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Abstract. In this paper, we are interested in optimizing a linear function on
the set of efficient solutions of a Multiple Objective Integer Linear Program-
ming problem (MOILP ). We propose an exact algorithm for maximizing a
linear function denoted φ on the set of efficient solutions of a MOILP prob-
lem without having to enumerate explicitly all the elements of this set. Two
techniques are used: the first is to reduce progressively the admissible domain
by adding more constraints eliminating all the dominated points by the cur-
rent solution; the second, when the new solution obtained by maximizing the
function φ in the reduced area is not efficient, an exploration procedure is ap-
plied over the edges incident to this solution in order to find new alternative
efficient solutions if they exist. The algorithm produces not only an optimal
value of the linear function but also a subset of non-dominated solutions in the
direction of φ that can be helpful in the practice.

1. Introduction. The problem of maximizing a linear objective function over the
set of efficient solutions of a multicriteria linear program is considered. This is a
linear program with nonconvex constraints. The difficulty of this problem is mainly
due to the nonconvexity of this set (see [15]) and hence delicate algorithms are
necessary. In the case where the decision variables are continuous, the developed
algorithms are classified into several groups : adjacent vertex search algorithm, non-
adjacent vertex search algorithm, branch-and-bound based algorithm, Lagrangian
relaxation based algorithm, dual approach and bisection algorithm ([21]). When
the decision variables are integers, few methods exist in the literature and cuts or
branch and bound techniques are unavoidable.

An illustration can be solved by our proposed method is a traveling salesman
who must conduct a tour by visiting only once n cities while minimizing various
fees under some scenarios (certain weather conditions for example). Consider a list
of n cities ℵ = {1, 2, . . . , n}, A = {(i, j); i, j ∈ ℵ, i 6= j} and ckij is the corresponding

cost under the meteorological conditions k, (k = 1, . . . , p). Let xij be a decision
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variable that is equal to 1 if (i, j) ∈ ℵ and 0 if not. The problem is then formulated
by
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“min ”zk =
n
∑

i=1

n
∑

j=1

ckijxij k = 1, . . . , p

s.t.
n
∑

i=1

xij = 1 j = 1, . . . , n

n
∑

j=1

xij = 1 i = 1, . . . , n

∑

i∈T

∑

j∈T

xij ≥ 1 ∀T ⊂ ℵ and T = ℵ\T

xi,j ∈ {0, 1}

(1)

Suppose that the decision-maker (D.M.) has got a utility function U(x) expressed in
decision variables. For instance, the D.M. prefers toll highway which implies a cost

of dij , the utility function can be written as

n
∑

i=1

n
∑

j=1

dijxij . However, optimization

over the efficient solutions is needed in order to choose a robust solution. Similar
examples of robustness in multiple objective combinatorial optimization problems
can be formulated in the same manner. In this paper we focus on the problem
of optimizing a linear function, denoted by φ, over the efficient set of a Multiple
Objective Integer Linear Programming problem (MOILP ). We address the general
case where φ is any linear function and not necessarily a linear combination of the
objectives of the MOILP problem. In such a case a formulation of criterion φ as
a linear combination of the other objectives may be impossible. It may be the case
for instance when the number of variables is larger than the number of objectives.
We propose an implicit technique that avoids searching for all efficient solutions but
guarantees finding one that optimizes φ. We take advantage of Sylva and Crema’s
idea in reducing progressively the feasible set (eliminating the solutions dominated
by the current non dominated ones) (see [7]), then we perform an exploration process
of the edges incident to the current optimal solution.(see [2]).
Consider the MOILP problem

(P )

{

“max ” Zi = cix, i = 1, 2, ..., p
s.t. x ∈ D

where D = S ∩ Z
n, S = {x ∈ R

n| Ax ≤ b, x ≥ 0}, A ∈ Z
m×n, b ∈ Z

m, p ≥ 2 ;
c1, c2, ..., cp ∈ Z

n are row vectors, Z is the set of integers. We assume throughout
the paper that D is not empty and S is a bounded convex polyhedron. The set of
all integer efficient solutions of (P ) is denoted by E (P ).

Definition 1.1. The following spaces are defined by :

• The decision space is the set S of the actions in R
n .

• The criteria space is the image of S in R
p by linear mapping ψ given by

ψ : Rn 7→ R
p : x 7→ (Z1(x), · · · , Zp(x))

Efficiency and non-dominance are defined as follows :

Definition 1.2 ([19]). A point x ∈ D is an efficient solution if and only if there
is no x ∈ D such that Zi(x) ≥ Zi(x) for all i ∈ ℑ = {1, 2, ..., p} and Zi(x) > Zi(x)
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for at least one i ∈ ℑ. Otherwise, x is not efficient and the corresponding vector
(Z1(x), Z2(x), ..., Zp(x)) is said to be dominated.

The problem that we are studying is

(PE)

{

max φ(x) = dx

s.t. x ∈ E(P )
(2)

where d denotes an n dimensional integer row vector.
Let the relaxed problem be:

(PR)

{

max φ(x) = dx

s.t. x ∈ D;
(3)

The problem (PR) can have several optimal solutions. In this case we define the
notion of an alternate solution as follows :

Definition 1.3. Let x∗ be an optimal solution of (PR), a feasible solution x̃ ∈ D
is said to be an alternate solution to x∗ if φ(x∗) = φ(x̃) and x∗ 6= x̃.

2. Necessary results. In this section, we shall present some theoretical results
that characterize efficient solutions. We state first recall a well-known theorem
that gives necessary and sufficient conditions characterizing efficient solutions of a
multiple objective linear programming problem.

Theorem 2.1 ([10]). If x is an optimal solution of the problem

(Pλ)







max Zλ =
p
∑

k=1

λkzk (x)

s.t. x ∈ S,
(4)

where λk > 0, ∀k ∈ {1, . . . , p}, then x is an efficient solution of (PS), i.e. problem
(P ) defined on S instead of D.
If x is an efficient solution of (PS) and ψ (S) is convex, then there exists a vector
λ with components λk > 0 such that x is an optimal solution of the problem (Pλ).

When the decision variables are integers, the reciprocal of this theorem does not
hold (see [5]); consequently, the set of efficient solutions is partitioned into two
incompatible sub-sets : supported efficient solutions set that are optimal solutions
of the problem (Pλ) and non supported efficient solutions that are not.

The following theorem provides another characterization of an efficient solution
integrated in the developed algorithm as a test-procedure.

2.1. Testing efficiency. The proof of this theorem is omitted and it can be found
in [3]. Its utilization guarantees that the feasible solution is either efficient or
otherwise, provides an efficient solution for problem (P ).

Theorem 2.2. Let x0 be an arbitrary element of the region D. x0 ∈ E (P ) if and
only if the optimal value of the objective function Θ(ψ, x) is null in the following
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integer linear programming problem:

(

P
(

x0
))
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max Θ(ψ1, . . . , ψp, x1, . . . , xn) =
p
∑

i=1

ψi

s.t.
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n
∑

j=1

cijxj − ψi =

n
∑

j=1

cijx
0
j ∀i ∈ {1, . . . , p}

x = (x1, . . . , xn) ∈ D
ψi : are real nonnegative integer variables for all i
cij : is the jth component of row vector

Ci in problem (P )

(5)

2.2. Exploring edges. In the proposed algorithm we may have to explore edges
incident to a feasible solution, looking for efficient solutions. We use a type of cuts,
as defined below. The current admissible domain is being reduced by estimating all
feasible solutions on those edges.
Let Dk be the current feasible region at iteration k,

• xk is an optimal integer solution of problem (Pλ) obtained in Dk,
• Bk is the basis associated with solution xk,
• ak,j is the activity vector of xkj with respect to the current region Dk,
• Ik = {j| the vector ak,j is a column of the basis Bk} (indices of basic vari-
ables),
• Nk = {j| the vector ak,j is not a column of the basis Bk} (indices of non-basic
variables),

• yk,j = (yk,ij) = (Bk)
−1
ak,j ,

• φj = dBk
yk,ij ; dBk

is the vector of cost-coefficients of basic variables associated
with Bk in vector d of problem (PR) (equation 3).

Definition 2.3. Assume that jk ∈ Nk. An edge Ej
k
incident to a solution xk is

defined as the set

Ej
k
=







(x1, · · · , xn) ∈ Dk

∣

∣

∣

∣

∣

∣

xi = xki − θjkyk,ijk for i ∈ Ik
xj

k
= θj

k

xi = 0 for i ∈ Nk\ {jk}







where 0 < θj
k
≤ min

i∈Ik

{

xk
i

yk,ijk

; yk,ijk > 0
}

, θj
k
is a positive integer and θjk × yk,ijk

are integers for all i ∈ Ik if such integer values exist.

We present some results that will be useful for proving the finiteness of the procedure
we propose in section 3. The following theorem addresses the case in which the
optimal solution of (PR(Dk)), i.e. problem (PR) relative to the current feasible
solution set Dk, is not unique.

Note that a sufficient condition for the uniqueness of the optimal solution x1 of
(PR(Dk)) is that the set J1 = {j ∈ N1 |φj − dj = 0} is empty.

Let x1 be an optimal solution of (PR). A1x
1 =

∑

i∈I1

a1,ix
1
i = b1.

Let j
1
∈ J1; we have

∑

i∈I1

a1,ix
1
i − θj

1
a1,j

1
+θj

1
a1,j

1
= b1, where θj

1
is a non-zero

positive scalar. Trivially, a1,j
1
=
∑

i∈I1

a1,iy1,ij1 ; hence :

∑

i∈I1

a1,ix
1
i − θj1

(

∑

i∈I1

a1,iy1,ij
1

)

+ θj
1
a1,j

1
= b1 ;



OPTIMIZING OVER INTEGER EFFICIENT SET 815

∑

i∈I1

a1,i(x
1
i − θj1 y1,ij1 ) + θj

1
a1,j

1
= b1.

For 0 < θj
1
≤ min

i∈I1

{

x1

i

y1,ij
1

; y1,ij
1

> 0

}

, we define x2 as follows :

x2 =







x2i = x1i − θj1 × y1,ij1 i ∈ I1
x2j

1

= θj
1

x2i = 0 for i ∈ N1\{j1},

which is a new integer feasible solution of (PR), provided θj
1

is a positive integer
and θj

1
× y1,ij

1
are integers for all i ∈ I1.

We now show that φ(x2) = φ(x1).

φ(x2) = d′x2 =
∑

i∈I1

dix
2
i + dj1x

2
j1
+

∑

i∈N1\{j
1
}
dix

2
i

=
∑

i∈I1

di(x
1
i − θj1 y1,ij1 ) + dj1θj1 =

∑

i∈I1

dix
1
i −

∑

i∈I1

diθj
1
y1,ij

1

+dj1θj
1

=
∑

i∈I1

dix1i − θj1

(

∑

i∈I1

diy1,ij
1
− dj1

)

= φ(x1)− θj1 (φj − dj1 ) .

As j1 ∈ J1, then φj − dj1 = 0 . Then φ(x2) = φ(x1).
x2 is an integer feasible solution of (PR), alternate to x1, lying on an edge

Ej
1
=







(xi) ∈ R
(|I1|+|N1|)

∣

∣

∣

∣

∣

∣

x2i = x1i − θj1 × y1,ij1 , i ∈ I1
x2j

1

= θj
1

x2i = 0 for i ∈ N1\ {j1}







(6)

We have
∑

j∈N1\{j1}
x2j < 1, since x2j = 0 for all j ∈ N1\ {j1}. Thus, the point x2 lies

in the open half space
∑

j∈N1\{j1}

xj < 1.

Equation (6) enables us to compute the integer feasible alternate solutions when
the optimal solution obtained by solving (Pλ) is not unique.

The following theorem suggests a cut that can be viewed as a generalization of
Dantzig’s cut, see [8]; it truncates a whole edge while the latter truncates only a
point. Obviously, it leads to a reduction of the feasible set that is more drastic than
the classical Dantzig cut. For the proof see [2].

Theorem 2.4. An integer feasible solution of problem (Pλ(Dk)) that is distinct
from xk and not on an edge Ej

k
of the truncated region Sk (or region S ) through

an integer optimal solution xk of (Pλ(D)) lies in the closed half space

∑

j∈Nk\{jk}

xj ≥ 1 (7)

3. Description of the procedure. This section describes the algorithm that will
be further detailed and tested in section 4. We prove that the algorithm yields an
optimal solution of (PE) in a finite number of steps.

The procedure starts from an initial efficient solution x0 of problem (P ), obtained
by solving problem (P (x∗)) see equation (5), where x∗ is an optimal solution of the
relaxed problem (PR).
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x0 is then used to optimize the main criterion on solutions with the same criterion
vector by solving the problem (Tl) defined by

(Tl) : max{dx|Cx = Cx0, x ∈ D} (8)

where C is the criteria matrix. The optimal solution xl of this problem is considered
as a first efficient solution; we initialize Xopt := xl and φopt := dx.

Afterwards, at each iteration, say l, the research area for efficient solutions is
reduced gradually by eliminating all dominated solutions by xl using Sylva and
Crema’s idea, see [7]. The resolution of the following problem enables us to perform
this elimination.

(Pl) : max

{

φ(x) = dx|x ∈ D\
l
⋃

s=1

Ds

}

(9)

where Ds = {x ∈ Z
n | Cx ≤ Cx̄s}, s ∈ {1, · · · , l}; with x̄1, x̄2, ..., x̄l−1 efficient

solutions of (P ) obtained at iterations 1, 2, ..., l− 1 respectively.
The feasible region of problem (Pl) will be iteratively defined by the following

constraints
{

H0 = D

Hk = Hk−1 ∩∆k, ∀k ∈ {1, . . . , l − 1}
(10)

where

∆k =


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

x ∈ D Zi(x) ≥ (Zi(Xopt) + 1)yki −Mi(1− yki ) (*)
∀i ∈ {1, 2, ..., p}
p
∑

i=1

yki ≥ 1, yki ∈ {0, 1} ∀i ∈ {1, 2, ..., p}



















(11)

−Mi is a lower bound to the ith objective function for all x ∈ D and we associate
a binary variable yki ∈ {0, 1} to the criterion Zi = cix.

If yki = 0, the constraint (∗) gives Zi(x) ≥ −Mi, which is not restrictive and the
constraint
p
∑

i=1

yki ≥ 1 means that at least one criterion is improved.

The optimal solution of the problem (Pl), x
l, produces a maximum value of the

criterion φ in the reduced domain. If it is efficient, the procedure terminates with
xl an optimal solution of the main problem (PE); otherwise, we use the final optimal
simplex tableau to explore all incident edges to this optimal solution searching for
an eventual alternative efficient point. If no such efficient point is found, the feasible
region is reduced and the process continues improving the value of φ(x) and reducing
the domain of admissibility until no pivot operation can be done indicating that the
current feasible region is empty.

A technical description of the algorithm is presented below. It contains the
following procedures:

• Pb relaxed: is used to solve the relaxed problem (PR),
• test efficiency: solves problem P (x∗),
• opt: solves problem (Tl),
• solve Pl: searches for a new efficient solution and reduces the domain of
admissibility; this procedure produces among other outputs, the final optimal
tableau table opt
• Exploring: seeks eventual efficient solutions on the edges emanating from an
efficient existing solution.
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4. The Algorithm. The technical description of the method is given below, Domk

denotes the current feasible region of (Pℓ)

Algorithm 1: Optimizing a Linear Function over Integer Efficient Set

Input

↓ A(m×n): matrix of constraints;
↓ b(m×1): RHS vector;
↓ c(1×n): main criterion vector;
↓ Cr(p×n) : matrix of criteria;
Output

↑ Xopt: optimal solution of the problem (PE).
↑ φopt: optimal value of criterion φ.
Initialization φopt ← −∞, l ← 0, research ← true.
Solve the relaxed problem (PR).
[↑ x0, ↑ z0] = Pb relaxed (↓ c, ↓ A, ↓ b).
if the problem does not have a feasible solution then problem (PE) is not
feasible;

else

[↑ xt, ↑ zt] = test efficiency (↓ Cr, ↓ A, ↓ b, ↓ x0);

if zt = 0 then Xopt ← x0, φopt ← z0;

else

put xef ← xt, (P0)← (PR);

while research = true do

Solve problem (Tl): [↑ xeq, ↑ zeq] = opt (↓ Cr, ↓ A, ↓ b, ↓ c, ↓ xef );

if zeq > φopt then Xopt ← xeq, φopt ← zeq;

l:=l+1;
Solve problem (Pl): [↑ xl, ↑ zl, ↑ Doml, ↑ tableopt] = solve Pl (↓↓
A, ↓ b, ↓ Cr,∆l, ↓ d, ↓ xef );

if Doml = ∅ Or zl < φopt then research← false ;

else

[↑ xlt, ↑ z
l
t] = test efficiency(↓ Cr, ↓ A, ↓ b, ↓ xl);

if zlt = 0 then Xopt ← xl, φopt ← zl, research← false ;

else
Construct the set Jl = {j ∈ Nl|φj − cj = 0}, where Nl is the
set of out of basis variable indices of xl;
if Jl 6= ∅ then [↑ xexp, ↑ zexp, exist] = Exploring(↓ Cr, ↓
A, ↓ b, ↓ c, ↓ tableopt, Jl);

else
if exist = true then

Xopt ← xexp, φopt ← zexp, research← false
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Proposition 1. The algorithm above converges in a finite number of iterations.

Proof. The convergence of the procedure to problem (PE) solution is assured by the
theorems above, and since the feasible region S is assumed to be bounded (there is
a limited number of integer solutions), it is reduced at each step until infeasibility.
Thus the procedure converges to the optimal solution of PE in a finite number of
iterations.

5. A didactic example. Consider the following MOILP problem:

(P (D))
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






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











max Z1 = 2x1 − x2
max Z2 = −x1 + 2x2
s.t.

x1 ≤ 5,
x2 ≤ 7,
x1 + x2 ≤ 10,
x1, x2 ∈ N

Let (PE) be the main problem (PE)

{

max φ = −x1 − 3x2
s.t. x1, x2 ∈ E(P ).

Figure 1. The feasible region D

Step 0 : Initialization The relaxed problem (PR) is solved.

(PR)




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
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
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









max φ = −x1 − 3x2
s.t.

x1 ≤ 5,
x2 ≤ 7,
x1 + x2 ≤ 10,
x1, x2 ∈ N

The optimal solution of (PR) is x
0 = (0, 0), −M1 = −7,−M2 = −5.

Step 1 l = 0, φopt = −∞, H0 = D, the solution x0 is not efficient, x̂0 = (5, 5) is the
solution obtained when solving the efficiency test problem P (x0); Z(x̂0) = (5, 5),
see Figure 2.
Step 2 We solve the problem (T0)

(T0)

{

max φ = −x1 − 3x2
s.t. (x1, x2) ∈ D ∩

{

(x1, x2) ∈ N
2|2x1 − x2 = 5,−x1 + 2x2 = 5

}

.

An optimal solution of this problem is x̄0 = (5, 5), φ(x̄0) = −20 > φopt, let Xopt :=
(5, 5), φopt = −20.
Step 3 Let l := l + 1 = 1 and solve problem (P1)



OPTIMIZING OVER INTEGER EFFICIENT SET 819

(P1)































max φ = −x1 − 3x2
s.t. (x1, x2) ∈ D

2x1 − x2 ≥ 6y11 − 7(1− y11) (1)
−x1 + 2x2 ≥ 6y12 − 5(1− y12) (2)
y11 + y12 ≥ 1
(x1, x2) ∈ N

2, (y11 , y
1
2) ∈ {0, 1}

2.

Figure 2. The reduced feasible region D1

An optimal solution of this problem is x1 = (3, 0), φ(x1) = −3, Z(x1) = (6,−3) and
y = (1, 0).

As φ(x1) > φopt we test the efficiency of this solution by solving the problem

(P (x1))
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
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
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








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



max Θ = ψ1 + ψ2

s.t. x1 ≤ 5,
x2 ≤ 7,
x1 + x2 ≤ 10,
2x1 − x2 − ψ1 = 6,
−x1 + 2x2 − ψ2 = −3,
(x1, x2) ∈ N

2, ψi ∈ N, i = 1, 2.

We obtain Θ∗ 6= 0 and x̂1 = (5, 4) an optimal solution of (P (x1)); the corresponding
vector of the criteria is Z(x̂1) = (6, 3), see Figure 2.
Step 4 The set J1 = {j ∈ N1|cj − dj = 0} = ∅ (we use the optimal tableau of x1).
We return to step 2.
iteration 2

Step 2 We solve the problem (T1)

(T1)















max φ = −x1 − 3x2
s.t. (x1, x2) ∈ D.

2x1 − x2 = 6
−x1 + 2x2 = 3

x̄1 = (5, 4), φ(x̄1) = −17 > φopt, let Xopt := (5, 4), φopt := −17.
Step 3 We put l := l + 1 = 2 and solve the problem (P2)
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(P2)


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



max φ = −x1 − 3x2
s.t. (x1, x2) ∈ D1

2x1 − x2 ≥ 7y21 − 7(1− y21) (3)
−x1 + 2x2 ≥ 4y22 − 5(1− y22) (4)
y21 + y22 ≥ 1
(x1, x2) ∈ N, (y21 , y

2
2) ∈ {0, 1}

2.

An optimal solution is x2 = (4, 0)′ which is not efficient; φ(x2) = −4, Z(x2) =
(8,−4) and Y = (1, 0, 1, 0). Let x̂2 = (5, 2) as shown in Figure 3, Z(x̂2) = (8,−1)
be an optimal solution of efficiency test problem of x2.

Figure 3. The reduced feasible region D2

Step 4 Set J2 = {j ∈ N2|cj − dj = 0} = ∅. We return again to step 2
iteration 3

Step 2 We solve problem (T2)

(T2)















max φ = −x1 − 3x2
s.t. (x1, x2) ∈ D.

2x1 − x2 = 8
−x1 + 2x2 = −1

x̄2 = (5, 2), φ(x̄2) = −11 > φopt, let Xopt := (5, 2), φopt := −11.
Step 3 We put l := l + 1 = 3 and we solve problem (P3)

(P3)































max φ = −x1 − 3x2
s.t. (x1, x2) ∈ D2

2x1 − x2 ≥ 9y31 − 7(1− y31) (5)
−x1 + 2x2 ≥ −5(1− y32) (6)
y31 + y32 ≥ 1
(x1, x2) ∈ N, (y31 , y

3
2) ∈ {0, 1}

2.

x3 = (5, 0), φ(x3) = −5 > φopt, the efficiency test is positive. The algorithm
terminates with Xopt = (5, 0) and φopt = −5.

The set of all efficient solutions of the MOILP problem is

E =

{(0, 7), (1, 7), (2, 7), (3, 7), (3, 6), (4, 6), (4, 5), (5, 5), (5, 4), (5, 3), (5, 2), (5, 1), (5, 0)}
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Figure 4. The reduced feasible region D3

and the list of efficient solutions that our procedure goes over is
L = {(5, 5), (5, 4), (5, 2), (5, 0)}, see Figure 4.

6. Implementation. The procedure presented above was implemented in the MAT-
LAB 7.0 environment. We used the optimization predefined functions to solve in-
teger linear programming problems. First, we checked the efficiency of our exact
algorithm by applying it to some didactic examples used by several authors and
researchers. Table 1 below shows the obtained results.

Instances n m p #iter CPU (sec) # eff-sol |List|

Jesus [12] 2 3 2 3 0.062 7 3
Ecker and Song [9] 2 3 2 2 0.031 5 2
Philip [16] 2 3 2 4 0.125 13 4
Bowman [5] 3 4 2 1 0.000 3 1
Crema & Sylva [7] 3 4 2 1 0.000 4 1
Sylva & Crema [17] 4 6 2 2 0.030 4 2
Gupta& Malhotra [11] 2 3 3 5 0.149 9 5
Karaivanova & Narula [13] 3 3 3 5 0.547 14 4
Klein & Hannan [14] 4 6 3 2 0.034 6 2

Table 1. Examples treated in the literature

where

• n,m, p(p ≥ 2) ∈ N: are respectively the number of variables, the number of
constraints and the number of criteria.
• #iter: is the number of iterations performed.
• CPU : is the execution time of the code expressed in seconds.
• # eff-sol: is the number of efficient solutions in the corresponding example.
• |List|: is the number of efficient solutions gone over.

According to table 1 an efficient solution of problem (PE) is found without enu-
merating explicitly all the efficient solutions of the relative MOILP problem, which



822 CHAABANE DJAMAL AND PIRLOT MARC

undoubtedly reduces the CPU time. The algorithm is also tested with instances
randomly generated from discrete uniform distribution. Elements of matrix A
are drawn randomly in the set {−30, . . . ,+30}; the criteria coefficients in the set
{−20, . . . ,+20} and the right hand side and the coefficients of the main criterion
in the set {−10, . . . ,+10}. We use a procedure that produces regions containing at
least three feasible solutions.

We present some results for several generated examples taking for each sample
type the mean result of 25 instances (see table 2). For each example we provide
also lower and upper bounds for the execution time. We notice that for these sizes
the method gives in a reasonable time the answer about the best efficient solution
in the direction of some preference φ. This procedure avoids the explicit generation
of all efficient solutions which may prove costly.

p n× m 5× 5 10× 10 20× 15 30× 15 40 × 15 50× 15

cpu 0.89 2.14 18.23 25.85 104.04 87
3 (sec) [0.005; 3] [0.02; 6.5] [0.2; 97] [0.5; 119] [0.225; 352.5] [0.105; 707]

#iter 3.39 3.23 3.37 4.23 3.69 4.7
[1; 5] [1; 6] [1; 6] [2; 7] [2; 7] [1; 10]

cpu 6.3 9.67 49.82 142.75 86.38 273.18
5 (sec) [0.015; 43] [0.1; 71.5] [0.012; 559] [0.02; 885.5] [0.125; 759] [0.4; 1500]

#iter 3.9 3.58 4.38 4.16 3.41 4.8
[1; 7] [2; 6] [2; 9] [2; 11] [1; 8] [1; 10]

cpu 1.545 11.28 52.56 219 196 147
8 (sec) [0.02; 8] [0.075; 35.6] [0.02; 225] [0.5; 1550] [0.5; 982] [2.02; 658]

#iter 2.37 2.76 3.66 4.22 4.34 3.9
[1; 5] [1; 6] [2; 7] [1; 10] [1; 11] [2; 9]

Table 2. Samples generated randomly

7. Conclusion. We have presented an exact method that optimizes a linear func-
tion over an integer efficient solutions set. We achieve this objective by combining
two ideas : one uses Sylva and Crema cuts to reduce the admissible region and the
second explores incident edges to a current solution in order to find a new efficient
solution increasing the linear function φ(x); then the domain is being reduced using
generalized Dantzig cut. In this method we bring together resolution in criteria
space and exploration within decision variable space just when needed.

We found in our experimental study that the proposed algorithm is very efficient
in terms of the number of iterations performed (the number of efficient points con-
sidered). The number of iterations as well as computing time do not grow very fast
with the size of the problem.

Acknowledgments. The authors would like to thank the referees for the many
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