Multiplicity and symmetry of positive solutions to semi-linear elliptic problems with Neumann boundary conditions

Christophe Troestler (Joint work with D. Bonheure & C. Grumiau)

Institut de Mathématique Université de Mons

<u>U</u>MONS

Variational and Topological Methods: Theory, Applications, Numerical Simulations, and Open Problems, June 6–9, 2012

The Lane-Emden problem

Let $\Omega \subseteq \mathbb{R}^N$ be open and bounded, $N \ge 2$, and 2 . Weconsider

$$(\mathcal{P}_p) \begin{cases} -\Delta u + u = |u|^{p-2}u, & \text{in } \Omega \\ \partial_{\nu} u = 0, & \text{on } \partial \Omega. \end{cases}$$

Solutions are critical points of the functional

$$\mathcal{E}_{p}: H^{1}(\Omega) \to \mathbb{R}: u \mapsto \frac{1}{2} \int_{\Omega} |\nabla u|^{2} + u^{2} - \frac{1}{p} \int_{\Omega} |u|^{p}$$
$$\partial \mathcal{E}_{p}(u): H^{1}(\Omega) \to \mathbb{R}: v \mapsto \int_{\Omega} \nabla u \nabla v + u v - \int_{\Omega} |u|^{p-2} u v$$

Notation: $1 = \lambda_1 < \lambda_2 < \cdots$ denote the eigenvalues of $-\Delta + 1$ E_i denote the corresponding eigenspaces

Remark: 0 is always a (trivial) solution.

2/36

- 1 $p \approx 2$: ground state solutions
- 2 $p \approx 2$: positive solutions
- 3 p large: symmetry breaking of the ground state
- p large: bifurcations from 1
- p large: multiplicity results (radial domains)

Dirichlet boundary conditions

$$\begin{cases} -\Delta u + u = |u|^{p-2}u & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$

 $p \approx 2$: positive solutions

- Uniqueness of the positive solution when Ω is a ball.
- If Ω is strictly starshaped and $p \ge 2^*$, no solution exist.

Existence of ground state solutions ($p < 2^*$)

Theorem (Z. Nehari, A. Ambrosetti, P.H. Rabinowitz)

For any $p \in]2,2^*[$, there exists a ground state solution to (\mathcal{P}_p) . It is a one-signed function.

Sketch of the proof.

- The functional \mathcal{E}_p possesses a mountain pass structure.
- $\exists u_0 \neq 0, \ \mathcal{E}_p(u_0) = \inf_{u \neq 0} \max_{\lambda > 0} \mathcal{E}_p(\lambda u)$ $= \inf_{u \in \mathcal{N}_p} \mathcal{E}_p(u)$

where N_p is the Nehari manifold of \mathcal{E}_p .

■ For any sign-changing solution u: if $u^{\pm} \neq 0$, $u^{\pm} \in \mathcal{N}_{p}$ and $\mathcal{E}_{p}(u^{\pm}) < \mathcal{E}_{p}(u)$, where $u^{\pm} := \pm \max\{\pm u, 0\}$.

$p \approx 2$: symmetry of ground state solutions

Theorem (D. Bonheure, V. Bouchez, C. Grumiau, C. T., J. Van Schaftingen, '08)

For p close to 2 and any $R \in O(N)$ s.t. $R(\Omega) = \Omega$, ground state solutions to (\mathcal{P}_p) are symmetric w.r.t. R.

E.g. if Ω is radially symmetric, so must the ground state solution be.

Remark that the seminal method of moving planes is not applicable.

Uniqueness of the positive solution

Theorem

1 is the unique positive solution for p small.

Uniqueness of the positive solution

Theorem

 $p \approx 2$: ground state solutions

1 is the unique positive solution for p small.

Let $v := P_{E_1} u_p$ (constant function) and $w := P_{E_2^{\perp}} u_p$.

$$\begin{split} \lambda_2 \int_{\Omega} w^2 & \leq \int_{\Omega} |\nabla w|^2 + w^2 \\ & = \int_{\Omega} |u_p|^{p-1} w = \int_{\Omega} \left((v+w)^{p-1} - v^{p-1} \right) w \\ & = \int_{\Omega} (p-1) (v+\vartheta_p w)^{p-2} w^2 \qquad (\vartheta_p \in]0,1[) \\ & \leq (p-1) (|v| + ||w||_{\infty})^{p-2} \int_{\Omega} w^2 \leq (p-1) K^{p-2} \int_{\Omega} w^2. \end{split}$$

As $\lambda_1 = 1 < \lambda_2$, for $p \approx 2$, w = 0 and then $u_p = v = 1$.

A priori bounds for positive solutions

Lemma

Positive solutions (u_p) are bounded in L^{∞} as $p \approx 2$.

- Integration & Hölder: $\int_{\Omega} u_p^{p-1} = \int_{\Omega} u_p \leq |\Omega|$ (recall $u_p > 0$).
- Brezis-Strauss: from the bound on $\int_{\Omega} u_p^{p-1}$, we deduce a bound on $||u_p||_{W^{1,q}(\Omega)}$, $1 \le q < N/(N-1)$.
- Sobolev embedding: (u_p) bounded in $L^r(\Omega)$, 1 < r < N/(N-2).
- Bootstrap: $||u_p||_{W^{2,r}(\Omega)}$ is bounded for some r > N/2 when $p \approx 2$.

Proposition

 $p \approx 2$: ground state solutions

Let $2 < \bar{p} < 2^*$. There exists $C_{\bar{p}} > 0$ such that any positive solution to (\mathcal{P}_p) with $2 satisfies <math>\max\{||u||_{H^1}, ||u||_{L^{\infty}}\} \leq C_{\bar{p}}$.

A priori bounds for positive solutions

Proposition

 $p \approx 2$: ground state solutions

Let $2 < \bar{p} < 2^*$. There exists $C_{\bar{p}} > 0$ such that any positive solution to (\mathcal{P}_p) with $2 satisfies <math>\max\{||u||_{H^1}, ||u||_{L^\infty}\} \le C_{\bar{p}}$.

It remains to obtain a bound for $2 < \underline{p} < \overline{p} < 2^*$ in L^{∞} . Blow up argument (Gidas-Spruck). Suppose on the contrary that there is a sequence $(p_n) \subseteq [\underline{p}, \overline{p}]$ and (u_{p_n}) s.t.

$$u_{p_n}(x_{p_n}):=\|u_{p_n}\|_{L^\infty}\to +\infty \qquad \text{and} \qquad p_n\to p^*\in [\underline{p},\bar{p}].$$

(Drop index n.) Define

$$v_{\rho}(y) := \mu_{\rho} u_{\rho} \left(\mu_{\rho}^{(\rho-2)/2} y + x_{\rho} \right)$$
 where $\mu_{\rho} := 1/\|u_{\rho}\|_{L^{\infty}} \to 0$.

Note: $v_p(0) = ||v_p||_{L^{\infty}} = 1$.

◆ロト ◆樹 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

The rescaled function v_p satisfies

$$-\Delta v_p + \mu_p^{p-2} v_p = v_p^{p-1} \quad \text{on } \Omega_p := (\Omega - x_p)/\mu_p^{(p-2)/2}$$

with NBC. By elliptic regularity, (v_p) is bounded in $W^{2,r}$ and $C^{1,\alpha}$, $0 < \alpha < 1$ on any compact set. Thus, taking if necessary a subsequence,

$$v_n \to v^*$$
 in $W^{2,r}$ and $C^{1,\alpha}$ on compact sets of $\Omega^* = \mathbb{R}^N$ or $\mathbb{R}^{N-1} \times \mathbb{R}_{>a}$.

One has $v^* \geqslant 0$, $v^*(0) = 1 = ||v||_{L^{\infty}}$ and v^* satisfies

$$-\Delta v^* = (v^*)^{p^*-1}$$
 in \mathbb{R}^N or
$$\begin{cases} -\Delta v^* = (v^*)^{p^*-1} & \text{in } \mathbb{R}^{N-1} \times \mathbb{R}_{>a} \\ \partial_N v^* = 0 & \text{when } x_N = a \end{cases}$$

Liouville theorems imply $v^* = 0$.

Theorem

As p \rightarrow 2*, least energy solutions go to 0 everywhere except around a single peak located at a point $Q^* \in \partial \Omega$ where the bondary is most curved.

Corollary

 $p \approx 2$: ground state solutions

1 cannot remain the ground state for all p.

Corollary

1 cannot remain the ground state for all p.

Lemma

1 cannot remain the ground state solution for $p > 1 + \lambda_2$.

Proof. The Morse index of 1 is the sum of the dimension of the eigenspaces corresponding to negative eigenvalues λ of

$$\begin{cases} -\Delta v + v = (p-1)v + \lambda v, & \text{in } \Omega, \\ \partial_v v = 0, & \text{on } \partial \Omega. \end{cases}$$

i.e. eigenvalues of $-\Delta + 1$ less than p - 1. When $p > 1 + \lambda_2$, the Morse index of the solution 1 is > 1.

Proposition (Lopez, '96)

 $p \approx 2$: ground state solutions

On radial domains, the ground state is either constant or (e.g. when $p > 1 + \lambda_2$) not radially symmetric.

 $p \approx 2$: positive solutions

Proposition (Lopez, '96)

On radial domains, the ground state is either constant or (e.g. when $p > 1 + \lambda_2$) not radially symmetric.

Proposition

When Ω is a ball or an annulus, the Morse index of a non-constant positive radial solution is at least N+1.

Based on: A. Aftalion, F. Pacella, Qualitative properties of nodal solutions of semilinear elliptic equations in radially symmetric domains, CRAS, 339(5), '04.

Let u be non-constant positive radial solution of (\mathcal{P}_p) . We have to show that

$$Lv := -\Delta v + v - (p-1)|u|^{p-2}v$$

with NBC possesses N+1 negative eigenvalues.

$$u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$$

 $p \approx 2$: ground state solutions

u radial $\Rightarrow \partial_{x_i} u = 0$ on $\partial \Omega$ and on Ω_i . Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let D be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

p ≈ 2: ground state solutions

u radial $\Rightarrow \partial_{x_i} u = 0$ on $\partial \Omega$ and on Ω_i . Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let D be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .

p ≈ 2: ground state solutions

 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial\Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+ \text{ s.t. } \partial_{x_i} u(\bar{x}) \neq 0.$ Let D be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .

$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

 $p \approx 2$: positive solutions

 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .

$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

$$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \mathsf{DBC} \text{ on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$$

 $p \approx 2$: positive solutions

 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .

$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

$$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \mathsf{DBC} \text{ on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$$

If $\psi_i > 0$ is the first eigenfunction of L on Ω_i^+ with DBC on Ω_i and NBC on $\partial\Omega_i^+\setminus\Omega_i$, its odd extension ψ_i^* to Ω satisfies

$$L(\psi_i^*) = \mu_i \psi_i^*$$
, on Ω , $\partial_{\nu} \psi_i^* = 0$, on $\partial \Omega$.

u radial $\Rightarrow \partial_{x_i} u = 0$ on $\partial \Omega$ and on Ω_i . Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let D be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .

$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

$$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \mathsf{DBC} \text{ on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$$

If $\psi_i > 0$ is the first eigenfunction of L on Ω_i^+ with DBC on Ω_i and NBC on $\partial \Omega_i^+ \setminus \Omega_i$, its odd extension ψ_i^* to Ω satisfies

$$L(\psi_i^*) = \mu_i \psi_i^*$$
, on Ω , $\partial_{\nu} \psi_i^* = 0$, on $\partial \Omega$.

All ψ_i^* , $j \neq i$ vanish on the axis $x_i \Rightarrow$ the family $(\psi_i^*)_{i=1}^N$ is lin. indep.

 $u \text{ radial} \Rightarrow \partial_{x_i} u = 0 \text{ on } \partial \Omega \text{ and on } \Omega_i.$ Let $\bar{x} \in \Omega_i^+$ s.t. $\partial_{x_i} u(\bar{x}) \neq 0$. Let *D* be the connected component of $\{\partial_{x_i} u(\bar{x}) \neq 0\}$ containing \bar{x} . $D \subseteq \Omega_i^+$.

$$L(\partial_{x_i}u)=0$$
, on D ; $\partial_{x_i}u=0$, on ∂D .

$$\Rightarrow \lambda_1(L, D, DBC) = 0$$

 $p \approx 2$: ground state solutions

$$\Rightarrow \lambda_1(L, \Omega_i^+, DBC) \leq 0$$

$$\Rightarrow \mu_i := \lambda_1(L, \Omega_i^+, \mathsf{DBC} \text{ on } \Omega_i \text{ and NBC on } \partial \Omega_i^+ \setminus \Omega_i) < 0$$

If $\psi_i > 0$ is the first eigenfunction of L on Ω_i^+ with DBC on Ω_i and NBC on $\partial\Omega_i^+\setminus\Omega_i$, its odd extension ψ_i^* to Ω satisfies

$$L(\psi_i^*) = \mu_i \psi_i^*$$
, on Ω , $\partial_{\nu} \psi_i^* = 0$, on $\partial \Omega$.

All ψ_i^* , $j \neq i$ vanish on the axis $x_i \Rightarrow$ the family $(\psi_i^*)_{i=1}^N$ is lin. indep. None of the $(\psi_i^*)_{i=1}^N$ is a first eigenfunction.

Theorem (Lopes, '96)

On radial domains, ground state solutions are symmetric w.r.t. any hyperplane containing a line L passing through the origin.

Theorem (J. Van Schaftingen, '04)

On radial domains, ground state solutions are foliated Schwarz symmetric.

There exists a unit vector d s.t. u depends only on r = |x| and $\vartheta = \arccos(\frac{x}{|x|} \cdot d)$ and is non-increasing in ϑ .

p large: non radially symmetric ground state

The linearisation of the equation around u = 1,

$$Lv := -\Delta v + v - (p-1)v$$

is not invertible iff $p = 1 + \lambda_i$, $i \ge 2$.

 $p \approx 2$: positive solutions

The linearisation of the equation around u = 1,

$$Lv := -\Delta v + v - (p-1)v$$

is not invertible iff $p = 1 + \lambda_i$, $i \ge 2$.

Eigenfunctions of $-\Delta + 1$ with NBC have the form:

$$u(x) = r^{-\frac{N-2}{2}} J_{\nu}(\sqrt{\mu}r) P_k\left(\frac{x}{|x|}\right), \quad \text{where } \nu = k + \frac{N-2}{2},$$

r = |x|, and $P_k : \mathbb{R}^N \to \mathbb{R}$ is an harmonic homogenous polynomial of degree *k* for some $k \in \mathbb{N}$. To satisfy the boundary conditions:

$$\sqrt{\mu}R$$
 is a root of $z\mapsto (k-\nu)J_{\nu}(z)+z\partial J_{\nu}(z)=kJ_{\nu}(z)-zJ_{\nu+1}(z)$.

$$\Rightarrow \lambda_i = 1 + \mu$$

 $p \approx 2$: positive solutions

In particular, a basis of E_2 is

$$x \mapsto r^{-\frac{N-2}{2}} J_{N/2}(\sqrt{\mu}r) \frac{x_j}{|x|}, \quad j=1,\ldots,N.$$

There is single function (up to a multiple) that is invariant under rotation in $(x_2,...,x_N).$

 $p \approx 2$: positive solutions

In particular, a basis of E_2 is

$$x \mapsto r^{-\frac{N-2}{2}} J_{N/2}(\sqrt{\mu}r) \frac{x_j}{|x|}, \quad j = 1, ..., N.$$

There is single function (up to a multiple) that is invariant under rotation in $(x_2,...,x_N).$

Theorem (Ambrosetti-Prodi)

Let X and Y two Banach spaces, $u^* \in X$, and a function $F : \mathbb{R} \times X \to Y$: $(p,u)\mapsto F(p,u)$ such that $\forall p\in\mathbb{R},\ F(p,u^*)=0$. Let $p^*\in\mathbb{R}$ be such that $\ker(\partial_u F(p^*, u^*)) = \operatorname{span}\{\varphi^*\}$ has a dimension 1 and $\operatorname{codim}(\operatorname{Im}(\partial_u F(p^*, u^*))) = 1$. Let $\psi : Y \to \mathbb{R}$ be a continuous linear map such that $\operatorname{Im}(\partial_{u}F(p^{*},u^{*}))=\{y\in Y:\langle\psi,y\rangle=0\}.$

 $p \approx 2$: positive solutions

Theorem (Ambrosetti-Prodi (cont'd))

If $\mathbf{a} := \langle \psi, \partial_{p,u} F(p^*, u^*) [\varphi^*] \rangle \neq 0$, then (p^*, u^*) is a bifurcation point for F. In addition, the set of non-trivial solutions of F = 0 around (p^*, u^*) is given by a unique C^1 curve $p \mapsto u_p$. The local behavior of the branch (p, u_p) for p close to p* is as follows.

• If $b := -\frac{1}{2a} \langle \psi, \partial_{\mu}^2 F(p^*, u^*) [\varphi^*, \varphi^*] \rangle \neq 0$ then the branch is transcritical and

$$u_p = u^* + \frac{p - p^*}{b} \varphi^* + o(p - p^*).$$

 $p \approx 2$: positive solutions

Theorem (Ambrosetti-Prodi (cont'd))

If $\mathbf{a} := \langle \psi, \partial_{p,u} F(p^*, u^*) [\varphi^*] \rangle \neq 0$, then (p^*, u^*) is a bifurcation point for F. In addition, the set of non-trivial solutions of F = 0 around (p^*, u^*) is given by a unique C^1 curve $p \mapsto u_p$. The local behavior of the branch (p, u_p) for p close to p* is as follows.

• If $b := -\frac{1}{2a} \langle \psi, \partial_{\mu}^2 F(p^*, u^*) [\varphi^*, \varphi^*] \rangle \neq 0$ then the branch is transcritical and

$$u_p = u^* + \frac{p - p^*}{b} \varphi^* + o(p - p^*).$$

In our case,

$$a=-\int_{\Omega} \varphi_2^2=-1$$
 and $b=-rac{1}{2}\lambda_2(\lambda_2-1)\int_{\Omega} \varphi_2^3=0.$

 $p \approx 2$: positive solutions

Theorem (Ambrosetti-Prodi (cont'd))

• If b = 0, let us define

$$c := -\frac{1}{6a} \Big(\Big\langle \psi, \partial_u^3 F(p^*, u^*) [\varphi^*, \varphi^*, \varphi^*] \Big\rangle + 3 \Big\langle \psi, \partial_u^2 F(p^*, u^*) [\varphi^*, \mathbf{w}] \Big\rangle \Big)$$

where $w \in X$ is any solution of the equation $\partial_{u}F(p^{*},u^{*})[\mathbf{w}] = -\partial_{u}^{2}F(p^{*},u^{*})[\varphi^{*},\varphi^{*}].$ If $c \neq 0$ then

$$u_p = u^* \pm \left(\frac{p - p^*}{c}\right)^{1/2} \varphi^* + o(|p - p^*|^{1/2}).$$

In particular, the branch is supercritical if c > 0and subcritical if c < 0.

Supercritical

Subcritical

In our case,

$$c = \frac{1}{6}\lambda_2(\lambda_2 - 1)\left(-(\lambda_2 - 2)\int_{B_R}\varphi_2^4 - 3\lambda_2(\lambda_2 - 1)\int_{B_R}\varphi_2^2w\right)$$
 where $(-\Delta + 1 - \lambda_2)w = \varphi_2^2$ with NBC on B_R .

In our case.

$$c = \frac{1}{6}\lambda_2(\lambda_2-1) \Big(-(\lambda_2-2)\int_{B_R} \varphi_2^4 - 3\lambda_2(\lambda_2-1)\int_{B_R} \varphi_2^2 w\Big)$$

where $(-\Delta + 1 - \lambda_2)w = \varphi_2^2$ with NBC on B_R .

$$= \frac{1}{6}\bar{\mu}_2 R^{-(N+2)} \left(1 + \frac{\bar{\mu}_2}{R^2}\right) \left((\beta - \alpha)\frac{\bar{\mu}_2}{R^2} + \beta + \alpha\right)$$
where $\alpha := \int \bar{\omega}_2^4 \quad \beta := -3\bar{\mu}_2 \int \bar{\omega}_2^2 \bar{w}$

where
$$\alpha:=\int_{B_1}\bar{\varphi}_2^4,\quad \beta:=-3\bar{\mu}_2\int_{B_1}\bar{\varphi}_2^2\bar{w},$$

$$(-\Delta - \bar{\mu}_2)\bar{w} = \bar{\varphi}_2^2$$
 with NBC on B_1 ,

 $\bar{\varphi}_2$ and $\bar{\mu}_2 > 0$ are the second eigenfunction and eigenvalue of $-\Delta$ with NBC on B_1 s.t. $|\bar{\varphi}_2|_{L^2} = 1$.

Symmetry breaking at exactly $p = 1 + \lambda_2$?

We numerically have

...

Ν	α		$\beta - \alpha$	
2	0.5577	0.5884	0.0306	1.1461
3	0.4632	0.3096	-0.1536	0.7728
4	0.4222	0.1694	-0.2528	0.5916
5	0.4171	0.0858	-0.3313	0.5029
6	0.4421	0.0250	0.0306 -0.1536 -0.2528 -0.3313 -0.4171	0.4671

Symmetry breaking

Symmetry breaking at exactly $p = 1 + \lambda_2$?

 $p \approx 2$: positive solutions

Conjecture

When R is large enough or N = 2, 1 is the ground state of

$$(\mathcal{P}_p) \begin{cases} -\Delta u + u = |u|^{p-2}u, & \text{in } B_R \\ \partial_{\nu} u = 0, & \text{on } \partial B_R. \end{cases}$$

iff $p \leq 1 + \lambda_2$.

p large: bifurcations from 1

Lemma

When p > 2 is increasing,

- a bifurcation **sequence** start from 1 **iff** p crosses $1 + \lambda_i$;
- this is actually a continuum if λ_i has **odd** multiplicity.

 $p \approx 2$: positive solutions

Krasnoselskii-Boehme-Marino theorem (1/2)

 $p \approx 2$: positive solutions

Theorem (Krasnoselskii-Boehme-Marino)

Let $F: I \times H \to K: (t, u) \mapsto F(t, u)$ be a continuous function, where $I \subseteq \mathbb{R}$ is an interval, and H and K are Banach spaces, such that $F(\lambda,0) = 0$ for any $\lambda \in I$.

- If F is of class C^1 in a neighborhood of $(\lambda,0)$ and $(\lambda,0)$ is a bifurcation point of F then $\partial_{\mu}F(\lambda,0)$ is not invertible.
- Let assume that for each $(\lambda, u) \in I \times H$,

$$F(\lambda, u) = L(\lambda, u) - N(\lambda, u), \quad L(\lambda, \cdot) = \lambda \mathbb{1} - T \quad and \quad N(\lambda, u) = o(\|u\|),$$

with T linear, T and N compact, and the last equality being uniform on each compact set of λ .

If λ_* is an eigenvalue of T with odd multiplicity, then $(\lambda_*,0)$ is a global bifurcation point for F(t, u) = 0.

Krasnoselskii-Boehme-Marino theorem (2/2)

 $p \approx 2$: positive solutions

Theorem (Krasnoselskii-Boehme-Marino (cont'd))

Let assume that H is a Hilbert space and that for each $(\lambda, u) \in I \times \mathbb{R}$, $F(\lambda, u) = \nabla_u h(\lambda, u)$ where

$$\begin{split} h(\lambda,u) &= \tfrac{1}{2} \langle L(\lambda,u),u \rangle - g(\lambda,u), \\ L(\lambda,\cdot) &= \lambda \mathbb{1} - T, \quad \text{and} \quad \nabla g(\lambda,u) = o(\|u\|), \end{split}$$

with T linear and symmetric, $g(\lambda, \cdot) \in C^2$ for all λ , and the last equality being uniform on each compact set of λ .

If λ_* is an eigenvalue of T with finite multiplicity and $h(\lambda,\cdot)$ verifies the Palais-Smale condition for each λ , then $(\lambda_*, 0)$ is a bifurcation point for F(t,u) = 0.

p large: transcritical radial bifurcations

 $\lambda_{i,rad}$ eigenvalues that possess a radial eigenfunction (simple in H^1_{rad}).

Proposition

On balls, two branches radial solutions in $C^{2,\alpha}(\Omega)$ of

$$(\mathcal{P}_p) \begin{cases} -\Delta u + u = |u|^{p-2}u, & \text{in } \Omega \\ \partial_{\nu} u = 0, & \text{on } \partial \Omega. \end{cases}$$

start from each $(p,u) = (1 + \lambda_{i,rad}, 1)$, i > 1. Locally, these branches form a unique C^1 -curve. Moreover, for i large enough independent of the measure of Ω , the bifurcation is transcritical.

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ 壹 りQで

p large: transcritical radial bifurcations

 $p \approx 2$: positive solutions

Proof. $\Omega = B_R$. Using Ambrosetti-Prodi theorem, one has to show

$$b = -\frac{1}{2}\lambda_i(\lambda_i - 1) \int_{B_R} \varphi_{i,rad}^3 \neq 0.$$

Given that radial eigenfunctions are given by constant spherical harmonics (k = 0, v = (N-2)/2), this amounts to

$$\int_0^R \left(r^{-\frac{N-2}{2}} J_{\nu} (r \sqrt{\bar{\mu}_{i,\text{rad}}} / R) \right)^3 r^{N-1} \, \mathrm{d}r \neq 0 \quad \text{i.e.} \quad \int_0^{\sqrt{\bar{\mu}_{i,\text{rad}}}} t^{1-\nu} J_{\nu}^3(t) \, \mathrm{d}t \neq 0$$

where $\lambda_{i,rad} = 1 + \bar{\mu}_{i,rad}/R^2$. This is true for large *i* because

$$\int_0^\infty t^{1-\nu} J_{\nu}^3(t) \, \mathrm{d}t = \frac{2^{\nu-1} (3/16)^{\nu-1/2}}{\pi^{1/2} \Gamma(\nu+1/2)} > 0.$$

p large: transcritical radial bifurcations

Numerical computations indicate that

$$\forall z \in]0, +\infty[, \int_0^z t^{1-\nu} J_{\nu}^3(t) dt > 0, \qquad \nu = (N-2)/2,$$

and therefore that radial bifurcations are transcritical for all i.

p large: positive transcritical radial bifurcations

Corollary

p ≈ 2: ground state solutions

The branches consist of positive functions.

Sketch: If it was not the case, there would be a point solution along the branch with a double root, hence = 0. There is no bifurcation from 0.

p large: positive transcritical radial bifurcations

Corollary

The branches consist of positive functions.

Sketch: If it was not the case, there would be a point solution along the branch with a double root, hence = 0. There is no bifurcation from 0.

Theorem

Radial bifurcations obtained for the $C^{2,\alpha}(\Omega)$ -norm are unbounded and do not intersect each other. Moreover, along bifurcations starting from $(1 + \lambda_{i,rad}, 1)$, the solutions always possess the same number of intersections with 1.

Sketch: The number of crossings with 1 stays constant because otherwise a non-constant radial solution u s.t. u-1 has a double root would exists. Since the branches do not intersect each other, Rabinowitz's principle says they must be undounded.

p large: multiplicity results (radial domains)

Theorem

 $p \approx 2$: ground state solutions

Assume Ω is a ball.

- In dimension 2, for any $n \in \mathbb{N}_0$, there exists $p_n > 2$ such that, for any $p > p_n$, at least n positive solutions exist
- In dimension ≥ 3 , for any $2 and <math>n \in \mathbb{N}_0$, at least n different positive solutions exist if the measure of the ball Ω is large enough.

p large: multiplicity results (radial domains)

Theorem

Assume Ω is a ball.

- In dimension 2, for any $n \in \mathbb{N}_0$, there exists $p_n > 2$ such that, for any $p > p_n$, at least n positive solutions exist
- In dimension ≥ 3, for any 2

Theorem

On balls, there exists a degenerate positive radial solution for some p provided that the measure of Ω is large enough.

$$p \geqslant 2^*$$

Theorem (Serra & Tilli, '11)

Assume $a \in L^1(]0, R[)$ is increasing, not constant and satisfies a > 0 in]0, R[, then for any $p \in]2, +\infty[$, $-\Delta u + u = a(|x|)|u|^{p-2}u$ with NBC possesses a positive radially increasing solution.

Trick: work on the space of radially increasing functions.

$$p \geqslant 2^*$$

Proposition

Assume Ω is a ball of radius R. If u is a radial solution of (\mathcal{P}_p) such that u(0) < 1, then $||u||_{L^\infty} \leq \exp(1/2)$.

$$p \geqslant 2^*$$

Proposition

Assume Ω is a ball of radius R. If u is a radial solution of (\mathcal{P}_p) such that u(0) < 1, then $||u||_{L^{\infty}} \le \exp(1/2)$.

Proof. In radial coordinates, the equation writes

$$-u'' - \frac{N-1}{r}u' + u = u^{p-1}.$$

Multiplying by u', we get

$$\frac{\mathrm{d}}{\mathrm{d}r}h(r)=-\frac{N-1}{r}u'^2(r)\leqslant 0,$$

where

$$h(r) := \frac{u'^2(r)}{2} + \frac{u^p(r)}{p} - \frac{u^2(r)}{2}.$$

In particular, this means that $h(r) \leq h(0)$ for any r.

$$p \geqslant 2^*$$

PROOF (CONT'D). The assumption u(0) < 1 implies

$$h(0) = \frac{u^p(0)}{p} - \frac{u^2(0)}{2} = u^2(0) \left(\frac{u^{p-2}(0)}{p} - \frac{1}{2} \right) \le 0.$$

Thus

$$||u||_{L^{\infty}} \leqslant \left(\frac{p}{2}\right)^{1/(p-2)} \leqslant \exp(1/2).$$

$$p \geqslant 2^*$$

Theorem

Assume Ω is a ball. Then, for any $n \in \mathbb{N}_0$, there exists p_n s.t., for any $p \in [p_n, +\infty[$, (\mathcal{P}_p) has at least n positive radially symmetric solutions.

$$p \geqslant 2^*$$

Theorem

Assume Ω is a ball. Then, for any $n \in \mathbb{N}_0$, there exists p_n s.t., for any $p \in [p_n, +\infty[$, (\mathcal{P}_p) has at least n positive radially symmetric solutions.

Sкетсн: Radial bifurcations are transcritical, thus, as $p \approx 1 + \lambda_{i,rad}$,

$$u_p = 1 + \frac{p-1-\lambda_{i,rad}}{b} \varphi_{i,rad} + o(p-1-\lambda_{i,rad}).$$

Along the left or right branch $u_p(0) < 1$. This later property persists along the whole branch. Thus all u belonging to that branch must satisfy $||u||_{L^{\infty}} \le \exp(1/2)$. Since 1 is the only solution for $p \approx 2$, the branch must exist for all p large.

Thank you for your attention.