Corrigendum to "Counting Database Repairs that Satisfy Conjunctive Queries with Self-Joins"

Jef Wijsen

University of Mons, Belgium

Abstract

The helping Lemma 7 in [Maslowski and Wijsen, ICDT, 2014] is false. The lemma is used in (and only in) the proof of Theorem 3 of that same paper. In this corrigendum, we provide a new proof for the latter theorem.

1 The Flaw

The helping Lemma 7 in [MW14] is false. A counterexample is given next.

Example 1. For $\mathbf{S} = \{R, S\}$ and $q = \{R(\underline{x}, y), S(\underline{y})\}$, we have $\operatorname{enc}_{\mathbf{S}}(q) = \{N(\underline{R}, x, y), N(\underline{S}, y, 0)\}$. From [MW14, Lemma 8], it follows that $\sharp \mathsf{CERTAINTY}(\operatorname{enc}_{\mathbf{S}}(q))$ is $\sharp \mathbf{P}$ -hard. From [MW13, Theorem 4], it follows that $\sharp \mathsf{CERTAINTY}(q)$ is in **FP**. Consequently, assuming $\sharp \mathbf{P} \neq \mathbf{FP}$, there exists no polynomial-time many-one reduction from $\sharp \mathsf{CERTAINTY}(\operatorname{enc}_{\mathbf{S}}(q))$ to $\sharp \mathsf{CERTAINTY}(q)$. Lemma 7 in [MW14] is thus false.

The first part in the proof of Lemma 7 in [MW14] is correct; it shows a polynomial-time many-one reduction from \sharp CERTAINTY(q) to \sharp CERTAINTY(enc_s(q)). However, the second part in that proof is flawed when it claims "We can compute in polynomial time the (unique) database \mathbf{db}_0' with schema **S** such that $\mathbf{enc_s}(\mathbf{db}_0') = \mathbf{db}_0$." The flaw is that the database \mathbf{db}_0' does not generally exist, as shown next. Let $\mathbf{S} = \{R, S\}$ and $q = \{R(\underline{x}, y), S(\underline{y})\}$, as in Example 1. Then, $\mathbf{enc_s}(q) = \{N(\underline{R}, x, y), N(\underline{S}, y, 0)\}$. A legal input to \sharp CERTAINTY($\mathbf{enc_s}(q)$) is $\mathbf{db}_0 = \{N(\underline{R}, b, c), N(\underline{S}, c, 0), N(\underline{S}, c, 1)\}$. However, there exists no database \mathbf{db}_0' such that $\mathbf{enc_s}(\mathbf{db}_0') = \mathbf{db}_0$. Indeed, for every database \mathbf{db}_0' with schema **S**, if $N(S, c, s) \in \mathbf{enc_s}(\mathbf{db}_0')$, then s = 0.

2 The Solution

The following treatment is relative to a database schema **S**. Let k, m be non-negative integers such that every relation name in **S** has at most k primary-key positions, and at most m non-primary-key positions. We define a new function $\operatorname{enc}_{\mathbf{S}}^*(q)$ which encodes Boolean conjunctive queries q into unirelational Boolean conjunctive queries. For $\operatorname{enc}_{\mathbf{S}}^*(q)$, we use a fresh relation name N with k + 1 primary-key positions, and m non-primary-key positions. For $\operatorname{enc}_{\mathbf{S}}^*(q)$, we use a fresh relation name N with k + 1 primary-key positions, and m non-primary-key positions. For every atom $R(\underline{x}, \overline{y})$ in q, the query $\operatorname{enc}_{\mathbf{S}}^*(q)$ will contain some atom $N(\underline{R}, \underline{x}, \overline{0}, \overline{y}, \overline{z})$, where $\overline{0}$ is a sequence of padding zeros, and \overline{z} is a sequence of padding fresh variables, all distinct and not occurring elsewhere. This encoding is different from [MW14, Definition 3] where a sequence of padding zeros was used instead of \overline{z} .

Example 2. We illustrate the difference between the old encoding $enc_{\mathbf{S}}(\cdot)$ of [MW14, Definition 3] and the newly proposed encoding $enc_{\mathbf{S}}^{*}(\cdot)$. For $q_{0} = \{R(\underline{x}, y), S(y)\}$, we have

$$\operatorname{enc}_{\mathbf{S}}(q_0) = \{N(\underline{R}, x, y), N(\underline{S}, y, 0)\},\$$
$$\operatorname{enc}_{\mathbf{S}}(q_0) = \{N(R, x, y), N(S, y, z)\}.$$

We recall from [MW14, p. 156] that the *complex part* of a Boolean conjunctive query contains every atom $F \in q$ such that some non-primary-key position in F contains either a variable with two or more occurrences in q or a constant. Note that N(S, y, 0) belongs to the complex part of $enc_{\mathbf{S}}(q_0)$, while $N(\underline{S}, \underline{y}, z)$ is not in the complex part of $enc_{\mathbf{S}}(\overline{q_0})$.

Definition 1. We define skBCQ as the class of Boolean conjunctive queries in which all relation names are simple-key. We say that a query $q \in skBCQ$ is *minimal* if both

- q contains no two distinct atoms $R_1(x_1, \vec{y_1}), R_2(x_2, \vec{y_2})$ such that $R_1 = R_2$ and $x_1 = x_2$; and
- there exists no substitution θ over vars(q) such that $\theta(q) \subsetneq q$.

We define cxBCQ as the class of *unirelational* Boolean conjunctive queries q whose relation name has signature [n, 2] (for some $n \ge 2$) such that for every $F \in q$, the first position of F is a constant.

Definition 2. The *intersection graph* of a Boolean conjunctive query is an undirected graph whose vertices are the atoms of q. There is an undirected edge between any two atoms that have a variable in common.

Lemma 1. Assume $\sharp \mathbf{P} \neq \mathbf{FP}$. For every minimal query q in skBCQ, if $\sharp \text{CERTAINTY}(\text{enc}_{\mathbf{S}}^{*}(q))$ is $\sharp \mathbf{P}$ -hard, then so is $\sharp \text{CERTAINTY}(q)$.

Proof. Let q be a minimal query in skBCQ such that $\sharp CERTAINTY(enc_{\mathbf{S}}^*(q))$ is $\sharp P$ -hard. Note that q does not need to be unirelational or self-join-free. The query $enc_{\mathbf{S}}^*(q)$, which is unirelational, is a legal input to the function IsEasy of [MW14, p. 163].[†] Since $\sharp CERTAINTY(enc_{\mathbf{S}}^*(q))$ is $\sharp P$ -hard, the function IsEasy will return false on input $enc_{\mathbf{S}}^*(q)$. This function will repeat, as long as possible, the following step: pick some atom $N(\underline{R}, c, \vec{y})$ and some variable $y \in vars(\vec{y})$, with R some relation name (treated as a constant) and c some constant, and replace all occurrences of y with an arbitrary constant. Let \bar{q} be the query that results from these steps. Clearly, for every atom $N(\underline{R}, s, \vec{t})$ in \bar{q} , either s is a constant or \vec{t} is variable-free. Since IsEasy returns false on input \bar{q} , it follows that \bar{q} does not satisfy the premise of [MW14, Lemma 5]. Therefore, it must be the case that \bar{q} contains two distinct atoms $N(\underline{R}, x, \vec{u})$ and $N(\underline{S}, y, \vec{w})$ that are connected in the intersection graph of \bar{q} such that

- R and S are relation names (serving as constants), not necessarily distinct;
- x and y are distinct variables; and
- neither \vec{u} nor \vec{w} is exclusively composed of variables occurring only once in the query. That is, $N(R, x, \vec{u})$ and $N(S, y, \vec{w})$ belong to the complex part of \bar{q} .

[†]For uniformity of notation, we will assume that the unirelational query uses relation name N.

For every relation name R that appears in q, we assume fresh relation names R_1, R_2, R_3, \ldots with the same signature as R. Using these relation names, we can construct a self-join-free Boolean conjunctive query q' such that |q'| = |q| and for every atom $R(\underline{x}, \vec{y})$ in q, the query q contains some atom $R_i(\underline{x}, \vec{y})$. For example, if $q = \{R(\underline{x}, y), R(\underline{y}, z), S(\underline{z}, x)\}$, then we can let $q' = \{R_1(\underline{x}, y), R_2(\underline{y}, z), S_1(\underline{z}, x)\}$. It can now be shown that the function IsSafe in [MW14, p. 158] will return false on input q', and thus \sharp CERTAINTY(q') is \sharp P-hard. Indeed, whenever IsEasy picked $N(\underline{R}, c, \vec{y})$ and some variable $y \in vars(\vec{y}) \cap vars(q)$, the function IsSafe can execute SE3 on the corresponding R_i -atom of q'. This eventually leads to a query whose complex part contains two atoms $R_i(\underline{x}, \vec{u'})$ and $S_j(\underline{y}, \vec{w'}), x \neq y$, that are connected in the intersection graph, at which point IsSafe will return false. In this reasoning, one needs that non-primary-key positions are padded with fresh variables occurring only once, as can be seen from Example 2.

In the remainder of this proof, we show the existence of a polynomial-time many-one reduction from $\sharp CERTAINTY(q')$ to $\sharp CERTAINTY(q)$. We incidentally note that the remaining reasoning, which generalizes the proof of [MW14, Lemma 2], does not require that relation names are simplekey.

Let f be a mapping from facts to facts such that for every atom $R_i(x_1, \ldots, x_n) \in q'$, for every R_i -fact $A := R_i(a_1, \ldots, a_n), f(A) := R(\langle a_1, x_1 \rangle, \ldots, \langle a_n, x_n \rangle)$. Notice that f maps R_i -facts to R-facts. Here, every couple $\langle a_i, x_i \rangle$ denotes a constant such that $\langle a_i, x_i \rangle = \langle a_j, x_j \rangle$ if and only if both $a_i = a_j$ and $x_i = x_j$. Moreover, if c is a constant, then $\langle c, c \rangle := c$. Since no two distinct atoms of q agree on both their relation name and primary key, it will be the case that for all facts A and B, $A \sim B$ if and only if $f(A) \sim f(B)$, where \sim denotes "is key-equal-to."

We extend the function f in the natural way to databases **db** that use only relation names from q': $f(\mathbf{db}) := \{f(A) \mid A \in \mathbf{db}\}$. Clearly, $f(\mathbf{db})$ can be computed in polynomial time in the size of **db**. Let **db** be a set of facts with relation names in q'. It can be easily seen that $|\mathsf{rset}(\mathbf{db})| = |\mathsf{rset}(f(\mathbf{db}))|$ and $\mathsf{rset}(f(\mathbf{db})) = \{f(\mathbf{r}) \mid \mathbf{r} \in \mathsf{rset}(\mathbf{db})\}$. Let **r** be an arbitrary repair of **db**. It suffices to show that

$$\mathbf{r} \models q' \iff f(\mathbf{r}) \models q.$$

For the implication \implies , assume that $\mathbf{r} \models q'$. We can assume a valuation θ over $\mathsf{vars}(q')$ such that $\theta(q') \subseteq \mathbf{r}$. Let μ be the valuation such that for every variable $x \in \mathsf{vars}(q')$, $\mu(x) = \langle \theta(x), x \rangle$. By our construction of q' and f, it will be the case that $\mu(q) \subseteq f(\mathbf{r})$, thus $f(\mathbf{r}) \models q$.

For the implication \Leftarrow , assume that $f(\mathbf{r}) \models q$. We can assume a valuation θ over $\operatorname{vars}(q)$ such that $\theta(q) \subseteq f(\mathbf{r})$. Notice that if c is a constant in q, then it must be the case that $\theta(c) = \langle c, c \rangle := c$. We define θ_L as the substitution that maps every variable x in $\operatorname{vars}(q)$ to the first coordinate of $\theta(x)$; and θ_R maps every x to the second coordinate of $\theta(x)$. It is convenient to think of L and R as references to the Left and the Right coordinates, respectively. Thus, by definition, $\theta(x) = \langle \theta_L(x), \theta_R(x) \rangle$.

By inspecting the right-hand coordinates of couples $\langle a_i, x_i \rangle$ in $f(\mathbf{r})$, it can be easily seen that $\theta(q) \subseteq f(\mathbf{r})$ implies $\theta_R(q) \subseteq q$. Since the query q is minimal, it follows that $\theta_R(q) = q$, i.e., θ_R is an automorphism. Since the inverse of an automorphism is an automorphism, θ_R^{-1} is an automorphism as well. Note that θ_R will be the identity on constants that appear in q. We now define $\mu := \theta_L \circ \theta_R^{-1}$ (i.e., μ is the composed function θ_L after the inverse of θ_R), and show that $\mu(q') \subseteq \mathbf{r}$, which implies the desired result that $\mathbf{r} \models q'$. To this extent, let $R_i(x_1, \ldots, x_n)$ be an arbitrary atom of q'. It suffices to show $R_i(\mu(x_1), \ldots, \mu(x_n)) \in \mathbf{r}$, which can be proved as follows. From $R_i(x_1, \ldots, x_n) \in q'$, it follows $R(x_1, \ldots, x_n) \in q$. Thus, since θ_R^{-1} is an automorphism,

$$R\left(\theta_R^{-1}(x_1), \ldots, \theta_R^{-1}(x_n) \right) \in q.$$

Since $\theta(q) \subseteq f(\mathbf{r})$,

$$R\left(\theta\left(\theta_R^{-1}(x_1)\right), \ldots, \theta\left(\theta_R^{-1}(x_n)\right) \right) \in f(\mathbf{r}).$$

Since, for every symbol s, $\theta(s) = \langle \theta_L(s), \theta_R(s) \rangle$ and $\theta_R(\theta_R^{-1}(s)) = s$, we obtain

$$R\left(\langle \theta_L(\theta_R^{-1}(x_1)), x_1 \rangle, \ldots, \langle \theta_L(\theta_R^{-1}(x_n)), x_n \rangle \right) \in f(\mathbf{r}).$$

That is, by our definition of μ ,

$$R(\langle \mu(x_1), x_1 \rangle, \ldots, \langle \mu(x_n), x_n \rangle) \in f(\mathbf{r}).$$

From this, it is correct to conclude that $R_i(\mu(x_1), \ldots, \mu(x_n)) \in \mathbf{r}$. This concludes the proof.

Lemma 2. For every Boolean conjunctive query q, there exists a polynomial-time many-one reduction from $\sharp CERTAINTY(q)$ to $\sharp CERTAINTY(enc_{\mathbf{S}}^{*}(q))$.

Proof. Let q be a Boolean conjunctive query. Let R be a relation name that occurs in q. Let $\{R(\underline{\vec{x}_i}, \vec{y_i})\}_{i=1}^m$ be the set of R-atoms of q. Then, $\operatorname{enc}_{\mathbf{S}}^*(q)$ will contain, for every $i \in \{1, \ldots, m\}$, some atom $N(\underline{R}, \underline{\vec{x}_i}, \vec{0}, \overline{\vec{y}_i}, \overline{\vec{z}_i})$, where $\vec{z_i}$ is a (possibly empty) sequence of distinct fresh variables not occurring elsewhere. For every R-fact $A := R(\underline{\vec{a}}, \vec{b})$, we define $f(A) := N(\underline{R}, \underline{\vec{a}}, \vec{0}, \vec{b}, \vec{0})$. Note here that f(A) depends on the signatures of R and N, but not on the R-atoms of q. The mapping f is defined similarly for all relation names that appear in q. It can be easily seen that for all facts A and B whose relation names appear in q, $A \sim B$ if and only if $f(A) \sim f(B)$.

If **db** is an instance of $\sharp \mathsf{CERTAINTY}(q)$, we can assume without loss of generality that every relation name in **db** also appears in q. We extend the function f to such instances **db** of $\sharp \mathsf{CERTAINTY}(q)$: $f(\mathbf{db}) := \{f(A) \mid A \in \mathbf{db}\}$. Obviously, $f(\mathbf{db})$ can be computed in polynomial time in the size of **db**. It is also obvious that $|\mathsf{rset}(\mathbf{db})| = |\mathsf{rset}(f(\mathbf{db}))|$ and $\mathsf{rset}(f(\mathbf{db})) = \{f(\mathbf{r}) \mid \mathbf{r} \in \mathsf{rset}(\mathbf{db})\}$. It suffices to show that for every repair \mathbf{r} of \mathbf{db} ,

$$\mathbf{r} \models q \iff f(\mathbf{r}) \models \mathsf{enc}^*_{\mathbf{S}}(q).$$

For the implication \implies , assume $\mathbf{r} \models q$. We can assume a valuation θ over $\operatorname{vars}(q)$ such that $\theta(q) \subseteq \mathbf{r}$. Let θ' be the valuation that extends θ from $\operatorname{vars}(q)$ to $\operatorname{vars}(\operatorname{enc}_{\mathbf{S}}^{*}(q))$ such that $\theta'(z) = 0$ for every variable z that appears in $\operatorname{enc}_{\mathbf{S}}^{*}(q)$ but not in q. By the construction of f, it will be the case that $\theta'(\operatorname{enc}_{\mathbf{S}}^{*}(q)) \subseteq f(\mathbf{r})$. Indeed, if $\operatorname{enc}_{\mathbf{S}}^{*}(q)$ contains $N(\underline{R}, \vec{x_i}, \vec{0}, \vec{y_i}, \vec{z_i})$, then \mathbf{r} will contain $R(\theta(\vec{x_i}), \theta(\vec{y_i}))$, hence $f(\mathbf{r})$ will contain $N(R, \theta'(\vec{x_i}), \vec{0}, \theta'(\vec{y_i}), \vec{0})$ and $\theta'(\vec{z_i}) = \vec{0}$.

For the implication \Leftarrow , assume $\overline{f(\mathbf{r})} \models \operatorname{enc}_{\mathbf{S}}^*(q)$. We can assume a valuation θ over $\operatorname{vars}(\operatorname{enc}_{\mathbf{S}}^*(q))$ such that $\theta(\operatorname{enc}_{\mathbf{S}}^*(q)) \subseteq f(\mathbf{r})$. It is straightforward to see that $\theta(q) \subseteq \mathbf{r}$.

We now give the new proof for Theorem 3 in [MW14].

Theorem 1 ([MW14, Theorem 3]). The set {#CERTAINTY(q) | $q \in skBCQ$ } exhibits an effective **FP**-#**P**-dichotomy.

New proof. Let $q \in \mathsf{skBCQ}$. It can be decided whether q can be satisfied by a consistent database. If q cannot be satisfied by a consistent database, then for every database **db**, the number of repairs of **db** satisfying q is 0. An example is $q = \{R(\underline{x}, 0), R(\underline{x}, 1)\}$. Assume next that q can be satisfied by a consistent database. Then, we can compute a minimal query q_m such that for every database, the number of repairs satisfying q_m is equal to the number of repairs satisfying q. That is, the problems $\sharp CERTAINTY(q_m)$ and $\sharp CERTAINTY(q)$ are identical.

Then, $\operatorname{enc}_{\mathbf{S}}^{*}(q_m)$ belongs to cxBCQ. By [MW14, Lemma8], the set { \sharp CERTAINTY(q) | $q \in \operatorname{cxBCQ}$ } exhibits an effective **FP**- \sharp **P**-hard dichotomy. If the problem \sharp CERTAINTY($\operatorname{enc}_{\mathbf{S}}^{*}(q_m)$) is in **FP**, then \sharp CERTAINTY(q) is in **FP** by Lemma 2; and if \sharp CERTAINTY($\operatorname{enc}_{\mathbf{S}}^{*}(q_m)$) is \sharp **P**-hard, then \sharp CERTAINTY(q) is \sharp **P**-hard by Lemma 1. Consequently, \sharp CERTAINTY(q) is in **FP** or \sharp **P**-hard, and it is decidable which of the two cases applies.

References

- [MW13] Dany Maslowski and Jef Wijsen. A dichotomy in the complexity of counting database repairs. J. Comput. Syst. Sci., 79(6):958–983, 2013.
- [MW14] Dany Maslowski and Jef Wijsen. Counting database repairs that satisfy conjunctive queries with self-joins. In Nicole Schweikardt, Vassilis Christophides, and Vincent Leroy, editors, Proc. 17th International Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014., pages 155–164. OpenProceedings.org, 2014.