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QUANTIFIER ELIMINATION IN VALUED ORE MODULES
LUC BELAIR AND FRANCOISE POINT

Abstract. We consider valued fields with a distinguished isometry or contractive derivation as valued
modules over the Ore ring of difference operators. Under certain assumptions on the residue field, we prove
quantifier elimination first in the pure module language, then in that language augmented with a chain
of additive subgroups, and finally in a two-sorted language with a valuation map. We apply quantifier
elimination to prove that these structures do not have the independence property.

§1. Introduction. The model theory of Witt vectors with the Witt Frobenius as a
distinguished automorphism has been investigated in [5], [28], [6]. The results are
of Ax-Kochen-Ershov type. For instance:

Let K = W(F) be the field of Witt vectors with coefficients in F, where F is a
p-closed field of characteristic p, let v be the p-adic valuation, and let ¢ be the Witt
Frobenius (see below). Then Th (K, v, ¢) is axiomatized by:

1. (K,v) is a valued field of characteristic 0 and ¢ is an isometry, i.e., v(c(x)) =
v(x), inducing the ordinary Frobenius x ~ x” on the residue field F;

2. asuitable analog of Hensel’s lemma holds for polynomials involving ¢;

3. the residue field satisfies Th(F):

4. the value group is a Z-group with least positive element v(p).

In this paper we will consider the theory of these fields, and other valued fields with
an isometry, in weaker formalisms of (valued) modules. This amounts essentially
to restrict ourselves to study l/inear equations of the form ¢, 6" (X ) +--- 4+ cjo(X) +
coX = b, where ¢;, b € K. Ore was the first to study systematically these equations
in the case of the usual Frobenius map x — x”. There is a well established analogy
between differential fields and fields with a distinguished automorphism, also called
difference fields in the literature. It turns out that if a valued field has a derivation
0 which is contractive, i.e., such that v(6x) > v(x), then many of our results hold
as well for these structures. We will treat both cases simultaneously in a suitable
formalism. In all main results, a linear form of an analog of Hensel’s lemma (alluded
to above) plays a crucial role and corresponds to divisibility of the corresponding
module. The main results, which apply also in positive characteristic, consist of
axiomatizations and quantifier elimination in appropriate languages (see Sections 4
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and 5), with an application to the absence of the independence property. They were
sketched in [7].

Some of the basics also hold when ¢ is just an endomorphism (e.g., the Hensel
property) but we have not pursued the matter further.

The plan of the paper is as follows. In Section 2 we introduce the module
formalism and we axiomatize the theories of valued fields with an isometry or a
contractive derivation as modules over a (Ore) skew polynomial ring. In Section 3
we introduce the formalisms of valued modules, first as two-sorted structures with
a valuation map between the module sort and the ordered set sort, and then as
modules with a chain of distinguished additive subgroups indexed by their value
set which yield an abelian structure. In Section 4 we prove quantifier elimination in
the abelian structure formalism, and then in Section 5 for the two-sorted one. In
Section 6 we apply quantifier elimination to prove that in the two-sorted language,
these structures do not have the independence property (and so their definable sets
can be endowed with a VC-dimension, see e.g., [21]). Finally, in Section 7, we
observe that all this allows to prove a transfer principle between Witt vectors and
power series.

Notation and terminology. We will use boldface notation for tuples, e.g., x =
(X1....,x,). All our modules will be right modules. For an element r of a ring,
ann(r) will denote its annihilator in a given module. For a valued field (K, v),
we denote its value group by vK. its valuation ring by . its residue field by K.
The natural residue map from @k to K is denoted by ~, and will be used for
various reductions. For example if ¢(X) € @x[X]. then § is the reduced element
in K[X] obtained by reducing the coefficients. An isometry is an automorphism of
K such that v(c(x)) = v(x). A contractive map is a map 0 : K — K such that
v(8(x)) > v(x). If f is a function on a set X we will sometimes use the notation
x/ for f(x),x € X.

Let F be a perfect field of characteristic p > 0, we denote by W[F] the ring
of Witt vectors over F. It can be seen as a ring structure on F given by uni-
versal polynomials s,(Xo, Yo, ..., X, Y,). pu(Xo. Yo.. ... X,. Y,) with coefficients
in the integers and without constant terms: (xo,x1....) + (3o. y1....) = (x0 +
30, 51(X0. ¥0. X1, ¥1). 82(x0. ... ), ... ) and similarly for the product using the p,’s. It
is a complete discrete valuation ring of characteristic 0 with uniformizing parameter
p and residue field F. Its field of fractions is denoted by W (F). From the point
of view above, the corresponding valuation is v(x¢, x1,...) = min{n : x, # 0},
and it is apparent that the map (xo. x1....) — (x{.x{....) is an automorphism of
W [F] which induces an isometry on W (F). We call this map the Witt Frobenius.
If F = F,, then W[F,] is the ring Z, of p-adic integers, W (F,) is the field Q, of
p-adic numbers, and the Witt Frobenius coincides with the identity. We refer to [19]
for basics on Witt vectors.

A field of characteristic p is p-closed if it does not have any finite algebraic
extension of degree divisible by p. G. Whaples showed that this is equivalent to
the fact that every polynomial of the form > cix?" = ¢ has a root (for a proof
“by hand” see Afterthought: Maximal fields with valuation in [20]). In particular, a
p-closed field is perfect.

A ring is said to be right Ore, if any two elements have a common right multiple.
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We will assume known classical results on the model theory of modules, and use
the usual “pp” for “positive primitive”, e.g., pp-formula, etc. For the model theory
of modules we refer to [25].

82. Modules. In order to deal simultaneously with the cases of a valued field
with an isometry or with a contractive derivation, it will be convenient for us to
follow the formalism of Cohn’s book [9]. Other formalisms are possible to cover
the two cases, e.g., D-valued fields (cf. [28]) or valued fields with a twist (cf. [26]),
but Cohn’s seems more fitting to our context.

DEermNITION 2.1. Let K beafield and ¢ an automorphismof K. Amapd : K — K
is called a o-derivation, if O(x + y) = 8(x) +8(y) and d(xy) = 0(x)y° + x0(y).
forall x,y € K.

When ¢ is the identity, this is just a standard derivation. Note that since for us K
is always commutative, when ¢ is not the identity the o-derivations are all of the
form 8(x) = (¢(x) — x)c for some nonzero ¢ € K ([9], Theorem 2.1.3).

We now fix (K, v, ¢, 8), namely a valued field (K, v) with distinguished isometry o
and contractive g-derivation 0.

If 0 is the zero derivation, then we just have a valued field with an isometry, and
if o is the identity map, then we just have a valued field with a contractive derivation.

The operators 8 and ¢ have an induced action on K. that will be denoted by &
and @ respectively, namely (@) = o(a) and 8(a) = 8(a). which make 8 into a
G-derivation. More generally, given any polynomial ¢[ X] € @x[X], we can consider
the action of ¢(¢) on K and the induced action of () on K.

DEerFINITION 2.2. [9] We let 4 = K|[¢; 0. 0] be the skew polynomial ring in the
variable ¢ with the commutation rule for k € K:

kt = tk? + 0(k).
When 0 = 0, we will simply write 4 = K|[¢; g].
We let 4y = O@k|t;0,0] be the subring of 4 consisting of polynomials with

coefficients from @k, and we let .# be the set of polynomials from 4, with at least
one coefficient of valuation 0.

In A we will write the polynomials in the form >~ ¢'k;.
First, let us assume that & = 0. Then K can be considered as a module over A4,
with ¢ acting as o, in the following way:

k- (O ki) =Y a'(k)ki.
i=0 i=0

Let 8 # 0 be a non-trivial o-derivation, then K can be considered as a module
over A, with ¢ acting as 9, in the following way:

k- (i likl’) = ial(k)kl
i=0 i=0

Note that when ¢ is not the identity, then as noted above 9 is of the form 8(x) =
(6(x) — x)c, and we are back to the first case. If we make the following change of
variable, setting ¢’ := ¢ - ¢~! + 1., we have that A4 is isomorphic to K[t': 5] with the
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commutation rule k¢’ = t’k°. So, we basically have two cases: either ¢ acts as o (or
a linear polynomial in o) with & = 0, or ¢ acts as a classical derivation with ¢ being
the identity.

Let (F((x~1)).7) be the field of Laurent series in x ! over a field F. let 7 be an
automorphism of F((x~!)). Let K := F((x~"))(T) with the T-adic valuation, let
o be the automorphism of K defined by (>, ¢;T") := >, 7(¢;)T". Then, with
0 = 0, t-motives in [15] are a special kind of 4p-module.

Let A = K[t:6.8]. The reduction map ~ makes K into a corresponding A-
module via the action of & or d.

The skew polynomial ring A is right Euclidean and left Euclidean (see [9], Chap-
ter 2). In particular it is an integral domain and right Ore. The degree of an element
q(t) = Zflzo t'k; with k; € K and k; # 0, is equal to d.

The center of 4 is contained in Fix(o) N Ky, where Ky = {x € K : 8(x) = 0}
and Fix(c) = {x € K : 6(x) = x}. Note that since a g-derivation is of the form
c(o — 1), whenever ¢ # 1, the subfield Fix(c) N Kjp is either equal to K or to
Fix (o).

DEFINITION 2.3. Let g(t) € A. We will say that ¢(¢) is irreducible if it cannot be
expressed as a product of two elements of A of degree bigger than or equal to 1. We
will say g (¢) is separable if g(0) # 0.

Since K is a valued field, we can extend the map v on the ring 4 as follows:
U(Z t'k;) := min{v(k;)}

where k; € K \ {0} and v(0) = oo (see [9], Chapter 9). In the case where & = 0,
since v(k°) = v(k) forany k € K, thisis a valuation (ibid., pp. 425-426), which can
be extended to the fraction field of 4 (ibid., Proposition 9.1.1). For the convenience
of the reader we will show that this is the case in general.

Note that 49 = {g € A :v(g) >0}and ¥ = {g € 4 :v(q) =0}.

LeEMMA 2.1. The map v as defined above is a valuation on A.
ProoF. We need only check the valuation of a product. By induction on #, let us

first show that
n
at” = Z Zi ( Z ami(a,a))
i=0

m;€ Cl_/z

where m; (0, 0) denotes a monomial of degree n in ¢, 0 with i occurrences of ¢
and C/" denotes the set of such monomials, whose cardinal is the corresponding
binomial coefficient. We have

at™ = (ar” t—Zt Za“’a

m;€ C”

_ZtHrl Zam 0.0)o +Zt Zam 7.0)0

m;eC}! m;eCl!

_ tn+1 a" + Z tl+1 Z aml(ra + Z tlJrl Z am (6.0)0 3”

m;eCl! m; €C/ |
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n+1
SACE e
i=0 I’l’l,‘EC,»"Jrl

Now consider

n m n m
Zt’ai -Zt/bjth’ a;t’b;
i=0 j=0 i=0 j=0
n m J
i d
_ Z(ZZHI( Z iz(a, ))bj)
i=0 j=0 £=0 meeC)
Let 0 < i < -+ < i, < n be the indices where v(a;), i € {0,---.n}, is
minimum and let 0 < j; < --- < j, < m be the indices where v(b;), j €
{0.--- .m}, is minimum. Let k = i, + j,. Then the coefficient of t* is equal to

a,»l,"i” bjf/” +>,; ai"-bj", where 8 occurs at least once in m; and m; and i + j > k,
) > wv(a;, ) or j> j,and sov(b;”) > v(b;,). Hence

m;

so either i > i, and so v(a!

m;
A J
the minimum valuation possible v(aiﬂ""’) +v(b jﬂ”m) = v(a;,) +v(b;,) is attained,
as wanted. -

We will show that Ay satisfies a generalized right Euclidean algorithm and so is
right Ore. We will state that result in a more general setting.

LeEMMA 2.2. Let D be a right Ore domain, o« a monomorphism of D and 8 a a-
derivation. Then the skew polynomial ring D[t; o, 0] satisfies a generalized right
Euclidean algorithm. Namely, given any q(t). q2(t) with deg(q1) > deg(q,), there
existc € D\{0}and f,r € D[t; . D) withdeg(r) < deg(qy) suchthat gic = q».f +.

Proor. (See [18], Theorem 2.14, p.128). By induction on deg(q;) + deg(q>).
Write g1 = Y1 ,t'a;and > = ZT:O t/b;, withn > m. Then q;p% " — g2t" ™"a, is
an element of Ay of degree strictly less than n. So we apply the induction hypothesis
to this polynomial. The degree O case is handled by the fact that D is right Ore. -

Note that @k is a commutative integral domain and so it is certainly right Ore.

DErINITION 2.4, Let L4 be the language of A-modules and let 74 be the L -
theory of right A-modules.

1. Let T, be the theory T4 together with the axioms Vm 3n (n-g(t) = m), where
q(t) varies over the irreducible polynomials of A.

2. Let T, be the theory T4 together with:
Q1) Vm3In(m=n-t), &¥m (m-t=0—-m=0),
(2.2) Vm3n (n - q(t) = m). where ¢(t) varies over the separable irreducible

polynomials of A4.

3. Let Toy. (respectively Toe.) be the theory T, (respectively T,,) with the
axioms In # 0 (n-q(t) = 0), where ¢ (¢) varies over all irreducible (respectively
separable irreducible) polynomials of A.

Let M be an A-module. We will denote by Tor (M) the torsion part of M, namely
Tor(M) = {m € M : 3q(t) € A, m-q(t) = 0}. Note that since A4 is right Ore,
Tor(M) is a submodule of M. For each a € A, anny(a) is a Fix(o) N Kg-vector
space.
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Since 4 is right and left Euclidean, the pp-formulas have a very simple form (see
for instance [18], Theorem 3.8, p.181).

Recall that a theory of modules admits positive quantifier elimination if any
positive primitive formula is equivalent to a finite conjunction of atomic formulas.

PROPOSITION 2.3. The theory T, of A-modules admits positive q.e. Each completion
of T4 admits quantifier elimination.

Proor. This follows from classical results in the model theory of modules over
right and left Euclidean rings and in particular from the fact that any existen-
tial formula is equivalent to annihilators conditions on the parameters (see [17],
Proposition 2.7). -

We will now determine the completions of 7;. We will say that a right 4-module
is divisible if it is a model of 7.

LEMMA 2.4. For any pair of elements {q1(t), q2(t)} with deg(q(t)) > deg(q2(1))
of A, we have the following equivalences in any divisible A-module M :

q>(t) divides ¢q1(¢) if and only if anny (q2) C anny(qy).

Moreover, if qi1(t) = q2(t) - ¥(t) and if the cardinality of the quotient
ann(qi(t))/ann(qx(t)) is finite, then |ann(q:(t))/ann(qx(t))| = |ann(r(1))|.
ProOF. See [17], Lemma 2.9 and Proposition 2.10. !

COROLLARY 2.5. If the subfield Fix(c) N Ky of K is infinite, then the completions
of T, are obtained by specifying for which irreducible polynomials q(t) ann(q(t)) #
{0}. In particular under this assumption Toy. (respectively Tore,) admits quantifier
elimination. If Fix(c) N Ky is finite, then the completions of Ty are obtained by
specifying for each polynomial q(t) if the cardinal |ann(q(t))| is finite and giving its
value.

Proor. First, we observe that if an element m does not belong to a pp-definable
subgroup S. then A - m does not belong to that subgroup for any A € Fix(c) N Kp:
let A # u € Fix(0) N Kp and assume that A - m and u - m belong to the same coset,
then (A — u) -m € S.som € S a contradiction.

So. if Fix (o) N K is infinite, then the index of a pair of pp-definable subgroups
is either 1 or infinite.

Second, by the positive quantifier elimination result, the proper definable sub-
groups are the annihilators of elements of A.

So in the first case, in order to determine the completions, by the above lemma,
it suffices to determine which irreducible elements ¢(¢) of 4 have a non-zero anni-
hilator.

When Fix (o) N Kp is finite, the completions are determined by the cardinalities
of non-trivial quotients of the annihilators of elements of 4, which by the above
Lemma can be reduced to the cardinalities of the annihilators. -

Let N be a pure-injective indecomposable model of T;. Let Jy := {a € 4 :
dn € N\ {0},n-a = 0} and suppose Tor(N) # {0}. Denote the subset of
separable irreducible elements of 4 by £.

PROPOSITION 2.6. Let Ny, N, be two pure-injective indecomposable models of T,
such that Tor(Ny) # {0}. Then, there exists qo € A such that Jy, NP ={q € A :
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deg(q) = deg(qo) & 31392 ¢ - q1 = q2 - qo. With deg(q1). deg(q2) < deg(q - qo)}.
Also, for any a1, ay € Jy, NP, we have that anny,(a1) = anny,(ay).

Moreover, if Iy, NIy, NP # {0}, then N1 = N,.

Proor. See [10], Lemma 3.14. -

LeEMMA 2.7. Let M be an A-module, where each element is divisible by t. Then, M
is A-divisible iff it is .7 -divisible.

PrROOF. Let r(r) := 3", t'k; € A\ Ao. let A be such that v(4) = min;{v(k;)} # 0.
W.lo.g.. we may assume that r(¢) is separable. Set r(¢) := A~ 'r(t). we have
v(r1(t)) = 01ie., ri(t) € 7. Let m € M. Since M is .7-divisible, there exists n
suchthatm =n-ri(t) =n- 27" r(t). .

We will now determine conditions which ensure that (K, v, ¢, 8) is a model of T
or T,;,. We will state everything directly in terms of modules. The reader is invited
to make the direct translation in terms of linear o-equations and linear 9-equations.

DEFINITION 2.5. Let M = (K, v,0.0) be as above and viewed as an 4-module.
We will say that M has the linear Hensel property, if for any ¢(t) € .# and m € @,
if there is y € @k such that y - §(¢#) = m, then there exists x € @k such that
x-q(t)=mand ¥ = j.

In our basic case of the action of the isometry o, this is the g-Hensel scheme
in [6] but restricted to linear g-polynomials. In the case of the action of 9, this
is the D-henselian property of [28] but restricted to linear D-polynomials. A
henselian property for polynomial equations involving contractive endomorphisms
(even many at a time) has also been considered in [26].

PROPOSITION 2.8. Any M = (K., v.0,0) such that (K.v) is a complete discrete
valued field and M = (K .G.d) is a divisible A-module, has the linear Hensel property.

Proor. Let ¢(t) € @k[t:0.0] such that §(¢) # 0. Let m € @k, and assume that
there exists uy € @k such that ip - §(¢t) = m. We want to find u € @k such that
u-q(t) =mandv(u —up) > 0.

Set Oy = ug - g(t) — m, we have that v(Qy) > 0.

We look for an element x € @k such that

v((uo + xQo) - ¢ (1) — m) > v(Qp).

We have ug-¢(1)+xQ0-q (1) —m = Qo+x-Qoq(1)05 ' Qo = (1+x-Qoq(1)05™") Qu.
Note that v(Qoq(1)Qy ") = v(g(t)) = 0.
Since K is A-divisible, there exists x; € @k such that

v(l+x1-Qog(t)0; ") >0
So. by letting & = x1Qp and u; = ug + hy, we get

up-q(t) —m=(1+x1-Q0q(t)0y ") Qo

and the desired inequality v(u; - ¢(¢) — m) > v(Qo) = v(ug - ¢(t) — m).

We now generate, by induction, sequences uy, ,, Qu, X, € @k such that u,,| =
Uy + Myt Myl = x,410,. 0, = u, - q(t) — m and that the sequence v(Q,) is
strictly increasing. Indeed, as above, there exists x,;1 € @k such that v(1 +
Xn+l * an(l)QVTl) > 0, and letting hyo1 = Xpt10nsUpns1 = Uy + hn+1:Qn+l =
Uny1 - q(t) — m. we get the desired inequality v(Q,1) > v(Q,). Now, the sequence
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() nee converges since u, 1 — t, = X,+1Q, with x,,1 € Ok and v(Q,) — +oo.
Let u = lim, u,. Then, u-q(t) —m = u-q(t) —u, - q(t) + (uy - q(t) — m) =
(u—u,)-q(t)+0,. Since v((u —u,)-q(t)) > v(u—u,), we get that u - q(t) m = 0.
Moreover, v(ug — u) > 0. !

COROLLARY 2.9. Assume that M = (K, 7, 8,v) has the linear Hensel property, each
element is t-divisible and that M is A-divisible. Then M is a model of Ty.

PROOF. By the linear Hensel property and A-divisibility, M is .#-divisible. Then
apply Lemma 2.7. -

COROLLARY 2.10. Let F be a field of characteristic p which is p-closed.

1. Let K = W(F) with o the Witt Frobenius. Then W (F) as an A-module with t
acting as the Witt Frobenius is a model of T .

2. Let K = F((x)), the field of Laurent series, with ¢ defined as o (3" ¢;x') =
S>> el x'. Then F((x)) as an A-module with t acting as o is a model of Ty ;.

PROOF. Axiom (2.1) is direct since we have an automorphism. Note that K = F
and 5(x) = x?. We then use the fact that p-closed implies that every equa-

tion Zc,xl’ = ¢, with ¢;,¢ € F has a solution in F. But this amounts to K
being A-divisible, and Axiom (2.2) follows from the linear Hensel property and
Lemma 2.7. -

We will return at the end of this paper to the relation between these two models.
It is interesting to note that the general setting in e.g., [6] does not cover the case of
equal characteristic p, like the field of Laurent series F((x)) above (but see [3] in
that direction.)

‘We may apply these results to F = I~F . the algebraic closure of the prime field .
andto F =k, = U,¢, F,» which is the minimal p-closed field (N.B. Its theory is
decidable ([2])). So, both W (F,). W (k,) are models of the theory T}, with the
corresponding skew polynomial ring. Since ann(q (7)) # {0} with ¢(¢) a separable
irreducible polynomial, their theories are axiomatized by T¢,., and they admit
quantifier elimination.

Note that there are non algebraically closed fields of characteristic p where each
separable additive polynomial has a non trivial zero (see [6]). We don’t know
whether if we require in addition the field to be p-closed that it implies it is alge-
braically closed. We also don’t know if it is possible to characterize the elements of
W (FF,) which belong to the torsion submodule and to ann(g(t)) for a specific ¢(¢).

The question whether the theory Ty, is decidable (at least in the classical sense)
only makes sense if the ring A is countable and such that some part of its existential
theory is decidable. Another way to proceed would be to consider decidability
questions working with BSS-machines instead of Turing machines (see [8]). In
particular, this implies that the elements of the field are given.

COROLLARY 2.11. Let K be an elementary substructure of W (F) where F is a field
of characteristic p which is p-closed. Assume that K is recursively presented with
decidable word problem. Let A := K|t:a]. Then, the corresponding theory Toyres is
consistent and decidable.

PrOOF. One checks that the ring A satisfies the required condition D in [25].
Chapter 17, p. 334. -
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Here are assumptions on K which ensure that Fix(c) is infinite. In case K =
F((x~1)). this is a special case of a theorem of Hellegouarch (see [14]. Theorem 1).

PROPOSITION 2.12. Consider (K, v, ). Assume that K has the linear Hensel prop-
erty with t acting as o, and that ann(t — u) # 0 in K for all u € K. Then, Fix(c) is
infinite whenever the valuation is non trivial.

ProOF. We can assume K has finite characteristic. Let x € K with v(x) > 0.
This implies in particular that x is transcendental over the prime subfield of K.
Since o is an isometry, we have that v(o(x)) = v(x). In other words there exists u
withv(u) = O such that o (x) = xu. Note thati # 0. We look foranelement a € K
with v(a) = 0 such that ¢ (xa) = xa. So, xua® = xa. i.e., a°u = a or equivalently
a® = au~"'. By assumption, we can solve non trivially the equation a - ( —u~') = 0
residually. So by the linear Hensel property, we get that K has a solution of that
equation with v(a) = 0. Since xa is again necessarily transcendental over the prime
field, this ensures that Fix (o) is infinite. -

Now we give some examples involving a derivation 0.

Let (F. 0) be a differential field of characteristic 0. Assume its field of constants
is algebraically closed. Then, it is known that there exists an extension F of F with
no new constants such that any finite subset of F is included in a finite sequence of
successive Picard-Vessiot extensions and such that F has no proper Picard-Vessiot
extensions (see [22], Theorem 3.34).

First consider (F((x)), v) with the x-adic valuation and & defined by O iom

a;) = 5, x" - 0(a;). Then, d is contractive. Second., consider (F((x~1)),v)
with the x~!-adic valuation and 8 defined by (> .~ a; - x~) = (ap) - x ™ +
(o, (=i - a; +8(a;11)) - x~U+V (namely we take the derivative with respect to
x). Then, again & is contractive.

We obtain the following.

PROPOSITION 2.13. Let K be either the field of Laurent series (F((x)).v.0) or
(F((x™1)).v.0). Then K. viewed as an A-module with t acting as 8. is a model of
TOre‘

Proor. We will prove at the same time that they are models of 7; and Ty,.. By
Proposition 2.8 and Corollary 2.9, to prove that they are models of 7 it suffices to
check that they are ¢-divisible and that F is A-divisible.

First note that any inhomogeneous linear differential equation of order n > 1,
of the form L(y) = b. b € F. can be reduced to the homogeneous equation
b-8(1/b- L(y)) = 0. Now F has no proper Picard-Vessiot extension. So, we get
all the solutions in F', so it is A-divisible and moreover we get non-trivial solutions
to any homogeneous linear differential equation.

Then, it remains to check that for any element ¢ € F((x)) there is a a such that
d(a) = c. In the first case, this follows directly from the fact that  has no proper
Picard-Vessiot extension. In the second case, let ¢ =) ;. ¢ - x~¢, then we look
for elements a; € F such that S Ci X =y x4 Y, (—iai+0(ai)) -
x~+D Equivalently, ¢,, = d(a,,) and fori > m. ¢;+ (i —1)-a;_; = 8(a;). Again,
we use the fact that F has no proper Picard-Vessiot extension and so we first solve
the first equation, finding a,,, plug it in the second one, find a,,;; etc. -

xi

i>m
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A subgroup H of a group G is definably connected (in G) if it does not contain any
proper relatively definable subgroup of finite index (a relatively definable subgroup
of H is the intersection of H with a definable subgroup of G). Recall that in any
module, a definable subgroup has a pp-definable subgroup of finite index ([16],
p.140) as a consequence of B.H. Neumann’s Lemma. Note that in our modules, a
pp-definable subgroup is invariant under multiplication by elements of Fix(c)NKp.
Also, in any module, a subgroup, say S, invariant under multiplication by an infinite
set of invertible elements cannot be of finite index in another subgroup. (If u is
invertible and if an element @ does not belong to S, then the elements ¢ and a - (1 —u)
cannot belong to the same coset.) So, if we assume that Fix (o) N Ky is infinite (for
instance in the case where K = W (I ,) with the Witt Frobenius, Fix(s) = Q,). then
no definable subgroup can have a proper definable subgroup of finite index. Since
any pp-definable subgroup is (-definable, then any definable subgroup is connected
and (-definable.

PROPOSITION 2.14. Consider (K, v. o) and assume that v is non trivial on Fix (o) N
Ky. Then the valuation ring @k of K is not definable in the language L 4 of modules.

ProoF. In particular Fix(c) N K is infinite. By the above., @x would be pp-
definable, and so invariant under multiplication by elements of Fix(c) N Kj, a
contradiction if we multiply by an element of non zero valuation. -

§3. Valued modules and abelian structures. We will now fix the structures of
valued modules we will be dealing with.

We keep the same notation as in the previous section, with a fixed (K, v,0.0), 4
the skew polynomial ring K[¢; g, 3], etc.

DErFINITION 3.1 (cf. [11]). A valued A-module is a structure (M, A, <, 4, w, 00),
where M is an A-module, co € A, (A. <) is a totally ordered set for which oo is a
maximum, + is an action of vK on (A, <) and w is a surjective map w : M — A
such that

1. Foralld;,0, € A, y1. 72 € vK.ifd; > dp and y; <y, thend; + y; < Jr + 7.

2. Forall my,my € M, w(my + my) > min{w(my), w(my)}. and w(m;) = oo iff
nmy =0.

3. Forallme M, w(m - t) > w(m).

4. Forallm € M\YA € K. 2#0,w(im - 1) = w(m) +v(4).

Taking M = (K,v.0.8) and w = v, it is a valued 4-module in either case of ¢
acting as o or 9.

From the axioms above, we deduce as usual the following properties: w(m) =
w(—m), and if w(m;) < w(my), then w(m; + my) = w(my).

DEerINITION 3.2. We let L, be the two-sorted language of valued 4-modules ob-
tained from L4, with a sort M for the underlying module, and a sort A for the
ordered set of valuations, a constant symbol co of sort A, and unary function
symbols +y for each y € vK. We define the following L, -theories:

e let 7, be the theory of valued 4-modules obtained by translating the required

axioms in L,,.
o let T),=T,UTy.
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Let M = T, then we define
Ms:={meM: wim)>J}

This is not only a subgroup of M, but an Ay-submodule.

In order to go into the setting of abelian structures, we will now introduce
another (less expressive) language. This is the language of [27], where Rohwer
was considering the field of Laurent series over the prime field I, with the usual
Frobenius map y ~ p? (which is not an isometry). If (M, A, w) is a valued 4-
module, we have in mind the structure (M, (Ms)sca)).

DEerINITION 3.3. Let (A, <) be a fixed totally ordered set with an action + of
vK on A such that for all 6;,0, € Ay, € vK, if §; < d, and y; < p, then
o1 + 71 < dr+ 2. We let Ly be the language consisting of the language L4 of
A-modules together with a set of unary predicates Vs, indexed by the elements of A.

DErINITION 3.4. Let Ty be the Ly -theory obtained from 74 together with the

following axioms (1)—(7). Let T be the theory T together with axiom scheme (8).
1.Vm3n (m=n-1).

Vm 3n (n-q(t) = m), where ¢(t) € 2.

Vm (Vs,(m) — Vs,(m)), whenever 6; > d,.

Vm (Vs(m) — Vs(m-1)).

Vmy Vmy (Vs(mi) & Vs(my) — Vs(mi 4+ my)).

Vm (Vs(m) — Vs, ,y(m - 1)), where 4 € K.

Vm (Vs(m) = Vyuig(y)(m - q(2))), where ¢(t) € A.

Vme Vs3Ine Vsn-q(t) =m. where q(t) € 7.

If (M, A, w) is a valued A-module, let .# be the Ly -structure

(M. 4.0, (-r)rea. (Ms)sen).
where Vj is interpreted as M.

EXAMPLE 1. Let F be a p-closed field of characteristic p. If M = K = W (F)
with t acting as the Witt Frobenius, or if M = K = F((x)) with t acting as
Soeix v > ePX!, then # \= T}, as in Corollary 2.10.

EXAMPLE 2. Let (F. ) be a differential field of characteristic 0 whose field of con-
stants is algebraically closed. Let K be either the field of Laurent series (F ((x)). v, d)
or (F((x™1)),v.8) asin Corollary 2.13. Then K, viewed as an A-module with t acting
as 0, is a model of T};.

The structure . is an abelian structure and one gets as in the classical case
of (pure) modules that any formula is equivalent to a boolean combination of
pp-formulas and index sentences (namely, sentences telling the index of two pp-
definable subgroups in one another; for all this see [25]). Moreover, this elimination
is uniform in the class of such structures.

Note that a positive primitive formula ¢ (x) is now of the form:

dy1dyz---3ya /\(x,y) "B =0&V,(ti(x.y)).

i

A

where B is a matrix with coefficients in 4, y; € T and #;(x,y) is a term in the
language L 4.

In the next section, we will prove a positive quantifier elimination result for these
abelian structures.
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84. Quantifier elimination for valued modules considered as abelian structures.
This section will be devoted to the proof that T admits positive quantifier elimi-
nation. This means that for any formula ¢(x. y) which is a conjunction of atomic
formulas, the existential formula 3x ¢ (x, y) is equivalent to a conjunction of atomic
formulas. By our previous remark about general pp-elimination in abelian struc-
tures, it will imply that any formula is equivalent to a quantifier free formula and
index sentences.

The subgroups defined by the unary predicates Vs are Ap-modules. We will use
the fact that 4, satisfies a generalized right (henceforth g.r.) Euclidean algorithm
(cf. Lemma 2.2).

PropoSITION 4.1. T admits positive quantifier elimination.

ProoF. We can proceed by induction on the number of existential quantifiers,
so it suffices to consider a formula existential in just one variable Ix¢(x., y), where
¢(x.y) is a conjunction of atomic formulas. Then, since 4 is right Euclidean, we
can always assume that we have at most one equation involving x.

Let ¢(x,y) be a positive quantifier-free formula of the form

x-ro=t(y) & /\ Vs (x-ri —t:(y)) & 0(p)

i=1

where r; € A, 0(y) is a quantifier-free pp-formula, the #;(y) are L4-terms, and
J; € AwithJ; > J, > ---6,. Consider Ix ¢(x. y). It suffices to show that any such
formula is equivalent to a positive quantifier-free formula.

First, we note that for each i there exists a non-zero A; € K such that r;A; € 7.
Then, in T}, we can replace Vs, (x - r; — 1; (y)) by Vs, 1y (x -7 - A — ;(p) - ;) and
x-rg = to(y) by x - 1o - A9 = to(y) - A, so we can always assume that the r; € .7, for
all 7.

Note also that we can always assume that deg(ro) > deg(r;), for all i. Indeed,
suppose that deg(ry) < deg(r;). for some i, say i = 1. By the g.r. Euclidean
algorithmin Ay, there exists A € @k suchthatri-4i = ro-r+r| withdeg(r{) < deg(ro)
andr, r{ € Ag. So,wehavethatx -ri-A=x-ro-r+x-r =to-r+x-r],and we
can replace Vy, (x - r1 4+ 1) by Vs ooy (x -] +20(p) - ¥ — 11(p)).

We will call normalization the process of going through the last two reductions
and re-indexing if necessary to keep the condition ; > d, > - --J,. We will use the
notation x - r =5 u to mean that V(x - r — u) holds.

First, we will assume that there is one equation present in ¢(x.y). We will
concentrate on the system formed by this equation and the “congruences”.

Consider the system (1):

X-ro=1o, X 11 =5 1, -0, X Tn =g, In (1)

with deg(ro) > deg(r;). ro.1: € Z. to =to0(y). t: = ;(y), 1 <i < n.

Applying the g.r. Euclidean algorithm, we get some 4 € @k and s, 51 € 4p such
thatrg - A =ry - s + 51 with deg(s1) < deg(r1).

We claim that system (1) is equivalent to the following system (2):

X-r=1fH, x5 =540(h) to-A—1t1-8, X 1 =510, 0, X Ty =5, In (2)
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(1) — (2). Let x satisfy (1). Then x - r; = #; + a for some a € V;. By the
divisibility condition on Vj, there exists u € Vj such that u - ri=a. Then. we
obtain (x —u)-ry =t and (x —u) -5y = (x —u) - ro-A—(x —u)-r -s5. So,
(x —u) sy =to-A—1t1 -5+ (—u) ry- A Since (—u)-ry € Vs,. we get that
(—u)-rg-1 € Vsito(2)- Sinced; > 2 ---. wehaveu € Vs, andu-r; € Vg, fori > 2,
so that x — u still satisfies the other congruence conditions.

(2) = (1). Letx satisfy (2). Welook foranelementu € Vs, suchthat (x+u)-ro =
to. or equivalently (x 4 u) - o - A = 1y - 4. Replacing ro - 2 by 7| - s + s1. we obtain:
(x+u)-ri-s+(x+u)-s1 = to-4. Wehave: t1-s+u-ri-s+to-A—t1-s+a+u-s1 = ty-A,
for some a € V1, ;). So, u has to satisfy u - ro - 4 + a = 0, but by the divisibility
property of Vs ,,(;). we can find such an element. It remains to check that x + u
satisfies the other conditions. But, x - r; = #; and since u € Vs we have that
(x + u) - r1 =5, t;, and similarly for the other congruence conditions since u €
Vs,.

By this device, we replace a system where the couple (ry. r1) occurred by a system
where (1, s1) occurs with deg (ro) > deg(r1) > deg(s1). We might have to normalize
the new system.

Second, we will consider the case where there are only congruence relations in
the system.

Consider the following system (3):

X1 =g b, X Ty =g, 1y (3)

withdy >0, > --- >0, rie 7,1 <i<n.

i) We assume that deg(r1) > deg(r,).

Applying the g.r. Euclidean algorithm, we get some 4 € @k and and s, 55 € Ay
such that 7|4 = rys + 55 with deg(sy) < deg(r2).

We claim that system (3) is equivalent to the following system (41):

X Ty =1, X8 Z544() 1 A=t S, X 3= 13, e, X Ty S, I (41)

(3) — (41). Let x satisfy (3). Then x -1 = to +a and x -r; = t; + b for
some a € Vs, and b € Vs, C Vs, By the divisibility condition on Vj, there exists
u € Vs, such that u - r,=a. Then, we obtain (x —u) -1, =, and (x —u) - 55 =
(x—u) ri—(x—u)-ras=t1-A—tr-s+b-A+(—u)-r - Since (—u)-r € Vj,,
we get that (—u) -ri - A, b-2 € Vs ;. So(x —u)-s2=5,) t1-4—12-5. The
other congruence conditions are still satisfied by x — u since u € Vs, C V,, for
i>3.

(41) — (3). Let x satisfy (41). We look for an element u € ¥j, such that
(x +u) - ry =5 1 orequivalently (x 4+ u) - r1 - A =5 ,(;) t1 - 4. Replacing ri -
by ry - s + 55, we obtain (x 4+ u) -1y -5 4+ (X +u) - 5 =5, 4(z) 11 - 4. So we have
t-S+u-r-s+t1-A—t-s+atu-s =5140(2) t1 - A, for some a € V,;2+v(,1). In
fact, we can ask that u satisfies u - r; - A + a = 0. But by the divisibility property of
Vs, +v(;) we can find such an element. It remains to check that (x+u) r =5 t,, for
i > 2. But this follows from x - r; =5, t; and u € Vs, C V5,. j > 3.

By this device, we replace a system where the couple (1. ;) occurred by a system
where (2, 52) occurs with deg(r;) > deg(r,) > deg(s,). Then, we normalize the
system and we note that system (4 ) is of the same kind as system (1).
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ii) Assume that deg(r;) < deg(r»).

Applying the g.r. Euclidean algorithm, we get 4 € @k, and s, s € Ay such that
ry-A=r1-5+ 5 with deg(sy) < deg(ry).

We claim that (3) is equivalent to the following system (4,):

Xor =1, X550 - A—11-8 X-13=s, 13, ., X Iy =s, tn  (4)

(3) — (4). Let x satisfy (3). Then x -r; = t; +a and x - r, = t, + b,
for some a € V3 and b € V;,. By the divisibility condition on Vj, there exists
u € Vs, such that u - ry=a. Then, we obtain (x —u)-r; =1, and (x —u) - 55 =
(x—u)-ry-A—(x—u)-ri-s=ty-i+b-A—t-s+(—u)-rp- 4. Since (—u)-r, € Vs,
we get (—u)-r2- 2 € Vi 1) C Vo and b - 4 € Vs, ;). The other congruence
conditions are still satisfied by x — u since u € Vs, C Vs, fori > 2.

(43) — (3). Let x satisfy (4,). Replacing r5 - Aby ry - s + 55, we obtain x - r{ - s +
X 82 S5,44(0) 2 A - Sowehavet;-s+tH-A—t-5s+a =540(2) 12 A, for some
a e V:;2+U(/1). So, x -1 =5, D

Note that in each case, we have decreased the degree of each of the coefficients,
and we strictly decreased the sum of the degrees of the elements occurring in the
congruence conditions. In the end, we will decrease the degree of the element
occurring in the congruence relation corresponding to the smallest subgroup V.

So, we may assume that we reduce ourselves to a system consisting of possibly a
conjunction of congruence conditions on the parameters and:

xor=uly) xow = ) x =y ), e x o=y ) (8)

whereu € Ok.r.r € 7.0 >0y > --->06,,3 <i <{ <n.Notethatif u = 0, we
strictly decreased the number of congruence conditions in our system. If # # 0, we
replace the first congruence by x =5 ,(,-1) '(¥) - u='. If V5, (,-1) is no longer the
smallest subgroup we continue the above procedure with the smallest subgroup. But
after a finite number of steps, we will obtain a system of the form () with the second
formula of the form x - u =5 t'(y), where we may now assume w.l.o.g. that u = 1.

To finish, we observe that the above system () with u = 1 is equivalent to the
following congruence conditions on the parameters:

') r=ul). /W) ry =5 1300). - ') g =5 15 (p) (o)

Indeed, assume that (xx) holds, in particular ¢'(y) - r =5 u(y). So we have that
t'(y)-r = u(y)+b forsomeb € Vs. By the divisibility property of Vs there exists ¢ €
Vssuchthatc-r = b. Then (t'(y) —¢)-r = u(y). Since Vj is the smallest subgroup,
the element ¢'(y) — c still satisfies the other conditions of () with u = 1. -

COROLLARY 4.2. Let F be a field of characteristic p which is p-closed.

1. The Ly-structure (W (F). (W (F)s)sez) admits quantifier elimination, for the

Witt Frobenius action.
2. The Ly-structure (F((x)). (F((x))s)sez) admits quantifier elimination, for the
actionby 3" ¢;x" v+ Y el x!.

COROLLARY 4.3. Let (F.0) be a differential field of characteristic 0 whose field
O]i constants is alge~braically closed. Let K be either the field of Laurent series
(F((x)).v.0) or (F((x~")).v.8) as in Corollary 2.13. Then the Ly-structure
(K, (Ks)sez) admits quantifier elimination, with t acting as 0.
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§5. Model-completion. Let M be a A-module. Let X := {¢" : n € N}, thisis a
right denominator set (see [12], Lemma 9.1). So, there exists a right ring of fractions
AX~! (ibid., Theorem 9.7). It is isomorphic to the set of equivalence classes in
A x X of the following equivalence relation: (a,t™) ~ (a’, t") iff there exist s € 4
and n € N such that at” = a’s and "¢" = "™s. We may extend the valuation on
Ato AX .

The module M has a right module of fractions My with respect to X and it is
isomorphic to M ® 4 AX ~!, into which it embeds if M is X -torsion-free. Moreover,
any element of My has the form m @ =", for some m € M, n € N\ {0}. (ibid..
Theorem 9.13, Proposition 9.14).

PROPOSITION 5.1. T} is the model-completion of the theory Ty x consisting of Ty
together with the axioms Vm (m -t =0 — m = 0) andVm Vs(m - t) < Vs(m). for
eachd € A.

PRrOOF. Let now M be a model of T y. We will embed M in a model of 7).

First, we extend the predicates Vs, 6 € A on My by Vs(m @ t™"), m € M,
n € N\ {0}, whenever Vs(m). This is well-defined since Vs(m - t) iff Vs(m). It is
easy to see that My is still a model of Ty .

Now. consider M§{ the direct product of @ copies of My. Let # be the Fréchet
filter on w. We endow M{ with a structure of an A-module as follows. Let
(m;)ice € MY, define (m;)icy -t := (mi41 - 1) e, and extend this by linearity on 4.
Then define Vs((m;)ice) iff Vs(m;), forevery i € w.

Finally, consider the quotient of M§{ by & and the diagonal embedding of
A into A”/F . Define ((m;)icw)s -t = ((mis1 - t)icw)s and Vs((mi)ico)s iff
{i € w:Vs(m;)} € F. Let us show that this is a model of T7;. It is a model of T
since axiom schemes (3) up to (7) are Horn sentences, My is a model of T, and Horn
sentences are preserved by reduced product. It remains to check axiom scheme (8).
Letq(1) = 27:0 t/-ajwitha; € K. Givenm € M/ . wewishtofindn € M¢/F
such that m = n - ¢(¢). Choose a representative of m in the direct product, say
m' = (m;)icw and m = ml;. Let n’ = (n!);c, and n = n’;. By induction on i, we
show how to choose n;. We will just consider the special case of n/,. Suppose we
have chosen n, - -- . n/,_,. Consider m} = n - q(t) = ny - 1% - ag + " nl -1 - a.
which is equivalent to n; - 1 = (m, - a;l — Z?;OI nlota;- a;l). Since My is
X -divisible we can choose such an element 7. -

§6. Two-sorted valued structures. In this section we revert to the two-sorted lan-
guage L, of valued A-modules. In L,,, x, y, z will denote variables of sort M and
0 will denote variables of sort A. We keep the same notation as before, with a fixed
(K.v,0.0), A = K|[t:0,0], etc.

In order to get more precise quantifier elimination results for valued 4-modules
(M, A, <,+,w,00), it is useful to look more closely at the structure ((A, <),

(‘H’)yeul()-

DerINITION 6.1. Let (I, +, 0, <) be a fixed totally ordered abelian group. Let L
be the language of sort A with a binary predicate < and unary function symbols
+y for each y € I'. We will write the action of +y from the right. Let T be the
following La-theory.
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1. <isa total order.
2. ¥ ((0+y1) +y2=0+ (y1 +2)), where y1, 72 € T
3. Vo,1V0, (51 <dp =01+ 71 < O + yz), where V1,92 € I and 71 < 2.

For a valued 4-module (M, A, +, w) and ' = vK, we see that ((A, <),

(‘H’)yeuk) ): Th.
We will consider two conditions under which the corresponding extensions of T
to valued 4-modules admit quantifier elimination.

DErINITION 6.2. We define the following La-theories.

1. Let TA gense be the theory Ta together with the axiom that the total order < is
dense.

2. Assume that I" has a smallest strictly positive element 1. Let T giscrere De the
theory T together with the axiom

V51352V53 (52 >0 & (53 >0 — (52 §53 &d =01 + 1)))

In the case of Ta giscrere» We Will always make the assumption that we have a constant
I in the language of the group I'.

PRrOPOSITION 6.1 (cf. [11]). Both theories Th gense and Ta giserere admit quantifier
elimination.

Proor. It suffices that any formula with free variables 6 = (6;.....5,) of the
form

Jo (/\5,‘2 + Vi, O« Déjz +ij)
¢

where O € {<, <}, 1 < ip, je < n,and y;, € T, be equivalent to a quantifier-free
formula in 8. It is equivalent to

Ja (max{d;, + yx,} O O min{d;, +7y,} & 0(d))
for some quantifier-free formula 0(5). In Ty gense, it is equivalent to
max{d;, + 7, } O min{d;, + y,,} & 0(d).

Note that we have used, asit is often the case, the abbreviations max and min in place
of taking the (finite) disjunctions over all possible configurations of the elements in
the ordering.

In TA_giscrere - if one of the O is <, then it is treated similarly as above replacing the
O in the resulting formula by a strict inequality if there is one. If both [J stand for
<, then we use the special axiom of Ty giscrere @and the resulting formula is:

max{d;, + yx, } + 1 <min{d;, + 7, } & 0(4). 4

DEerINITION 6.3. We define the following L,,-theories of valued 4-modules.

1. Let T, 4 consists of the following:
(1.1) T-
(1.2) Divisibility axioms (DG). For each ¢ in ¥ U {¢}:

Vx (x£0—= 3Ty (x=y-qg&w(x)=w(y))).
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(1.3) No residual identities axioms (IR). For each py,--- , p, in .#:

n n

Vovxy - - Vx,3x ((/\w(xi) >0)— /\ w(x - pi +x;) 5) )
i=1 i=1

2. Let Tw.d,dense = Tw,d U TA.dense-

3. Let Tw.d,discrete = Tw,d U TA,discrete-

EXAMPLE 3. Let F be a p-closed field of characteristic p. Then, asin Corollary 2.10,
M = K = W(F) with the action of the Witt Frobenius, and M = K = F((x)) with
the action of Y~ ¢;x' — >~ ¢'x*, yield models of Ty 4 dgiscrete-

EXAMPLE 4. Let (F, ) be a differential field of characteristic 0. Assume its field
of constants is algebraically closed. Let K be either the field of Laurent series
(F((x)).v.0) or (F((x~")).v.) as in Corollary 2.13. Then K with t acting as 9.
yields models of Ty, 4 giscrete-

We will abuse notation and continue to use the Vs, and introduce the new V.,
with Vs, (x) < w(x) > 6. We will also identify all these with the sets they define
in any model, and we recall they are always Ay-modules.

Note that (IR) implies that Vs/Vsy # U {x + Vsy : x € Vs & pi(x) =
0 mod V;. } and that |Vs/ V5| is infinite. When the model of T, 4 is K itself, it
implies that K does not satisfy any linear G-identities or d-identities, according to
the action of ¢.

DEFINITION 6.4. Letr € Ag and n € w.

1. A residual index formula Indr, . (9), is a L,-formula which is existential in the
module sort with a free variable in the ordered set sort, of the form

Ixp -+ 3x, ( /\ w(x; —x;)=0 & /\(w(xi~r)>5&w(xi):5)).
i=1

1<i<j<n
2. A residual index sentence is an existential sentence of the form 35 Indr,, . (5).

We will often use the following fact. In models of T,, U {(DG)}. if r € .# and
Indr, .(6) holds, then there exist # elements in ann(r) N Vs which belong to different
cosets of Vs, in Vj. In particular, index sentences (in the theory of modules) are
special instances of residual index sentences.

PROPOSITION 6.2. In the theory Ty, 4, any existential L.,-formula in the module sort
is equivalent to a formula which is quantifier free in the module sort, existential in the
totally ordered set sort, plus some residual index formulas and sentences.

COROLLARY 6.3. Let (M, w,Ay) C (N.w,Ay) be valued A-modules satisfying
Tw.a. Assume that both satisfy the same residual index formulas with parameters in
Ay and that (A, T, 4) is existentially closed in (Ay.T,+). Then (M, w,Ay) is
existentially closed in (N, w, Ay). -

COROLLARY 6.4. In the theory Ty, 4. dense (respectively Ty, 4 discrere)» @y Lo, -formula
o(x, 0) is equivalent to the conjunction of a quantifier-free L,-formula 0 (x, 8) together
with residual index formulas and residual index sentences. Therefore the completions
are given by residual index sentences and quantifier-free La-sentences.

ProoOF. Apply Propositions 6.1 and 6.2. —



1024 LUC BELAIR AND FRANCOISE POINT

Note that if the action of v(K) is transitive on A, then the residual index formulas
can be translated into statements in a fixed quotient.

PROOF OF PROPOSITION 6.2. In the language L,,, the only interaction between the
two sorts M and A occurs in valuation equalities and inequalities. Let 7 € 4 and u
a M-term where x does not occur, we will replace each valuation inequality where
a term of the form w(x - r + u) occurs, by a formula 35 (w(x -7 +u) = 6 & y),
where 0 is a new variable and y is obtained from the inequality by putting in J for
w(x -r +u). In this way, we can always arrange that terms of the form w(x - r + u)
only occur in equations of the form w(x - r + u) = (cf. [29]).

Also, by replacing each inequality x - r # u by w(x - r — u) # oo, we can
always assume there are no such x - r # u. (N.B. We could handle these x - r # u
in the elimination process, but it would generate new index formulas of the form
lann(r) N Vs| > n.)

As in Proposition 4.1 it suffices to consider a formula existential in just one
variable Ix¢(x,y.d). where ¢(x.y.d) is quantifier-free in x, y and existential in &,
and since A4 is right Euclidean, we can always assume that we have at most one
equation of the form x - » = ¢ involving x.

We will need some basic cases and further reductions which are treated in the
following lemmas.

The next lemma will ensure that we can always assume we have at least one
equation x - r = .

LEmMA 6.5. Consider a system of the following form:

Ny w(x - ri +1;) =61,
o { /\l m+lw(x V,+l) 5i’ (I)

where r; € F, t; are Ly-terms, 1 <i <n,andd; > 01 > -+ > 0p.
Then (1) is equivalent to the following system (I’).

x-r+4=0,
dx N, w(x - ri +1;) > 01, (I')
N w(x - ri + 1) = 0;.

ProoF. Suppose x is a solution of (I). By axiom (DG), there exists y such that
y-ri=x-r+nw(y) =0d.and w(y-r) = . We get that A7, w((x — p) -
ri + ;) > 6p and AI_ mﬂw((x y)-ri+1t;) =06;. Sox — yis a solution of (I’).
Conversely, suppose that x is a solution of (I'). Then, thanks to axiom scheme (IR ),
we may add to x an element u with w(u) =6y, w(u-r) =6 and A/, w(u-r; +
(x -1, +1)) =0. -

LEMMA 6.6. Consider a system of the following form:

w(x +ul) =01,

w(x-r +1)>061. (I1)
11 w(x-r +1;)0; 6,

L wlto +uf - ro) =91.

X
A
Ix A
A
A
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where r; € F, t; are Ly-terms, 1 < i < n, O; is one of =, >,>, and 61 > Oyl >
-+ > 0,. We claim that (11) is equivalent to

/\i#jgm w(ull - u;) Z 51>

/\;’”:] w(ui ‘I — ti) Z 5l~ (II/)
/\;;:,,,H wuf -r —t;)0; ;.

ALy wlto + uf - ro) = 91.

PROOF. Suppose x is a solution of (II). Then w(w] — u}) = w(x + uj — x —
u;) >0, wul-ri—t) =wlx-r+ul-rp—x-r,—t) >0 ifi < m, and
w(uy-r;—t;) = w(x-ri+uj-r;—x-r;—1t;) = §; when necessary if i > m. Conversely,
suppose (IT) is satisfied. By Axiom (DG) let u” such that u” - rg = to + uf - ro
and w(u”) = w(ty + uj - r9) = ;. Then u” — u{ is a solution of (II): we have
(" —uj)-ro =to,and w((u” — u]) + u}) = wu” — (u] — u!)) > J;. but the strict
inequality would imply w ((«” — u{) - ro + u! - ro) = w(to+u} - ro) > J1, which is not
the case, and so w((u” — u{) + u}) = ,; on the other hand w((u” —u}) - r; + ;) =
w(u ri—ul-ri+t;) > 01 ifi <m,andw((u”—u})-ri+t;) = wW” -ri—uj-ri+t;) = 6;
when necessary if i > m. =

LemMA 6.7. Consider a system of the following form:

X -rog =,

ALy wix 4+ u)) =4y,

Aty w(x - ri + ;) >0,
/\?:m+l w(x-r +1;)0; 6,
/\ieB w(lo+uf-r0)>51,
/\igB w(lo+uf-r0):51.

where r; € 7, t; are Ly-terms, 1 < i < n, O; is one of =,>,>, and 61 > 011 >
-+ >0y, and B is a nonempty subset of {1, ..., m}. Then this system is equivalent to
a formula which is quantifier free in the module sort, existential in the totally ordered
set sort, plus some residual index formulas and sentences.

ProoF. Note that (II1)z has a solution only if ann(rg) # {0}. Indeed, let x be
a solution and i € B. By Axiom (DG) let u be such that u - ro = to + u/ - ro and
w(u) = w(ty + ul - ro) > 1. Then x — (u — u!) € ann(ry) and w(x — (u — ul)) =
w(x +ul —u) =01 #o00,80x — (u—ul) #0.

We claim that (III) 3 is equivalent to a disjunction over the possible nonempty
subsets J of {1,..., m} of the following systems

Ix () g

X -rog =,
w(x +uj) =4,
/\ieJ w(eruz{) =0,
i£je] w(”zl - u;) =4,
dx Nigs Vies w(uj —u}) > o1, (IV) g,
ALy wluf -ri —1;) >0,
Nipiy wuf - —1;) 8;0;.
/\iEB w(lo +u{ . ro) >51,
Nigs w(to+uj-ro) =0

Indeed. let x be a solution of (III) 5. We get a corresponding subset J, w (uf - r; —
;) =w(x-ritul-ri—x-ri—t;) > 61ifi <m,andw(u)-ri—t;) = w(x-ri+uj-r;—x-
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ri—t;) = J; when necessary if i > m. Thus x is a solution of (IV)p. Conversely, let x
be a solution of (IV)g,. Leti < m, we have w(x +u!) =6, ifi € J, andifi ¢ J we
have j € J such that w(u] —u/;) > ¢y and then w(x +u/) = w(x +u)+u] —u}) = d1.
On the other hand, w(x - r; + ;) = w(x -1, +ul -ri —uj -1, + ;) > if i < m,
and w(x -r; + ;) = w(x -r; +uj -r; —u| - r; + t;) = 6; when necessary if i > m.
Whence x is a solution of (IV)p.s.

We now claim that (IV)p s is equivalent to a disjunction over the nonempty
subsets J' of J of the following systems

Il’ld}"‘.]r‘_ro (51),

i€B Vjejl w(”l/ - “}) > Jy,
/\#jej w(uj — u;) = d1,
/\igj Vies w(”l/ - “}) > 1.
Ny w(ug -ri — ;) > 01,
Ny wu) -ri —1;) =0;.
Nicyr wlto+uj - ro) > 01,

/\igB ’LU(Z() + uf . ro) =0

(V).

Indeed, suppose x is a solution of (IV)p;. Let J' C J be such that Ajcp V jeJs
w(u] —u}) > 01 and Niey Vjep w(uf — uj) > 1, namely J' yields the indices
of coset representatives of the u/,i € B, modulo Vj ., and B is nonempty at this
stage. Then certainly ;e w(to +u] - ro) > 1. Fix j € J'. Then w((«} + x) - ro) >
orw(() —uf) - ro) > d1.j # i € J'. so that Indr ;) (61) holds, and hence
(V) .z is satisfied. Conversely, suppose (V)p.z is satisfied. Fix j € J’. Then
again w((u} — uj) - r0) > 61.j # i € J'. The condition Indr|;:|,,(51) ensures
that there is y such that w(y) = i and w(y - ro) > o1 and w(y — (U} — u;)) =
61.j # i € J'. By Axiom (DG), let z be such that z - 7o = #o + (u} —y) - ro and
w(z) = w(to+(uj—y)-ro) > 1. Then (z—uj+y)-ro = to, w((z —u}+y)+u}) = d1.
w((z —u) +y) +uf) =01 if j #i € J'. Tt follows that w((z — uf + y) + u]) =
01 if i € B. On the other hand, if i ¢ B, we already have w((z — u; +y) +
u}) = w(z +y + (uj —u})) > J1. but we cannot have w((z — u + y) + u;) > J
because it would lead to w((z — u} + y) - ro +uj - r0) = wlto + uj - ro) > 01
which is not the case. Thus z — u; + y is a solution of (IV)p,. This proves the

lemma. n

LemMma 6.8. Consider the system

X -rog =,

w(x-r+1) >0,

Ny w(x - ri + 1) 0; 6y,
/\?:m+l w(x-r + ;) 0; 6

where r € Ag,v(r) = v(rg) = 0,deg(r) < deg(ry). and where r; € 7, t; are
Ly-terms, 1 < i < n, O; is one of =,>,>, and 61 > Oyl > -+ > Oy. Let
i€ Ox.s.r" € Ay such that rou = rs + ', andr' = 0 or deg(r') < deg(r). Then the
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above system is equivalent to the following system

X-r=—t,

w(x-r' —1t-5s—tou) >0 +vu),
Ny w(x - ri + 1) 0; 6y,

/\:’:m+1 w(x -r; +¢)0;5;.

dx

PrOOF. (—) Let x be a solution of the given system. By Axiom (DG) there exists
usuchthatw(u) > andu-r=—x-r—t. Wegetw((x +u)-r' —t-s —tou) =
w(u - rou) > +v(u), and x + u is a solution of the new system.

(«-) Let y be a solution of the new system. We look for an element u such that
(y+u)-ro.u = (y+u)-r-s+(y+u)-r' = to-u. Equivalently, u-rou = to-u+t-s—y-r'.
By Axiom (DG), the exists such an element « with valuation strictly bigger than d;.
Then y + u is a solution to the given system. -

Recall that it suffices to consider a formula existential in just one variable
Ixg(x,y,d). where ¢(x,y,d) is quantifier-free in x,y and existential in ¢, and
we can always assume that we have at most one equation of the form x - r = ¢
involving x.

As in the previous elimination theorem, we will concentrate on the system of
conditions where x appears. Using the normalization process of Proposition 4.1 if
necessary, we could reduce ourselves to consider systems of the following form:

Ix(x-ro=to&wlx -r+n)=06& ... &w(x r,+1t,) =0,)

with deg(ro) > deg(r;). ro. 1 € Ay, 7o # 0.7 #0 € K[t]. 1 <i < n, o0 #9) =

« =0y > Ops1 > -+ > 0, and the ¢, are L4-terms. But in order to proceed
inductively, we will, by a similar process, consider the slightly more general systems
of the form:

dx <X-V()=l()

where O, is either one of =, >, >, with deg(ro) > deg(r;). ro, ri € Ao, 7o # 0.7 #
0eK[t].1<i<n,oco#0d >0yy1 > -+ >0, and the t; are L 4-terms.
We define the complexity of such a system as the triple

(deg(ro), Z deg(r;). |1>|>

icl-

n>§

(x-ri+1)0,6 & /\ (x - Vz+tz)Di5i> (1)

i=m+1

in the lexicographic product (N3, <), where I_ is the set of those i such that w (x -r; +
t;) = 01 occurs in the system, and I is the set of those i such that w(x - r; + ;) > &
occurs in the system. If I_ = (), the complexity is set to (deg(ry). —oco. |Is|), and if
ro = 0.1 = () to (—oo0, —o0, |I-]), and we extend the lexicographical order in the
natural way.

To keep track of this complexity measure, it is worth recording the main effect
of the normalization process of Proposition 4.1 which we will use again. Namely,
it does not alter the degree of ry. so that the first component of complexity is left
unchanged.
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We now proceed by induction on complexity of systems of the above form (1).
By Lemma 6.5 and the very first remark made at the beginning of the proof, we can
assume we have one equation with ry # 0.

Basis of induction.

1. No valuation conditions: we are reduced to the classical case of divisible
modules and proceed accordingly.

2. deg(rg) = 0: ie., ro € K, then x = ¢ - "o_l and we can eliminate x by
substitution.

3. I #0.I. =Pand forall i € I_,deg(r;) = 0: wecanassume r; = 1,i € I_,
and we then have a system of the form

X 19 =,
ALy w(x +uj) =61,

H NSy wix -+ 1) > 61, (3)
Ny w(x i 4+1;) 8,05

where u! = u!(y) isa M-term, and O, is one of =, >, >. This system is equivalent to
a disjunction of the following systems over the subsets B of {1,..., m} as follows:

X 19 =1,

AL, w(x +uf) =0y,

/\?1:1 ’UJ(X'V,‘—I—Z,‘)Z&], (3)
Ny w(x -ri 4+ 1) 0 6;, B
/\iEB w(lo +ulf . ro) > 0y,

/\ieB w(to+uf~ro):51.

If B = (), then we are done by Lemma 6.6. If B # (), then we are done by Lemma 6.7.

Induction step(s). We apply the normalization process when necessary. So
consider again system (1). By making a disjunction of cases, we can assume that
I_#0orl #0.

1. I. # (): by Lemma 6.8 we get an equivalent system of strictly lower complexity
and we are done by induction.

2. I. = (,I_ # 0: by the basis of induction we can assume deg(ro) > 1 and
deg(r;) > 1forsomei c I_.

Suppose first that some r;,i € I_, with deg(r;) > 1 divides ry, say i = £. Let
ro4 = rpsp. where A € @x. sy € Ag. Since v(rg) = v(ry) = 0, we get v(4) = v(se)
and we can assume that A = 1, i.e., rp = ry50. We introduce temporarily a new
module variable z which will enable us to do induction. Then system (1) is clearly
equivalent to the following system:

dx

X ¥y = Z,
Ni<igocm w(X -1 +1:)0; 1,
3z3x Nzt w(x - ri +4;) 80, (2),
Z-8¢ =1,
w(z + 1) =01

Now, by induction, the formula

n
Ix[x-rn=z& /\ w(x - -r+16)06 & /\ w(x-r+t)0;0
1<iA<m i=m+1
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is equivalent to a disjunction of formulas of the form

/\w(z 1 4+17)0;0; & O(y.d)
J
where r} c Ay, t}(y) are L 4-terms, the §; are amongdi, .. .. On. O; is either one of

=,>.>, and O(y.d) is quantifier free in the M -sort, existential in the A-sort, plus
some residual index formulas and sentences. We can now apply induction to

Iz |z-se=t) &wlz+1) 51&/\ (z- r +t )00

and we have completed that induction step.

We are left with the case where no nonconstant r;,i € I_, divides ry. Pick any
such, say i = £, and do Euclidean division. Let roA = rpsy+r, where 4 € @k, sp. 1 €
Ao, r # 0.deg(r) < deg(ry) < deg(ry). We claim that system (1) is then equivalent
to the disjunction of the following two systems (2a) or (2b):

X -1 = lo,
’LU(X-V—I@-S@ —lol) =01,
Ix w(x - rg +tg) >0, (2a)

/\]<15£€<m w(x - r; + ;) 8; 01,
Ny w(x i + 1) 0;6;

X - 1o = lo,

w(x r—1tp-Sp — Zo)n)>51,
ANy w(x - ri +1;)0;01.
N w(x i 4+ 1) 0;6;.

dx

Indeed, suppose x a solution of (1). We have w(x - r; + #;) = 1, so that w(x - rp -
Se+to-s0)>01. fw(x-rp-sp+10-50) =061, wegetx-rp-s, = tgh—x-rand
w(x-r—1tg-5¢—19A) = 61, and x is a solution of (2a). Similarly, if w (x-7¢-sp+14-5¢) >
o1, we get w(x - rp — tp - S¢ — to4) > 51, and x is a solution of (2b). Conversely,
suppose x is a solution of (2a). We have w(x - rp - s¢ + to - 5¢) > w(x - 1o + 15)
and w(x -rp-sp +tp-50) = w(x -r —ty - 50 — ty4) = J1, so that we cannot have
w(x -ry +t0) > 0. Hence w(x - ry + ty) = J1 and x is a solution of (1). Note that
a solution of (2b) is immediately a solution of (1).

Consider system (2a) and let u € @ such that v(u) = v(r;). Now if in system
(2a) wereplace w(x -7 —tg-sp—tgd) =0y by w(x-ru=" —tp-sou=' —todu™") =5 —
v(u), we obtain an equivalent system of strictly lower complexity than system (1).
Indeed, if v(r) = 0 we have replaced a valuation equation involving §; with another
one where the coefficient of x has strictly smaller degree and the first component
of complexity has strictly decreased, and if v(r) > 0 we have replaced it by a
valuation equation with a value strictly less than J; and the second component of
complexity has strictly decreased. So we have completed the induction step in case
of system (2a).

Consider system (2b). Recall that v(r9) = 0 and rgA = rese + r. So by scaling
with a suitable element of K we can assume that either v(rys;) = 0 or v(r) = 0.
If v(r) = 0, then by Lemma 6.8 we can obtain an equivalent system of strictly
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lower complexity. If v(rps,) = 0. then system (2b) is equivalent to the following
system (2¢):

X - TeSe = —lg - S,
w(x-r—lg-Sg —Zo)n) > 01,
Ny w(x -ri + 1) 0; 6y,
N w(x - ri 4 14) 0;6;

dx (2¢)

Indeed, if x is a solution of (2b), then by Axiom (DG) there exists u such that
u-resg = —x -r¢8e — tg - s and w(u) > J;, and then x + u is a solution of
(2c). A similar computation works in the other direction. But now in system
(2c). rp divides the coefficient of x in the first equation and we are back to a
case already treated at the beginning, the extra strict valuation inequality being
harmless in that process: we have increased the third component of complexity, but
divisibility allows to decrease the dominant first component. The induction is now
completed. -

87. NIP. As a reference about the independence property see [24], Chapter 12,
Section 12.d. We will abbreviate the property of “not having the independence
property” by NIP. Recall that the following theories do have NIP: any stable theory.
the theory of a chain (ibid., Section 12.f), the theory of abelian totally ordered
groups ([13]). It is known that for most valued fields for which the Ax-Kochen-
Ershov principle holds, its theory has NIP iff the theory of its residue field does
(see [4]). This applies to W (F), but leaves F((x)) open if F is of characteristic
p > 0. In the case of the theories of valued difference fields treated in [6], T.
Scanlon observed that quantifier elimination and a forgetful functor trick! allow
one to transfer the NIP from the pure valued fields theories and get that these
difference fields do have NIP. So in particular our module theories T, 4 gense and
Ty .a.discrete do have NIP when K has characteristic 0. Here, we will give a direct
proof that these theories have NIP, covering also the case when K has nonzero
characteristic.

Note that by a similar proof the theory of a chain has NIP, we can deduce that
the theories Ta gense and T giscrere have NIP too. Indeed, the quantifier elimination
result for these theories implies that the types are determined by the quantifier-free
parts and so the type of an element over a model is determined by its cut in that
model. Therefore a type has at most two co-heirs and so we get the NIP property
by Theorem 12.28 of [24].

ProposSITION 7.1. Let (M, w, A) be either a model of Ty g dense» 07 Tw d.discrere- Then
the theory of M has NIP.

Proor. We will proceed by contradiction. Assume that we have a formula
¢(a.y,0) witnessing the independence property in the single variable o (e.g.,
see [24], Theorem 12.18), where « is of either sort M or A and the variables y
are of sort M and the 0 of sort A. Denote by T either Ty, g dense OF T ddiscrete-

1One transforms a quantifier free formula from the valued difference field language to a formula from
the valued field language by replacing a term ¢/ (x) by a new variable. Michaux and Riviére observed
in [23] that this kind of trick works in ordered differential fields.
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By compactness, we have tuples (a;. b, €m)icw.mere in some model of T such
that the following holds:

/\ o(ai. by, cm). /\ —¢(a;, by.cp), i €w.me2°.
iem i¢m
First, suppose that « is of sort A.
Since T admits quantifier elimination (Corollary 6.4), we may assume that
¢(a. p, 0) is a finite disjunction of quantifier free formulas ¢. of the form:

n(e)
¢r(c.y.0) = N\ w(ti(y)) =6 & 0,(y) & S01 + 701 O a O e + p2 & y4(6)

i=1

where O € {<, <}, 0,(y) is a quantifier-free pp-formula, ¢;(y) are L 4-terms of sort
M. and y,(d) is a quantifier free formula (recall that Ta gense and Ta giscrere bOth
admit quantifier elimination).

We introduce new variables f8; of sort A that we substitute for each w(z;(y)) and
Gej + e

Let ¢;(c. B.J) be the formula we obtain from ¢,(x,y.d) by making the above
substitution and leaving out all the subformulas not involving either «, ¢ or f. Set
¢'(a. p.0) ==V, ¢(e. B.9).

Let d,, be the value of # obtained by making the above substitutions with the
values b,, of y and ¢,, of 9.

Therefore the tuples (a;. d,,. ¢n)icwmer- satisfy the following

/\ ¢/(ai,dm,(—'m): /\ _‘¢/(ai~dm:cm)~ i€w.me??
iem ig¢m
contradicting the property that no chain has the independence property.
Now we suppose that « is of sort M. Then we may assume that ¢(a.y,d) is a
disjunction \/if:] ¢¢(c. . 8) of quantifier-free formulas of the form:

¢1(a.y.0) ==
n(£)
wla-ri+1(y) =0 &a-rg=1t(y) &0(y) & wi(d)

i=1

with the same notation as before and rp, 7; € A4.

We vary j € n and by the pigeonhole principle, there exist pairwise distinct
elements jg4, j3, j» € n and some atomic formula y occurring in ¢ such that,
setting S1 = n — {j3. ja}. S3 = n — {Jj2,ja}., S» = n — {j2, j3}, we have that
Nieas—xaj,. bs,.cs,). \i_y, x(aj,. bs,. cs;) and —y(aj,. bs, . cs, ) are satisfied. In-
deed, suppose that we have at most ¢ atomic formulas occurring in ¢ and to each
sequence of the form (a;,. bs,. ¢s,); we associate a sequence of +1 according to the
fact that (a;,. bs,. cs,) satisfies the atomic formulas in that list or not. Since d is
fixed, and since we can choose #n big enough in order to have sufficiently many
choices for ja, j3, j» € n, we have a configuration as above.

Let j; € S1NS> N Ss.

Either y is of the form « - rp = #(y) and then we get (a;, — a;,) - ro = 0 and
aj, - ro+ to(bs,) =0butaj, - ro + 19(bs,) # 0. which is a contradiction.
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Or, y is of the form w (e - r; +1;(y)) = 6;. We will denote by ¢, the i component
of ¢g,. Then we have w(aj, - r; + t;(bs,)) = cs, and w(ay, - r; + ti(bs,)) = cs,. So.
w((“j] - ajz) . ri) > Cs,.-

Similarly, we get w(aj, - r; + t;(bs,)) = ¢s, and w(ay, - r; + 1;(bs,)) = cs,. So,
w((ajl - aj3) : ri) Z Cs;.

On the other hand since j3 ¢ Sy, w(aj,-ri+1:(bs,)) # cs, andw(a;,-ri+1;(bs,))
min{w((ajl 761]‘3)'}"1‘),10(61]‘1 'Vi+li(bsl))}, and sincejz ¢ S3, w(ajz ~Vi+li(b53))
cs, and w(ajz -ri + ti(bs,)) > min{w((ajz - ajl) : Vi),w(ajl ri + ti(bs,))}.

IV

So we get ¢s, > ¢s,. Suppose now that ¢s, > cs,. then w(a;, - r; + t;(bs,))
w((aj,—aj,)ri+aj ri+ti(bs,)) = min{w((a;, —a;)-r:). wla, ri+t:(bs,))} = ¢
a contradiction.

So we have cs, = cs, which denote henceforth ¢, and by the above, we necessarily
get thatw(ah “ri + ti(bSl)) > ¢ and w(ajz “Fri+ fl'(bS})) > c.

Using these two strict inequalities, we get thatw((a;, —a;,)-r;) = cand w((a;, —
ap)-ri) =c.

Since J1 € Sy, w(aj] -+ ti(sz)) =Cgs,.

Suppose ¢s, < ¢, thenw(aj, -r; +t;(bs,)) = min{w((—a;, +a;,) ri), wla; -ri+
t;(bs,))} = cs,. which contradicts the fact that j; ¢ S,. Therefore, cs, > ¢. Suppose
¢s, > c. First note that w((—a;, + a;,) - ;) > cs,. since w((—a;, + a;,) - r;) >
min{w(ajl -1+ ti(bgz)),w(aﬁ -1+ ti(sz))}}- Then, w(aﬁ -1+ ti(bS])) =
min{w((—a;, +a;,) - ri).wla; -r: +t;(bs,))} = c, a contradiction since js ¢ S;.

So, we get that cs, = c.

Now, we have w(a,-ri+1;(bs,)) > min{w((a;,—a;, ) ri). wla; ri+t;(bs,))} = ¢
and w(aj, - r; + t;(bs,)) > min{w((a;, — a;,) - r;). wla;, - r; + t;(bs,)} = c. Hence
wl(aj,-ri+1t;(bs,)) > candw(a;,-r;+1;(bs,)) > c. But therefore, w((a;, —a;,)-r;) >
¢, a contradiction. -

Sz

It has been observed that formulas without the independence property are closed
under boolean combinations (see e.g., [1]). So we could have directly considered
only atomic formulas.

§8. Ultraproducts. Let % be a non-principal ultrafilter over the set of prime
numbers p. Let F,, be a p-closed field of characteristic p of cardinality at most R;.
By the Ax-Kochen-Ershov theorem the ultraproducts [],, W (F,) and [],, F,((x))
are elementarily equivalent as valued fields, and [],, W (F,) and ], F,((x)) just
as well. They are also ®;-saturated. If we assume the continuum hypothesis®, they
are of cardinality X; and so isomorphic. Similarly [T, W (F,) and [, F,((x))) are
isomorphic as valued fields, say via . Let g, be the Witt Frobenius on W (F,) and
let o, be the automorphism sending > a;x" to > a’x" in F,((x)). Consider the
valued fields with isometry (W (F),). 6y s). and (F,((x)). o). Denote respectively
by o, and o, the induced automorphisms on the ultraproducts of these fields.

Let A = [[, W(F,)[t]. the (ordinary) polynomial ring over [[,, Q,. Con-
sider [],, W (F,) as an A-module with ¢ acting as ¢, on [[,, W(F,). Consider
also [],, F,((x)) as an A-module via ¢ and ¢ acting as ., namely m - > 1'¢c; =

Zai(m)w(ci)-

28, Shelah has constructed a model of ZFC where these ultraproducts are not isomorphic.
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We will consider their theories first as modules, then as valued modules with
the usual valuation map. As modules they are elementarily equivalent if for all
q(1) € A, ann(q) is non-zero in [[,, W (F,) iff it is non-zero in [[,, F,((x)) (see
Corollary 2.5). Since both structures satisfy the linear Hensel property and since
the residue fields are isomorphic to [[,, F, and since both &, and &, act as the
standard Frobenius on the residue fields, we get the result.

Concerning their theories as valued modules, first we have to check that they
are models of the schemes (DG) and (IR), and by remarks on completions in
Corollary 6.4, since in this case the image by the map w of the module is equal to
the value group of the ring, it suffices to examine the cardinalities of the annihilators
in the quotient ¥/ V" or in the subgroup Vj; namely either in [],, F, or in the
subgroup [[,, W[F,] (respectively [],, F,[[x]]). Since [],, F, is infinite, it does not
satisfy any identities, so (IR) holds, and the axiom (DG) still holds using the linear
Hensel property and the fact that F, is p-closed. So we have elementary equivalence
as valued modules as well. This follows also from [6], but it might be appropriate
to notice that it already follows from the linear theory.
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