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Abstract: As aresult of increasing interest in unconventional reservoirs, a wide range of sedimen-
tary systems are now being investigated with regard to petroleum applications, including various
tight chalk formations. We examined a wide variety of chalk samples from NW Europe (micritic,
grainy, argillaceous, marl seam, cemented and silicified chalks) and investigated the relationships
between their petrophysical properties, mechanical properties and associated microtextures and
how diagenesis can affect these properties. A diagenesis index based on an evaluation of textural
and diagenetic parameters was used to quantify the effect of global porosity-reducing diagenesis
on the microtexture of chalks. We used petrographic and petrophysical measurements to determine
the petrography, density, porosity, permeability and sonic velocity of the chalk samples and uni-
axial compression experiments to assess their mechanical behaviour. Our dataset of >30 samples
covers a wide range of values for these properties. We determined a linear porosity —permeability
relationship controlled by the diagenesis index. Porosity influences the unconfined compressive
strength and Young’s modulus, but our analyses suggest that the diagenesis of the studied lithol-
ogies provides us with a further understanding of the mechanical behaviour of chalks. Micritic
and grainy chalks are associated with the lowest diagenesis index and exhibit the lowest strength,
whereas the higher diagenesis indices observed for other microtextures correspond to higher

compressive strengths.

High-porosity pure white chalks have been exten-
sively studied in relation to oil and gas production
for >40 years (e.g. Schroeder 1995, 2002; Delage
et al. 1996; Papamichos et al. 1997; Homand et al.
1998; Risnes & Flaageng 1999; Homand & Shao
2000a, b, c¢; Gommesen & Fabricius 2001; Risnes
2001; Collin et al. 2002; DeGennaro et al. 2003,
2005; Risnes et al. 2003; Nguyen et al. 2008).
Recently, however, there has been increasing inter-
est in unconventional reservoirs, such as tight chalk
formations, leading to a need to investigate a wider
range of sedimentary and diagenetic systems.
Several studies have focused on the characteriza-
tion of microtextures and pore networks within
microporous carbonate reservoirs (Cantrell & Hag-
erty 1999; Richard er al. 2005; Vincent et al.
2011; Brigaud et al. 2014; Regnet et al. 2014; Kacz-
marek et al. 2015). Classifications based on the
morphology of the micritic matrix have been devel-
oped for microcrystalline calcite (Lambert et al.
2006; Deville de Periere et al. 2011; Kaczmarek
et al. 2015). However, the proposed classifications
are not applicable to chalk because they do not

include the nanobioclast component. Mortimore &
Fielding (1990) attempted to classify chalk micro-
textures based on scanning electron microscopy
(SEM) observations, with a classification applicable
to pure chalks only.

Fritsen et al. (1996) proposed a classification of
chalks based on macroscopic observations from
North Sea cores. Mallon & Swarbrick (2002, 2008)
focused on the petrographic and petrophysical
properties of non-reservoir low-permeability chalk
lithologies. These deposits were defined by the
Joint Chalk Research (JCR) group (Bailey et al.
1999) as tight chalks and include all chalks with a
matrix permeability <0.2 mD. They are of interest
to the petroleum industry (Fabricius 2001; Rggen
& Fabricius 2002; Strand et al. 2007; Lindgreen &
Jakobsen 2012) because they might be underex-
plored reservoirs or may have a crucial role in
hydrocarbon migration, acting as seals or fluid con-
duits depending on their fracture pattern (Gennaro
et al. 2013).

Depositional and diagenetic processes are
known to control chalk microtextures (Anderskouv
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& Surlyk 2011). The size and connectivity of the
pore network may be enhanced by dissolution or
reduced by cementation and compaction. Hence
microtexture appears to be the link between the
current behaviour of chalk formations and their
geological history. Rashid et al. (2015) examined
the factors affecting the distribution of porosity,
permeability and reservoir quality in the Kometan
Formation (northern Iraq). Fay-Gomord et al.
(2016a) proposed an in-depth understanding of the
microtexture of tight chalks and highlighted the con-
trolling role of the non-carbonate content and the
degree of diagenesis on the petrophysical properties.

Few studies are currently available on the
mechanical properties of tight chalks. This is, how-
ever, essential for designing hydraulic fracturing in
tight formations, such as the Niobrara plays in the
USA, where diagenetic changes have been proved
to increase the brittleness of chalk (Pollastro 2010;
Maldonado et al. 2011). Bell et al. (1999) reviewed
the engineering properties of English chalk, includ-
ing some tight chalks. Using indentation experi-
ments, Faj-Gomord et al. (2016b) highlighted the
role of microtextures in the mechanical behaviour

of chalk and underlined the distinct behaviour of
tight chalk.

The study reported here investigated how dia-
genesis can affect the petrophysical and mechanical
properties of chalk by studying the relationships
between these properties and the associated micro-
textures. This will help our understanding of the
behaviour of tight chalk formations in terms of stor-
age capacity, transport mechanisms and mechanical
behaviour. It is also of interest when searching for
good analogues from outcrops because diagenesis
has proved to be a key issue for the characterization
of reservoir chalk from chalk outcrops (Hjuler &
Fabricius 2009).

Sample areas

NW European chalks were investigated from several
outcrops in Belgium, France and the UK (Fig. 1).
The Belgian samples were from the Harmignies
quarry, where pure white chalks from the Mons
Basin are exploited. The samples came from the
following Campanian formations (Marliere 1949):
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Fig. 1. Location of outcrop samples (modified from Hjuler & Fabricius 2009). 1, Harmignies Quarry (Belgium); 2,
Boulonnais (France); 3, Yorkshire (UK); 4, Sussex (UK); and 5, Upper Normandy (France).
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Obourg (CHO1), Nouvelles (CHO2) and Spiennes
(CHO3). In Belgium, Campanian pure white chalk
is exploited in different quarries in the Mons Basin
and in the East Chalk district near Lixhe village
(Robaszynski et al. 2001). These pure white chalks
contain a majority of intact coccoliths and are con-
sidered as analogous to chalk reservoirs; they have
been extensively studied (Schroeder 2002; Papami-
chos et al. 2012; Megawati et al. 2015). The Belgian
white chalk is affected by normal and strike-slip
faulting with a large number of major joints (Van-
dycke et al. 1991; Vandycke 2002).

In France, outcrops were studied in the Boulon-
nais region (Cap Blanc Nez site) and in Upper
Normandy at different locations along the coast
in Cenomanian to Turonian chalks (Table 1). The
Cenomanian deposits of Cap Blanc Nez have been
described as evolving from silicate-rich chalk in
the Lower Cenomanian towards white chalk at
the top (Robaszynski & Amédro 1986; Amédro &
Robaszynski 2001). The argillaceous chalk is
related to a strong detrital input, most probably
from the Brabant Massif (Deconinck et al. 1991);
the input decreased as the depositional environment
deepened during the Late Cretaceous. The Nor-
mandy Basin is well known and has been well stud-
ied (Juignet 1974; Kennedy & Juignet 1975; Quine
& Bosence 1991; Mortimore & Pomerol 1997,
Robaszynski et al. 1998; Lasseur et al. 2009).

Samples were taken from two sites in the British
chalk district. The Flamborough Head samples
are clean Santonian chalk (Whitham 1993), which
has been deeply buried (Menpes & Hillis 1996)
and has thus undergone strong burial diagenesis
(Fay-Gomord et al. 2016a). The samples from
Sussex (southern England) were only buried by up
to 700 m (Law 1998). Several formations display
very different lithotypes, from clean chalk with
flint bands in the Birling Gap Turonian New Pit For-
mation, to argillaceous Cenomanian chalk from
Eastbourne.

This first overview of sampling sites (Table 1;
Fig. 1) shows the wide variety of chalk materials
considered in this study. Their selection was gov-
erned by our search for a diversity of lithotypes
and geological burial histories. Samples were also
specifically selected in zones that were not influ-
enced by faults (Gaviglio et al. 2009). As indicated
on Figure 1, the chalk formations represent different
burial depths, ranging from 200 to 250 m for the
Harmignies chalk (Dupuis & Vandycke 1989) to
>1200 m for the Flamborough Head chalk (Menpes
& Hillis 1996). This study focused on chalks already
referenced in terms of lithostratigraphy (Table 1) for
all the different sites. Some of the mechanical prop-
erties are currently known, but no clear relationship
has been established between the diagenetic features
and mechanical properties.

Methodology

Petrographic analysis: development of a
diagenesis index

Classification systems for chalk microtextures and
the degree of diagenesis are often subjective. To
develop a quantitative approach allowing compari-
son with other properties, the microtexture and
diagenesis need to be assessed using a numerical
value. This will establish a key link between the
geology and the petrophysical and geomechanical
properties.

We obtained microphotographs from careful
SEM observations of the samples to document the
microtextures at different magnifications. The dia-
genesis index, developed by Fay-Gomord et al.
(2016a), was assessed for each sample. This index
is based on seven diagenetic criteria, which are
each graded from O (low diagenesis) to 10 (intense
diagenesis); the average value, calculated from the
seven grades for each studied sample, determines
the diagenesis index (Fig. 2). The seven diagenetic
criteria are: (1) the micritic microtexture; (2) grain
contacts; (3) coccolith disintegration; (4) cemented
zones; (5) authigenic calcite crystals; (6) coccolith
grain overgrowth; and (7) intraparticle cement. Fig-
ure 3 shows typical micrographs corresponding to
extreme cases encountered for each of the criteria
assessed in the diagenesis index. Each criterion is
described below.

Micritic microtexture. The micritic microtexture
corresponds to the general arrangement of particles
in the matrix. The micritic fraction is defined as
particles <10 wm. The microtexture can be loose
(with a grading 0-3), tight (4—7) or anhedral com-
pact (8—10). A similar classification was used by
Lambert et al. (2006) and Deville de Periere et al.
(2011). The micritic microtexture is often closely
related to compaction because the arrangement of
grains depends on both mechanical and chemical
compaction during burial diagenesis. However, the
arrangement of grains that affects the overall micro-
texture can also be affected by eogenesis during
early lithification, as is seen with hardgrounds.

Grain contacts. The types of contact between
micritic particles range from punctic contacts (0—
2), serrate contacts (3—4), meshed contacts (5-6),
coalescent contacts (7—8) to fused contacts (9—10).
A punctic contact means that the contacts between
grains are punctual and the grains seem to only lie
on each other. A serrate contact refers to adjoined
grains, connected to each other by a surface. A
meshed contact occurs when the grains show inden-
tation of adjacent grains; they are partly nested
together. A coalescent contact refers to grains that
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Table 1. Geographical and stratigraphic location of the samples

Sample Sampling site Formation Stratigraphy Lithotype References*

no.

CHO1 Harmignies Quarry, Obourg Middle Campanian ~ Micritic 3,10
Belgium

CHO2  Harmignies Quarry, Nouvelles Middle Campanian  Micritic 3,10
Belgium

CHO4  Harmignies Quarry, Spiennes Upper Campanian ~ Micritic 3,10
Belgium

CO01 Coquelles Quarry, Caffier Santonian Micritic 1, 14
Boulonnais, France

NHO03 Newhaven. Sussex, UK Newhaven Campanian Micritic 4,8,12,13

RAO1 Ramsgate. Kent, UK Seaford Santonian Micritic 4,8,12,13

BGO1 Birling Gap. Sussex, UK New Pit Turonian Grainy 4,8,12,13

CMO02  Mimoyecques Quarry. Guet Turonian Grainy 1
Boulonnais, France

CM06  Mimoyecques Quarry. Guet Turonian Grainy 1
Boulonnais. France

ETR33 Etretat, Upper Normandy, Saint Pierre en Port Coniacian Grainy 7,9, 12, 15
France

SSO01 Seven Sisters, Sussex, UK Chalk mudstone Coniacian Grainy 4,8,12,13

CB14  Cap Blanc Nez, Escalles Upper Cenomanian Cemented 2,6, 14
Boulonnais, France

FA15 Flamborough Head, Flamborough Santonian Cemented 10, 16
Yorkshire, UK

FA39B Flamborough Head, Flamborough Santonian Cemented 10, 16
Yorkshire, UK

FH11 Flamborough Head, Flamborough Santonian Cemented 10, 16
Yorkshire, UK

SCO01 Saint Martin en Tilleul Turonian Cemented 7,9,12, 15
Campagne, Upper
Normandy, France

CB13 Cap Blanc Nez, Escalles Upper Cenomanian Marl seams 2, 6, 14
Boulonnais, France

CB16 Cap Blanc Nez, Grand Nez Base Turonian Marl seams 2, 6, 14
Boulonnais, France

EAO02 Eastbourne. Sussex, UK Hollywell Base Turonian Marl seams 4,5, 8, 12, 13

Nodular

ETR21 Senneville, Upper Senneville Middle Turonian Marl seams 7,9, 12, 15
Normandy, France

ETR47 Senneville, Upper Senneville Middle Turonian Marl seams 7,9, 12, 15
Normandy, France

SC02 Saint Martin en Tilleul Turonian Marl seams 7,9, 12, 15
Campagne, Upper
Normandy, France

SC03 Saint Martin en Tilleul Turonian Marl seams 7,9, 12, 15
Campagne, Upper
Normandy, France

CBO02 Cap Blanc Nez, Strouanne Lower Cenomanian Argillaceous 2, 6, 14
Boulonnais, France

CB04 Cap Blanc Nez, Strouanne Lower Cenomanian Argillaceous 2, 6, 14
Boulonnais, France

CB06 Cap Blanc Nez, Strouanne Lower Cenomanian Argillaceous 2, 6, 14
Boulonnais, France

CBO0O7 Cap Blanc Nez, Petit Blanc-Nez Lower Cenomanian Argillaceous 2, 6, 14
Boulonnais, France

CB09 Cap Blanc Nez, Petit Blanc-Nez Mid-Cenomanian Argillaceous 2, 6, 14
Boulonnais, France

CB10 Cap Blanc Nez, Petit Blanc-Nez Mid-Cenomanian Argillaceous 2, 6, 14

Boulonnais, France

(Continued)
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Table 1. (Continued)

Sample Sampling site Formation Stratigraphy Lithotype References*

no.

CB11 Cap Blanc Nez, Cran Mid-Cenomanian Argillaceous 2, 6, 14
Boulonnais, France

CB23 Cap Blanc Nez, Petit Blanc-Nez Lower Cenomanian Argillaceous 2, 6, 14
Boulonnais, France

CB24 Cap Blanc Nez, Petit Blanc-Nez Lower Cenomanian Argillaceous 2, 6, 14
Boulonnais, France

CB25 Cap Blanc Nez, Petit Blanc-Nez Lower Cenomanian Argillaceous 2, 6, 14
Boulonnais. France

EAO1 Eastbourne. Sussex, UK Zig-Zag Cenomanian Argillaceous 4,5, 8,12, 13

BRO1 Bruneval, Upper Glauconieuse Cenomanian Silicified 7,9, 12, 15

Normandy, France

*Studies performing geological logs on the studied outcrops: (1) Amédro & Robaszynski (2000); (2) Amédro & Robaszynski (2001);
(3) Boulvain & Pingot (2012); (4) Bristow et al. (1997); (5) Gale et al. (2005); (6) Grife (1999); (7) Juignet (1974); (8) Kennedy
(1969); (9) Lasseur et al. (2009); (10) Marliere (1949); (11) Mitchell (1994); (12) Mortimore & Pomerol (1997); (13) Mortimore
(2011); (14) Robaszynski & Amédro (1986); (15) Robaszynski et al. (1998); (16) Whitham (1993). From Faj-Gomord et al. (2016a, b).

are difficult to identify because several grains are
nested together. A fused contact corresponds to a
contact where it is impossible to define clearly the
boundaries of the grains. The contact between grains
depends on both mechanical compaction and pres-
sure dissolution, particularly grain-to-grain contact
dissolution processes, which are often enhanced in
the presence of clays.

Coccolith disintegration. When sediments are bur-
ied, gravitational forces induce mechanical compac-
tion. The grains are brought closer together and
the mechanical breakage of delicate coccolith tests
increases as the overburden pressure increases.
The crushing of microfossils requires stress levels
corresponding to significant depths, even if some
species break more easily than others, depending
on the thickness of their tests. This evidence of
burial diagenesis can be graded from 0, when all
the coccoliths are well preserved, to 10, when the
coccolith tests are broken apart into very small —
sometimes hardly recognizable — tests.

Cemented zones. The cemented zones are defined as
homogeneous surfaces of calcite cement for which

the longest surface trace observed on the micro-
graph is >10 pm. These zones result from calcite
cementation either during eogenesis (hardgrounds)
or burial diagenesis. This criterion is ranked from
0, when cemented zones are absent, to 10 when
they represent at least 50% of the chalk sample.

Authigenic calcite crystals. Authigenic calcite crys-
tals generally occur as euhedral crystals of appar-
ently non-biogenic origin, usually measuring 1-—
5 pm. These authigenic crystals have previously
been reported as associated with both early diage-
netic processes (Fay-Gomord et al. 2016a) and
burial diagenesis (Fabricius 2003). This criterion
is rated from O (no authigenic crystals) to 10 (a
high density of authigenic crystals).

Coccolith grain overgrowth. Coccolith fragments
often exhibit calcite cement overgrowths, but the
degree of occurrence is significantly variable. This
diagenetic criterion ranges from 0 for none to very
few overgrowth cements, to 10 when almost all
the nanofossils show overgrowths. Cement over-
growth results from the dissolution of calcite from
less stable surfaces and reprecipitation on stable

Criteria From 1 10 | To Mark
Micritic matrix texture Microrhombic | « m * | Anhedral 7
Grain contact Punctic « LiLJ » | Coalescent 3
Coccolith disintegration Low « LU * | High 6
Cemented zone Absent 4 L) * | Common 7
Automorphous cement Absent o L1 * | Common 5
Coccolith grain overgrowth Absent . 11 " | Common 5
Intraparticle cementation Absent « m » | Common 3
TOTAL 5

Fig. 2. Example of diagenesis index assessment from the evaluation of seven criteria.
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1. Micrite microtexture

LOOSE
ANHEDRAL
COMPACT

2. Grain contact

SERRATE

PUNCTIC

3. Coccolith disintegration

Low

4. Cemented zones

ABSENT

5. Authigenic calcite crystals

ABSENT

6. Coccolith grain overgrowths

ABSENT

7. Intraparticle cementation

ABSENT
COMMON

Fig. 3. Typical extreme cases encountered for the seven diagenesis-related criteria. Sketches in Part 1 from Lambert
et al. (2000).
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surfaces (Hjuler & Fabricius 2009). Overgrowths
derive from diagenetic processes either by recrystal-
lization or cementation and tend to be more pro-
nounced as the burial depth increases.

Intraparticle calcite cement. The intraparticle cement
is characterized from thin section observations
under fluorescent light. Intraparticle cementation
in chalk essentially refers to the cementation inside
forams and calcisphere tests. The cementation of
intrafossil porosity indicates active pressure dissolu-
tion and thus significant burial depth (Hjuler &
Fabricius 2009). This parameter ranges from O,
when there is no intraparticle cementation, to 10,
when the whole intraparticle porosity is filled by
cement. In this case the cement is often found in
the form of large sparitic calcite crystals.

Petrophysical and mechanical properties

The experimental procedure aimed to determine
as many properties as possible from the cored
plugs available. Therefore non-destructive testing
techniques were used to determine the porosity, per-
meability, dry and saturated P-wave velocities
before performing uniaxial compression tests.

Porosity and permeability. Porosity was determined
both by water saturation (@yae;) and helium expan-
sion (¢ye) techniques. In the first method, the void
volume was directly measured by a water saturation
stage followed by a drying stage; the bulk volume
was deduced from the core dimensions. Saturation
and drying operations were performed according
to American Petroleum Institute (API) standard
methods (API 1998). In the second method, a
Boyle’s law EPS porosimeter was used to determine
the grain volume (API 1998). Those porosity mea-
surements correspond to connected pore space.

The gas permeability of the samples was deter-
mined with a Vinci nitrogen permeameter. The
plugs were mounted in a Hassler-type core-holder
at a confining pressure of 28 bar and a steady state
gas flow was established through the samples. The
permeabilities were corrected for gas slippage
using the Klinkenberg empirical correlation (API
1998).

P-wave velocity. Ultrasonic measurement is a non-
destructive method used to determine the velocity
of ultrasonic waves in materials. Velocity is influ-
enced by the rock type, density, porosity, water
content and defects and is therefore closely related
to the rock properties (Kahraman 2007). In this
study, a PUNDIT Plus system with 54 kHz P-wave
transducers was used to determine both the dry
and saturated velocities. The velocities were com-
puted from the measured transit time (resolution
0.1 ws) and length (resolution 0.01 mm) of the

samples in a pulse transmission arrangement (Rum-
mel & van Heerden 1978). Vaseline was used as the
coupling fluid.

Unconfined compressive strength tests. The un-
confined compressive strength (UCS) test is a
widespread measurement used to mechanically
characterize rock materials. The International Soci-
ety for Rock Mechanics (Fairhurst & Hudson 1999)
recommends cylindrical samples with a height
to diameter ratio between 2.0 and 3.0. However,
smaller height to diameter ratios can also give
acceptable results (Dzulinski 1969; Thuro et al.
2001). As a result of chalk’s very small grain
size, smaller samples are still representative. For
instance, Duperret et al. (2005) used length to diam-
eter ratios ranging from only 1.1 to 1.4. In this study,
the tested samples had a length to diameter ratio
between 1.2 and 1.6.

Tests were performed on a stiff frame with a
servo-controlled loading rate (Fig. 4). Pressure
transducers were used to measure the axial stress
(range 0—35 MPa or 0—493 MPa depending on the
transducer used). Inductive displacement transduc-
ers (range +1.5 mm) were used to compute the
axial strains, leading to a full record of the stress—
strain curves. The UCS and Young’s modulus (the
average modulus of the linear portion of the axial
stress—strain curve) could then be computed (Fair-
hurst & Hudson 1999).

Experimental results

The experimental workflow was applied to 35 sam-
ples. Detailed results for the petrographic descrip-
tion are given in Table 1 and the petrophysical and
mechanical properties are given in Table 2.

Petrographic results

The dataset acquired covers a wide range of chalks,
especially tight chalks, characterized by a spectrum
of sedimentary textures, non-carbonate content, var-
ious degrees of cementation and compaction. Six
lithotypes could be defined based on sedimentary
features, colour and apparent strength: micritic,
grainy, marl seam, argillaceous, cemented and silic-
ified chalk. However, rather than the lithotype, it is
the microtexture (i.e. the description of the arrange-
ment of the matrix micrograins observed under
SEM) that is expected to constrain the petrophysical
properties of chalk. For each lithotype, a brief
description of the associated microtexture is given
in the following text. For more details, see Fay-
Gomord et al. (2016a), where the impact of micro-
texture on petrophysical properties is discussed
and typical SEM images are shown.
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Fig. 4. Sketch of the uniaxial compression test equipment and parameters determined from a typical stress—

strain curve.

Micritic chalks have a mud-dominated texture
(often mudstone, occasionally wackestone) accord-
ing to the Dunham (1962) classification. Micritic
chalks are mainly composed of coccolith fragments,
leading to a micro-rhombic matrix texture, with rare
authigenic calcite crystals. Contacts between cocco-
lith fragments are mostly punctic and the interparti-
cle porosity is well preserved.

Grainy chalks are grain-dominated and display
a packstone texture. Macroscopically, they cannot
always be distinguished from micritic chalks, as
they also correspond to pure chalks. However,
they show a higher foram and bioclastic content
in thin section, giving rise to their packstone
texture (Dunham 1962), with 32—-43% of grains
occurring in a micritic matrix. Under SEM, the
micritic matrix of grainy chalks is similar to that
of micritic chalk.

Marl seams in chalks are mostly interpreted
as the result of pressure solution resulting from
burial diagenesis (Lind 1993). Marl seam chalks
have a mudstone—wackestone texture, with the
percentage of grains ranging from 6 to 17%. Fluo-
rescence microscopy highlights the presence of
intraparticle porosity inside calcispheres, forams
and various bioclasts. Unlike other chalk litho-
types, there is no one typical texture associated
with marl seam chalks. In clay-rich seams, the
microtexture is dominated by clay flakes, which
may show a preferential orientation. A few milli-
metres away from the clay seams, the texture is
not dominated by the clay content and microtex-
tural features include authigenic cement crystals
and grain overgrowths, which do not develop in
clay-rich seams. Marl seams seem to develop
preferentially in nodular chalk and are affected
by early diagenesis and the clays concentrated
between the nodules.

Argillaceous chalks are clearly identifiable mac-
roscopically by their light to dark grey colour. They
initially formed during the Cenomanian stage where
specific sedimentological conditions occurred (with
a great detrital input, as described by Deconinck &
Chamley 1995; Fay-Gomord et al. 2016a), leading
to petrographic characteristics somewhere between
those of marls and chalk. Thin section observations
show that the clays are dispersed in a brownish
matrix. The texture of argillaceous chalk varies
from mudstone to wackestone, where the grains
mostly include forams, bioclasts and calcispheres.
Under SEM, argillaceous chalks are easy to identify,
with clay flakes dispersed in the matrix; mechanical
compaction tends to align the flakes on a parallel
plane to the bedding.

Cemented chalks exhibit a mudstone texture,
with 5-8% grain content, and the grains are either
cemented with sparite crystals or are micritic. All
cemented chalks show similar microtextures with
coalescent grain contacts, many authigenic calcite
crystals and grain overgrowths. Deeply buried
chalks show a higher disintegration of coccoliths
and seemingly more grain overgrowths than early
cemented chalks.

Outcrops of silicified chalk are scarce, but these
chalks have been described in the Ekofisk and South
Arne oilfields in the North Sea (Jakobsen et al. 2000;
Lindgreen et al. 2010; Gennaro et al. 2013). Only
one sample of silicified chalk was investigated in
this study, from a 30 cm thick bed from Brunneval
(Normandy, France). The rock still had a chalk tex-
ture with distinct bioclasts, but its strength was
increased compared with the surrounding chalk.
Patches of amorphous silica were present in higher
porosity zones, whereas lower porosity zones
appeared completely silicified, with chalcedony
within what used to be the chalk matrix.
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Table 2. Petrophysical and mechanical properties

Lithotype Sample Diagenetic  @waer  PHe k Grain Vb dry Vp sat UCS E
no. index (%) (%) (mD) density (ms7l) (ms~1) (MPa) (MPa)
(g-cm3)
Micritic CHO1 1 44.14 4190 3.18 2.70 2742 3298 7 9469
CHO2 0.5 43.01 44.60 4.48 2.71 2434 2921 4 1224
CHO4 0.5 41.38 4240 2.85 2.71 2563 2919 5 -
CO01 1 4231 4290 5.83 2.70 2873 2924 5 2585
NHO03 2.5 26.69 28.50 1.84 2.71 4931 4256 - -
RAO1 1.5 - 4590 5.95 2.70 2594 2541 4 1187
Grainy BGO1 1 - 37.80 3.09 2.68 2704 2961 5 5455
CMO02 1 39.18 39.70 3.67 2.70 3525 3550 8 9607
CMO06 1 4241 43.60 4.32 2.71 2602 2728 4 358
ETR33 2 30.48 33.80 13.30 2.70 2813 2966 3 1068
SS01 1.5 36.65 40.20 3.10 2.68 2930 2723 4 1345
Argillaceous CB02 3 264  21.60 0.10 2.69 3544 2154 - -
CB04 4 - 18.80 0.06 2.69 3544 3111 - -
CB06 3.5 - 23.40 0.11 2.68 3095 2476 20 40 542
CBO07 5.5 2096 2140 0.13 2.70 4752 4265 21 53 062
CB09 4 24.09 22.10 0.08 2.68 4310 3012 29 22 442
CB10 6 23.83 18.90 0.10 2.70 3553 2481 24 35799
CBI11 35 - 23.80 0.10 2.69 4797 2863 - -
CB23 5 23.29 21.00 0.06 2.68 3976 2806 27 -
CB24 3.5 19.03 18.20 0.08 2.67 4536 3724 24 26 401
CB25 4 2234 20.10 0.06 2.69 3795 2753 - -
EAO1 5 15.39 14.20 0.06 2.72 4762 3788 - -
Marl seam  CB13 3 32.85 3140 0.30 2.68 3696 2343 15 2674
CB16 4.5 23.68 20.70 0.19 2.71 4107 3739 - -
EA02 5 16.86 14.50 0.25 2.70 5618 4274 24 38 958
ETR21 1 36.37 3640 1.32 2.70 3494 3269 12 7855
ETR47 1.5 38.94 4040 2.68 2.68 2964 2592 10 -
SC02 35 33.03 33.00 0.48 2.68 3229 2447 - -
SC03 3 24.62 2540 040 2.69 4630 3788 19 14 090
Cemented  CBI14 6.5 26.89 27.10 043 2.70 4090 3514 20 -
FA15 6.5 15.81 17.60 0.10 2.71 7232 6653 20 50 789
FA39B 7 1520 16.20 0.14 2.71 6944 6716 30 23 444
FHI11 7.5 1598 19.30 0.16 2.71 6526 6200 31 41935
SCO1 6 23.69 23.80 0.44 2.70 5208 4673 21 23021
Silicified BRO1 8 26.21 2640 0.04 2.45 4550 4960 51 25076

E, Young’s modulus; k, empirical Klinkenberg permeability; UCS, unconfined compressive strength; Vp 4ry, dry P-wave velocity; Vp g,
saturated P-wave velocity; @yaceer, Water saturation porosity; ¢y, helium porosity.

Petrophysical and mechanical results

As shown in Figure 5, the porosity determined either
by water saturation or helium porosimetry gave
very similar values, ranging between 14 and 46%.
The porosity in marl seam chalk ranged between
14 and 40% due to variations in the intensity of
compaction in those rocks.

The measured permeabilities ranged between
0.04 and 13 mD. Following the definition of the
JCR group, we defined tight chalks as having a
matrix permeability <0.2 mD (Bailey et al. 1999)
and therefore almost half of the samples tested
in this study (16/35) can be considered as tight
chalks based on this criterion. All the argillaceous

chalk samples were tight, as well as the deeply bur-
ied cemented chalk samples from Flamborough
Head (UK samples FA15, FA39 and FA1l), the
nodular marl seam chalk sample from the base of
the Turonian at Cap Blanc Nez (CB16) and the silic-
ified chalk sample (BRO1). As the permeabilities are
low, fracture porosity is absent and the porosity is
associated with interparticle voids. Therefore the
measured connected porosity can be considered as
the total porosity.

Mercury injection capillary pressure measure-
ments were performed on the same samples.
They showed pore throat diameters ranging from
25 to 1100 nm (Fay-Gomord et al. 2016a). The larg-
est pores were found in micritic (510 nm) and
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Fig. 5. Correlation between water and helium porosities.

grainy chalk (760 nm), whereas the smallest pores
occurred in argillaceous (100 nm) and silicified
chalk (25 nm). The pore size distribution was gener-
ally unimodal.

UCS tests were performed on dry samples.
Despite the variety of sedimentary and diagenetic
systems investigated in this study, the mechanical
behaviour of chalk under atmospheric conditions
was generally characterized by brittle failure. A
wide range of values for the UCS was observed,
from a few MPa for micritic and grainy chalks
to several tens of MPa for argillaceous, cemented
and silicified chalks (Fig. 6). The computed Young’s
moduli varied between 350 and 53 000 MPa. The
upper limit may seem high, but the type of chalk
investigated in this work can be very different
from traditional pure chalk. In some cases, plastifi-
cation was observed before failure, mainly in the
grainy and argillaceous chalks.

Discussion

This study investigated the impact of diagenesis on
the petrophysical and mechanical properties of
chalk. This will contribute to our understanding of
the effect of diagenesis on the storage capacity,
transport mechanisms and mechanical behaviour
of tight chalk formations. It may also be helpful
for identifying outcrop analogues. The following
discussion focuses first on the typical diagenetic
indices associated with the six lithotypes. The rela-
tionships between the petrophysical and mechanical
properties are then investigated and related to diage-
netic considerations and lithotypes.

Overview of lithotypes and associated
diagenesis index

Six lithotypes were identified within the dataset:
micritic, grainy, marl seam, argillaceous, cemented
and silicified chalks. They were associated with
typical ranges of the diagenesis index. The lowest
diagenesis indices (<<2.5) correspond to micritic
and grainy chalks. The loose matrix texture, punctic
contacts between grains, rare authigenic calcite
crystals, a lack of coccolith grain overgrowth and
intraparticle cementation encountered in these
microtextures showed the limited cementation of
the chalks.

The marl seam chalks exhibited a wider range of
diagenesis indices (1-5) because of their heteroge-
neous nature (clay seams and surrounding chalk).
SEM observations indicated a wide range of micro-
textures relating to the intensity of the burial pres-
sure solution or the initial sedimentary clay content.

The highest diagenesis indices were found
in argillaceous, cemented and silicified chalks. In
the argillaceous chalks the contacts between cocco-
lith fragments were reduced and very limited
grain-to-grain contact dissolution or grain over-
growths developed as a result of the dispersed clay
flakes in the matrix. The matrix appeared to be
more compact in the argillaceous chalks than in
the micritic chalks as a result of compaction by
clay-rich chalks, resulting in tighter particles with
a higher degree of coccolith disintegration. In the
cemented chalks, the high diagenesis index can
be explained by the coalescence of grain contacts,
the development of many authigenic calcite crystals
and grain overgrowths. For the silicified chalk
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Fig. 6. Uniaxial compression curves for the various lithotypes. The sketches show the typical microtexture(s)

associated with each lithotype.

sample, the insoluble residue increased to 76%, with
silica dispersed in the chalk matrix and developed as
a cement in forams and calcisphere chambers.

Relationships between petrophysical and
mechanical properties

Porosity—permeability relationships are often con-
sidered in petrophysical studies, particularly to
establish correlations within one given formation
(Tiab & Donaldson 2004). The relationship is not
straightforward because high-porosity rocks may
show very low permeabilities and highly permeable
rocks may have a low porosity. Among the studied
samples, covering a wide range of chalk microtex-
tures, the porosity and the logarithm of the perme-
ability followed a linear relationship (Fig. 7a). The
defined microtextures corresponded to typical

areas within the cross-plot: micritic and grainy
chalks showed the highest porosities and permeabil-
ities, whereas argillaceous, cemented and silicified
chalks were less porous (<30%) and less permeable
(<1 mD). The porosity—permeability values are
related to the intensity of the diagenetic processes
because the highest porosities and permeabilities
are associated with the lowest diagenesis indices.
Figure 7a also compares the data with porosity—
permeability values in the JCR database. These
data are from North Sea chalks (the Tor, Hod
and Ekofisk formations) and their analogues. They
are generally in good agreement with our values,
although there is more scatter in the JCR data.

The P-wave velocities of both the dry and
saturated samples ranged between 2 and 7 km s~
(Fig. 7b). The saturated P-wave velocities were gen-
erally higher than the corresponding dry values in
the micritic, grainy and silicified chalks; water filled
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voids are more difficult to compress than air-filled
voids and tend to increase the P-wave velocities
(Bourbié et al. 1986).

However, for almost half of the samples, the dry
P-wave velocities were higher than the velocities
in the saturated samples; this mainly occurred in
the argillaceous and marl seam chalks, but also in
cemented chalks. To better understand the physical
mechanism for this, the P-wave velocity was mea-
sured at various saturation values for several sam-
ples. Figure 7c shows that the velocity was at a
maximum for dry rocks and rapidly decreased for
a small water saturation. At high saturation states,
the P-wave velocity stabilized or slightly increased,
but did not reach the value of the dry material.
The introduction of water to a dry sample first
increases its density, resulting in a decrease in the
velocity (Gassmann 1976; Bourbié et al. 1986).
With increasing saturation, the apparent rigidity
of the material decreases as well as the velocity.
Beyond a limit of saturation, water compressibility
is important and tends to harden the material, as pre-
dicted by Gassmann (1976).

The evolution of P-wave velocity with fluid sat-
uration has already been observed for pure chalk
(Schroeder 2002), emphasizing a minimum velocity
at partial saturation. In that case, the dry velocities
were lower than the fully saturated velocities. Mur-
phy (1982) observed higher dry velocities for the
Massillon sandstone (23% porosity). The presence
of clay minerals may explain the difference between
dry and saturated P-wave velocities. Longitudinal
waves show lower velocities in dry clays than in
saturated clays. Ghorbani et al. (2009) have shown
a desiccation-driven hardening when measuring
the elastic wave velocities of clay rocks.

As clay minerals were not found in all the
samples, other parameters were also investigated.
A point to consider is the relationship between
P-wave velocities and porosity. Gregory (1976)
proposed three characteristic behaviours for the
P-wave velocity —saturation relationship of consoli-
dated sediments depending on their porosity. Low
porosity sediments (<10%) exhibit dry P-wave
velocities that are much smaller than the saturated
velocities, with a sigmoidal evolution. For medium
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(10-25%) to high-porosity sediments (>25%), the
P-wave velocity decreases when a small amount of
water is introduced; the decrease is steeper for
more porous sediments. An increase in velocity at
higher saturation levels is also observed and linked
to the compressibility of the fluid. Gregory (1976)
observed that the difference between dry and
saturated P-wave velocities depends on the porosity,
but did not propose a mathematical relationship. For
the chalk samples tested in this study, Figure 7d also
suggests a relationship between porosity and the
difference between dry and saturated P-wave veloc-
ities. A linear correlation was attempted, but the
complexity of the chalks produced scatter in the
data (R> = 0.423).

In terms of mechanical behaviour, a linear rela-
tionship is generally considered to show the influ-
ence of porosity (or intact dry density) on UCS
(Mortimore & Fielding 1990; Duperret et al. 2005).
This study confirmed a correlation between porosity
and UCS (Fig. 8a). However, the data, as well
as previously reported data, showed some scatter
from the straight correlation line, meaning that
porosity alone cannot be considered as the intrinsic
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parameter governing the mechanical strength of
chalk. The mineralogical composition (e.g. silica
and clay minerals) also has a non-negligible effect
on the mechanical behaviour of chalk (Monjoie
et al. 1985; Schroeder 2002).

The features observed and rated through the dia-
genesis index are the result of both eogenetic and
mesogenetic processes affecting chalk; they quan-
tify the diagenetic alteration of chalk. During eogen-
esis, a low sedimentation rate may result in the
early formation of indurated surfaces on the seafloor
and thus the early cementation of chalky sediments.
Later, mesogenetic processes occur during burial
diagenesis and lead to the formation of cements,
either by grain overgrowth or authigenic calcite
crystals in the matrix. Hence the diagenesis index
is a means of quantifying cementation, which
strengthens grain contacts and increases the UCS
(Fig. 8b). This cross-plot indicates a higher correla-
tion coefficient between the UCS and the diagenesis
index than between the UCS and porosity. Several
factors can reduce porosity, such as the presence
of clay minerals, but these factors do not necessarily
reinforce the microstructure, whereas cementation
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Young’s modulus and porosity, according to lithotype, and comparison with data from the JCR database. (d)

Relationship between Young’s modulus and UCS.
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strengthens the mechanical properties of chalk. This
result is also important because it emphasizes
how features observed at the SEM scale influence
mechanical behaviour, whereas the depositional
facies, as observed from thin section, only poorly
constrain the petrophysical and geomechanical
properties (Faj-Gomord et al. 2016a). The micro-
texture, essentially defined by the non-carbonate
content and the degree of diagenesis, controls the
mechanical properties of the sample.

The microtextural families were associated with
specific mechanical behaviour (Fig. 6). The micritic
and grainy chalks underwent less cementation
during diagenesis and were the weakest and more
deformable materials in the dataset. It has previ-
ously been shown that the presence of clays in
chalk from deposition enhances chemical compac-
tion (Mallon & Swarbrick 2002, 2008; Fabricius
et al. 2008). This is why argillaceous chalk has a
higher diagenesis index than pure chalk (micritic
or grainy) with a similar burial history. Argillaceous
chalks are therefore stronger and stiffer than
micritic or grainy chalks. In cemented chalk, the
coalescence of grain contacts and the development
of many authigenic calcite crystals and grain
overgrowths explain the high diagenesis index
and subsequent high compressive strength. Cemen-
tation is controlled by a range of factors; texture,
burial history and fluids (Schroeder 2002; Hjuler
& Fabricius 2009) can all affect the mechanical
properties.

The Young’s modulus was found to be an expo-
nential function of porosity (Fig. 8c). The data in
this study are in good agreement with values in
the JCR database, but cover a wider spectrum of
chalk types and properties because the tested mate-
rial was not limited to reservoir chalks. Engstrgm
(1992) used a similar correlation for Danish chalk
and proposed an extrapolation towards the Young’s
modulus of pure calcite (224 800 MPa) for zero
porosity:

E = 224800 ¢ 0112¢ (D)

where E is the Young’s modulus (MPa) and ¢ is
the porosity. This principle was also applied in
this work and gave good results for a wider dataset.
Effective media models have been proposed to
explain the relations between elastic properties
and porosity. The modified upper Hashin—Shtrik-
man model (Nur ef al. 1998; Walls et al. 1998;
Anderson 1999) considers a mixture of hollow
spherical shells of one component filling the space,
whereas the other component fills the spheres. A
first end-member corresponds to zero porosity and
the elastic properties are those of the solid phase
(mainly calcite); a second end-member depends on

a critical porosity estimated to be 50 (Bhakta &
Landro 2013) or 70% (Fabricius 2007) for chalk.
Fabricius (2003) proposed the iso-frame model,
which considers mixtures of suspended solids in
the spherical pores of a solid. This modification
estimates that not all the grain materials take part
in building the frame in the Hashin—Shtrikman
model and some will stay in suspension in the
pore space. In other words, part of the solid is in
suspension in the pore fluid and this suspension is
embedded in the supporting frame of calcite and
silicates (Fabricius et al. 2005).

The relationship between Young’s modulus
and the UCS was also examined (Fig. 8d). Our
results were less clear than previously reported
results (Schroeder 2002), which were limited to
pure chalk. The idea of a constant brittle failure
strain in the shear mode (g, = 0.002) seems to be
valid for micritic and grainy chalks and some reser-
voir chalk (JCR database), but argillaceous and
cemented chalk are far from this trend. If diagenesis
plays a part in the deformability of these chalks,
other factors will also affect the deformability,
such as the occurrence of clay minerals, pore size
and shape (Fayj-Gomord et al. 2016a). It can explain
the scatter in the cross-plot for argillaceous, marl
seam and cemented chalk samples.

Conclusions

Chalk is usually defined as a pure, highly porous and
low-permeability carbonate rock. This definition
only gives a limited insight into the wide variety
of existing chalk materials. Considering the increas-
ing interest in unconventional reservoirs, including
tight chalk formations, this study broadens the sedi-
mentary and diagenetic systems investigated and
showed how diagenesis can affect the petrophysical
and the mechanical properties of chalk by studying
the relationships between these properties and the
associated microtextures.

Several outcrops in NW Europe were sampled
and characterized. The petrographic description
included the assessment of a diagenesis index that
quantified diagenesis using seven criteria. Each
criterion was observed on SEM micrographs of
the samples at various scales. Petrophysical and
mechanical tests were also conducted, including
the determination of porosity, permeability, P-wave
velocity and UCS tests.

Six lithotypes were defined: micritic, grainy, marl
seam, argillaceous, cemented and silicified chalk.
They were characterized by a typical range of values
for the diagenesis index. The determined petrophys-
ical and mechanical properties cover a wide range
of values, with half of the samples being considered
as tight chalks. A linear relationship between
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porosity and the logarithm of permeability was
obtained. Porosity and permeability are linked with
diagenetic processes, with the highest values associ-
ated with the lowest diagenetic indices where com-
paction and cementation are less developed.

P-wave velocity was found to be dependent on
the saturation state of the samples with, in some
cases, higher values for the dry velocity than for
the saturated velocity. This can be explained by a
combination of two mechanisms: density increases
when water is introduced into a dry sample, but
the material hardens when the saturation exceeds
a threshold value. The predominant mechanism
seems to be influenced by the presence of clay and
the porosity of the rock.

From a mechanical point of view, a linear corre-
lation between UCS and porosity was confirmed,
even when a wide variety of chalks was considered.
However, a much better relationship was found
between the UCS and the diagenetic index, which
quantified the degree of cementation. Argillaceous
chalk, in particular, exhibited a higher diagenetic
index than pure chalk (micritic or grainy) with a
similar burial history. In other words, as a result of
their higher degree of cementation, some clay-rich
chalks may be stronger than pure chalks subject
to a similar burial history. Young’s modulus was
exponentially linked with porosity; this can be
explained by effective medium models. The stiffer
chalk samples were also associated with the highest
diagenetic indices. Hence typical behaviours in
terms of deformability and strength were observed
for the six lithotypes. We therefore showed that dia-
genetic processes, quantified by means of a newly
developed diagenesis index, govern the microtex-
tural features of chalk observed at the SEM scale
and, in turn, affect the petrophysical and mechanical
properties of these rocks.
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