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Quantum N-body problem with a minimal length
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The quantum N -body problem is studied in the context of nonrelativistic quantum mechanics with a one-
dimensional deformed Heisenberg algebra of the form [x̂,p̂] = i(1 + βp̂2), leading to the existence of a minimal
observable length

√
β. For a generic pairwise interaction potential, analytical formulas are obtained that allow

estimation of the ground-state energy of the N -body system by finding the ground-state energy of a corresponding
two-body problem. It is first shown that in the harmonic oscillator case, the β-dependent term grows faster with
increasing N than the β-independent term. Then, it is argued that such a behavior should also be observed
with generic potentials and for D-dimensional systems. Consequently, quantum N -body bound states might
be interesting places to look at nontrivial manifestations of a minimal length, since the more particles that are
present, the more the system deviates from standard quantum-mechanical predictions.
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I. INTRODUCTION

The existence of a minimal observable length in nature is
an appealing suggestion of string theory and quantum gravity
(see, e.g., [1–6]). For this reason, and also because of their
intrinsic interest, the study of quantum theories characterized
by a minimal length has become an active area in theoretical
physics. An economical way of introducing such a minimal
length is to modify the canonical commutation relations
between the position and momentum operators in quantum
mechanics, i.e., to use a modified Heisenberg algebra [7–9].
As discussed in detail in [7–9], in one dimension, an algebra
of the form

[x̂,p̂] = i �(p̂) (1)

(in units where h̄ = c = 1) is able to yield a minimal
uncertainty on x̂. The function �(p̂) can be expanded in
powers of p̂. Assuming an isotropic situation and demanding
to recover the standard Heisenberg algebra at the lowest order,
at order p̂2, one has

�(p̂) = 1 + βp̂2. (2)

The ansatz (2) is the simplest way of generating a minimal
length. Indeed, the uncertainty relation

�x̂ � 1

2

(
1

�p̂
+ β�p̂

)
(3)

imposes a nonzero minimal uncertainty on �x̂ given by
√

β.
One- or two-body problems have been studied thoroughly
using the modified algebra defined by Eqs. (1) and (2),
especially the harmonic oscillator [10–13], the hydrogen
atom [14–17], and the gravitational quantum well [18,19].
Note that the parameter β should be such that β〈p̂2〉 � 1,
otherwise such a modification would already have been
detected experimentally. The most stringent upper bound on
the minimal length scale obtained so far is the one coming
from the hydrogen atom and is equal to 3.3 × 10−18 m leading
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to β � 4 × 10−6 (fm/h̄)2, or 10−4 GeV−2, in units where
h̄ = c = 1 (which will be used in the rest of this paper). Notice
that the minimal length could be system dependent; thus this
bound is stricto sensu valid for electrons.

We propose to focus on the following straightforward
generalization of the algebra (1) to an N -body system:

[x̂j ,p̂k] = iδjk

(
1 + βp̂2

k

)
,

(4)
[x̂j ,x̂k] = [p̂j ,p̂k] = 0,

where j,k = 1, . . . ,N . Notice that no summation is meant
in the first line: The commutativity between the coordinates
of different particles has been kept, as in standard quantum
mechanics. Moreover, the inequality (3) holds separately for
each particle. The N -body Hamiltonian that we are interested
in reads

Ĥ (N) =
N∑

j=1

p̂2
j

2m
+

N∑
j<k=1

V (x̂j − x̂k), (5)

which is the Hamiltonian describing a one-dimensional system
of N particles with mass m interacting via the pairwise
potential V . The N -body problem with a minimal length
has been studied in Ref. [20], where macroscopic (classical)
systems are considered. In particular, the analysis of Mercury’s
perihelion precession leads to the upper bound 0.024 fm for
the minimal length for quarks. In the limit of very large N , it is
worth mentioning that the modifications of statistical physics
due to a nonzero value of β have also been discussed in [21,22].
Thus, to our knowledge, no solution for the quantum N -body
problem with a minimal length is currently known.

This paper is organized as follows: In Sec. II A, it is
shown that a lower bound for the ground-state energy of the
Hamiltonian (5) can be obtained in terms of the ground state
of a corresponding two-body problem. Then, the scaling in N

of the β-dependent corrections at first order in β is studied in
Sec. II B. Those general results are particularized to the case of
a harmonic interaction potential in Sec. III. Finally, the results
are summarized in Sec. IV, with comments concerning their
validity in D dimensions and for generic interaction potentials.
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II. GENERAL FORMALISM

A. Lower bound

In standard quantum mechanics, it is quite natural to work
with the relative positions rjk = xj − xk when dealing with
systems whose potential is of the form V (xj − xk). Notice
that the symbols without carets denote the standard operators
used with the unmodified Heisenberg algebra. The relative
momenta are then defined as πjk = (pj − pk)/2 so that the
Heisenberg algebra [rjk,πjk] = i is recovered along with
the relative coordinates. The shape of the Hamiltonian (5)
therefore suggests the introduction of the modified relative
positions

r̂jk = x̂j − x̂k, (6)

and, by analogy with the standard case, the definition of the
corresponding relative momenta π̂jk, such that the modified
Heisenberg algebra

[r̂jk,π̂jk] = i
(
1 + βπ̂2

jk

)
(7)

is obtained. The general form of the commutator [r̂jk,π̂lm] with
j �= l and k �= m is not needed, since the final expressions we
will find are actually separable with respect to the relative
coordinates. To find the explicit form of π̂jk , we recall that,
as suggested by Eq. (2), the modified Heisenberg algebra we
consider comes from an expansion in p̂. It is thus sufficient
for our formulas to be valid at order p̂2. One can then check
that the commutation relation (7), in which

π̂jk =
(

p̂j − p̂k

2

) (
1 − β

4
(p̂j + p̂k)2

)
, (8)

is satisfied at the second order in the momenta p̂j as required.
It is antisymmetric in j and k, and reduces to the standard
relative momentum for β = 0, as expected.

Still, at the second order in the momenta p̂j , one has

4

N

N∑
j<k=1

π̂2
jk =

N∑
j=1

p̂2
j − 1

N

⎛
⎝ N∑

j=1

p̂j

⎞
⎠

2

�
N∑

j=1

p̂2
j . (9)

The above inequality yields the following lower bound of the
Hamiltonian (5):

Ĥ (N) �
N∑

j<k=1

[
π̂2

jk

2µ
+ V (r̂jk)

]
, (10)

with

µ = mN

4
. (11)

Since the lower-bound Hamiltonian (10) is separable, it can be
shown that a lower bound on the ground-state energy E (N) of
Ĥ (N) is given by [23]

E (N) � E(N) = N (N − 1)

2
E(2), (12)

where E(2) is the ground-state energy of the two-body
Hamiltonian

Ĥ (2) = π̂2

2µ
+ V (r̂). (13)

Note that in Ĥ (2), r̂ and π̂ satisfy [r̂ ,π̂ ] = i(1 + βπ̂2). The
lower bound (12) implicitly assumes that the spatial wave
function of the bound state is totally symmetric. Consequently,
it is valid for either bosons or fermions provided that extra
degrees of freedom (spin, isospin, color, and so on) bring an
antisymmetric wave function.

Following Eq. (12), any two-body problem with modified
Heisenberg algebra in which the ground-state energy is known
can be used to bound from below the ground-state energy of
a corresponding N -body problem. It should be stressed that
the mass µ appearing in H (2) is proportional to N, as shown
by the definition (11). The fact that the β-dependent terms
do not necessarily have the same dependence on µ as the
β-independent terms is a first indication that their correspond-
ing dependence on N might be different also.

B. O(β) approach

The smallness of β with respect to typical quantum-
mechanical energy scales suggests that working at the first
order in β should be relevant. In that case, it is convenient
to work with the representation of Ref. [14] that can be
generalized to the N -body case as follows:

x̂j = xj , p̂k =
(

1 + β

3
p2

k

)
pk, (14)

with the standard position and momentum operators satisfying
[xj ,pk] = iδjk . Using the representation (14), the two-body
Hamiltonian (13) at the first order in β reads

Ĥ (2) = π2

2µ
+ V (r) + β

3µ
π4. (15)

Let us now choose the case of a power-law potential,

V (x) = � sgn(a)|x|a. (16)

Applied to the one-dimensional case, the virial theorem [14,24]
leads to

〈π2〉 = 2µa

a + 2
E(2) = a

2(a + 2)
NmE(2), (17)

and thus to

〈π4〉
µ

∝ µ(E(2))2 ∝ Nm(E(2))2. (18)

Scaling arguments impose that E(2) = �
2

a+2 µ− a
a+2 e(a,n) ≡

�
2

a+2 (mN )−
a

a+2 e0(a,n), where e and e0 are dimensionless
functions of a and of a quantum number n [25]. One finally
gets from Eq. (12) that the lower bound of the ground-state
energy is schematically given at large N by

E(N) ≈ N
a+4
a+2 �

2
a+2 m− a

a+2 e0
[
1 + β(m�N)

2
a+2 e1

]
, (19)

where e0 and e1 are dimensionless functions of a. This last
relation suggests that the β-dependent term of the ground-state
energy increases with N faster than the β-independent term,
whose dependence on N agrees with the recent analytical
calculation in [26]. The smaller a is (especially when a is
negative), the more this effect is significant. For the Coulomb
case, for example, one would have schematically at large N :
E(N	1) ∼ mN3 + β m3N5.
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III. THE HARMONIC OSCILLATOR

Let us now particularize the results obtained so far to an
N -body harmonic oscillator, i.e., to a potential of the form

V (x̂i − x̂j ) = �(x̂i − x̂j )2. (20)

In that case, the ground-state energy can also be easily bounded
from above. Indeed,

Ĥ (N) =
N∑

j=1

[
p̂2

j

2m
+ �Nx̂2

j

]
− �

⎛
⎝ N∑

j=1

x̂j

⎞
⎠

2

�
N∑

j=1

[
p̂2

j

2m
+ �Nx̂2

j

]
, (21)

and the upper bound of the ground-state energy reads

E (N) � N

〈
p̂2

2m
+ �Nx̂2

〉
, (22)

where [x̂,p̂] = i(1 + βp̂2) and where the average is computed
with the ground-state wave function.

The exact spectrum of the two-body harmonic oscillator
with a minimal length has been exactly computed in [8,10]. It
can be deduced from those results that〈

p̂2

2ν
+ θx̂2

〉
=

√
θ

2ν
+ β2θ2

4
+ βθ

2
. (23)

Combining this last result with the lower and upper bounds
(12) and (22) leads to the conclusion that the ground-state
energy of a one-dimensional N -body harmonic oscillator is
bounded by

(N − 1)

⎡
⎣

√
�N

2m
+

(
β�N

4

)2

+ β�N

4

⎤
⎦

� E (N) � N

⎡
⎣

√
�N

2m
+

(
β�N

2

)2

+ β�N

2

⎤
⎦ . (24)

The lower bound is actually exact for N = 2 and arbitrary β,
as well as for β = 0 and arbitrary N . Furthermore, the upper
bound is exact for N = 1 and arbitrary β. At the first order in
β, the above inequalities become

(N − 1)

√
�N

2m
+ β�N (N − 1)

4

� E (N) � N

√
�N

2m
+ β�N2

2
. (25)

At large N , the exact ground-state energy is thus of the form

E (N	1) =
√

�

2m
N

3
2 + βA�N2, (26)

where A ∈ [1/4,1/2] is a coefficient independent of m. This
formula is in qualitative agreement with the lower bound
estimate (19) for a = 2, which thus seems to provide a reliable
estimation of the behavior in N of the exact ground-state
energy.

IV. SUMMARY AND DISCUSSION

The one-dimensional quantum N -body problem has been
studied within the framework of a modified Heisenberg algebra
leading to a minimal length. The system under study is
composed of N nonrelativistic particles with a mass m,
interacting via a pairwise potential. We have shown that
the ground-state energy can be bounded from below by
a convenient formula that only requires knowledge of the
ground-state energy of a corresponding two-body system. It
is also possible to work at the first order in β; the correction
term is then simply related to the averaged fourth power of the
two-body relative momentum. The formalism developed has
been explicitly applied to the case of harmonic interactions
to check that the several formulas obtained are coherent with
each other once applied to a common case. In particular, we can
conclude that the ground-state energy of the one-dimensional
N -body harmonic oscillator is of the form bN

3
2 + βcN2 at

large N . As illustrated by this last relation, it appears from
this study that for power-law potentials, the β-dependent
term grows faster with N than the β-independent term, with
the effect being especially important for singular attractive
potentials of the form −1/|x|k .

Some comments can be made concerning the extension
of the present results to more realistic potentials and higher-
dimensional systems. First, provided that it is not located
too close to the continuum, the ground state will be mostly
sensitive to the short-range behavior of the potential V (x) that
can be approximated by its Taylor expansion near x = 0. One
can thus say that in a first approximation, the faster increase
with N of the β-dependent term obtained for power-law
potentials will qualitatively be a feature of generic potentials
if the ground-state binding energy is significant. Second,
D-dimensional generalizations of the modified N -body al-
gebra considered here generally depend on two parameters,
denoted β and β ′ [20]. In analogy with Sec. II A, let us assume
that we know the relative coordinates r̂jk = x̂j − x̂k , π̂ jk =
( p̂j − p̂k)[1 + s(β,β ′, p̂j , p̂k)]/2, where the bold symbols
denote vectors, such that the relative coordinates satisfy the
same algebra as the particle coordinates. The function s

should be such that s(0,0, p̂j , p̂k) = 0 and s(β,β ′, p̂j , p̂k) =
s(β,β ′, p̂k, p̂j ). Assuming that it has a nontrivial dependence
on the momenta, one would again find the lower bound
(12) and (13) at second order in the momenta. A case of
interest is the algebra in which β ′ = 2β, keeping commutative
positions at O(β), and admitting at this order the representation
x̂j = xj , p̂k = (1 + β p2

k) pk [14]. One would finally find the
term βπ4/µ in the D-dimensional generalization of Eq. (15),
leading again to the estimation (19) for the ground-state energy
in the case of radial power-law potentials.

In conclusion, it has been shown that there exists a nontrivial
interplay between the quantum N -body dynamics and the
existence of a minimal length, whose manifestation is an
enhancement of the minimal length effects at large numbers
of particles. Although explicit examples are out of the scope
of this work, the results suggest that the comparison between
high-precision models and measurements related to quantum
N -body systems (atomic, molecular, etc.) might eventually
be an interesting and new way of constraining the value of a
minimal length in nature.
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