

Evaluation of the performance of catalytic oxidation of VOCs by a mixed oxide at pilot scale <u>Rita Ribeiro¹, Nicolas Heymans¹, Marie-Eve Duprez¹ Renaud Cousin², Stéphane Siffert², Diane Thomas¹, André Decroly¹,</u> **Guy De Weireld**¹

¹ Thermodynamics Department, Faculty of Engineering, University of Mons, 20. Place du Parc, 7000 - Mons, Belgium

² Unité de chimie environnementale et interactions sur le vivant, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France rita.fonsecaesilvatavaresr@umons.ac.be, guy.deweireld@umons.ac.be

Light off curves – Mixtures

The presence of Toluene slightly increases the temperature required for the oxidation of n-Butanol.

When mixed with n-Butanol, Toluene's light off curve is displaced towards lower temperatures.

T (°C)

10

- ----n-Butanol (1000ppm) mixed with Toluene (1000ppm)
- n-Butanol (1000ppm) mixed with Toluene(500ppm)
- n-Butanol (1000ppm)

T (°C)

90%

10

6

5

- ----Toluene (1000ppm) mixed with n-Butanol (1000ppm)
- Toluene (1000ppm) mixed with n-Butanol (500ppm)
- Toluene (1000ppm)

Air flowrate – 44 NL/min								
n-Butanol	Mixture 1	Mixture 3	n-Butanol (1000 ppm)	T _{S-M1}	T _{S-M3}			
T _{10%}	142	138	120	22	18			
T _{50%}	180	171	165	15	6			
Т _{90%}	198	195	185	13	10			

90%

16

23

1000 ppm of Toluene and 1000 ppm of n-Butanol (Mixture 1) 1000 ppm of Toluene and 500 ppm of n-Butanol (Mixture 2) 500 ppm of Toluene and 1000 ppm of n-Butanol (Mixture 3)

Air flowrate – 44 NL/min								
Toluene	Mixture 1	Mixture 2	Toluene (1000 ppm)	T _{S-M1}	T _{S-M2}			
T _{10%}	191	207	225	-34	-18			
T _{50%}	203	219	240	-37	-21			
T _{90%}	212	236	246	-34	-10			

Conclusion

A promising mixed oxide catalyst previously tested at micro-pilot scale was therefore tested for the oxidation of n-Butanol and Toluene, for single component and mixture experiments at a pilot scale unit in several conditions. These could then be extrapolated for industrial scale conditions. This catalyst enables complete oxidation of n-Butanol at low temperatures (230°C), while also providing a very good selectivity for the oxidation of Toluene (the average difference between the curves of conversion of Toluene and CO₂ formation is below 10°C). Furthermore, it was found that, for this catalyst, the presence of n-Butanol has a promoting effect on the oxidation of Toluene.

