
ON THE EXPANSION (N,+, 2x) OF PRESBURGER ARITHMETIC

FRANÇOISE POINT1

1. Introduction.

This is based on a preprint ([9]) which appeared in the Proceedings of the fourth
Easter Conference on model theory, Gross Köris, 1986, 17-34, Seminarberichte 86,
Humboldt University, Berlin, where, with G. Cherlin, we gave a detailed proof of
a result of Alexei L. Semenov that the theory of (N,+, 2x) is decidable and admits
quantifier elimination in an expansion of the language containing the Presburger
congruence predicates and a logarithmic function.

Expansions of Presburger arithmetic have been (and are still) extensively studied
(see, for instance [5]). Let us give a quick review on the expansions of (N,+, P2), where
P2 is the set of powers of 2. J. Richard Büchi showed that this expansion is decidable
using the fact that the definable subsets are recognizable by a finite 2-automaton (and
Kleene’s theorem that the empty problem for finite automata is decidable). (In his
article, a stronger result is claimed, namely that Thω(N, S), the weak monadic second-
order theory of N with the successor function S, is bi-interpretable with Th(N,+, P2),
which is incorrect, as later pointed out by R. McNaughton ([19])).

In his review, McNaughton suggested to replace the predicate P2 by the binary
predicate ε2(x, y) interpreted by ”x is a power of 2 and appears in the binary ex-
pansion of y”. It is easily seen that this predicate is inter-definable with the unary
function V2(y) sending y to the highest power of 2 dividing it. Since then, sev-
eral proofs of the fact that Th(N,+, V2) is bi-interpretable with Thω(N, S) and that
Def(N,+, V2) are exactly the 2-recognizable sets (in powers of N) appeared (see [6],
[7]), where Def(N,+, V2) are the definable sets in the structure (N,+, V2).

A.L. Semenov exhibited a family of 2-recognizable subsets which are not definable
in (N,+, P2) (see [24] Corollary 4 page 418). Another way to show that this last theory
has less expressive power than Th(N,+, V2) is to use a result of C. Elgot and M. Rabin
([16] Theorem 2) that if g is a function from P2 to P2 with the property that g skips
at least one value, namely that ∀n > 1 ∀m (m > n → (∃y ∈ P2 g(m) > y > g(n))),
then Th(N,+, V2, n → g(n)) is undecidable and so Th(N,+, V2, 2

x) is undecidable
(another proof was given by G. Cherlin (see [9]). Consequences are that neither
the graph of 2x is definable in (N,+, V2), nor the graph of V2 in (N,+, 2x) and that
Th(N,+, P2) has less expressive power than Th(N,+, 2x).

Which unary predicate can we add to the structure (N,+, V2) and retain decidabil-
ity? Let us mention two kinds of results. On one hand, R. Villemaire showed that

Date: July 23, 2010.

1Senior Research Associate at the ”Fonds National de la Recherche Scientifique”.
1
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Th(N,+, V2, V3) is undecidable ([26]) and this has been strengthened by A. Bès who
proved that Th(N,+, V2, P3) is undecidable ([4]), and on the other hand, P. Bate-
man, C. Jockusch and A. Woods showed that, under the linear Schintzel hypothesis,
Th(N,+, V2, (2

n)n∈P), where P denotes the set of prime numbers, is decidable ([2]).
Then, one may ask what are the complexities of the definable sets of these struc-

tures? In an analogous way to his proof of the model-completeness of the theory of
(R,+, ., λ2) ([13]), where λ2 is a unary function sending a strictly positive real number
r to the biggest power of 2 smaller than r, L. van den Dries ([14]) gave a universal
axiomatisation T of Th(N,+, P2) in the language {+, −̇,≤, 0, 1, .

n
;n ∈ ω, λ2, P2} and

showed that T was model-complete (and so it admits quantifier elimination). Both
proofs were model-theoretic, using a description of 1-extensions. Recently, J. Avigad
and Y. Yin gave an effective proof of van den Dries’ quantifier elimination result for
(R,+, ., λ2) (see [1]).

R. Villemaire ([26]) showed that the quantifier complexity of Def(N,+, V2) has no
more than three alternations of quantifiers : ∃∀∃, by showing that any subset of Nn

which is recognizable by a finite 2-automaton is definable in (N,+, V2).
Finally, let us say a word on other expansions of Presburger arithmetic. H. Put-

nam showed that (N,+, C), where C is a unary predicate for the set of squares, is
undecidable, then J.R. Büchi extended that result to (N,+, R), where R is a unary
predicate which is ultimately the image of a polynomial of degree bigger than or equal
to 2 ([8]). On the other hand he showed that Th(N,+, R) is decidable whenever it is
ultimately periodic.

A.L. Semënov ([25]) described a class of unary predicates R (effectively) sparse and
a class of functions f : N → N, (effectively)compatible with addition for which one
gets analogous (decidability and) definability results as for (N,+, P2) and (N,+, 2x)
(see section 4).

Revisiting a result of A. Muchnik ([21]), C. Michaux and R. Villemaire showed
that whenever one has a subset R′ of Nm, for some m, which is not already de-
finable in Presburger arithmetic, then one can find a subset R of N such that
R ∈ Def(N,+, R′) − Def(N,+) (see [20]). A. Bès showed showed that there ex-
ists R̃ := (rn)n∈ω ⊂ N with R̃ ∈ Def(N,+, R) and such that rn+1 − rn ≥ n ([4]).

To a subset of N, one can associate a numeration system. In [23], we gave necessary
conditions on the numeration system under which R = (rn)n∈N and fR : n→ rn, ful-
filled Semënov requirements and so for which Th(N,+, R) (respectively Th(N,+, fR))
was model-complete and/or decidable.

Note that there are unary predicates R such that Th(N,+, R) is decidable and
model-complete, but Th(N,+, VR) is undecidable. (For instance, take R := (2n +
n)n∈ω.)

2. Axiomatisation of (N,+, 2x)

Let N∗ := N− {0}.
Definition 2.1. Let L := {+, −̇,≤, 0, 1, .

n
;n ∈ N∗, 2x, `2(x)}.

Let x, y, z ∈ N and n ∈ N∗, let us define

(1) x−̇y = 0 if y > x, and x−̇y = x− y if y ≤ x.
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(2) x
n

= y iff x = n.y + z, where 0 ≤ z < n.
(3) If x 6= 0, y 6= 0, then (`2(x) = y iff 2y ≤ x < 2y+1) and `2(0) = 0.
(4) If x 6= 0, then (P2(x) iff x = 2`2(x)).
(5) If x 6= 0, y 6= 0, then (λ2(x) = y iff (y ≤ x < 2.y and P2(y))) and λ2(0) = 0).

We abbreviate x−̇x
d
.d = m, where 0 ≤ m ≤ d − 1 and d ∈ N∗, by the congruence

condition: x ≡d m. Let LP := {+, −̇,≤, 0, 1, .
n
;n ∈ N∗}.

Let TPres be the LP -theory of Presburger arithmetic:

(1) ∀x ∀y ∀z ((x+ y) + z = x+ (y + z)),
(2) ∀x (x+ 0 = 0 + x = x),
(3) ∀x ∀y ∀z (x+ z = y + z → x = y),
(4) ∀x ∀y (x+ y = y + x),
(5) ∀x ∀y (x ≤ y ↔ ∃u (x+ u = y)),
(6) ∀x ∀y (x ≤ y or x ≤ y),
(7) ∀x (x ≥ 0 & x 6= 0→ x ≥ 1) & 0 6= 1,
(8) ∀x ∃y (

∨
0≤k<n x = n.y + k), for each n ∈ N∗,

(9) ∀x ∀y(x
n

= y ↔
∨

0≤k<n x = n.y + k), for each n ∈ N∗,
(10) ∀x ∀y ∀z (x−̇y = z ↔ ((x ≥ y & x = y + z) or (x ≤ y & z = 0))).

Let φ be the Euler function, namely φ(m) for natural number m is the number of
natural numbers coprime to m and less than or equal to m. We will include in our
axioms a special case of Euler’s theorem, namely that if m is odd, then 2φ(m) ≡m 1.
In the following, we will use 2.x as an abbreviation for x+ x.

Let Texp be the following L ∪ {λ2}-theory

(1) TPres
(2) ∀x (x 6= 0→ (λ2(x) ≤ x < 2.λ2(x))), λ2(0) = 0,
(3) ∀x ∀y (0 < x ≤ y → `2(x) ≤ `2(y)),
(4) `2(0) = 0, `2(1) = 0,
(5) ∀x (x ≥ 1 → `2(2.x) = `2(x) + 1),
(6) ∀x (x ≥ 1 → 2`2(x) = λ2(x)),
(7) ∀x (`2(2x) = x),
(8) ∀x (2x+1 = 2x + 2x),

(9) ∀ (x ≥ 1→ 2x−̇1 ≥ x),
(10) ∀x (x ≡φ(m) 0 → 2x ≡m 1) for every odd natural number m ∈ N∗.
We will show that Texp axiomatizes the theory of (N,+, 2x); this will be a conse-

quence of the quantifier elimination (q.e.) result for this theory. Indeed, (N,+, 2x) is
a model of Texp and it embeds in any model of that theory, so in particular it will be
a prime model of Texp.

Before proving the q.e. result, we list a series of properties that hold in any model
of Texp.

(1) λ2(1) = 1 since λ2(1) ≤ 1 and 1 < 2.λ2(1) (axiom (2)).
(2) 20 = 1 since 2`2(1) = λ2(1) = 1 (axioms (6), (4) and property (1) above).
(3) If x ≥ 1, λ2(2x) = 2x and λ2(20) = λ2(1) = 1 = 20.
(4) λ2(2.x) = 2.λ2(x) [if x ≥ 1, λ2(2.x) = 2`2(2.x) = 2`2(x)+1 = 2.2`2(x) = 2.λ2(x),

if x = 0, λ2(0) = 2.λ2(0) = 0.
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(5) ∀x ∀y (2`2(x) < y < 2`2(x)+1 → y 6= 2`2(y)) [since `2 is an increasing function,
we have that `2(x) ≤ `2(y) ≤ `2(x) + 1. So either, `2(x) = `2(y) and so
2`2(x) = 2`2(y) and 2`2(y) 6= y, or `2(x) + 1 = `2(y), so 2`2(y) = 2`2(x)+1 which
implies that 2`2(y) > y, a contradiction with axioms (2) and (6).

(6) λ2(λ2(x)) = λ2(x) [λ2(x) = 2`2(x) and λ2(λ2(x)) = λ2(2`2(x)) = 2`2(x) (property
(3)).

(7) `2(x) = `2(λ2(x)) [λ2(x) = λ2(λ2(x)), namely 2`2(x) = 2`2(λ2(x)); so `2(x) =
`(λ2(x)).

(8) Let m,n,N ∈ N∗ with m ≤ n and N > `2(n)− `2(m) + 1. Then,

∀x (x ≥ 2N → nx ≤ m.2x).

First, we prove that if x ≥ 2.N , then 2x ≥ 2N .x. By axiom (9), x ≥ 1 →
2x−1 ≥ x. So, x ≥ N + 1 implies that 2(x−N)−1 ≥ x−N . So, if 2.(x−N) ≥ x
i.e. x ≥ 2.N , then we get the result.
Then, 2.λ2(n) ≤ 2N .λ2(m) and n.x ≤ 2.λ2(n).x, so n.x ≤ 2.λ2(n).x ≤
2N .λ2(m).x ≤ λ2(m).2x ≤ m.2x.

Finally, we will show that axiom (8) of Texp follows from properties (3) and (4)
above.
First we prove that ∀x `2(2x+1) = `2(2.2x). [`2(2x+1) = x+ 1 and `2(2.2x) = `2(2x) +
1 = x+ 1.]

Then, 2`2(2x+1) = 2`2(2.2x) and 2(`2(2x+1)) = λ2(2.2x) = 2.λ2(2x) = 2.2x.
Therefore T ∗exp, where in Texp, we replace axiom (8) by ∀x (λ2(2.x) = 2.λ2(x))

(property (4)), is equivalent to Texp.

3. Quantifier Elimination.

The following results were proven by A.L. Semenov in [25] and a more detailed
proof was written in [9].

Theorem 3.1. The theory Texp admits quantifier elimination in L and Nexp is a
prime model of Texp.

Corollary 3.2. The theory Texp is complete and decidable. 2

As noted by K. Compton and C.W. Henson ([11] Remark 8.9, p.187) , one can
define a pairing function in models of Texp, namely p(x, y) := 22x + 22y+1, which
implies that Texp has a hereditary exp∞(cn) lower bound.

As a byproduct of the proof of the above theorem, we obtain the following result.

Theorem 3.3. Given any L-formula θ(x, ȳ), there exists a term t(ȳ) that one can
built from θ such that

Texp |= ∀ȳ[∃x θ(x, ȳ)↔ ∃x ≤ t(ȳ) θ(x, ȳ)].

Proof of theorems 3.1 and 3.3:
We will show that any 1-existential formula ∃x θ(x, ȳ), where θ(x, x̄) is a conjunction
of basic formulas, is equivalent to an open formula. We will assume that all the basic
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formulas are of the form t1 ≤ t2 where t1 and t2 are L-terms. (Indeed, t1 < t2 is
equivalent to t1 + 1 ≤ t2 and t1 = t2 is equivalent to (t1 ≤ t2 & t2 ≤ t1)).

Tracing through the proof, we will show that we can bound the variable x by a
term in ȳ. We will proceed as follows.

We will make the following convention. If x is a variable, n.x, where n ∈ N∗,
means x + · · · + x (n times), we will introduce terms of the form z.x, z ∈ Z − {0},
in atomic formulas of the form t1 + z.x ≤ (=,≥)t2 and this will mean, if z < 0 that
t1 ≤ (=,≥)t2 + (−z).x.

First step:
By adding possibly more quantified variables, we transform the formula ∃x θ(x, ȳ) into
a formula ∃x̄ θ0(x̄, ȳ) where now θ0(x̄, ȳ) is a disjunction of conjunction of inequations
between terms of the following forms:
(i)

∑
i ai.2

c.xi +
∑

j bj.xj+d with ai, bj, d ∈ Z, c ∈ N [we will call such terms S-terms],

(ii) L-terms in ȳ.
Note that the coefficient c of the x′is does not depend on i (and we will use later

that it is allowed to be unequal to 1.

To achieve this, we replace in θ:-assuming that x occurs non trivially in t(x, ȳ).

(1) any term of the form 2t(x,ȳ), where t(x, ȳ) is not the variable x, by a new term
2xj , where xj is a new variable, and we add the atomic formula xj = t(x, ȳ),

(2) any term of the form `2(t′(x, ȳ)) by a new variable xi and we add the formula
2xi ≤ t′(x, ȳ) < 2xi+1,

(3) any term of the form t(x,ȳ)
n

by a new variable xk and we add the disjunction∨
0≤m≤n t(x, ȳ) = n.x+m,

(4) any term of the form t1(x,ȳ)−̇t2(x,ȳ)
n

by either t1(x,ȳ)−t2(x,ȳ)
n

or 0, adding the
disjunction of the corresponding two cases whether t1(x, ȳ) > t2(x, ȳ) or
t1(x, ȳ) ≤ t2(x, ȳ),

(5) any inequation of the form t1(x, ȳ)+s1(ȳ) ≤ t2(x, ȳ)+s2(ȳ) by s1(ȳ)−s2(ȳ) ≤
t2(x, ȳ)− t1(x, ȳ).

Second step:
Rename x, x0 and assume we have introduced n new variables x̄ := (x1, · · · , xn) in
the above process.

Let Sn+1 be the group of permutations on {0, 1, · · · , n} and σ ∈ Sn+1. Let
χσ(x, x̄) := xσ(0) ≤ · · · ≤ xσ(n). Set θ0,σ(x, x̄) := χσ(x, x̄) & θ0(x, x̄, ȳ).

We have that
θ0(x, x̄, ȳ)↔

∨
σ∈Sn+1

θ0,σ(x, x̄, ȳ)

and
∃x θ(x, ȳ)↔ ∃x ∃x̄ θ0(x, x̄, ȳ)↔

∨
σ∈Sn+1

∃xσ(0) · · · ∃xσ(n) θ0,σ(x, x̄).

From now on, we will deal with the 1-existential formula ∃xσ(n) θ0,σ(x, x̄, ȳ) and
we will show how to eliminate this existential quantifier. In order that the process
terminates, we have to obtain a formula where we don’t have to use again processes
(1) up to (3).
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We will show that we can bound x by a multiple of 22. .
.
2t(ȳ)

, where t(ȳ) is a subterm
of θ, the number of iterations of the exponential function is equal to n and this
multiple only depends on the coefficients of the variable x and on the constant terms
appearing in θ.

Put θ0,σ in disjunctive normal form, say
∨
i∈I θi,0,σ; rename xσ(n) by x0, θi,0,σ by θ0

and (xσ(0), · · · , xσ(n−1)) by x̄.
Third step:

We distinguish between two different ways x0 can occur in the formula θ0.
A) x0 occurs linearly in every inequation occurring in θ0.

We may assume that the system of inequations is of the form:∧
1≤i≤p,1≤j≤q,1≤k≤s

fj(x̄) + gj(ȳ) ≤ dkx0 ≤ fi(x̄) + gi(ȳ), (?)

where fi(x̄), fj(x̄) are S-terms and gi(ȳ), gi(ȳ) are L-terms, dk ∈ Z and depends on
both i, j. [Indeed, fj(x̄) + dk.x0 ≤ gj(ȳ) is equivalent to fj ≤ gj & dk.x0 ≤ gj − fj or
fj > gj & fj − gj ≤ (−dk).x0.]

Let d be the least common positive multiple of the dk’s and decompose d as follows:
d = 2r.d0, where d0, r ∈ N and d0 is an odd natural number. We multiply out each
inequation occurring in (?) in order to get d as the coefficient of x0.

For each xi, 1 ≤ i ≤ n, the following disjunct holds:∨
0≤ki<d.φ(d0)

(xi ≥ r & xi−̇r = ki + d.φ(d0).x′i) or
∨

0≤z<r

xi = z.

We replace each inequation in (?) by a disjunction of inequations which are obtained
by either replacing xi by r + ki + d.φ(d0).x′i or by z with 0 ≤ z < r.

Let us consider a S-term f(x̄) of the form
∑n

i=1 ai.2
c.xi +

∑
t bt.xt + e and let us

do one of the above substitutions. Assume that xi > r (otherwise we replace xi by a
constant in the interval [0; r]), we get

f ′(x̄′) :=
n∑
i=1

ai.2
c.(ki+r+d.φ(d0).x′i) +

∑
t

bt.(r + ki + d.φ(d0).x′t) + e.

By axiom scheme (10), we have 2φ(d0).d.x′i ≡d0 1, so 2r.2φ(d0).d.x′i ≡d 2r and 2xi =
2r+ki .2φ(d0).d.x′i ≡d 2r+ki . Therefore, setting ui = xi if xi ≤ r, and ui = r + ki, if
xi > r, we get that f(x̄) ≡d f(ū) and xi ≡d.φ(d0) ui.

So in replacing the tuple of variables x̄ by x̄′, we again obtain S-terms since the
coefficients of the x′i’s are all equal to c.d.φ(d0) and we have for each S-term f(x̄)
that f ′(x̄′) ≡d f(ū). In particular, we obtain a disjunction of systems of inequations
each of the form (?), over the possible values for the tuple ū.

Consider the existential formula

∃x0

∧
1≤i≤p,1≤j≤q

f ′j(x̄
′) + gj(ȳ) ≤ dx0 ≤ f ′i(x̄

′) + gi(ȳ).
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It is equivalent to the open formula:∨
ρ∈Sp

∨
τ∈Sq

[f ′τ(1)(x̄
′)+gτ(1)(ȳ) ≥ · · · ≥ f ′τ(q)(x̄

′)+gτ(q)(ȳ) & f ′τ(1)(x̄
′)+gτ(1)(ȳ) ≤ f ′ρ(1)(x̄

′)+gρ(1)(ȳ) &

f ′ρ(1)(x̄
′)+gρ(1)(ȳ) ≤ · · · ≤ f ′ρ(p)(x̄

′)+gρ(p)(ȳ)] &[(f ′ρ(1)(x̄
′)+gρ(1)(ȳ))−̇(f ′τ(1)(x̄

′)+gτ(1)(ȳ)) ≥ d or

[
∨

0≤cτ,ρ<d

[(f ′ρ(1)(x̄
′)+gρ(1)(ȳ))−̇(f ′τ(1)(x̄

′)+gτ(1)(ȳ)) = cτ,ρ & (
∨

0≤c′≤cτ,ρ

gτ(1)(ȳ)+fτ(1)(ū) ≡d d−c′)]]].

Note that we can bound the variable xσ(n) by 1
d
.maxρ{fρ(1)(xσ(0), · · · , xσ(n−1)) +

gρ(1)(ȳ)}. Then, we iterate the procedure considering the next largest variable and
applying either A) or B) below. We will show that in the case B) below that we can
bound the variable by either a term of the form `2(t(ȳ)) + 1 where t(ȳ) is a sub-term
occurring in θ, or by max{xi + δ′′, N ′′}, for some 1 ≤ i ≤ n, where δ′′ and N ′′ are
some explicit constants depending on the coefficients appearing in the formula θ0.
So, at the end, we will obtain, in an explicit way, a term in ȳ bounding x.

B) There is an inequation where x0 occurs in an exponential term. Let

a0.2
d.x0 +

n∑
i=1

ai.2
d.xi +

n∑
j=0

bj.xj + c ≤ t(ȳ)

be such inequation, where t(ȳ) is an L-term, d ∈ N∗, ai, bj, c ∈ Z, a0 6= 0. We denote
such inequation by τ(x0, x̄, ȳ).

We are going to replace τ by a boolean combination of inequations between S-
terms in x0, · · · , xn, where now x0 occurs linearly, and L-terms in ȳ. We will assume
that d = 1. Let J := {0, · · · , n}. Let J1 := {j ∈ J : bj ≥ 0}.

If J1 6= ∅, let b+ := 2.(`2(
∑

j∈J1
bj) + 3) and otherwise set b+ = 0.

If J − J1 6= ∅, let b− := 2.(`2(
∑

j∈J1
(−bj)) + 4), otherwise set b− := 0.

Let c+ := `2(c) + 3 and c− := 0, if c > 0 and let c+ = 0 and c− := `2(−c) + 4,
otherwise.

Case: a0 > 0. We will distinguish four subcases.

(1) 2.λ2(a0).2x0 ≤ λ2(t(ȳ)),
(2) λ2(a0).2x0 = λ2(t(ȳ)) (equivalently, x0 = `2(t(ȳ))− `2(a0)),
(3) λ2(a0).2x0 = 2.λ2(t(ȳ)) (equivalently, x0 = `2(t(ȳ)) + 1− `2(a0)),
(4) λ2(a0).2x0 > 2.λ2(t(ȳ)),

Note that in subcase (2) (respectively subcase (3)), we may substitute x0 by a L-term
in ȳ, namely `2(t(ȳ))− `2(a0) (respectively `2(t(ȳ)) + 1− `2(a0)).

In the remaining cases, we will estimate the S-term

a0.2
x0 +

n∑
i=1

ai.2
xi +

n∑
j=0

bj.xj + c

as follows. Let δ := `2(
∑

i |ai|) + 3.
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Claim: In subcase (1), if x0 ≥ max{b+, c+} and if for all 1 ≤ i ≤ n, xi ≤ x0 − δ,
then τ(x0, x, ȳ) holds.
This can be expressed as follows.

x0 ≤ `2(t(ȳ))− `2(a0)− 1 & [(x0 ≤ b+) or (x0 ≤ c+) or

[(x0 ≥ b+ & x0 ≥ c+) & [(
n∧
i=1

xi + δ ≤ x0) or
n∨
i=1

∨
0≤k≤δ

(x0 = xi + k & τ(xi + k, x̄, ȳ)]]].

Proof of the Claim:
(a) First, assume that

∑
j bj.xj ≥ 0.

We have
∑

j∈J bj.xj ≤
∑

j∈J1
bj.xj ≤ (

∑
j∈J1

bj).x0 ≤ 2x0−2. To see that this last in-

equality (5) holds, we use property (9) and the fact that x0 ≥ b+ := 2.(`2(
∑

j∈J1
bj)+

3). Now,

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J

bj.xj + c ≤ a0.2
x0 +

∑
i 6=0

|ai|.2xi +
∑
j∈J1

bj.xj + c.

Then,

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J

bj.xj + c ≤ 2x0 .(a0 +
∑
i 6=0

|ai|.2−δ + 2x0 .2−2) + c

≤ 2x0 .(a0 +

∑
i 6=0 |ai|

22.2.λ2(
∑

i 6=0 |ai|)
+ 2x0−2) + c

≤ 2x0 .(a0 +
1

4
+

1

4
) + c (6)

(a.1) Assume that
∑

j bj.xj ≥ 0 and c ≥ 0.

So, c+ := `2(c) + 3 and since x0 ≥ c+, we get 2x0 ≥ 2.λ2(c).22 > 4.c (7).
Using inequation (6), we get:

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j

bj.xj + c ≤ 2x0 .(a0 +
1

4
+

1

4
+

1

4
)

< 2x0 .(a0 + 1) ≤ 2x0 .(2.λ2(a0)) ≤ λ2(t(ȳ)) (8)

≤ t(ȳ).

(a.2) Assume that
∑

j bj.xj ≥ 0 and c ≤ 0. Using inequations (6) and (8), we get:

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J

bj.xj + c ≤ 2x0 .(a0 +
1

4
+

1

4
)

< 2x0 .(a0 +
1

2
)

≤ t(ȳ).
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(b) Second, assume that
∑

j∈J bj.xj ≤ 0. Again we will use the fact that in the case

c ≥ 0, since x0 ≥ c+, then c ≤ 2x0−2 (see inequation (7)).

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J

bj.xj + c ≤ a0.2
x0 +

∑
i 6=0

ai.2
xi + c

≤ 2x0 .(a0 +
∑
i 6=0

|ai|.2−δ) + c

≤ 2x0 .(a0 +

∑
i 6=0 |ai|

22.2.λ2(
∑

i 6=0 |ai|)
) + c

≤ 2x0 .(a0 +
1

2
)

≤ t(ȳ)

Claim: In subcase (4), if x0 ≥ max{b−, c−} and if for all 1 ≤ i ≤ n, xi ≤ x0 − δ,
then τ(x0, x, ȳ) does not hold.
This can be expressed as follows.

x0 ≥ `2(t(ȳ))− `2(a0) + 2) & [(x0 ≤ b−) or (x0 ≤ c−) or

[(x0 ≥ b− & x0 ≥ c−) & [
n∨
i=1

∨
0≤k≤δ

(x0 = xi + k & τ(xi + k, x̄, ȳ)]].

Proof of the Claim:
(a) Assume that

∑
j∈J bj.xj ≤ 0.

So, x0 ≥ 2.((`2(−
∑

J−J1
bj)+4).We have

∑
j∈J bj.xj ≥

∑
j∈J−J1

bj.xj ≥ (
∑

j∈J−J1
bj).x0;

using property (9), we obtain (
∑

j∈J−J1
bj).x0 ≥ −2x0−3 (9). Using inequation (9)

and the following inequation (10)

∑
i 6=0

ai.2
xi ≥ −

∑
i 6=0

|ai|.2x0−δ ≥ −2x0 .

∑
i 6=0 |ai|

22.2.λ2(
∑

i 6=0 |ai|)
) ≥ −2x0 .2−2,

we get

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J

bj.xj + c ≥ a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J−J1

bj.xj + c

≥ (a0.2
x0 −

∑
i 6=0

|ai|.2x0−δ +
∑

j∈J−J1

bj.xj + c)

≥ 2x0 .(a0 −
∑

i 6=0 |ai|
22.2.λ2(

∑
i 6=0 |ai|)

)− 2x0−3 + c

≥ 2x0 .(a0 − 2−2 − 2−3) + c. (11)
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If c ≥ 0, using inequation (11), we get:

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J

bj.xj + c ≥ 2x0 .(a0 − 2−1)

≥ 2x0 .2−1.λ2(a0) ≥ 2.λ2(t(ȳ))

> t(ȳ).

If c ≤ 0, we have c− = `2(−c) + 4. Since x0 ≥ c−, 2x0 ≥ λ2(−c).24, so we get
−2x0 < c.23 (12).

Using inequations (11) and (12), we get:

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J

bj.xj + c ≥ 2x0 .(a0 − 2−2 − 2−3 − 2−3)

≥ 2x0 .(a0 − 2−1)

≥ 2x0 .
λ2(a0)

2
≥ 2.λ2(t(ȳ))

> t(ȳ).

(b) Assume now that
∑

j bj.xj ≥ 0.

Using inequation (10) and inequation (11) in case c < 0, we get:

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j∈J

bj.xj + c ≥ a0.2
x0 +

∑
i 6=0

ai.2
xi + c

≥ 2x0 .(a0 − 2−2)− 2−3.2x0

≥ 2x0 .(a0 − 2−2 − 2−3)

> 2x0 .
λ2(a0)

2
≥ 2.λ2(t(ȳ))

> t(ȳ).
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Set N := max{b+, c+, b−, c−}. In the case where a0 > 0, we get the following equiv-
alence.

τ(x0, x̄, ȳ)↔
[(x0 = `2(t(ȳ))− `2(a0) & τ(`2(t(ȳ))− `2(a0), x̄, ȳ)) or

(x0 = `2(t(ȳ))− `2(a0) + 1 & τ(`2(t(ȳ))− `2(a0) + 1, x̄, ȳ)) or∨
0≤k≤N

(x0 = k & τ(k, x̄, ȳ)) or

[x0 ≥ N & (x0 ≤ `2(t(ȳ))− `2(a0)− 1 & [(
n∧
i=1

xi + δ ≤ x0) or

n∨
i=1

∨
0≤k≤δ

(x0 = xi + k & τ(xi + k, x̄, ȳ)]) or

(x0 ≥ `2(t(ȳ))− `2(a0) + 2 &
n∨
i=1

∨
0≤k≤δ

(x0 = xi + k & τ(xi + k, x̄, ȳ)))]].

So, we can bound the largest variable x0 either by max{N, `2(t(ȳ)) + 1− `2(a0)},
where t(ȳ) occurs as a subterm of θ and so all the variables are bounded by that
term, or by xi + δ, for some 1 ≤ i ≤ n.

Case: a0 < 0.
Let N ′ := max{b+, c+}, let δ′ := `2(

∑
i |ai|) + 2− `(−a0).

Claim: If x0 ≥ N ′ and if for all 1 ≤ i ≤ n, xi ≤ x0 − δ′, then τ(x0, x, ȳ) holds.
Proof of Claim:

First, we note the following. If
∑

j∈J bj.xj ≥ 0, then using x0 ≥ b+, we have that∑
j∈J1

bj.x0 ≤ 2x0−2 (inequation (5)) and if c ≥ 0, then using that x0 ≥ c+, we get

c < 2x0−2 (inequation (7)).
So, either

∑
j∈J bj.xj ≤ 0 and we will replace it by 0 in the above inequation,

or
∑

j∈J bj.xj ≥ 0, and since
∑

j∈J bj.xj ≤
∑

j∈J1
bj.xj ≤

∑
j∈J1

bj.x0, we have∑
j∈J bj.xj ≤ 2x0−2. Likewise, either c < 0 and we replace it by 0 in the inequa-

tion below, or c ≥ 0 and then c < 2x0−2. So, we get:

a0.2
x0 +

∑
i 6=0

ai.2
xi +

∑
j

bj.xj + c ≤ a0.2
x0 +

∑
i 6=0

|ai|.2x0−δ′ + 2x0−2 + 2x0−2

< 2x0 .(a0 +
∑
i 6=0

|ai|.2−δ
′
+ 2−1)

< 2x0 .(a0 +
λ2(−a0)

2
.

∑
i 6=0 |ai|

2.λ2(
∑

i 6=0 |ai|)
+

1

2
)

< 2x0 .(a0 +
λ2(−a0)

2
+

1

2
) ≤ 0

< t(ȳ).
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Therefore, if a0 < 0, we get the following equivalence.

τ(x0, x̄, ȳ)↔
[

∨
0≤k≤N ′

(x0 = k & τ(k, x̄, ȳ)) or

(x0 ≥ N ′ & [(
n∧
i=1

xi + δ′ ≤ x0) or(
n∨
i=1

∨
0≤k≤δ′

(x0 = xi + k & τ(xi + k, x̄, ȳ)))])].

So, we can bound the largest variable x0 either by N ′, and so all the variables are
bounded by that term, or by xi + δ′, for some 1 ≤ i ≤ n.

4. Generalisation to (N,+, f).

Actually, A.L. Semënov directly considered expansions of the form (N,+, f) where
f is (effectively) compatible with addition ([25] paragraph 2), with the exponential
function as a special case, proving a quantifier elimination result when one expands
the language with the congruence predicates and a new symbol for the integral part of
the inverse of the function ([25] Theorem 2). In [24], A.L. Semënov described a family
of (effectively) sparse predicates and proved model-completeness and (decidability)
for the expansions of the form (N,+, R). [Examples of sparse predicates is P2, the
Fibbonacci sequence, (n!)n∈N∗ . (See [24] paragraph 3).] An example of a non-sparse
one is (2n + n)n∈N ([23] p.1354).

Below, we will axiomatize the theory Tf of such expansions (N,+, f). For all finite
tuples ā := (ai)i∈I , b̄ := (bi)i∈I of integers, denote by A(ā,b̄)(n) the term

∑
i∈I ai.f(n+

bi), where we make the following abuse of notation: if z is negative n + z means
n−̇(−z).

Definition 4.1. ([25]1) The function f is compatible with addition if
(0) for every m ∈ N∗, the values of f are eventually periodic modulo m (namely there
exists n0 such that the function f is periodic in Z/mZ when restricted to the natural
numbers x bigger than n0),
and if for every term Aā,b̄(n) one of the following holds:
(i) Aā,b̄(n) is bounded, (we denote by cA such bound) or
(ii) there exists a constant ∆A such that ∀x Aā,b̄(x + ∆A) ≥ f(x) (Aā,b̄ is positive
definite),
(iii) there exists a constant ∆A such that ∀x −Aā,b̄(x+ ∆A) ≥ f(x) (Aā,b̄ is negative
definite).
f is effectively compatible with addition if there is an algorithm which first de-

termines for each m, the period of f modulo m and the natural number n0 and
second which tells in which of the above cases (i), (ii) or (iii) we are and produces
the corresponding constants cA, ∆A.

Let Lf := {+, −̇,≤, 0, 1, .
n
;n ∈ ω, f, f−1}.

let Tf be the Lf -theory corresponding to a function compatible with addition:

1In [25] page 616, Semënov requires that the values of f are periodic modulo m, for every m ∈ N∗
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(1) TPres,
(2) ∀x∀y (x < y → f(x) < f(y)),
(3) ∀x∀y(f−1(x) = y → f(x) ≤ x < f(y + 1),
(4) ∀x Aā,b̄(x) ≤ cA, for all finite tuples (ai)i∈I , (bi)i∈I of integers such that the

corresponding term is bounded,
(5) ∀x Aā,b̄(x + ∆A) ≥ f(x), for all finite tuples (ai)i∈I , (bi)i∈I of integers such

that the corresponding term is positive definite,
(6) ∀x −Aā,b̄(x+ ∆A) ≥ f(x), for all finite tuples (ai)i∈I , (bi)i∈I of integers such

that the corresponding term is negative definite,
(7) the values of f are eventually periodic modulo m, for every m ∈ N∗.

Theorem 4.1. ([25] Theorem 2) Let f : N→ N be a function compatible with addi-
tion. Then, the theory Tf admits q.e. in Lf . If moreover, f is effectively compatible
with addition, then Tf is decidable.

In [23] paragraph 5, we gave a proof of that quantifier elimination result, along the
same lines as the above corresponding result for the exponential function, under the
hypothesis that the values of f are periodic modulo m, for every m ∈ N∗, but there
is no harm in replacing it by the hypothesis that f is eventually periodic.

Let us make a few remarks. In [9], we noted that if f is compatible with addition
and if f(x)− x is unbounded, then f has the following two properties:
∀c∃∆∀x (f(x+ ∆) ≥ c.f(x) + c.x) and
∀x (x ≥ 1→ f(x) ≥ n.f(x− 1) ≥ x), for all n > 1.
Denote the corresponding scheme of axioms, n ∈ N∗,
(?)n,∆(n): ∀x (f(x+ ∆(n)) ≥ n.f(x) + n.x), and
(??)n: ∀x (x ≥ 1→ f(x) ≥ n.f(x− 1) ≥ x).
Note that (??)n implies that f(x) ≥ nk.f(x−k) and that for k such that nk−m > 0,

(x ≥ nk.k
nk−m → f(x) ≥ m.x).

Moreover, a theorem analogous to Theorem 4.1 holds for theories T ′f and T ′′f where
we replace the schemes of axioms (4) up to (6) by respectively the schemes (?)n,∆(n)

and (??)n below, n ∈ N∗.
In [23], we showed that if there is an real number θ > 1 such that limn→+∞f(n)/θn

exists and is non-zero, then the function f satisfies the scheme (?)n,∆(n). Moreover if
(f(n))n∈ω is an A. Bertrand sequence, then ∆(n) can be found effectively in terms of
n.

5. Comments

The results of van den Dries ([13], [14]) bring out the question to what extent
can we draw a parallel between the expansions of the theory of (Z,+, <, 0, 1) and
the theory of (R,+, ., <, 0, 1)? Of course for both structures, we do have a notion
of minimality (Th(Z,+, <, 0, 1) is coset-minimal, Th(R,+, ., 0, 1) is o-minimal) and
definable subsets can be endowed with a dimension function. Both structures have
uniform elimination of imaginaries and the non independence property (NIP). (See
[10], [18], [17]).
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Expansions of (Z,+, 0) Expansions of (R,+, ., 0, 1)
(Z,+, <, 2x) model-complete and decid-
able

(R,+, ., 0, 1, <, exp) model-complete
([27])

(Z,+, 0, <, λ2) model-complete and de-
cidable

(R,+, ., 0, 1, <, λ2) model-complete, de-
cidable and has definable Skolem func-
tions ([13])

(Z,+, P2, P3)?? Def(R,+, ., 0, 1, <, 2Z.3Z) are a boolean
combination of existentially definable
subsets ([15])

Note that the theory of (Z,+, P2, V3) is undecidable ([4]) and that the question
whether one can extend the results for (R,+, ., 0, 1, <, 2Z.3Z) to (R,+, ., 0, 1, <, 2Z, 3Z)
is still open ([15] page 76, paragraph 7). Recently, O. Belegradek and B. Zil’ber also
considered non trivial expansions of the field of real numbers ([3]).

One may also consider the expansions of the ordered additive group (Q,+, 0, <) and
in some respects it behaves similarly to expansions of (Z,+, 0). For instance, one can
also prove that the theory of (Q,+, P2) is model-complete ([14]) and for generalisa-
tions with a unary predicate R (see [23] paragraph 7). However, the following result
shows that this is not always the case. Consider the expansion (Q, P2, <,+, 0, f),
where f : P2 × Q → Q : (2z, q) → 2z.q, then its theory is decidable ([12]), whereas
the theory of (Z, P2, <,+, 0, f) is undecidable [22].
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tagone, 6, avenue du Champ de Mars, B-7000 Mons, Belgium

E-mail address: point@logique.jussieu.fr


