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Abstract

The helping Lemma 7 in [Maslowski and Wijsen, ICDT, 2014] is false. The lemma is used
in (and only in) the proof of Theorem 3 of that same paper. In this corrigendum, we provide a
new proof for the latter theorem.

1 The Flaw

The helping Lemma 7 in [MW14] is false. A counterexample is given next.

Example 1. For S = {R, S} and ¢ = {R(z,y), S(y)}, we have encs(q) = {N(R,z,y), N(S,y,0)}.
From [MW14], Lemma 8], it follows that fCERTAINTY (encg(q)) is fP-hard. From [MW13l Theo-
rem 4], it follows that fCERTAINTY(q) is in FP. Consequently, assuming P # FP, there exists no
polynomial-time many-one reduction from $CERTAINTY (encg(q)) to fCERTAINTY (¢). Lemma 7
in [MW14] is thus false. O

The first part in the proof of Lemma 7 in [MW14] is correct; it shows a polynomial-time
many-one reduction from §CERTAINTY (¢) to fCERTAINTY (encs(g)). However, the second part in
that proof is flawed when it claims “We can compute in polynomial time the (unique) database
db, with schema S such that encg(db() = dby.” The flaw is that the database db{, does not
generally exist, as shown next. Let S = {R, S} and ¢ = {R(z,y), S(y)}, as in Example Il Then,
encs(q) = {N(R,z,y), N(S,y,0)}. A legal input to fCERTAINTY (encg(gq)) is dby = {N(R,b,¢),
N(S,c,0), N(@)} However, there exists no database dbj, such that encg(db}) = dby. Indeed,
for every database dbj with schema S, if N(S,¢,s) € encg(dby), then s = 0.

2 The Solution

The following treatment is relative to a database schema S. Let k, m be non-negative integers such
that every relation name in S has at most k£ primary-key positions, and at most m non-primary-key
positions. We define a new function encg(q) which encodes Boolean conjunctive queries ¢ into
unirelational Boolean conjunctive queries. For enc§(q), we use a fresh relation name N with k + 1
primary-key positions, and m non-primary-key positions. For every atom R(Z,%) in ¢, the query
encg(q) will contain some atom N (R, T, 0, ¥, %), where 0 is a sequence of padding zeros, and Z is
a sequence of padding fresh variables, all distinct and not occurring elsewhere. This encoding is
different from [MW14, Definition 3] where a sequence of padding zeros was used instead of Z.
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Example 2. We illustrate the difference between the old encoding encg(-) of [MW14] Definition 3]
and the newly proposed encoding encg(-). For qo = {R(z,y), S(y)}, we have

enCS(QO) = {N(R7 z, y)7 N(S7 Y, 0)}7

encg(QO) = {N(Rv L, y)7 N(57 Y, Z)}

We recall from [MW14, p. 156] that the complez part of a Boolean conjunctive query contains every
atom F' € ¢ such that some non-primary-key position in F' contains either a variable with two or
more occurrences in ¢ or a constant. Note that N(S,y,0) belongs to the complex part of encs(qp),
while N(S,y,2) is not in the complex part of encg (q0). O

Definition 1. We define skBCQ as the class of Boolean conjunctive queries in which all relation
names are simple-key. We say that a query ¢ € skBCQ is minimal if both

e ¢ contains no two distinct atoms Ri(z1,%1), Ra(x2,¥2) such that By = Ry and 1 = x2; and
e there exists no substitution 6 over vars(q) such that 6(q) € gq.

We define cxBCQ as the class of unirelational Boolean conjunctive queries g whose relation name
has signature [n, 2] (for some n > 2) such that for every F' € ¢, the first position of F' is a constant.

Definition 2. The intersection graph of a Boolean conjunctive query is an undirected graph whose
vertices are the atoms of q. There is an undirected edge between any two atoms that have a variable
in common.

Lemma 1. Assume §P # FP. For every minimal query q in skBCQ, if fCERTAINTY (enc§(q)) is
fP-hard, then so is fCERTAINTY (q).

Proof. Let ¢ be a minimal query in skBCQ such that fCERTAINTY (encg(q)) is fP-hard. Note that
q does not need to be unirelational or self-join-free. The query encg(q), which is unirelational, is a
legal input to the function IsEasy of [MW14], p. 163] Since §CERTAINTY (enc§(q)) is #P-hard, the
function IsEasy will return false on input encg(¢). This function will repeat, as long as possible,
the following step: pick some atom N(R,c,y) and some variable y € vars(¢), with R some relation
name (treated as a constant) and ¢ some constant, and replace all occurrences of y with an arbitrary
constant. Let ¢ be the query that results from these steps. Clearly, for every atom N (@, f) in q,
either s is a constant or ¢ is variable-free. Since IsEasy returns false on input g, it follows that g
does not satisfy the premise of [MW14], Lemma 5]. Therefore, it must be the case that g contains
two distinct atoms N (R, x,4) and N (S, y,w) that are connected in the intersection graph of g such
that

e R and S are relation names (serving as constants), not necessarily distinct;
e x and y are distinct variables; and

e neither @ nor w is exclusively composed of variables occurring only once in the query. That
is, N(R,z,u) and N(S,y,w) belong to the complex part of g.

tFor uniformity of notation, we will assume that the unirelational query uses relation name N.



For every relation name R that appears in ¢, we assume fresh relation names Ry, Rs, R3, ... with
the same signature as R. Using these relation names, we can construct a self-join-free Boolean
conjunctive query ¢’ such that |¢'| = |¢| and for every atom R(z,¥) in ¢, the query ¢ contains some
atom R;(z,%). For example, if ¢ = {R(z,y), R(y,2), S(z,2)}, then we can let ¢ = {Ry(z,y),
Ry(y,2), Si(z,z)}. It can now be shown that the function IsSafe in [MW14] p. 158] will return
false on input ¢/, and thus #CERTAINTY(¢/) is #P-hard. Indeed, whenever IsEasy picked N (R, ¢, )
and some variable y € vars(y) Nvars(q), the function IsSafe can execute SE3 on the corresponding
R;-atom of ¢’. This eventually leads to a query whose complex part contains two atoms R;(z, )
and S;(y, '), v # y, that are connected in the intersection graph, at which point IsSafe will return
false. In this reasoning, one needs that non-primary-key positions are padded with fresh variables
occurring only once, as can be seen from Example 21

In the remainder of this proof, we show the existence of a polynomial-time many-one reduction
from §CERTAINTY(¢') to HCERTAINTY(¢). We incidentally note that the remaining reasoning,
which generalizes the proof of [MW14] Lemma 2|, does not require that relation names are simple-
key.

Let f be a mapping from facts to facts such that for every atom R;(x1,...,x,) € ¢/, for every
Ri-fact A := R;(a1,...,a,), f(A) := R({a1,21),...,(an,x,)). Notice that f maps R;-facts to R-
facts. Here, every couple (a;,z;) denotes a constant such that (a;,z;) = (a;, ;) if and only if both
a; = a; and x; = x;. Moreover, if ¢ is a constant, then (c,c) := c. Since no two distinct atoms of ¢
agree on both their relation name and primary key, it will be the case that for all facts A and B,
A ~ B if and only if f(A) ~ f(B), where ~ denotes “is key-equal-to.”

We extend the function f in the natural way to databases db that use only relation names
from ¢: f(db) := {f(A) | A € db}. Clearly, f(db) can be computed in polynomial time in
the size of db. Let db be a set of facts with relation names in ¢’. It can be easily seen that
[rset(db)| = |rset(f(db))| and rset(f(db)) = {f(r) | r € rset(db)}. Let r be an arbitrary repair of
db. It suffices to show that

r=q = f(r)Faq

For the implication = , assume that r = ¢’. We can assume a valuation 6 over vars(q’) such
that 0(¢') C r. Let p be the valuation such that for every variable z € vars(¢’), p(z) = (6(x), z).
By our construction of ¢’ and f, it will be the case that u(q) C f(r), thus f(r) = q.

For the implication <= , assume that f(r) = ¢g. We can assume a valuation 6 over vars(q) such
that 6(¢) C f(r). Notice that if ¢ is a constant in ¢, then it must be the case that 6(c) = (¢, ¢) :=c.
We define 6, as the substitution that maps every variable x in vars(q) to the first coordinate
of O(x); and fr maps every x to the second coordinate of #(z). It is convenient to think of
L and R as references to the Left and the Right coordinates, respectively. Thus, by definition,
0(@) = (01(2), Or(x)).

By inspecting the right-hand coordinates of couples (a;, z;) in f(r), it can be easily seen that
0(q) C f(r) implies dr(q) C ¢. Since the query ¢ is minimal, it follows that 0r(q) = ¢, i.e.,
g is an automorphism. Since the inverse of an automorphism is an automorphism, 6z ! is an
automorphism as well. Note that Or will be the identity on constants that appear in ¢. We now
define yu := 07 0 g~ ! (ie., p is the composed function @y, after the inverse of ), and show that
u(q’) C r, which implies the desired result that r = ¢/. To this extent, let R;(x1,...,x,) be an
arbitrary atom of ¢’. It suffices to show R;(u(z1),...,u(x,)) € r, which can be proved as follows.
From R;(z1,...,2,) € ¢, it follows R(z1,...,2z,) € ¢. Thus, since 0z ' is an automorphism,

R( HR_l(xl), ey HR_l(xn) ) € q.



Since 0(q) C f(r),

R(0(0r  (z1)), ..., 0(0r Hzn)) ) € f(x).

6
Since, for every symbol s, 0(s) = (01(s),0r(s)) and O (' (s)) = s, we obtain

R( (HL(HR_I(xl)),xQ, ce (HL(HR_I(xn)),a:n> )Ef(r)

That is, by our definition of u,

R( (u(@1),21), .., (u(zn),zn) ) € f(r).
From this, it is correct to conclude that R;(p(z1),. .., pu(xy,)) € r. This concludes the proof. O

Lemma 2. For every Boolean conjunctive query q, there exists a polynomial-time many-one re-
duction from §CERTAINTY (q) to 4CERTAINTY (enc§(q)).

Proof. Let g be a Boolean conjunctive query. Let R be a relation name that occurs in q. Let
{R(Zi, i) }", be the set of R-atoms of q. Then, encg(q) will contain, for every i € {1,...,m},
some atom N (R, #;,0, 7, %), where Z; is a (possibly empty) sequence of distinct fresh variables not
occurring elsewhere. For every R-fact A := R(@,b), we define f(A) := N(R,@,0,b,0). Note here
that f(A) depends on the signatures of R and N, but not on the R-atoms of q. The mapping f is
defined similarly for all relation names that appear in q. It can be easily seen that for all facts A
and B whose relation names appear in q, A ~ B if and only if f(A) ~ f(B).

If db is an instance of fCERTAINTY(q), we can assume without loss of generality that ev-
ery relation name in db also appears in q. We extend the function f to such instances db of
fCERTAINTY (q): f(db) := {f(A) | A € db}. Obviously, f(db) can be computed in polynomial
time in the size of db. It is also obvious that |rset(db)| = |rset(f(db)| and rset(f(db)) = {f(r) |
r € rset(db)}. It suffices to show that for every repair r of db,

rq < f(r) Eenci(a).

For the implication = , assume r = ¢q. We can assume a valuation 6 over vars(q) such that
6(q) C r. Let ¢ be the valuation that extends 6 from vars(g) to vars(enc§(q)) such that 6’(z) =0
for every variable z that appears in enc§(q) but not in ¢. By the construction of f, it will be
the case that 6’(enc(q)) C f(r). Indeed, if enci(g) contains N(R, &, 0,7, 7;), then r will contain
R(O(Z;),0(7;)), hence f(r) will contain N(R,0'(Z;),0,6'(7;),0) and ¢'(Z) = 0.

“For the implication <= , assume f(r) = enci(g). We can assume a valuation 6 over
vars(encg(q)) such that f(encg(q)) C f(r). It is straightforward to see that 6(q) C r. O

We now give the new proof for Theorem 3 in [MW14].

Theorem 1 ([MWI4] Theorem 3]). The set {{CERTAINTY(q) | ¢ € skBCQ} ezhibits an effective
FP-tP-dichotomy.

New proof. Let q € skBCQ. It can be decided whether ¢ can be satisfied by a consistent database.
If ¢ cannot be satisfied by a consistent database, then for every database db, the number of repairs
of db satisfying ¢ is 0. An example is ¢ = {R(z,0), R(z,1)}. Assume next that ¢ can be satisfied
by a consistent database. Then, we can compute a minimal query ¢,, such that for every database,



the number of repairs satisfying ¢,, is equal to the number of repairs satisfying ¢q. That is, the
problems §CERTAINTY(g,,) and §CERTAINTY(q) are identical.

Then, enc§(gm) belongs to cxBCQ. By [MWI4, Lemma8|, the set {§CERTAINTY(q) | ¢ €
cxBCQ} exhibits an effective FP-fP-hard dichotomy. If the problem §CERTAINTY (enc§(gy,)) is in
FP, then fCERTAINTY(g) is in FP by Lemma 2 and if fCERTAINTY (enc§(gy,)) is P-hard, then
fCERTAINTY (¢) is #P-hard by Lemmal[ll Consequently, fCERTAINTY(q) is in FP or fP-hard, and
it is is decidable which of the two cases applies. O
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