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Abstract: Plasmonic immunosensors are usually made of a noble metal (in the form of a film or
nanoparticles) on which bioreceptors are grafted to sense analytes based on the antibody/antigen or
other affinity mechanism. Optical fiber configurations are a miniaturized counterpart to the bulky
Kretschmann prism and allow easy light injection and remote operation. To excite a surface plasmon
(SP), the core-guided light is locally outcoupled. Unclad optical fibers were the first configurations
reported to this end. Among the different architectures able to bring light in contact with the
surrounding medium, a great quantity of research is today being conducted on metal-coated fiber
gratings photo-imprinted in the fiber core, as they provide modal features that enable SP generation
at any wavelength, especially in the telecommunication window. They are perfectly suited for use
with cost-effective high-resolution interrogators, allowing both a high sensitivity and a low limit
of detection to be reached in immunosensing. This paper will review recent progress made in this
field with different kinds of gratings: uniform, tilted and eccentric short-period gratings as well as
long-period fiber gratings. Practical cases will be reported, showing that such sensors can be used in
very small volumes of analytes and even possibly applied to in vivo diagnosis.
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1. Introduction

Biosensors bring a solution to the demand for direct, accurate and in situ monitoring in numerous
fields such as genomics, proteomics, medical diagnosis, environmental monitoring, food analysis
and security. Label-free optical biosensors enable real-time and direct observation of molecular
interactions without using labels, since they sense binding-induced refractive index changes. To this
aim, they usually combine a biological receptor compound and a physical or physicochemical
transducer. Optical methods of transduction are usually minimally invasive, safe and provide
multi-dimensional detection based on wavelength, intensity, phase or polarization metrology. They rely
on well-established technologies (light sources, detectors, etc.) available from both telecommunication
and micro-nano technologies industries, at optical frequencies in the visible and near-infrared regions.
These ranges also coincide with a wide range of physical properties of bio-related materials, which is
therefore perfectly suited for effective interrogation.

Within the available biosensor configurations (based on absorbance, reflectance, fluorescence,
refractive index changes, among others), plasmonic devices combining dielectric and metal interfaces
are particularly attractive. The strong sensitivity of the plasmon (oscillation of electrons at the
metal–dielectric interface) propagation constant to the permittivity of bioreceptors grafted on the
metal surface enables the detection and quantification of biochemical changes resulting from molecules
binding. Practically, biochemical reactions are therefore measured by monitoring the effective refractive
index shift of the so-called surface plasmon resonance (SPR). In a standard bulk approach, this is

Sensors 2017, 17, 2732; doi:10.3390/s17122732 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-6189-1335
https://orcid.org/0000-0003-0294-1616
http://dx.doi.org/10.3390/s17122732
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 2732 2 of 20

achieved with the Kretschmann prism that couples light beams from a glass medium to a thin metal
layer above the critical angle so that light is totally reflected, as sketched in Figure 1. In this condition,
an evanescent wave extends in both the metal layer and the surrounding dielectric medium, with
a penetration depth not exceeding a fraction of the light wavelength (λ) [1]. Under phase-matching
conditions [2,3], part of the light couples to the plasmon, which decreases the reflection at a given angle
(θ0 in Figure 1, where θc denotes the critical angle of incidence). This device is usually interrogated
either by varying the wavelength and keeping the incidence angle constant or by using monochromatic
light and modifying the angle. In both cases, the polarization state of the light is set parallel to the
incidence plane so that the plasmon wave is orthogonally polarized with respect to the interface.
Biochemical reactions happening at the surrounding metal interface slightly modify the effective
refractive index of the plasmon wave, which is measured through an SPR shift (corresponding to an
angle change from θ0 to θ1, as depicted in Figure 1). Such sensors present a surrounding refractive
index (SRI) sensitivity of the order of 10−6–10−7 RIU (refractive index unit) [1–4].
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While the Kretschmann prism configuration remains the most used today in commercial systems,
optical fiber-based sensors bring numerous assets and are, therefore, the subject of intense research and
development efforts. With their compactness and ease of connection, they provide remote operation in
microliter volumes (or even below) of analytes and appear perfectly suited for in situ, or even possibly
in vivo, diagnosis. In diagnosis, they can also assay different parameters simultaneously, either in line
(sensing regions multiplexed along a single optical fiber) or in parallel, through the use of different
fibers connected to a single read-out device.

To excite SPR on the side of an optical fiber, a physical access to the core-guided light is locally
required so that it can be brought into contact with the surrounding medium. A straightforward
configuration for doing this is fiber bending [5,6]. Other solutions expose the core to the surrounding
medium through a polishing or etching of the cladding, totally or in part [7–11]. The first reported
configuration is based on this mechanism and dates back to 1993 [12]. More advanced configurations
make use of fiber gratings permanently photo-inscribed in the fiber core that enable light coupling to the
surrounding medium. Metal-coated fiber gratings have been attracting ever-growing interest over the
years, as they bring specific practical benefits such as: (1) tuning of the SPR mode-excitation wavelength
via selective cladding mode coupling; (2) subsequent compatibility with telecommunication-grade
optical fibers and equipment; (3) temperature self-compensation; (4) fiber integrity conservation; and
(5) compatibility with mass production, among others. Hence, numerous developments are nowadays
obtained with this technology since it enables SPR excitation in the telecommunication wavelength
window of around 1550 nm. This article will describe their operating principle and review the main
achievements obtained for sensing selective proteins and cells with such devices. It will focus on
recent progress in this field, which slowly but surely paves the way towards the use of these devices
for minimally-invasive diagnosis.



Sensors 2017, 17, 2732 3 of 20

2. Review of Grating Configurations Used for SPR Excitation

Gratings are usually manufactured in single-mode optical fibers, made of an 8 µm thick
core surrounded by a 125 µm cladding. Such fibers are widely available at low cost (less than
100 US$ per km) and are telecommunication-grade. Overall, gratings preserve the fiber integrity (only
the polymer jacket is removed at the grating location) while providing a strong coupling between the
core-guided light and the cladding. Different grating configurations in single-mode optical fibers can
be used for SPR excitation. Their characteristics and operating principle will be summarized hereafter.

2.1. Unclad Uniform Fiber Bragg Gratings

A uniform fiber Bragg grating (FBG) is a periodic and permanent refractive index modulation of
the fiber core with fringes perpendicular to the propagation axis [13,14]. It behaves as a selective mirror
in wavelength for the light propagating in the core, reflecting a narrow spectral band centered on the
so-called Bragg wavelength, as depicted in Figure 2. According to the phase-matching condition, the
latter is given by λBragg = 2neff,coreΛ where neff,core is the effective refractive index of the core mode
(close to the refractive index of silica, 1.45 at 1550 nm), and Λ is the grating period. Most often, Λ
is ~530 nm to ensure that the Bragg wavelength falls in the band of minimum attenuation of the
optical fiber centered on 1550 nm, but gratings can be made at almost any wavelength also in the
visible domain [15,16]. This is especially true relying on the point-by-point (or line-by-line) inscription
process with a femtosecond pulses laser [17,18]. The most common means of production remain the
phase-mask technique [19] and interferometric methods (both Talbot interferometer [20] and Lloyd
mirror [21] configurations), most often used with a continuous frequency-doubled Argon laser emitting
at 244 nm or a pulsed excimer laser emitting at 248 nm (ArF) or 193 nm (KrF).
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The Bragg wavelength is inherently sensitive to temperature and axial strain, through a change of
both neff and Λ [22]. In practice, a change of temperature of +1 ◦C yields a Bragg wavelength shift of
~10 pm at 1550 nm. The sensitivity to axial strain is of the order of 1.2 pm/µε, also at 1550 nm. These
sensitivities decrease with the operating wavelength. Such changes are easily measured with standard
telecommunication instruments since the full spectral width of the main reflection band from a typical
1 cm-long grating is of the order of 100 pm.

As it corresponds to light confined in the fiber core, the Bragg resonance is not directly suited to
excite a surface plasmon wave at the metal-surrounding medium interface. Hence, in practice, unclad
optical fibers are used, with the core exposed to the surrounding medium so that an evanescent wave
can extend in this medium. This is usually obtained through a chemical etching process, most often
with hydrofluoric acid (HF) [23–30] or through a side-polishing process [31–35]. The latter configuration
has strong similarities with the use of Bragg gratings produced in D-shaped optical fibers [36].

Unclad FBGs can be used to sense SRI changes in the range [1.30–1.45]. The maximum SRI
sensitivity is obtained for values above 1.40, since the effective refractive index of the core mode is close
to 1.447 at 1550 nm for a standard single-mode optical fiber. An SRI change yields a Bragg wavelength
shift in the amplitude spectrum of the grating.
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2.2. Tilted-Fiber Bragg Gratings

Tilted-fiber Bragg gratings (TFBGs) are short period (~500 nm) gratings with a refractive index
modulation angled (θ < 45◦) with respect to the perpendicular to the optical fiber axis [37]. In addition
to the self-backward coupling of the core mode at the Bragg wavelength, TFBGs redirect some light to
the cladding. There, the diameter is such that several possible cladding modes can propagate, each
with its own phase velocity (and, subsequently, effective refractive index neff,clad) [37]. These possible
modes of propagation correspond to different ray angles, as sketched in Figure 3. There is a one-to-one
relationship between the wavelength at which coupling occurs for a given cladding mode and its
effective refractive index. This relationship is expressed by a similar phase-matching condition as
for uniform FBGs: λi

clad = (neff,core + ni
eff,clad)Λ where the superscript i denotes the mode number.

Figure 3 displays the transmitted amplitude spectrum of a 1 cm-long 10◦ TFBG. Each resonance of the
spectral comb corresponds to the coupling from the core mode to a group of backward-propagating
cladding modes. As a result of phase matching, the spectral position of a resonance depends on the
effective refractive index of the corresponding cladding mode, which in turn depends on the optical
properties of the medium over or near the cladding surface.
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Therefore, spectral shifts of individual resonances can be used for refractometry purposes, either
in the surrounding medium or inside a thin coating deposited on the fiber outer surface. The first
demonstration of SRI sensing with TFBGs dates back to 2001 [38]. For an SRI increase between 1.30
and 1.45, a progressive smoothing of the transmitted amplitude spectrum was reported, starting from
the shortest wavelengths. In practice, two main demodulation techniques can be used to correlate
the spectral content with the SRI value quantitatively. The first method considers the global spectral
evolution and involves monitoring the area delimited by the cladding mode resonance spectrum,
through a computation of the upper and lower envelopes as resonances gradually disappear when
the SRI reaches the cut-off points of each cladding mode [38,39]. The other method is more local and
tracks the wavelength shift and amplitude variation of individual cladding mode resonances as they
approach the cut-off wavelength. The latter is the wavelength at which the effective refractive index of
a given cladding mode resonance equals that of the surrounding medium [40]. Both techniques present
minimum detectable SRI changes of ~10−4 RIU when used with bare gratings. In terms of wavelength
shift, this yields a sensitivity that peaks between 10 nm/RIU and 25 nm/RIU for the modes near
cut-off. In all cases, the Bragg wavelength provides an absolute power and wavelength reference, which
can therefore be used to remove uncertainties related to systematic fluctuations (such as unwanted
power-level changes from the light source) and even ambient temperature changes. Indeed, all cladding
mode resonances shift similarly to the Bragg resonance when temperature varies, as reported in [41].

The higher the tilt angle value, the higher the coupling to higher-order cladding modes. For tilt
angle values exceeding 30◦, it is possible to couple light to modes with an effective refractive index
close to 1.00, which can be used for refractometry in gaseous media [42,43].
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2.3. Excessively Tilted Fiber Gratings

Excessively tilted fiber gratings (ETFGs) are characterized by a tilt angle θ > 45◦ [44–47]. Given the
very high angle value, they couple light to the cladding in the forward direction and present a hybrid
behavior between the aforementioned weakly tilted FBGs and the long-period fiber gratings introduced
in Section 2.5. As depicted in Figure 4, their transmitted amplitude spectrum is composed of multiple
cladding mode resonances (with FWHM of a few nanometers, typically) spread over a wavelength
range of a few hundred nanometers. They are usually produced with a continuous-wave laser using
custom phase masks with a period higher than standard ones used for uniform and weakly tilted FBGs
photo-inscription. Amplitude masks can also be used. In [48], theoretical considerations about light
coupling in these structures are presented.
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Figure 4. (a) Sketch of the light mode coupling in an excessively tilted fiber grating (ETFG); and
(b) transmitted amplitude spectrum of a 1 cm-long ETFG.

2.4. Eccentric Fiber Bragg Gratings

Eccentric fiber Bragg gratings (EFBGs) correspond to a point-by-point refractive index modulation
highly localized in the core, close to the cladding region [49–52], as sketched in Figure 5. They are
usually obtained with a tight focussing of a femtosecond pulses laser and the use of an air-bearing
translation stage. Their strong localization close to the core-cladding interface induces light coupling
in the fiber cladding, in a manner very similar to weakly tilted FBGs. Hence, their transmitted
amplitude spectrum looks like a dense spectral comb, with hundreds of cladding mode resonances.
An important difference with respect to TFBGs should be noted: EFBGs continuously couple cladding
mode resonances with effective refractive indices ranging from 1.45 (at the right-hand side of the
spectrum) to 1.00 (at the left-hand side) where they are cut-off when the grating is surrounded by
air [53]. In the case of TFBGs, light coupling happens in privileged wavelength ranges, depending on
the tilt angle value [43]. Their sensitivity to surrounding refractive index changes is very similar to
that of TFBGs [50].
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2.5. Long-Period Fiber Gratings

Long-period fiber gratings (LPFGs) correspond to a periodic refractive index modulation of the
fiber core with a uniform period of a few hundreds of µm. In single-mode optical fibers, they couple
the forward-going core mode into forward-going cladding modes [54,55], as illustrated in Figure 6.
Their transmitted amplitude spectrum is composed of a few wide resonances (FWHM ~20 nm) spread
over a wavelength range of several hundreds of nm. These resonances appear at wavelengths given by
the following phase matching condition: λi

clad = (neff,core − ni
eff,clad)Λ. As they propagate close to the

cladding-surrounding medium interface, these modes are inherently sensitive to SRI changes, which
yield important wavelength shift [56–58]. They are also sensitive to bending so that care must be taken
to avoid unwanted spectral fluctuations when LPFGs are used for SRI sensing [59]. LPFGs are usually
produced through amplitude masks. They can also be easily manufactured point-by-point or using
electric arc discharges.
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2.6. Additional Considerations

SPR optical fiber sensors can be derived from the aforementioned grating structures surrounded
by a thin metal film (most often gold or silver). Sheaths of thickness ranging between 30 nm and
70 nm or nanoparticle arrays are generally used. It is known that continuous metal films yield SPR
generation, spectrally manifested by the coupling between a given cladding mode resonance and the
SPR mode. Nanoparticles usually excite localized SPR (LSPR), corresponding to a broader attenuation
of numerous cladding modes [60–62]. In surface refractometry, they can offer a comparable sensitivity
to that of SPR-based sensors. The properties of the metal nanoparticles are highly dependent on their
constitutive material, also in shape and size. Hence, controlling these three parameters allows to
optimize the performances for detecting a particular target [63].

As depicted in Figure 7, SPR generation is achieved when the electric field of the light modes
is polarized mostly radially at the surrounding medium interface. The orthogonal polarization state
is not able to excite the SPR, as the electric field of the light modes is polarized mostly azimuthally
(i.e. tangentially to the metal) at the surrounding medium interface, and thus cannot couple energy to
the surface plasmon waves. The SP phenomenon drastically enhances the sensitivity to surrounding
refractive index changes at the outer surface of the optical fiber. Depending on the configuration,
impressive refractometric sensitivities in the range [102–104 nm/RIU] have been reported [11,64].
Very recently, an SRI sensitivity even exceeding 10,000 nm/RIU has been theoretically reported for
plasmon-assisted excessively tilted gratings [65].

It is worth noting that when comparing the sensor performances between different configurations,
especially for immunosensing where different parameters (surface covering, antibody/antigen affinity,
etc.) come into play, it is not sufficient to compare only sensitivities (i.e., wavelength shifts), without
considering the wavelength-measurement accuracy. In practice, it is more convenient to refer to the
figure of merit (FOM) of the device, which corresponds to the ratio between the sensitivity and the
linewidth of the resonance. A narrow resonance can be measured with a high resolution so that its exact
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location can be computed, which is not true for a broad one [66]. As a result, in terms of experimentally
demonstrated FOM, because gratings usually feature narrow cladding mode resonances (except for
LPFGs), they outperform all other optical fiber configurations [11]. However, the goal of this paper
is not to compare the relative performances of the grating architectures compared to other optical
fiber configurations. Readers interested in additional considerations about sensing configuration and
performance are encouraged to consult these complementary review papers [64,67].
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3. Interactions with Metals and Surface Biochemical Functionalization

3.1. Metal Layer Deposition

The shape of deposited metal particles and the coating homogeneity directly impact the sensitivity
and the reproducibility of plasmonic sensors. Metal deposits can be successfully applied to optical
fibers using well-established technologies, such as nanoparticles immobilization [68], nanostructures
elaboration [69], electroless deposition [70], evaporation or sputtering [71]. The latter is the most
spread technique for planar covering, because it provides very high quality depositions. However, in
case of cylindrical surfaces, as for optical fibers, two consecutive depositions are usually performed in
the same conditions, with a 180◦ rotation between both processes to ensure an entire surface covering.
More sophisticated devices may allow a continuous rotation during the sputtering process, providing
a more uniform coverage, as sketched in Figure 8.

To enhance the adherence of gold on silica substrates, different methods have been investigated,
such as the deposition of 2–3 nm of chromium or titanium under the Au layer [72], ion beam
bombardment [73] and finally, the use of polymers and adhesive molecules [74]. Another option
consists in thermally annealing the gold film, modifying its morphology [75] and consequently, the
sensor’s potential of detection [76].

Regardless of the chosen deposition technique, the main challenge is to obtain a very uniform
layer where thickness, rugosity and morphology are finely managed for an optimum SPR excitation.
A gold thickness of about 50 nm is needed to get the narrowest and the deepest SPR attenuation,
corresponding to the highest surface sensitivity of the sensor. Recent papers also mention the use of
non-metal layers for SPR analysis, such as semiconductors and oxides [77] but these kinds of materials
have to be explored for optical fiber sensors and represent interesting perspectives for the future.
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Figure 8. (a) Sketch of the sputtering (or vacuum evaporation) deposition process to obtain a uniform
metal thickness all around the optical fiber cross-section; (b) principle of the double deposition process;
and (c) microscope view of a gold-coated fiber surface.

3.2. Surface Biofunctionalization

Metal-coated fiber gratings are then functionalized for biosensing purposes. The chemistry
involved for the surface activation depends on the target application. For example, numerous
biosensors use the antibody/antigen affinity to detect proteins of interest, but a large panel of variants
exist, using for example DNA hybridization [78,79], enzymes and biomimetism (phage display and
recombinant protein engineering, aptamers technologies, oxidative state sensing) [80]. New emerging
technologies are also increasingly used to expand the target possibilities and enhance the sensor
response, such as the immobilization of nanobodies, affimers or estrogens [80–83].

Concerning the analyzed parameters, the biosensing area can be used to detect the presence of
target analytes such as biomarkers for clinical measurements, but also to monitor cellular behaviour
and densities, the development of biofilms, the detection of bacteria and viruses, environmental
monitoring, etc. Whatever the analyte to be detected, the most common technique for immobilizing
recognition molecules on the sensor is the elaboration of a self-assembled monolayer (SAM) [84].
For this, metal-coated optical fibers are first cleaned with absolute ethanol and immersed in a thiols
solution. Practically, this can be done in a capillary tube sealed at both ends after the insertion of the
fiber, to prevent solvent evaporation. After this, the functionalized fiber gratings are rinsed again and
the surface is activated using the selected biomolecules. An effective blocking step is also needed
after the functionalization to ensure a high specificity and a low rate of false positive responses when
analyzing complex media. Generally, this yields the structure depicted in Figure 9.
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4. Interrogation of Plasmonic Fiber-Grating (Bio)chemical Sensors

In the case of plasmonic optical fiber grating-based configurations, the refractive index variations
are reflected on the optical spectrum in the form of both a wavelength shift and an optical power
change [85–87], as depicted in Figure 10 for a gold-coated TFBG.

Bioreceptors are functionalized on top of the metallic coating [88] and the spectral modifications
result from the molecular interactions happening on this outer film. Several ways of interrogating these
sensors co-exist and the application of one or the other mostly depends on the requirements of the
specific application. Spectral and intensity interrogation are the two main techniques widely reported,
and an advantage of utmost importance with regard to other technologies is their implementation
with commercial optical-fiber equipment or conventional FBG interrogators. Other techniques exist as
well and have proved to exhibit even better resolution, but their applications are limited to laboratory
environments due to their complexity.
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4.1. Spectrometer-Based Interrogation

This technique relies on the quantification of the wavelength shift induced by a refractive index
change in the sensing region [89]. It has been the most widespread method for interrogating plasmonic
FBG sensors since the early stages of this technology, and hence the majority of commercially
available FBG interrogators are based on the same principle. As can be seen in Figure 11a, the
classic implementation consists of a broadband source (BBS) and an optical spectrum analyzer (OSA)
for interrogating the transmission response of the sensors. In the case of etched FBGs [90,91] and
LPFGs [92–94], the wavelength tracking can be carried out in a wider region than the one required
for TFBGs [95–99] and eccentric FBGs [49], since for these configurations the most sensitive cladding
mode must be carefully isolated from the rest.



Sensors 2017, 17, 2732 10 of 20
Sensors 2017, 17, 2732 10 of 20 

 

 

Figure 11. Scheme of the classic implementations of (a) spectral, and (b) intensity interrogation, of 

the sensors in transmission.  

For sensor interrogation in reflection mode, an optical fiber circulator is located between the 

source and the sensor. The OSA is also connected so that both source and detector remain located at 

the same side of the optical path. For etched FBGs no additional element is required due to the 

nature of their reflection response [100] and certain algorithms can be used for increasing the 

resolution of the measurements [101]. For the rest of the summarized alternatives, a mirror is 

deposited on the fiber tip in order to allow back-reflection of the light modes that are sensitive to the 

external medium [102]. Practically, some FBG interrogators integrate the source, circulator and 

detector as one, so that the sensor can be connected to a single port of the device. In this precise case, 

the source can be a tunable laser, offering a very high wavelength resolution (1 pm typically) and a 

fast acquisition rate (most often in the range 1–10 Hz with currently available commercial FBG 

interrogators) over the C + L wavelength bands. 

4.2. Intensity or Optical Power-Based Interrogation 

Another method to interrogate plasmonic FBG-based sensors is the quantization of the intensity 

variations produced as a result of the coupling of light to the plasmon wave. The most typical 

configuration for an interrogation of the transmitted response is that shown in Figure 11b.  

The interrogation is carried out in a narrow band of the optical spectrum, so a tunable laser (TLS) can 

be used as a source, together with a photodiode (PD) as detector and an analog-to-digital converter 

(A/D) to obtain the desired data [41,103]. The function of the TLS is matching the wavelength of the 

most sensitive mode of the fiber grating, so once the sensor is characterized it can be replaced by a 

common laser. This technique relies on the principle of edge filtering [104] so that the optical power 

change is produced as a result of the wavelength shift of the mode with respect to the fixed 

wavelength of the laser source. Several cost-effective configurations have been reported for 

interrogating both the transmission and reflection response of the sensors, mainly based on different 

associations of fiber gratings to filter the spectral region of interest [105–107]. It is also worth 

mentioning that the principle of intensity interrogation has recently been applied for the 

development of reduced size plasmonic optical fiber sensors interrogated with the flashlight and 

camera of a common smartphone [108], although a fiber grating-based counterpart is yet to be 

investigated. 

4.3. Other Interrogation Techniques 

When working with plasmonic fiber-grating sensors, light needs to be properly polarized in 

order to obtain a good performance [109]. Additional interrogation techniques have been reported 

making use of polarization analysis to evaluate the sensor response with respect to the interactions 

produced in the surrounding medium. The measurement of the phase of the light at a wavelength 

matching the SPR [110] or the use of the polarization-dependent loss (PDL) [111] are two techniques 

that have been proven to exhibit a good performance, especially when associated with nanoparticles 

[112,113]. In the case of fiber gratings, the PDL spectrum relates to the difference between 

orthogonally polarized spectra [114], which therefore contains information about (L)SPR. 
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For sensor interrogation in reflection mode, an optical fiber circulator is located between the
source and the sensor. The OSA is also connected so that both source and detector remain located at
the same side of the optical path. For etched FBGs no additional element is required due to the nature
of their reflection response [100] and certain algorithms can be used for increasing the resolution of the
measurements [101]. For the rest of the summarized alternatives, a mirror is deposited on the fiber
tip in order to allow back-reflection of the light modes that are sensitive to the external medium [102].
Practically, some FBG interrogators integrate the source, circulator and detector as one, so that the
sensor can be connected to a single port of the device. In this precise case, the source can be a tunable
laser, offering a very high wavelength resolution (1 pm typically) and a fast acquisition rate (most
often in the range 1–10 Hz with currently available commercial FBG interrogators) over the C + L
wavelength bands.

4.2. Intensity or Optical Power-Based Interrogation

Another method to interrogate plasmonic FBG-based sensors is the quantization of the
intensity variations produced as a result of the coupling of light to the plasmon wave. The most
typical configuration for an interrogation of the transmitted response is that shown in Figure 11b.
The interrogation is carried out in a narrow band of the optical spectrum, so a tunable laser (TLS) can
be used as a source, together with a photodiode (PD) as detector and an analog-to-digital converter
(A/D) to obtain the desired data [41,103]. The function of the TLS is matching the wavelength of the
most sensitive mode of the fiber grating, so once the sensor is characterized it can be replaced by a
common laser. This technique relies on the principle of edge filtering [104] so that the optical power
change is produced as a result of the wavelength shift of the mode with respect to the fixed wavelength
of the laser source. Several cost-effective configurations have been reported for interrogating both the
transmission and reflection response of the sensors, mainly based on different associations of fiber
gratings to filter the spectral region of interest [105–107]. It is also worth mentioning that the principle
of intensity interrogation has recently been applied for the development of reduced size plasmonic
optical fiber sensors interrogated with the flashlight and camera of a common smartphone [108],
although a fiber grating-based counterpart is yet to be investigated.

4.3. Other Interrogation Techniques

When working with plasmonic fiber-grating sensors, light needs to be properly polarized in order
to obtain a good performance [109]. Additional interrogation techniques have been reported making
use of polarization analysis to evaluate the sensor response with respect to the interactions produced
in the surrounding medium. The measurement of the phase of the light at a wavelength matching
the SPR [110] or the use of the polarization-dependent loss (PDL) [111] are two techniques that have
been proven to exhibit a good performance, especially when associated with nanoparticles [112,113].
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In the case of fiber gratings, the PDL spectrum relates to the difference between orthogonally polarized
spectra [114], which therefore contains information about (L)SPR.

5. Protein and Cell Detection and Quantification

Since the first reports about the use of bare fiber gratings for biosensing [115,116], numerous
experimental demonstrations, most often in complex media mimicking the final environment where the
sensors should be used in practice, have confirmed that metal-coated fiber gratings can be successfully
used for biochemical sensing.

This section first summarizes prominent examples of biosensors based on metal-coated fiber
gratings. Then, considering a practical study case where functionalized gratings are used for cancer
diagnosis in tumors, Section 5.2 will outline the typical roadmap that needs to be followed to build such
plasmonic optical fiber-grating immunosensors, ensuring their use for minimally-invasive diagnosis.

5.1. Overview of Plasmonic Fiber-Grating Immunosensors

In this section, a general survey of the recent literature in this topic is presented in Table 1
in which the main characteristics and performance indicators of experimental demonstrations are
given. Hence, whenever possible, the limit of detection of the target molecules is specified. The latter
strongly depends on the characteristics of the analytes, especially their nature and mass. So, making a
fair comparison between the relative performances of these various immunosensing experiments is
particularly tough and will not be covered by this article. Also, while non-metalized configurations
have demonstrated very good performances for biosensing and immunosensing [117–120], this table
focuses on grating configurations where metals are used, either in the form of sheath or nanoparticles,
as specified in the dedicated table entry.

Table 1. Summary of the main characteristics of different plasmonic fiber-grating immunosensors
reported so far.

Grating
Architecture Functional Materials Analyte and Sensor Performances Ref.

LPFG SiO2:Au NPs modified with biotin Streptavidin detection
Sensitivity: 6.88 nm/(ng/mm2) [121]

LPFG Self-assembled Au colloids +
dinitrophenyl compound (DNP)

Detection of anti-DNP
LOD: 950 pM [122]

TFBG Au layer + thiol-modified aptamers Thrombin detection in buffer and serum solutions
LOD: 22 nM [123,124]

TFBG Au layer + self-assembled monolayer
(SAM) + anti-transferrins

Transferrin detection
LOD: 10−6 g/mL [125]

TFBG Au layer + fibronectin Analysis of cellular behavior under different stimuli [126]

TFBG APTMS, glutaraldehyde and cysteamine
thin films + Au nanocages/nanospheres

Biotin detection
LOD: 11 pM (nanospheres)–8 pM (nanocages) [68]

TFBG Au layer + boronic acid Glycoprotein detection
LOD: 2 × 10−5 g/mL [127]

TFBG Au layer + SAM + anti-cytokeratins +
bovine serum albumin (BSA)

Detection of cytokeratins 7 and 17 for lung
cancer diagnosis

LOD: 1 pM
[88,102]

TFBG Au layer + SAM + EGFR (epidermal
growth factor receptor) antibodies

Detection of epithelial cells through their EGFR
LOD: 3 × 106 cells/mL [128]

TFBG Au layer with different thicknesses Detection of proteinuria in rat urine
LOD: 1.5 × 10−3 mg/mL [129]

TFBG Au layer + SAM + aquaporin-2 antibodies
Detection of aquaporin-2 for nephrotic

syndrome analysis
LOD: 1.5 ng/mL

[130]

ETFG Au NPs + cysteamine + activated
staphylococcal protein A

Detection of Newcastle disease virus
LOD: 25 pg/mL in a 200 µL volume [97]

FBG Oligonucleotide-functionalized Au NPs DNA target sequences [131]
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5.2. Detection of Cancer Biomarkers

This subsection summarizes the standard roadmap usually pursued to build plasmonic
fiber-grating immunosensors. It shows the generic process, on the one hand, and focuses on a practical
example linked to a relevant clinical issue, on the other hand: the minimally invasive detection of
cancer biomarkers.

In [88,102], the focus was made on cytokeratins (both CK7 and CK17) that are usually used for
diagnosis in oncology, especially in the differential diagnosis of lung carcinomas, since primary tumors
express CK7 while secondary tumors are deficient. Moreover, it has been demonstrated that cytokeratin
fragments can be released from malignant cells and can reach the blood circulation. They are, therefore,
easily accessible with an optical fiber that has been properly modified.

Sensors prototyped for minimally invasive diagnosis, as those reported in [88,102], can be
prepared following the main steps listed in Table 2 below.

Table 2. Main steps required to modify an optical-fiber section into a plasmonic
fiber-grating immunosensor.

Stage Generic Process Practical Implementation in [88,102]

1. Grating manufacturing
and optimization

– Local (mechanical or chemical) stripping of the
polymer jacket of a photosensitive or
hydrogen-loaded standard single mode fiber.
– Use of dedicated laser and technique to
photo-inscribe a grating in the stripped region.
– Thermal annealing (in the case of hydrogen-loaded
fibers) to stabilize the grating spectrum.

– 1 cm long 7◦ TFBGs in hydrogen-loaded
standard telecommunication-grade
single-mode optical fibers.
– Use of a frequency-doubled argon laser
emitting 60 mW at 244 nm and the phase
mask technique.
– Thermal annealing at 100 ◦C during 24 h.

2. Metal deposition
and optimization

– Surface fiber cleaning with ethanol and/or piranha
solution to remove contaminants.
– Metal deposition using one of the techniques
described in Section 3.1 (+use of a buffer layer or
thermal annealing to improve gold adherence).

– ~50 nm gold coating deposited around the
TFBGs using a sputtering process (thickness
measured with a built-in Quartz microbalance).
– Two depositions with 90◦ rotation
between each.
– Thermal annealing during 2 h at 200 ◦C.
– Washing using absolute ethanol and dried
under N2.

3. Biochemical
functionalization

– Metal surface cleaning, usually with
absolute ethanol.
– Covalent immobilization of bioreceptors. This step
strongly depends on the targets, as described in
Section 3.2.
– Deposition of blocking agents (most often bovine
serum albumin (BSA) or milk caseins) to avoid
unspecific interactions.
– Rinsing to remove all non-linked molecules.

– Surface cleaning with absolute ethanol.
– SAM of S2PEG6COOH alkanethiols on the
gold surface.
– Surface activation using NHS/EDC process.
– Anchoring of anti-CK17 antibodies by
immersion in a pH-controlled solution.
– Deposition of BSA (5 % w/v in
phosphate-buffered saline (PBS)).
– Rinsing with PBS.

4. Interrogation and
data-processing

– Splicing of the grating to fiber pigtails.
– Connection to a measurement set-up including
polarization control to record the
reflected/transmitted amplitude spectrum (remote
computer control for real-time operation).
– Data-processing based on the tracking of the SPR
mode as a function of time.

– Use of a MicronOptics FBG interrogator and a
polarization controller, allowing to record
spectral measurements at 10 Hz rate with 1 pm
wavelength resolution).
– Insertion of the sensors in various complex
media (PBS + serum, gel matrices and fresh
biopsied lung tissues).
– Record of the amplitude spectrum and
computation of the wavelength shift and
amplitude variation of the most sensitive
cladding mode resonance in the
P-polarized spectrum.

Depending on the applications, these steps can be complemented with:

(1) Mirror deposition on the fiber cross-section to operate in reflection mode. Optical fibers containing
gratings are cleaved beyond the grating location to use them in reflection, through the use of a
silver mirror deposited on the cleaved fiber end face. This can be as simple as using a silver glue.

(2) Grating insertion into a specially-designed protective packaging allowing it to be used in
various media. In [102], a packaging was made of a hollow cylindrical needle manufactured
in polyoxymethylene C2521 Hostaform. As depicted in Figure 12, this packaging provides a
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window to expose the sensor location to the surrounding medium. It has been tailored for
possible insertion in the operating channel of an endoscope.Sensors 2017, 17, 2732 13 of 20 
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Figure 12. (a) Picture of the packaged plasmonic fiber-grating sensor; (b) biosensor inserted in a freshly
biopsied tissue and its corresponding amplitude spectrum; and (c) packaged sensor inserted in the
operating channel of an endoscope.

The study conducted in [88,100] has demonstrated that these immunosensors reach a limit of
detection of 1 pM in phosphate buffered saline (PBS) media supplemented with 10 % of serum. Then,
the detection of cytokeratins trapped in the crosslinked polymer network of a porous gel matrix was
reported, despite the non-liquid nature of the hosting medium. These results have allowed the sensors
to be inserted in fresh tissues obtained from a biopsy. Such measurements have been conducted at the
hospital and have demonstrated a positive biosensor response in tumoral tissues.

These first results constitute an important milestone towards the possible demonstration of
in vivo diagnosis using plasmonic fiber-grating biosensors. To this end, numerous developments and
validation tests remain to be done, both in terms of extensive testing of the devices in different kinds
of tumors and to fully demonstrate the biocompatibility and compatibility with standard practices in
the sterilization of the probes.

6. Conclusions

This review of recent developments in fiber grating-based SPR immunosensors confirms the
increasing level of maturity obtained in the field, essentially resulting from the complementary efforts
made by photonics and biochemistry groups all around the world. This development comes along
with the use of more sophisticated experimental protocols and more realistic error analyses. We can
now assert that grating-based SPR sensor platforms have passed the proof-of-principle level, as they
have been tested in complex media that replicate the final application environment. Grating-based SPR
sensors can operate easily in the mid-infrared wavelength range, via the resonant coupling between
the cladding modes and the surface plasmon wave. Hence, they are compatible with the use of
cost-effective and high-resolution FBG interrogators that can be easily computer-driven to process the
spectral information in real time. Most grating architectures also provide a response that is inherently
immune to ambient temperature fluctuations, which is highly desirable for practical implementation.

Of course, in addition to work on relevant clinical applications, some new developments also offer
exciting possibilities for future research, notably in the areas of microstructured fibers [132] and plastic
optical fibers—that are inherently much more biocompatible than their silica counterparts—[133,134]
or even the use of natural fibers [135]. Another important path of exploration is the realization
of nanostructures in metals [136] or the inclusion of carbon nanotubes, graphene and other novel
plasmonic materials, such as oxides and nitrides, in sensor fabrication [77,137,138]. Recent work
indicates that combining graphene with noble metal particles and layers promises a wealth of new
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physics and sensing modes, in addition to intrinsic tunable and adjustable plasmonic properties [91,
139–141]. It is hoped that this review will help in fostering further research in the field of fiber-grating
SPR biosensors.
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