(p,u∗) = 0. Let p∗ ∈ R be such that
ker(∂uF(p∗,u∗)) = span{ϕ∗} has a dimension 1 and
codim

(
Im(∂uF(p∗,u∗))

)
= 1. Let ψ : Y → R be a continuous linear map

such that Im(∂uF(p∗,u∗)) = {y ∈ Y : 〈ψ,y〉= 0}.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Symmetry breaking at exactly p = 1+λ2?

Theorem (Ambrosetti-Prodi (cont’d))

If a := 〈ψ,∂p,uF(p∗,u∗)[ϕ∗]〉 , 0, then (p∗,u∗) is a bifurcation point for F. In
addition, the set of non-trivial solutions of F = 0 around (p∗,u∗) is given by
a unique C1 curve p 7→ up . The local behavior of the branch (p,up) for p
close to p∗ is as follows.

If b := − 1
2a

〈
ψ,∂2

uF(p∗,u∗)[ϕ∗,ϕ∗]
〉
, 0 then the branch is transcritical and

up = u∗+
p−p∗

b
ϕ∗+ o(p−p∗).

p

u

p∗

In our case,

a = −

∫
Ω
ϕ2

2 = −1 and b = −1
2λ2(λ2−1)

∫
Ω
ϕ3

2 = 0.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Symmetry breaking at exactly p = 1+λ2?

Theorem (Ambrosetti-Prodi (cont’d))

If b = 0, let us define

c := −
1

6a

(〈
ψ,∂3

uF(p∗,u∗)[ϕ∗,ϕ∗,ϕ∗]
〉

+ 3
〈
ψ,∂2

uF(p∗,u∗)[ϕ∗,w]
〉)

where w ∈ X is any solution of the equation
∂uF(p∗,u∗)[w] = −∂2

uF(p∗,u∗)[ϕ∗,ϕ∗]. If c , 0
then

up = u∗±
(p−p∗

c

)1/2
ϕ∗+ o

(
|p−p∗|1/2

)
.

In particular, the branch is supercritical if c > 0
and subcritical if c < 0.

Supercritical

p

u

p∗

Subcritical

p

u

p∗
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Symmetry breaking at exactly p = 1+λ2?

In our case,

c =
1
6
λ2(λ2−1)

(
−(λ2−2)

∫
BR

ϕ4
2−3λ2(λ2−1)

∫
BR

ϕ2
2w

)
where (−∆ + 1−λ2)w = ϕ2

2 with NBC on BR .

=
1
6
µ̄2R−(N+2)

(
1 +

µ̄2

R2

)(
(β−α)

µ̄2

R2
+β+α

)
where α :=

∫
B1

ϕ̄4
2, β := −3µ̄2

∫
B1

ϕ̄2
2w̄,

(−∆− µ̄2)w̄ = ϕ̄2
2 with NBC on B1,

ϕ̄2 and µ̄2 > 0 are the second eigenfunction and eigenvalue

of −∆ with NBC on B1 s.t. |ϕ̄2|L2 = 1.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Symmetry breaking at exactly p = 1+λ2?

We numerically have

N α β β−α β+α

2 0.5577 0.5884 0.0306 1.1461
3 0.4632 0.3096 −0.1536 0.7728
4 0.4222 0.1694 −0.2528 0.5916
5 0.4171 0.0858 −0.3313 0.5029
6 0.4421 0.0250 −0.4171 0.4671

R, radius of the ball

RN+2c

1 2 3 4

-4

-3

-2

-1

1

2

3

4 N = 2

N = 3

N = 6
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Symmetry breaking at exactly p = 1+λ2?

Conjecture

When R is large enough or N = 2, 1 is the ground state of

(Pp)

−∆u + u = |u|p−2u, in BR

∂νu = 0, on ∂BR .

iff p 6 1 +λ2.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: bifurcations from 1

Lemma

When p > 2 is increasing,

1 a bifurcation sequence start from 1 iff p crosses 1 +λi ;

2 this is actually a continuum if λi has odd multiplicity.

p

u

1

2 1 +λi 1 +λj

Skip KMB theorem
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Krasnoselskii-Boehme-Marino theorem (1/2)

Theorem (Krasnoselskii-Boehme-Marino)

Let F : I×H→ K : (t ,u) 7→ F(t ,u) be a continuous function, where I ⊆ R is
an interval, and H and K are Banach spaces, such that F(λ,0) = 0 for any
λ ∈ I.

If F is of class C1 in a neighborhood of (λ,0) and (λ,0) is a bifurcation
point of F then ∂uF(λ,0) is not invertible.

Let assume that for each (λ,u) ∈ I×H,

F(λ,u) = L(λ,u)−N(λ,u), L(λ, ·) = λ1−T and N(λ,u) = o(‖u‖),

with T linear, T and N compact, and the last equality being uniform on
each compact set of λ.
If λ∗ is an eigenvalue of T with odd multiplicity, then (λ∗,0) is a global
bifurcation point for F(t ,u) = 0.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

Krasnoselskii-Boehme-Marino theorem (2/2)

Theorem (Krasnoselskii-Boehme-Marino (cont’d))

Let assume that H is a Hilbert space and that for each (λ,u) ∈ I×R,
F(λ,u) = ∇uh(λ,u) where

h(λ,u) = 1
2 〈L(λ,u),u〉−g(λ,u),

L(λ, ·) = λ1−T , and ∇g(λ,u) = o(‖u‖),

with T linear and symmetric, g(λ, ·) ∈ C2 for all λ, and the last equality
being uniform on each compact set of λ.
If λ∗ is an eigenvalue of T with finite multiplicity and h(λ, ·) verifies the
Palais-Smale condition for each λ, then (λ∗,0) is a bifurcation point for
F(t ,u) = 0.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: transcritical radial bifurcations

λi,rad eigenvalues that possess a radial eigenfunction (simple in H1
rad).

Proposition

On balls, two branches radial solutions in C2,α(Ω) of

(Pp)

−∆u + u = |u|p−2u, in Ω

∂νu = 0, on ∂Ω.

start from each (p,u) = (1 +λi,rad,1), i > 1. Locally, these branches form a
unique C1-curve. Moreover, for i large enough independent of the
measure of Ω, the bifurcation is transcritical.

p

u

1 +λi,rad
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: transcritical radial bifurcations

Proof. Ω = BR . Using Ambrosetti-Prodi theorem, one has to show

b = −1
2λi(λi −1)

∫
BR

ϕ3
i,rad , 0.

Given that radial eigenfunctions are given by constant spherical harmonics
(k = 0, ν = (N−2)/2), this amounts to∫ R

0

(
r−

N−2
2 Jν(r

√
µ̄i,rad/R)

)3
rN−1 dr , 0 i.e.

∫ √µ̄i,rad

0
t1−νJ3

ν (t)dt , 0

where λi,rad = 1 + µ̄i,rad/R2. This is true for large i because∫ ∞

0
t1−νJ3

ν (t)dt =
2ν−1(3/16)ν−1/2

π1/2Γ(ν+ 1/2)
> 0. �
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: transcritical radial bifurcations

Numerical computations indicate that

∀z ∈ ]0,+∞[,

∫ z

0
t1−νJ3

ν (t)dt > 0, ν = (N−2)/2,

and therefore that radial bifurcations are transcritical for all i.

z0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 ∞
0.0

0.1

0.2

0.3

0.4

0.5

0.6 N = 2
N = 3

N = 4 N = 5
N = 6
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.

Sketch: If it was not the case, there would be a point solution along the
branch with a double root, hence = 0. There is no bifurcation from 0. �

Theorem

Radial bifurcations obtained for the C2,α(Ω)-norm are unbounded and do
not intersect each other. Moreover, along bifurcations starting from
(1 +λi,rad,1), the solutions always possess the same number of
intersections with 1.

Sketch: The number of crossings with 1 stays constant because otherwise
a non-constant radial solution u s.t. u−1 has a double root would exists.
Since the branches do not intersect each other, Rabinowitz’s principle
says they must be undounded.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p large: multiplicity results (radial domains)

Theorem

Assume Ω is a ball.

In dimension 2, for any n ∈ N0, there exists pn > 2 such that, for any
p > pn, at least n positive solutions exist

In dimension > 3, for any 2 < p < 2∗ and n ∈ N0, at least n different
positive solutions exist if the measure of the ball Ω is large enough.

Theorem

On balls, there exists a degenerate positive radial solution for some p
provided that the measure of Ω is large enough.
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p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p > 2∗

Theorem (Serra & Tilli, ’11)

Assume a ∈ L1(]0,R[) is increasing, not constant and satisfies a > 0 in
]0,R[, then for any p ∈ ]2,+∞[, −∆u + u = a(|x |)|u|p−2u with NBC
possesses a positive radially increasing solution.

Trick: work on the space of radially increasing functions.
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p > 2∗

Proposition

Assume Ω is a ball of radius R. If u is a radial solution of (Pp) such that
u(0) < 1, then ‖u‖L∞ 6 exp(1/2).

Proof. In radial coordinates, the equation writes

−u′′−
N−1

r
u′+ u = up−1.

Multiplying by u′, we get

d
dr

h(r) = −
N−1

r
u′2(r) 6 0,

where

h(r) :=
u′2(r)

2
+

up(r)

p
−

u2(r)

2
.

In particular, this means that h(r) 6 h(0) for any r .
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p > 2∗

Proof (cont’d). The assumption u(0) < 1 implies

h(0) =
up(0)

p
−

u2(0)

2
= u2(0)

(
up−2(0)

p
−

1
2

)
6 0.

Thus

‖u‖L∞ 6
(p
2

)1/(p−2)

6 exp(1/2). �

u

u′

1

u = (p/2)1/(p−2)

Christophe Troestler (UMONS) Symmetries and symmetry breaking of solutions with NBC June 6–9, 2012 34 / 36



p ≈ 2: ground state solutions p ≈ 2: positive solutions Symmetry breaking Bifurcations Multiplicity

p > 2∗

Theorem

Assume Ω is a ball. Then, for any n ∈ N0, there exists pn s.t., for any
p ∈ [pn,+∞[, (Pp) has at least n positive radially symmetric solutions.

Sketch: Radial bifurcations are transcritical, thus, as p ≈ 1 +λi,rad,

up = 1 +
p−1−λi,rad

b
ϕi,rad + o(p−1−λi,rad).

Along the left or right branch up(0) < 1. This later property persists along
the whole branch. Thus all u belonging to that branch must satisfy
‖u‖L∞ 6 exp(1/2). Since 1 is the only solution for p ≈ 2, the branch must
exist for all p large. �
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Thank you for your attention.
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