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In this survey, we propose a comprehensive introduction to game theory applied to computer-aided synthesis.
We study multi-player turn-based infinite-duration games played on a finite directed graph such that each
player aims at maximizing a payoff function. We present the well-known notions of Nash equilibrium and
subgame perfect equilibrium, as well as interesting strategy profiles of players as response to the strategy
announced by a specific player. We provide classical and recent results about the related threshold synthesis
problem.

1. INTRODUCTION

Game theory is a well-developed branch of mathematics applied to various domains
like economics, biology, computer science, etc. It is the study of mathematical models of
interaction and conflict between individuals and the understanding of their decisions
assuming that they act rationally [von Neumann and Morgenstern 1944; Osborne and
Rubinstein 1994]. The last decades have seen a lot of research on algorithmic questions
in game theory motivated by problems from computer-aided synthesis.

One important line of research is concerned with reactive systems that must contin-
uously react to the events produced by the environment in which they evolve. Such
systems are nowadays part of our daily life: think about common yet critical applica-
tions like engine control units in automotive, plane autopilots, medical devices, etc.
Clearly, any flaw in such critical systems can have catastrophic consequences. A scien-
tifically challenging goal, called synthesis, is to propose techniques (models, algorithms
and tools) that, given a specification for a system and a model of its environment, com-
pute (synthesize) a controller of the system that enforces the specification no matter
how the environment behaves. To this end, researchers have advocated the use of two-
player games played on a graph: the vertices of the graph model the possible configu-
rations, the system and the environment are the two players, the infinite paths in the
graph model their continuous interactions (reactive systems are usually not assumed
to terminate). As the objectives of the two players are antagonistic, we speak of zero-
sum games. Checking whether there exists a controller for the system reduces to the
existence of a winning strategy in the corresponding game, and building a controller
reduces to computing such a strategy [Grédel et al. 2002].

A lot of research has been done about Boolean objectives, in particular about
the class of w-regular objectives, like avoiding a deadlock or always granting a re-
quest [Gradel et al. 2002]. An infinite path in the game graph is either winning or
losing depending on whether the objective is satisfied or not. To allow richer objec-
tives, such as minimizing the energy consumption or guaranteeing a limited response
time to a request, existing models have been recently enriched with quantitative as-
pects in a way to associate a payoff (or a cost) to all paths in the graph [Chatterjee
et al. 2010a]. The most studied payoffs are liminf/limsup of the weights seen along
the path, their mean-payoff or their discounted-sum. In this setting, the constrained
synthesis problem is to decide whether there exists a winning strategy for the system
that ensures a payoff satisfying some given constraints. For instance we would like an
energy consumption lying within a certain given interval.

In practical situations, neither the system nor the environment are monolithic, and
their objectives are not necessarily antagonistic: systems are composed of several parts

1Work partially supported by the PDR project Subgame perfection in graph games (F.R.S.-FNRS) and the
COST Action 16228 GAMENET (European Cooperation in Science and Technology).
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that must be designed individually, and whose individual objectives must all be taken
into account. For such more complex situation, it is advocated to use the model of
maulti-player non-zero-sum games played on graphs: the components are the different
players, each of them aiming at satisfying their own objective. The synthesis problem
is here different: winning strategies are no longer appropriate and are replaced by the
concept of equilibrium [Gréadel and Ummels 2008]. An equilibrium can be seen as a
contract (strategy profile) between the players that makes each player satisfied with
respect to his objective and discourages him to break this contract. Moreover, as a
game may have several equilibria, one might be interested in one that fulfils certain
constraints. For instance, in case of Boolean objectives, we would look for an equi-
librium where some players are winning and some others are losing. Different kinds
of equilibria have been studied among which the famous notion of Nash equilibrium
(NE) [Nash 1950] from game theory. A strategy profile is an NE if no player has an
incentive to unilaterally deviate from it. In the context of games played on graphs
which are sequential by nature, it is well-known that NEs present a serious draw-
back: they allow for non-credible threats, i.e., irrational decisions taken by a player in
a subgame to threaten another player and oblige him to follow a given behavior, see
e.g. [Osborne and Rubinstein 1994]. To avoid non-credible threats, the notion of NE
has been strengthened into the notion of subgame perfect equilibrium (SPE) [Selten
1965] also well-studied in game theory: a strategy profile is an SPE if it is an NE in
each subgame of the original game. This notion behaves much better for sequential
games and excludes non-credible threats.

The (constrained) synthesis problem is rather well understood for NEs. For classi-
cal w-regular objectives (like reachability, Bchi, parity, etc) and classical quantitative
objectives (like liminf, mean-payoff, etc), the same general approach can be used that
works as follows (see e.g. the survey [Bruyere 2017]). Under some very general hy-
pothesis, the plays that are outcomes of an NE can be characterized thanks to cer-
tain properties of the n two-player zero-sum games where one player (among the n
players) is opposed to the coalition of the other players. From this characterization,
it follows that there always exists an NE and that the constrained synthesis problem
is decidable (with known complexity class). Only the constrained synthesis problem
for discounted-sum games is unsolved. It is related to the challenging open problem
of target discounted-sum itself related to many open questions in mathematics and
computer science [Boker et al. 2015].

Whereas NEs are much studied, SPEs have received less attention and several ques-
tions are still unsolved for this concept of equilibrium. The most popular result in game
theory is probably Kuhn’s theorem that states the existence of SPE in games in finite
extensive form (i.e., played on finite trees) [Kuhn 1953]. Unfortunately Kuhn’s theorem
is not applicable in computer-aided synthesis as we need to consider infinite-duration
games. Some preliminary results have been obtained for graph games with w-regular
objectives [Gradel and Ummels 2008]: it is known that there always exists an SPE in
these games, however the constrained synthesis problem is only partially solved. Little
is known when we shift to quantitative objectives: very recently it has been proved that
the constrained synthesis problem is PSPACE-complete for quantitative reachability
games [Brihaye et al. 2020] and that it is decidable for mean-payoff games [Brice et al.
2021]. Those two results rely on an adequate new characterization of SPE outcomes
like the one known for NEs.

As explained in the beginning of this introduction, the synthesis of controllers for re-
active systems is usually studied with the model of two-player zero-sum games played
on graphs such that the environment is a player opposed to the system player. A fully
antagonistic environment is most often a bold abstraction of reality and several more
suitable refinements have been proposed, see for instance the survey [Brenguier et al.
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2016]. One such refinement is the framework of Stackelberg games [von Stackelberg
1937], a richer non-zero-sum setting from game theory, in which the system called
leader announces his strategy and then the environment called follower rationally re-
sponds with a strategy that is optimal with respect to his own objective. The goal of
the leader is therefore to announce a strategy that guarantees him a payoff satisfying
certain constraints, whatever the optimal response of the follower.

This concept of leader and follower has been developed and extended in the con-
text of computer-aided synthesis. The framework of rational synthesis [Fisman et al.
2010; Kupferman et al. 2016] considers several followers composing the environment
(instead of one), each of them with their own objective. In that case, rationality of
the followers is modeled by assuming that the environment settles to an equilibrium,
like an NE or an SPE, where each component is considered to be an independent self-
ish individual, excluding cooperation scenarios between components or the possibil-
ity of coordinated rational multiple deviations. Two scenarios are investigated. Either
the rational synthesis is cooperative: the environment cooperates with the system, it
agrees to play an equilibrium that is satisfactory for the system (if it exists). Or it is
adversarial: the environment can follow any equilibrium, and one has to synthesize
a strategy (if it exists) for the system that is satisfactory against all these equilib-
ria. Only partial results are known about the complexity of rational synthesis; let us
mention results in [Condurache et al. 2016] for games with w-regular objectives and
in [Gupta and Schewe 2014; Filiot et al. 2020] for mean-payoff and discounted-sum
games.

Very recently the framework of Stackelberg-Pareto synthesis has been proposed
in [Bruyere et al. 2021a]. It is an alternative to rational synthesis where the envi-
ronment is modeled as a single follower that has several objectives that he wants to
satisfy. After responding to the leader with his strategy, the follower receives a tuple
of payoffs in the corresponding outcome. Rationality is encoded by the fact that the
follower only responds in such a way to receive a Pareto-optimal tuple of payoffs, given
the strategy announced by the leader. This setting encompasses scenarios where, for
instance, several components can collaborate and agree on trade-offs. The goal of the
leader is therefore to announce a strategy that guarantees him to obtain a satisfactory
own payoff, whatever the response of the follower which ensures him a Pareto-optimal
tuple of payoffs. The complexity of Stackelberg-Pareto synthesis is studied in [Bruyere
et al. 2021a] for some w-regular objectives.

In this survey, we propose a comprehensive introduction to computer-aided synthe-
sis in the different frameworks of non-zero-sum games presented above. The reader
is referred to [Griadel and Ummels 2008; Brenguier et al. 2016; Bruyere 2017] for ad-
ditional readings. We do not intend to present an exhaustive survey: the considered
games are turn-based, deterministic, and with perfect information, and we focus on
certain solution concepts and some related results that we find important. Additional
references to related work are given in a dedicated section for the interested reader.

This article is structured in the following way. In Section 2, we introduce the con-
cepts of non-zero-sum game, strategy, and Boolean and quantitative objectives (with a
focus on parity and mean-payoff games). Section 3 is devoted to the famous NE con-
cept and the related threshold synthesis problem that asks whether there exists an
NE that guarantees to each player a payoff at least equal to some given threshold.
We recall the characterization of NE outcomes and explain how it is used to solve
the threshold synthesis problem. In Section 4, we explain the presence of non-credible
threats in NEs and how the concept of SPE excludes this undesirable behavior for
games played on graphs. We provide some known solutions to the threshold synthe-
sis problem for SPEs and focus on a recent promising characterization of SPE out-
comes [Flesch and Predtetchinski 2017; Brice et al. 2021] that generalizes to SPEs
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the previous NE characterization. In Section 5, we study the concept of Stackelberg
games, a framework well-suited for the synthesis of reactive systems. We present the
cooperative/adversarial rational synthesis introduced in [Fisman et al. 2010; Kupfer-
man et al. 2016] as well as the very recent setting of Stackelberg-Pareto synthesis
proposed in [Bruyere et al. 2021a]. Section 6 gathers many references to related work.
Finally, we provide a short conclusion in Section 7.

2. PRELIMINARIES

This section introduces the useful notions of multi-player turn-based game played on
a graph, Boolean and quantitative payoff function, strategy and strategy profile.

2.1. Games

We consider multi-player turn-based games played on a finite directed graph [Gradel
and Ummels 2008].

Definition 2.1. An arena is a tuple A = (IL, V, (V;)ien, E) where:

— Il is a finite set of players,

— V is a finite set of vertices and E C V x V is a set of edges, such that each vertex has
at least one successor?,

— (Vi)ien is a partition of V, where V; is the set of vertices owned? by player i € II.

A play is an infinite sequence p = pop1 ... € V¥ of vertices such that (px, pr+1) € E
for all & € N. Histories are non-empty finite sequences h = hg ... h, € VT defined in the
same way. We often use notation hv to mention the last vertex v € V of the history. The
set of plays is denoted by Plays and the set of histories (resp. histories ending with a
vertex in V;) by Hist (resp. by Hist;). A prefix (resp. suffix) of a play p = pgp1 . . . is a finite
sequence p<, = po - .. pn, (resp. infinite sequence p>,, = pppn+1...). We use notation hrp
for a play of which history h is prefix. Given a play p, we denote by Inf(p) the set of
vertices visited infinitely often in p. We say that p is a lasso if it is equal to hg“ with
h, g being two histories.

Definition 2.2. A game G is an arena A = (I1, V, (V;);cn1, E) such that each player i
has a payoff function pay, : Plays — R that assigns a payoff to each play.

Player i prefers play p to play p’ if pay,(p) > pay;(p’), that is, he wants to maximize
his payoff. A payoff function pay, is prefix-independent if pay,(hp) = pay,(p) for all hp €
Plays. When an initial vertex vy € V is fixed, we call (G, vy) an initialized game. In
this case, plays and histories are assumed to start in vy, and we then use notations
Plays(vg), Hist(vo), and Hist;(vg) (instead of Plays, Hist, and Hist,).

2.2, Classical Payoff Functions

A particular class of games G are those equipped with Boolean functions pay, : Plays —
{0,1}, ¢ € 11, such that a Boolean payoff'is assigned to each play. The objective Q; = {p €
Plays | pay,;(p) = 1} of player i is composed of his most preferred plays. A play p such
that pay,(p) = 1 is said to satisfy the objective 2, of player i. Classical objectives 2; are
w-regular ones [Gradel et al. 2002; Griadel and Ummels 2008]. In this article, we focus
on parity objectives as arbitrary w-regular objectives can be reduced to them. Let ¢; :
V — N, i € I, be a priority function that labels the vertices of the arena with integers.
Then the parity objective for player i is ; = {p € Plays | min,cin(,)(c(v)) is even}.
The payoff function associated with a parity objective is prefix-independent. There are

2This condition guarantees that there is no deadlock.
3We also say that player i controls the vertices of V;.
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(2,2) (0,2) (1,1) (1,0)

Fig. 1. A two-player game with parity objectives for both players.

many other w-regular objectives, such as reachability, safety, Biichi, co-Biichi, Streett,
Rabin, Muller, etc. They are not studied in this survey.

Example 2.3. Consider the initialized two-player game (G,vg) in Figure 1 such
that player 1 controls all the vertices except vertex v, that is controlled by player 2.*
Both players have a parity objective, indicated in the figure under each vertex (the i-th
component is the priority for player 7). For the play p = vov1(vovavs)”, we have payoff
(pay;(p), pays(p)) = (1,0) since the minimum priority visited infinitely often along p is
equal to O for player 1 and 1 for player 2.

Other classical payoff functions are quantitative functions pay; : Plays — R defined
from a weight function w; : E — Q, i € II [Chatterjee et al. 2010a]. Each edge of the
game arena is thus labeled by a |II|-tuple of weights. In this article, we focus on the
mean-payoff function MP;. Let p = pgp1 ... € Plays, then

n—1

> wilprs pra),

k=0

MP;(p) = lim inf 1

n—soo N
that is, MP;(p) is liminf of running averages of weights seen along the play (with re-
spect to the weight function w;). In case of a lasso p = hg“, MP;(p) is equal to the
average weight of the cycle g. The mean-payoff function is prefix-independent. There
are several other quantitative functions like the discounted-sum function that is much
studied in game theory as is the mean-payoff function [Filar and Vrieze 1997]. Let
us also mention the supremum or limsup (resp. infimum, liminf) of the weights seen
along a play [Chatterjee et al. 2010a]. Finally, the objective of quantitative reachability
means reaching a given target set as quickly as possible (when counting the number
of traversed edges). In this case, it is rather a cost that a player wants to minimize (in-
stead of a payoff that he wants to maximize). Only the mean-payoff function is studied
in details in this survey.

Example 2.4. Consider the initialized two-player game (G, vy) in Figure 2 where
the arena is equipped with two weight functions w;,w, and the payoff function of
each player is the mean-payoff function. As this function is prefix-independent, there
are essentially three pairs of payoffs (pay,(p), pay,(p)) assigned to plays p € Plays(vp):
(1,1) (resp. (0,3), (2,2)) assigned to the left lasso v§ (resp. central lasso (vov1)“, right
lasso v4).

2.3. Strategies
Let us now introduce the concept of strategy [Gradel et al. 2002; Gradel and Ummels
2008].

4In all examples of this article, there are two players such that circle (resp. square) vertices are controlled
by player 1 (resp. player 2).
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(0,3)

(0,0) (0,0)
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(1,1) 9 (2,2)

Fig. 2. A two-player game with mean-payoff function for both players.

Definition 2.5. Let (G, vg) be an initialized game. A strategy o; for player i in (G, vp)
is a function o; : Hist;(vg) — V assigning to each history hv € Hist;(vo) a vertex v’ =
o;(hv) such that (v,v’) € E. The set of strategies for player i from vertex v, is denoted
by T';(vo)-

Thus o;(hv) is the next vertex chosen by player i (who controls vertex v) after history
hv has been played. A play p € Plays(vg) is compatible with o; if p, 11 = 0;(p<y) for all
n such that p,, € V;.

A strategy o; for player i is memoryless if it only depends on the last vertex of the
history, i.e., o;(hv) = o;(h'v) for all hv, h'v € Hist;(vp). A memoryless strategy can be
depicted directly on the game arena by fixing one successor among all successors v’ of
the vertices v owned by player i. More generally, a strategy is finite-memory if it can
be encoded by a finite automaton. In this case, the strategy chooses the next vertex
depending on the current state of this automaton and the current vertex in the game.?

A strategy profile is a tuple o = (0;);en of strategies, where each o; is a strategy for
player i. Given an initial vertex vy, such a strategy profile determines a unique play
of (G, vp) that is compatible with all strategies o;. This play is called the outcome of o
in (G, vo) and is denoted by (o),,. We sometimes denote a strategy profile o as (0;,0_;)
where —i denotes the set IT \ {i} of all players except player i and o_; denotes the
strategy profile for those players.

3. NASH EQUILIBRIA

In this section, we consider multi-player games such that each player has his own
payoff function that he wants to maximize. We are interested in strategy profiles, called
solution profiles, that provide payoffs satisfactory to all players.

3.1. Nash Equilibria Concept

A classical solution profile is the well-known notion of Nash equilibrium [Nash 1950]
from game theory. Informally, a strategy profile is an NE if no player has an incen-
tive to deviate (with respect to his payoff) when the other players stick to their own
strategies. In other words, an NE can be seen as a contract that makes every player
satisfied in the sense that nobody wants to break the contract if the others follow it. In
this setting, each player rationally acts as an independent selfish individual.

Definition 3.1. Given an initialized game (G, vy), a strategy profile o = (0;);cn is
a Nash equilibrium (NE) if pay,((c).,) > pay,;((c},0_;),) for all players i € IT and all
strategies o} € T';(vo).

In this definition, all players stick to their own strategy except player i who switches
from strategy o, to strategy o.. We say that o} is a deviating strategy from ;. By using
o, instead o;, player 7 is not capable to strictly increase his payoff.

5This informal definition is enough for this survey.
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Fig. 3. A simple game with two NEs.

Example 3.2. Let us consider the initialized two-player game (G,v,) of Figure 3
with four plays starting from the initial vertex vg. The payoff of each player for all
these plays is indicated below the play. Let us consider the strategy profile o = (01, 02)
composed of the following memoryless strategies®:

— for player 1: v; — vs3, vo — vs,
— for player 2: vy — v;.

This strategy profile is an NE with outcome (0),, = vov1v4. Indeed, each player has no
incentive to deviate since his payoff is maximal (it equals 2). There exists another NE
defined by:

— for player 1: v; — vy4, vo — vs,
— for player 2: vy — v3,

such that its outcome equals vovov¢ and has payoffs (1,1). For instance, if player 2 uses
the deviating strategy o/, such that vy — vy, the resulting outcome (o1, 0}),, = vov1v§
decreases by 1 the payoff for player 2. Clearly the first NE is more interesting for both
players as its outcome has payoffs (2, 2) (instead of (1, 1) for the second NE).

3.2. Threshold Synthesis Problem

Example 3.2 shows that a game may have several NEs. It is thus natural to ask
whether there exists an NE that fulfils certain requirements. This motivation leads
to the following decision problem [Griddel and Ummels 2008; Bruyere 2017] that we
study in details in this survey for different kinds of solution profiles.

Definition 3.3. Let (G, vg) be an initialized game and u; € Q be a threshold for each
i € II. The threshold synthesis problem is to decide whether there exists a solution
profile 0 = (0;)iecn such that u; < pay,({o),,) for all players i € II.

Notice that when the given bounds impose no constraint (for instance p; = 0, for
all i € II, in case of Boolean payoff functions), the decision problem can be rephrased
as the existence synthesis problem: “decide whether there exists a solution profile”. We
will see that for certain classes of games and solution concepts, this problem does not
need to be solved because there always exists a solution profile for those games.

Let us here present some results about the existence synthesis problem and the
threshold synthesis problem in the case of NEs. They are given for the games on which

6As the strategies are memoryless, we simply indicate the chosen successor for each vertex, except for the
vertices with only one successor.
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Fig. 4. A one-player game with no NE.

we focus in this survey: games with parity objectives and games with mean-payoff
functions.

THEOREM 3.4.

— Games with parity objectives always admit an NE [Chatterjee et al. 2004].

— Games with mean-payoff functions always admit an NE [Brihaye et al. 2013].

— Moreover, the threshold synthesis problem is NP-complete for all these games [Ummels
2008; Ummels and Wojtczak 2011a].

NE existence holds for many classes of games. There always exists an NE in all
games with w-regular objectives’ [Chatterjee et al. 2004; Gridel and Ummels 2008]
and in a large class of games with quantitative payoff functions including those with
mean-payoff functions [Brihaye et al. 2013]. Moreover there always exists an NE o
such that each oy, i € II, is a finite-memory strategy. The threshold synthesis problem
is solved in [Ummels 2008; Condurache et al. 2016] for different types of w-regular
objectives including parity. The case of games with mean-payoff functions is solved
in [Ummels and Wojtczak 2011a] and with quantitative reachability objectives in [Bri-
haye et al. 2019].

Nevertheless there exist games that admit no NE as shown in the next simple ex-
ample [Brihaye et al. 2016].

Example 3.5. Consider the initialized one-player game (G, vp) in Figure 4 with the
following payoff function pay, : Plays — N for the unique player:
— pay; (vEv¥) =k, for all k > 1,
— pay; (v5) = 0.
No strategy profile is an NE. Indeed if the player chooses to always loop on vy, he gets
payoff 0 that he can increase by using the deviating strategy o} such that o} (vg) = v;

in which case he gets payoff 1. If he decides to loop k times on vy and then go to v1, he
gets a payoff that he can increase by 1 by looping once more on vy.

3.3. NE Characterization

The proofs of several results about the existence synthesis problem and the threshold
synthesis problem for NEs are based on an elegant characterization of NE outcomes
that we now present. To this end, we need to introduce some definitions where R de-
notes the set RU {—o0, +00}.

Definition 3.6. Let G be a game and )\ : V — R be a function called requirement
function. A play p = pop1 . .. € Plays is A-consistent if for all n € N, we have

pay; (p>n) = A(pn)

such that player i controls vertex p,.
"This result holds for the larger class of games with Borel Boolean objectives.
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Thus the quantity A(p,,) represents the minimal payoff that player ¢ who controls
vertex p, requires for the suffix p>,, starting in this vertex. Notice that when the pay-
off function pay; is prefix-independent, condition pay;(p>,) > A(p,) can be replaced
by pay,;(p) > A(pn). Notice also that there exists no A-consistent play if A is the re-
quirement function such that \(v) = +oc for all v € V.8 On the opposite, each play is
A-consistent if A is the requirement function such that A\(v) = —co for all v € V.

Definition 3.7. Let G be a game and A\g : V — R be the requirement function such
that for all: € IT and all v € V;,

Ane(v) = inf sup pay;((o).). 1
o0_i€l_i(v) g,€T; (v)

In this definition, it is useful to see the players —i forming a coalition (as a unique
player) opposed to player i: player ¢ tries to maximize his payoff from v against the
coalition —i trying to minimize this payoff. The quantity Ane(v) represents the worst
payoff that player i who controls v can hope against the coalition opposed to him.

The announced characterization is based on Ayg-consistency in the following way.
The second hypothesis of this theorem asks for the infimum in equation (1) to be
achieved.

THEOREM 3.8 ([BRIHAYE ET AL. 2013]). Let G be a game such that:

— for each player i, the payoff function pay, is prefix-independent, and
— for each player i, for each vertex v € V;, there exists a strategy profile o_; € T'_;(v) such
that ANE(U) = SUDg, €T, (v) paYi(<U>1J)'

Then for each initial vertex vy, a play p € Plays(vg) is an NE outcome in (G, vg) if and
only if p is Ang-consistent.

Let us illustrate all these notions with an example.

Example 3.9. We come back to the game of Example 3.2 for which we suppose the
payoff function of each player being prefix-independent. In Figure 5, the value Ayg(v)
is indicated to the right of each vertex v of this game.

Consider for instance vertex vy such that Ayg(vg) is equal to 1 and the (memoryless)
strategy o_o from vg is depicted in bold in Figure 5 (the coalition —2 is composed of
player 1). Indeed either (i) player 2 chooses vy — v; and player 1 opposed to him chooses
v1 — vy leading to payoff 0 for player 2, or (ii) player 2 chooses vy — v2 and player 1
chooses vy — v5 leading to payoff 1 for player 2 that is the best payoff for him.

With this example, let us provide some intuition on the correctness of the NE char-
acterization. On the one hand, the play p = vov1v§y with payoffs (0,0) is not an NE
outcome because it is not Ang-consistent: pay,(p) < Ane(vo). Indeed due to value
Ane(vg) = 1, player 2 knows that he can guarantee a payoff of at least 1 by deviat-
ing from p at vg with the strategy vg — wv,. This is a better payoff for him than the
payoff he gets with p. On the other hand, the play p = vgv1v§ with payoffs (2,2) is
an NE outcome because one can verify that it is Ayg-consistent. One can construct an
NE with outcome p as follows. It is constructed such as to produce p, and as soon as
some player i deviates from p at vertex v € V;, it uses the strategy profile o_; from
v of the coalition —i as given in the second hypothesis of Theorem 3.8. As p is Ang-
consistent and pay, is prefix-independent (by the first hypothesis of Theorem 3.8), with
this deviation player i receives a payoff < Ang(v) < pay;(p), thus not profitable for him.

8Recall that we have pay; : Plays — R by definition.
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Fig. 5. Requirement function Ag for the game of Example 3.2.

3.4. Comments on the NE Characterization

The NE characterization of Theorem 3.8 is stated as given in [Brice et al. 2021]. It
appears under various particular forms for instance in [Griddel and Ummels 2008;
Ummels and Wojtczak 2011a; Bruyere et al. 2014; Brihaye et al. 2019], and in under
more general hypotheses in [Brihaye et al. 2013; Bruyere 2017]. The use of coalitions
opposed to some player is also a well-known method in game theory, for instance in the
proof of the Folk Theorem in repeated games [Osborne and Rubinstein 1994].

The two hypotheses of Theorem 3.8 are satisfied by many classes of games:

— Concerning the first hypothesis, many studied Boolean and quantitative payoff func-
tions are prefix-independent like the function associated with parity objective and
the mean-payoff function.

— The second hypothesis is related to the well-known concepts of value and optimal
strategy in two-player zero-sum games where the two players i and —i have op-
posed objectives [Gradel et al. 2002]: player i wants to maximize his payoff whereas
player —i wants to minimize this payoff. When it exists, the value of a vertex v is
the largest (resp. lowest) payoff that player i (resp. player —i) can ensure from v,
and optimal strategies for players i and —i respectively, are strategies realizing this
value. The value and optimal strategies for both players exist in many classes of two-
player zero-sum games, see e.g. [Gimbert and Zielonka 2005; Bruyere 2017], includ-
ing games with parity objectives [Emerson and Jutla 1991] and games with mean-
payoff functions [Zwick and Paterson 1996]. In equation (1), Ane(v) is the value of
v and in Theorem 3.8, the second hypothesis requires the existence of an optimal
strategy for player —i.

THEOREM 3.10 ([EMERSON AND JUTLA 1991; ZWICK AND PATERSON 1996]).
For two-player zero-sum games with either parity objectives or mean-payoff functions,
the value exists for all vertices v as well as optimal strategies for both players. Moreover,
each player can use the same memoryless optimal strategy to ensure the value of all
vertices.

Let us come back to Theorem 3.4 and give some comments on its proof:

— The proof of its first two statements follows from the NE characterization given in
Theorem 3.8 and from Theorem 3.10 above. For each player i, consider the two-player
zero-sum game where he is opposed to player —i, and let 7;, 7_; be the memoryless
strategies for those two players as stated in Theorem 3.10. An NE is constructed from
7, T—i,4 € II, as follows: from the initial vertex play with 7; for each player i, and as
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soon as some player ¢ deviates, punish ¢ by playing ;. By construction, this strategy
profile produces an outcome that satisfies Theorem 3.8 and is thus an NE.

— Let us give a sketch of proof for the NP-membership of the last statement of The-
orem 3.4. Given u; € Q for each i € II, one has to decide whether there exists an
NE o such that its outcome satisfies p; < pay,({0),,) for all i € II. By Theorem 3.8,
it is equivalent to decide whether there exists a play p € Plays(vg) such that (i) p is
Ane-consistent and (it) p; < pay,(p) for i € II. For parity objectives (resp. mean-payoff
functions) condition (i) is decidable in NP and condition (ii) can be solved in polyno-
mial time [Emerson and Jutla 1991; Ummels 2006] (resp. [Zwick and Paterson 1996;
Ummels and Wojtczak 2011b]).

4. SUBGAME PERFECT EQUILIBRIA

In this section, we present another well-known type of solution profile from game the-
ory, the subgame perfect equilibrium [Selten 1965], that avoids some NE drawbacks.

4.1. Subgame Perfect Equilibria Concept

NEs do not take into account the sequential nature of games played on graphs. Indeed
after any prefix of a play, the players face a new situation and may want to change
their strategies. It is well-known that NEs suffer from the problem of non-credible
threat, see for instance [Osborne and Rubinstein 1994]: the existence of NEs may rely
on unrational strategies of some players in subgames. This is illustrated in the next
example.

Example 4.1. We come back to Example 3.2 (see Figure 3) and its second NE de-
fined by

— for player 1: v; — vy, vo — vs,
— for player 2: vy — vs.

Player 2 has no incentive to deviate from vy due to the decision of player 1 to play
with v; — v4 in the subgame with initial vertex v;. This is a non-credible threat from
player 1 in this subgame: it would be more rational for him to play with v; — v3in a
way to get payoff 2 of instead of 0.

In order to be a subgame perfect equilibrium, a strategy profile is not only required
to be an NE from the initial vertex but also after every possible history of the game.
Before giving the precise definition of a subgame perfect equilibrium, we need to in-
troduce the following concepts. Let (G, vy) be an initialized game with payoff functions
pay;, i € II. Given a history hv € Hist(vg), the subgame (G|, v) of (G, o) is the initial-
ized game with payoff functions pay; ;,, i € II, such that pay; ,(p) = pay,(hp) for all plays
p € Plays(v). Given a strategy o; for player i in (G,v), the strategy o, in (G, v) is
defined as o, (h') = o;(hh') for all &’ € Hist;(v). If ¢ = (0})icn is a strategy profile in
(G, o), we denote by o, the strategy profile equal to (c;|3)ic in (G|, v).

Definition 4.2. Given an initialized game (G, vp), a strategy profile o is a subgame
perfect equilibrium (SPE) if oy, is an NE in each subgame (G|, v) of (G,v) with hv €
HiSt(’Uo).

By definition, every SPE is an NE. However the converse is false as shown in Exam-
ple 4.1 where the given strategy profile is an NE but not an SPE.

4.2. Threshold Synthesis Problem

Let us present some results about the threshold synthesis problem and the existence
synthesis problem in case of SPEs. Whereas these problems are largely solved for NEs
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(see Theorem 3.4 and the comments that follow it), we only have partial answers for
SPEs. Moreover, SPEs fail to exist even in simple games like the game with mean-
payoff functions of Figure 2 [Solan and Vieille 2003]. Recall that NEs always exist for
the class of games with mean-payoff functions as well as for many other classes of
games (see previous section).

THEOREM 4.3. Class of games with parity objectives:

— Games with parity objectives always admit an SPE [Ummels 2006; Grddel and Um-
mels 2008].

— The threshold synthesis problem for games with parity objectives is in EXPTIME and
is NP-hard [Ummels 2006; Gradel and Ummels 2008].

Class of games with mean-payoff functions:

— There exist games with mean-payoff functions that admit no SPE [Solan and Vieille
2003].

— The threshold synthesis problem for games with mean-payoff functions is decidable
[Brice et al. 2021].

A well-known result is the existence of an SPE in every game (G, v) such that its
arena is a tree rooted at vy° [Kuhn 1953]. The example in Figure 3 falls into this class
of games. The SPE is easily constructed backwards from the leaves to the initial ver-
tex vg. It is proved in [Ummels 2006; Griddel and Ummels 2008] that there exists an
SPE in every game with w-regular objectives!® and thus with parity objectives (more-
over there exists one composed of finite-memory strategies). The existence of an SPE
also holds for games with bounded continuous payoff functions [Fudenberg and Levine
1983; Harris 1985] (including the discounting-sum function), and more generally for
games where these functions are upper-semicontinuous (resp. lower-semicontinuous)
and with finite range [Flesch et al. 2010] (resp. [Purves and Sudderth 2011]). Notice
that games with mean-payoff functions do not fall into those classes of games.

The proofs provided in [Ummels 2006; Gradel and Ummels 2008] and in [Flesch et al.
2010] to construct an SPE are based on a non-increasing sequence of sets of plays: the
initial set is the set of all plays; then step by step the set loses some plays that def-
initely are not SPE outcomes; finally one reaches a non-empty fixpoint that exactly
contains all SPE outcomes and from which an SPE can be constructed. This fixpoint
approach has been further developed for games with reachability objectives [Brihaye
et al. 2015; Brihaye et al. 2018] and very recently for games with quantitative reach-
ability objectives [Brihaye et al. 2020] and with mean-payoff functions [Brice et al.
2021]. The latter approach is detailed in the next two sections as it is in the spirit of
the NE characterization given in Theorem 3.8.

The proof to establish the EXPTIME-membership of the threshold synthesis problem
for games with parity objectives uses an algorithm based on tree automata [Ummels
2006; Gradel and Ummels 2008].

4.3. SPE Characterization

We now present the elegant SPE characterization provided in [Flesch and Predtetchin-
ski 2017; Brice et al. 2021]. It is formulated here as given in [Brice et al. 2021] (it
appears under a different formulation in [Flesch and Predtetchinski 2017] for games
with finite-range and Borel measurable payoff functions). This characterization uses

91In this particular context, plays are finite paths.
10This is also true for games with Borel Boolean objectives.
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an adequate requirement function Aspg (instead of Ayg) such that SPE outcomes co-
incide with plays that are Aspe-consistent. The definition of the requirement function
Aspe 1s more complex: it is the least fixpoint of some operator on requirement functions.
Let us introduce some useful notions.

Definition 4.4. Let (G,vo) be an initialized game and )\ : V — R be a requirement
function.

— Let i be a player and —i be the coalition of the other players. A strategy profile o_; €
I'_;(vo) is A-rational if there exists a strategy o; € I';(vg) such that for all histories
hv € Hist(vo) compatible with o_;, the play (o)), is A-consistent.

— If such a strategy profile o_; exists for some player i, we say that ) is satisfiable
from vy. The set of all A-rational strategy profiles in (G, vp) is denoted by ARat(vg).

In this definition, if the coalition —i proposes a A-rational strategy profile to player i
that he accepts to follow (after a finite number of deviations), then the resulting play
is A-consistent.

In the next definition, we introduce an operator that transforms a requirement func-
tion ) into a new one that can be seen as the result of negotiations between the players:
when a player has a requirement to satisfy, another player can hope a better payoff
than before and therefore update his own requirement.

Definition 4.5. Let G be a game. The negotiation function Nego is an operator that
transforms any requirement function )\ into the requirement function Nego(\) defined
as follows. For all i ¢ [Tand all v € V},

Nego(A)(v) = é?rfat@) sup )payz(< o)v), 2)

with the convention that inf ) = +occ. The least fixpoint of Nego is denoted by Aspg.!!

Equation (2) is similar to equation (1) with the exception that each coalition —i plays
with strategies o_; that are A-rational. The quantity Nego(\)(v) represents the worst
payoff that the player controlling v can hope against the coalition opposed to him while
playing with A-rational strategies. Notice that Nego(\)(v) = +o0 if and only if X is not
satisfiable from v.

We can now state the announced SPE characterization. Notice that it shares simi-
larities with the NE characterization stated in Theorem 3.8: the first hypothesis is the
same, the second one is the second hypothesis of Theorem 3.8 adapted to A-rational
strategy profiles.

THEOREM 4.6 ([FLESCH AND PREDTETCHINSKI 2017; BRICE ET AL. 2021]). Let
G be a game such that:

—for each player i, the payoff function pay, is prefix-independent, and
— for each player i, for each vertex v, for each requirement function X satisfiable from v,
there exists a \-rational strategy profile o_; from v such that

inf sup pay;((c'),) = sup pay;((0).).
" ,EXRat(v) o€l (v) ;€ (v)

Then for each initial vertex vy, a play p € Plays(vy) is an SPE outcome in (G,vy) if and
only if p is Aspg-consistent.

Let us illustrate the computation of Aspe on an example of game G that admits
an SPE (see Example 4.7 below). We start with the vacuous requirement function )

11 The negotiation function is monotone and the least fixpoint exists by Tarski’s fixpoint theorem.
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Fig. 6. Computation of the requirement function Aspg for the game of Example 3.2.

such that \g(v) = —oo for all v € V. Notice that all plays are \y-consistent since \g
imposes no constraint. We then iteratively apply the negotiation function Nego, i.e., we
compute ;11 = Nego(\i) for all £ > 0, in a way to update the requirement function
until reaching a fixpoint.

Example 4.7. We consider again the game of Example 3.2. In Figure 6, close to
each vertex, we indicate the value of )y, A\; and \s = A\spe (from left to right).

Notice that \; is equal to Ang as described in Example 3.9 (see Figure 5). Indeed,
when computing A\; from )\g, both equations (2) and (1) are equal as we have o_; €
MoRat(v) if and only if o_; € T'_;(v) (see subscripts of inf in (1) and (2)).

Let us explain the computation of \s(vg) = 2. As vy is controlled by player 2, the
opposed coalition is player 1. The play vovi1v{ (which was Ag-consistent) is not A;-
consistent and the strategy of the coalition —2 such that v; — v4 is not A;-rational.
Therefore the best choice for player 2 from vg is vg — v; to get payoff 2.

4.4. Comments on the SPE Characterization

We already mentioned the similarities between equations (1) and (2). We have that
Ane = Nego(Xg) with A\ being the vacuous requirement function. Thus the first itera-
tion of the Nego function leads to the NE characterization whereas the least fixpoint of
of Nego leads to the SPE characterization.

An important result of [Brice et al. 2021] is that games with mean-payoff functions
satisfy the second condition of Theorem 4.6. Notice that games with finite-range pay-
off functions also satisfy this condition. Therefore, the SPE characterization stated in
Theorem 4.6 holds for games with parity objectives and for games with mean-payoff
functions.

Recall that there exist games with no SPE like the game with mean-payoff objectives
of Figure 2 [Solan and Vieille 2003]. Therefore, by Theorem 4.6, for games G with
mean-payoff objectives, (G, vy) admits no SPE if and only if Aspe(vg) = +oo.

Example 4.8. We consider again the game G of Figure 2 that admits no SPE from
the initial vertex vy. In Figure 7, close to each vertex, we indicate the value of \g, A1, A5
and A3 = Aspg (from left to right). Notice that Aspe(vg) = +oo that confirms the absence
of SPE from vg.

In Examples 4.7 and 4.8, Aspg is computed as the limit of the stationary sequence
(Ag)k>0 such that Ay is vacuous requirement and A;+1 = Nego(Ax) for all £ > 0. An
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Fig. 7. A game with no SPE.

example of game with mean-payoff functions is given in [Brice et al. 2021] such that
this limit is never reached by any requirement function. Nevertheless an algorithm
is provided in [Brice et al. 2021] that computes Aspe fo all games with mean-payoff
functions, thus showing that the SPE existence synthesis problem is decidable for this
class of games (as stated in Theorem 4.3).

5. STACKELBERG GAMES

In this section, we present another concept that is more adequate than the concepts
of NE and SPE for the synthesis of reactive systems: Stackelberg games [von Stack-
elberg 1937]. Those games have a specific player called the leader, the other players
being called followers. The leader starts the game by announcing his strategy and the
followers respond by playing rationally given that strategy. In case of one follower, his
strategy can be an optimal response with respect to his own objective; in case of sev-
eral followers, they can respond with a strategy profile that is an NE. The goal of the
leader is therefore to announce a strategy that guarantees him a payoff at least equal
to some given threshold whatever the rational response of the follower(s).

5.1. Several Followers

We begin with the case of several followers such that each of them models one com-
ponent of the environment. Rationality of the followers is modeled by assuming that
the environment settles to an NE: each component is considered to be an indepen-
dent selfish individual [Fisman et al. 2010; Gupta and Schewe 2014; Kupferman et al.
2016].

Definition 5.1. Let (G,vy) be an initialized game with a specific player 0 € II. Let
oo be a strategy for player 0. A oo-Stackelberg profile (o0¢-SP) is a strategy profile o =
(00, (04)icm\fo}) such that pay;((c).,) > pay;((cj,0_i)y,) for all players i € I\ {0} and
all strategies o} € I';(vp).

In this definition, the strategy o( of the leader i = 0 is fixed, only deviating strate-
gies o} of the followers, i.e., with i # 0, are considered. Two variants of the threshold

synthesis problem are proposed in the context of Stackelberg games, depending on
whether the followers respond to the leader cooperatively or adversarially.

Definition 5.2. Let (G, vg) be an initialized game and i € Q be a threshold.

— The cooperative threshold synthesis problem is to decide whether there exists a strat-
egy oy for player 0 and a 0¢-SP ¢ such that u < pay,({o).,)-

— The adversarial threshold synthesis problem is to decide whether there exists a strat-
egy oy for player 0 such that for all 0(-SP o, we have p < pay((0) v, )-

We illustrate these notions with the next example.

ACM SIGLOG News 15 Vol. 0, No. 0, 0000



N
&

(0,1)

1,1

)

(2,0)

—~
~—

Fig. 8. A cooperative or adversarial follower.

Example 5.3. Let us consider the two-player game (G, v) depicted in Figure 8 such
that the payoffs are indicated below each of the three plays. The leader is the player
that controls the circle vertices and the (unique) follower is the other player. Suppose
that the leader announces to play v; — wv4. The follower has two possible responses
that are NEs: he can play either vg — v or vg — v>. A cooperative follower will play
vp — v1 that maximizes the payoff (equal to 1) of the leader. An adversarial follower
will play vy — v such that the leader only gets a payoff of 0.

Clearly every NE is a 0(-SP. However the next example shows that 0,-SPs may
produce a strictly better payoff for the leader than all NEs. Thus a solution to the
cooperative threshold synthesis problem is not necessarily an NE.

Example 5.4. Let us come back to the game (G, vy) of Figure 8 such that the payoffs
of play vov1 vy are now equal to (1,2) instead of (1,1). The only NE is the strategy profile
(00,01) such that player 0 plays v; — v3 and player 1 plays vy — v2. The outcome of
this NE gives payoff 0 to the leader. Suppose now that the leader announces to play
v1 — v4. The only NE response of the follower is to play vy — v;. The resulting strategy
profile (o), 0}) is a ¢o(-SP that is not an NE and whose outcome gives payoff 1 to the
leader. Therefore (o, c}) is solution to the cooperative threshold synthesis problem
with threshold ;1 = 1 whereas there is no solution that is an NE.

In case of Boolean payoff functions, the cooperative/adversarial threshold synthesis
problem is interesting only with the threshold u equal to 1: we ask for the objective
Qo of the leader to be satisfied. Notice that a 0o-SP such that Q is satisfied is then an
NE because the leader has no incentive to deviate. Therefore in this case the coopera-
tive threshold synthesis problem is nothing else than the threshold synthesis problem
studied for NEs in Section 3.2. Hence for the cooperative threshold synthesis problem
we focus on quantitative payoff functions only. We have the next result:

THEOREM 5.5 ([GUPTA AND SCHEWE 2014]). The cooperative threshold synthesis
problem is NP-complete for games with mean-payoff functions.

The techniques used to prove this result are related to some used for NEs, in par-
ticular they build on the NE characterization of Theorem 3.8 and on [Ummels and
Wojtczak 2011a]. The cooperative threshold synthesis problem is studied for games
with discounted-sum functions in [Gupta et al. 2015; Filiot et al. 2020].

We have the following results for the adversarial threshold synthesis problem.
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THEOREM 5.6 ([CONDURACHE ET AL. 2016]). For games with parity objectives, the
adversarial threshold synthesis problem (with threshold p = 1) is in EXPTIME and
PSPACE-hard.

The EXPTIME-membership stated in this theorem uses tree automata techniques.
The adversarial threshold synthesis problem is studied in [Filiot et al. 2020; Balachan-
der et al. 2020] for games with mean-payoff functions and with two players. An exam-
ple of game is given in [Filiot et al. 2020] such that the follower has no NE (i.e., no
best response, as there is only one follower) to respond to the strategy announced by
the leader. Therefore two notions of e-best responses are respectively proposed in [Fil-
iot et al. 2020] and [Balachander et al. 2020] and in both variants the adversarial
threshold synthesis problem (with strict inequality > i) is proved to be in NP.

5.2. One Follower with Several Payoff Functions

We continue with the case of only one follower modeling the environment however
with several payoff functions, one function for each component of the environment.
After responding to the leader with his own strategy, the follower receives a tuple of
payoffs in the corresponding outcome. Rationality of the follower is encoded by the fact
that he only responds in such a way to receive a Pareto-optimal tuple of payoffs, given
the strategy announced by the leader. This setting encompasses scenarios where, for
instance, several components can collaborate and agree on trade-offs. The goal of the
leader is therefore to announce a strategy that guarantees his own payoff to be larger
than a given threshold, whatever the response of the follower which ensures him a
Pareto-optimal tuple of payoffs [Bruyere et al. 2021al].

In this context, we consider games with fwo players (instead of several players) such
that player 0 is the leader with one payoff function pay, and player 1 is the follower
with several payoff functions (pay,)icq1,....n}- We denote by < the partial order on pairs
of n-tuples of payoffs p = (p1,...,pn), o’ = (p},...,p),) such that p < p’ if and only if
p; < p}forallie {1,...,n}. Given a strategy o, for player 0, we denote P,, the set of
n-tuples of payoffs (for player 1) of plays compatible with o that are Pareto-optimal
with respect to <:!2

Py, = sup{(payi(p))ie{l_,__wn} € R" | pis compatible with o} 3)

We say that P,, is achievable if it is not empty and for each p € P,, there exists a play
p compatible with oy such that p = (pay,(p))icq1,... n}. Finite-range payoff functions
(thus in particular Boolean payoff functions) always yield an achievable set P, . For
games with mean-payoff functions, the set P,, may be empty as shown in the example
from [Filiot et al. 2020] that we mentioned at the end of the previous subsection. Notice
that this example uses an infinite-memory strategy oo; indeed the set P,, is always
achievable when o has finite memory [Chatterjee et al. 2010b].

In the context of games with Boolean payoff functions, the following notion of ra-
tional response of the follower and the related threshold synthesis problem are intro-
duced in [Bruyere et al. 2021al].

Definition 5.7. Let (G, vg) be an initialized game with Boolean payoff functions and
let oo be a strategy for player 0. A oy-Pareto-optimal (co-PO) strategy is a strategy o
for player 1 such that (pay,(p))icq1,....n} € Pr, Where p = ((00,01))u,-

yeeey

Definition 5.8. Let (G, vp) be an initialized game with Boolean payoff functions and
let 1 € Q be a threshold. The Pareto-optimal threshold synthesis problem is to decide

12Notice that P,, only refers to n-tuples of payoffs received by player 1 and not to the payoff received by
player 0.
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Fig. 9. A game where player 1 has n = 3 payoff functions.

whether there exists a strategy o for player 0 such that for all ¢y-PO strategy o, for
player 1, we have p < pay,({((c0,01))wv,)-

The next example shows that player 0 sometimes needs to play a complex strategy
09, 1.e., not memoryless, in order to have a solution to the previous problem [Bruyere
et al. 2021a].

Example 5.9. Consider the game depicted in Figure 9 in which player 0 has one
Boolean payoff function and player 1 has n = 3 Boolean payoff functions. All these pay-
off functions are prefix-independent such that the tuple of payoffs'? of plays eventually
looping on vertices vy, v4, vg Or vy is displayed in the arena next to those vertices, and
the tuple of payoffs of plays eventually looping on cycle (v3vs) is equal to (0, (0, 1,0)).
The leader is again the player that controls the circle vertices. Let us study the Pareto-
optimal threshold synthesis problem with bound p = 1 (player 0 wants to see his
objective being satisfied).

Consider the memoryless strategy oy of player 0 such that v3 — w5. The
set of triples of payoffs for player 1 of plays compatible with oy is equal to
{(0,0,1),(0,1,0),(1,0,0),(0,1,1)} and the set of those that are Pareto-optimal is P,, =
{(1,0,0),(0,1,1)}. Notice that play p = vovevy is compatible with o, has triple of pay-
offs (1,0, 0) for player 1 and payoff 0 for player 0. Strategy o is therefore not a solution
to the Pareto-optimal threshold synthesis problem. In this game, there is only one
other memoryless strategy for player 0 (such that v3 — v7). One can verify that it is
again not a solution to the problem.

We can however define a finite-memory strategy oy such that o(vovavs) = vs and
oo(vovavsvsv3) = vy and show that it is now a solution to the problem. Indeed, the
set of Pareto-optimal triples of payoffs is P,, = {(0,1,1),(1,1,0)} and player 0 receive
payoff 1 for every play compatible with oy whose triples of payoffs for player 1 is in this
set.

We have the following result for the Pareto-optimal threshold synthesis problem.

THEOREM 5.10 ([BRUYERE ET AL. 2021A]). For games with parity objectives, the
Pareto-optimal threshold synthesis problem (with threshold p = 1) is NEXPTIME-
complete. It is fixed-parameter tractable (in parameters equal to the number of objectives
of the follower and the maximal priority used in each priority function).

The FPT complexity result of this theorem is obtained thanks to a reduction to a so-
called Challenger-Prover zero-sum game such that Prover tries to show the existence of
a solution to the problem, while Challenger tries to disprove it. Classical tree automata

13We denote such a tuple by (po, (p1, P2, p3)) to distinguish the payoff po of player 0 from the triple of payoffs
(p1, p2,p3) of player 1.
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techniques seem inadequate in this context. The results of Theorem 5.10 also hold for
games with reachability objectives [Bruyere et al. 2021a].

For games with quantitative payoff functions (like mean-payoff), as the set P,, given
in (3) may be empty, adequate variants of the Pareto-optimal threshold synthesis prob-
lem need to be introduced and further studied.

6. RELATED WORK

In this section, we indicate additional pointers to related work.

NEs capture rational behaviors when the players only care about their own payoff
and are indifferent to the payoff of the other players. The notion of secure equilibrium
is introduced in [Chatterjee et al. 2006] for two-player games with lexicographic ob-
jectives: each player first tries to maximize his own payoff and then to minimize the
payoff of the other player. It is proved in [Chatterjee et al. 2006] that every two-player
game with Borel Boolean objectives has a secure equilibrium; this result is generalized
to multi-player games in [De Pril et al. 2014]. Concerning games with quantitative ob-
jectives, general hypotheses are provided in [De Pril et al. 2014] that guarantee the
existence of a secure equilibrium; the threshold synthesis problem for secure equilib-
ria is studied in [Bruyere et al. 2014]. A variant of secure equilibrium, called Doomsday
equilibrium, is studied in [Chatterjee et al. 2017] for games with w-regular objectives
with both perfect and imperfect information. The concept of assume-guarantee synthe-
sis inspired from secure equilibria is introduced in [Chatterjee and Henzinger 2007]
and is further studied for digital contract signing in [Chatterjee and Raman 2014]
and for concurrent reactive programs with partial information in [Bloem et al. 2015].
NEs with lexicographic objectives in concurrent games are investigated in [Gutierrez
et al. 2017] such that each player first prefers to satisfy his Biichi objective and then
to minimize his mean-payoff.

SPEs are immune of the problem of non-credible threats. Another concept that
avoids this problem is studied in [Berwanger 2007] with the concept of admissible
strategies which are strategies not dominated by any other strategies. Dominated
strategies are eliminated for each player, step by step (as strategies that were not
dominated may become dominated), until the process stabilizes. The algorithmic prop-
erties of this concept is studied in [Brenguier et al. 2014] for games with w-regular
objectives. The assume-admissible synthesis related to the first iteration of this elim-
ination procedure is studied in [Brenguier et al. 2016; Basset et al. 2017a; Brenguier
et al. 2017]. The notion of admissibility in timed games is investigated in [Basset et al.
2017b].

The notion of weak SPE is introduced in [Brihaye et al. 2015] as a useful concept
to study the existence SPEs (possibly with contraints) in quantitative reachability
games. The exact complexity class of this problem is later settled in [Brihaye et al.
2020]. While an SPE must be resistant to any unilateral deviation of one player, a
weak SPE must be resistant to deviations restricted to deviating strategies that differ
from the original one on a finite number of histories only. Weak SPEs are easier to
characterize and to manipulate algorithmically and they coincide with SPEs for large
classes of games, for instance for games played on finite trees [Kuhn 1953] or with
lower-semicontinuous payoff functions [Flesch et al. 2010]. In [Bruyere et al. 2021b]
the authors study general conditions that guarantee the existence of a weak SPE for
quantitative games. The constrained synthesis problem is studied in [Brihaye et al.
2018; Goeminne 2020] for different kinds of w-regular objectives.

NEs are also investigated in the more general framework of concurrent games, where
the players make their choices concurrently instead of in a turn-based way. In this set-
ting, the constrained synthesis problem for NEs is undecidable for concurrent deter-
ministic games with terminal-reward payoffs and with randomized strategies [Bouyer
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et al. 2014]. When the NEs are composed of pure strategies, this problem is solved
in [Klimos et al. 2012] for quantitative reachability games thanks to the effective rep-
resentation of the oucomes of NEs as the language accepted by some Biichi automaton.
It is also solved in [Bouyer et al. 2015] for all classical w-regular objectives thanks to
the concept of suspect game. The latter game is a two-player zero-sum game where one
player tries to have the players play an NE and the other player tries to disprove this
attempt by finding a profitable deviation for one of the original players. The existence
of NEs and SPEs in multi-player timed games with reachability objectives is studied
in [Bouyer et al. 2010; Brihaye and Goeminne 2020]. The existence problem for NEs
is solved in [Gutierrez et al. 2020] for concurrent games where the objectives of the
players are specified by LTL formulas. The proposed algorithm reduces the problem
to solving a collection of parity games and has been implemented in the Equilibrium
Verification Environment (EVE) system.

When shifting to stochastic games, we are again faced with undecidability. For in-
stance, for turn-based stochastic games with w-regular objectives, it is undecidable
whether there exists an NE where a given player satisfies his objective with proba-
bility 1 [Ummels and Wojtczak 2011a]. In [Chatterjee et al. 2004], the authors give
an algorithm for computing an NE in stochastic games with w-regular objectives. The
complexity of finding an NE satisfying certain constraints is analyzed in [Ummels and
Wojtczak 2011al].

Non-zero-sum games are also examined in the context of imperfect information.
In [Gutierrez et al. 2018], the authors study the existence problem for NEs in concur-
rent games with imperfect information and LTL objectives. The notions of admissible
strategy in [Brenguier et al. 2017] and of Doomsday equilibrium in [Filiot et al. 2018]
are studied in the context of games with imperfect information. Rational synthesis is
investigated in [Filiot et al. 2018] in the imperfect information setting. An extension
of the suspect game is proposed in the setting of games with imperfect monitoring
in [Bouyer 2018].

Popular extensions of temporal logics have been introduced to express the existence
of strategies for the components of a system, like ATL [Alur et al. 2002], a well-known
extension of CTL. To be able to reason about solution concepts like NEs, Strategy Log-
ics (SL) has been introduced in [Chatterjee et al. 2010; Mogavero et al. 2014]. An exten-
sion of SL is introduced in [Aminof et al. 2019] for stochastic systems and in [Berthon
et al. 2021] for systems with imperfect information. Let us also mention a quantitative
extension of SL proposed in [Bouyer et al. 2020]. The complexity of rational synthesis
is studied thanks to adequate variants of SL in [Fisman et al. 2010; Kupferman et al.
2016] for games with objectives defined by LTL formulas and such that the components
of the environment behave according to an NE, an SPE, or using dominant strategies.

Other kinds of constraints on NEs and SPEs are investigated like the social welfare
equal to the sum of the payoffs for all players, see e.g. in [Conitzer and Sandholm 2003;
Bouyer et al. 2014; Brihaye et al. 2019].

There are several works about the existence of solution concepts like NEs and SPEs
for any (possibly infinite) number of players and actions. Notice that we are quickly
faced with non-existence results. For instance, there is no NE in the simple one-player
game where the player has to play once by choosing an action among his infinite action
set {1,2,...} and action n gives him payoff 1 — 1. For general conditions implying NE
or SPE ex1stence see e.g. [Roux 2013; Flesch and Predtetchinski 2016; 2017; Cingiz
et al. 2020; Bruyere et al. 2021b; Roux and Pauly 2021].

7. CONCLUSION

In this introductory survey, we presented both classical and recent results about the
threshold synthesis problem for multi-player non-zero-sum games played on graphs.
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We focused on two important payoff functions: on parity objectives for the Boolean
case and on mean-payoff functions for the quantitative case. The threshold synthesis
problem has been studied according to different solution concepts. We first recalled the
concepts of NE and SPE from game theory as well as the known results to the thresh-
old synthesis problem. In this context we presented a very useful characterization of
NE outcomes and the one obtained recently for SPEs. We then presented Stackelberg
games well-suited for the synthesis of reactive systems. The environment is modeled
either as several players each of them with their own objective or as a single player
with several objectives (one for each of his components). Illustrative examples were
provided all along the survey and a last section was completely dedicated to related
work.
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