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A scalar field non-minimally coupled to certain geometric [or matter] invariants which are sourced

by [electro]vacuum black holes (BHs) may spontaneously grow around the latter, due to a tachyonic

instability. This process is expected to lead to a new, dynamically preferred, equilibrium state: a scalarised

BH. The most studied geometric [matter] source term for such spontaneous BH scalarisation is the

Gauss-Bonnet quadratic curvature [Maxwell invariant]. This phenomenon has been mostly analysed for

asymptotically flat spacetimes. Here we consider the impact of a positive cosmological constant, which

introduces a cosmological horizon. The cosmological constant does not change the local conditions on

the scalar coupling for a tachyonic instability of the scalar-free BHs to emerge. But it leaves a significant

imprint on the possible new scalarised BHs. It is shown that no scalarised BH solutions exist, under

a smoothness assumption, if the scalar field is confined between the BH and cosmological horizons.

Admitting the scalar field can extend beyond the cosmological horizon, we construct new scalarised

BHs. These are asymptotically de Sitter in the (matter) Einstein-Maxwell-scalar model, with only mild

difference with respect to their asymptotically flat counterparts. But in the (geometric) extended-scalar-

tensor-Gauss-Bonnet-scalar model, they have necessarily non-standard asymptotics, as the tachyonic

instability dominates in the far field. This interpretation is supported by the analysis of a test tachyon on

a de Sitter background.

 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The ground state of Einstein’s gravity with a positive cosmo-

logical constant is de Sitter (dS) spacetime. Solutions of Einstein’s

gravity, or generalisations thereof, with dS asymptotics are of in-

terest for various reasons. Firstly and foremost, observational ev-

idence supports that our Universe is undergoing an accelerated

expansion [1,2]. The simplest theoretical modelling of such ob-

servations consists on assuming a small positive vacuum energy,

i.e. a cosmological constant 3> 0, implying the physical Universe

is asymptotically dS. Secondly, dS spacetime plays a central role

in the theory of primordial inflation, the very rapid accelerated

expansion in the early Universe, which is now part of the stan-

dard cosmological model. Finally, from a theoretical perspective,

the proposal of a holographic duality between quantum gravity in

E-mail address: Yves.Brihaye@umons.ac.be (Y. Brihaye).

dS spacetime and a conformal field theory on the boundary of dS

spacetime [3,4] further stimulated the analysis of asymptotically dS

spacetimes.

Within the classical solutions of gravitating fields in asymptot-

ically dS spacetimes, the case of black holes (BHs) is especially

interesting, as BHs are, in many ways, the gravitational atoms. One

may wonder, for instance, how much dS asymptotics may spoil

the celebrated simplicity of BHs in electrovacuum general relativ-

ity [5], where famously BHs have no hair, in the sense they have

no multipolar freedom. As in the asymptotically flat case beyond

electrovacuum [6], including additional degrees of freedom and

couplings allows a richer landscape of dS BHs. Let us give some

examples.

Concerning scalar hair, a number of no-hair results applicable

for real scalar fields in asymptotically flat BHs still hold for 3> 0

[7–10]. This covers, for instance, models with a positive semidefi-

nite, convex scalar potential; or even non-minimally coupled cases,

provided the scalar field potential is zero or quadratic [11]. BHs

https://doi.org/10.1016/j.physletb.2020.135269

0370-2693/ 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by

SCOAP3 .
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with scalar hair exist, nonetheless, if the scalar field potential is

non-convex [9]. Remarkably, for a conformally coupled scalar field

with a quartic self-interaction potential there is an exact (closed

form) hairy BH solution [12]. As another example, dS BHs with

Skyrme hair have been reported in [15]. On the flip side, somewhat

unexpectedly, spherically symmetric boson stars, which are self-

gravitating, massive, complex scalar fields [13], do not possess dS

generalisations [7], which may prevent the existence of asymptoti-

cally dS BHs with synchronised hair [14]. Turning now to the case

of vector hair, dS BHs with Yang-Mills hair have been discussed

in [16,17], while dS BHs with (real) Proca hair are not possi-

ble [10]. Finally, sphalerons and (non-Abelian) magnetic monopoles

inside dS BHs are discussed in [19].

The existence of a hairy BH solution does not guarantee per

se any sort of dynamical viability of such solution, which is, of

course, key for the physical relevance of the BH. But a quite

generic dynamical mechanism to obtain new hairy BHs that co-

exist and are dynamically preferred to the standard General Rel-

ativity (GR) electrovacuum BH solutions of Einstein’s gravity has

been recently under scrutiny: the phenomenon of BH spontaneous

scalarisation. This phenomenon is induced by non-minimal cou-

plings which allow circumventing well-known no-hair theorems.

The non-minimal coupling is typically between a real scalar field

φ and some source term I , which can trigger a repulsive gravi-

tational effect, via an effective tachyonic mass for φ. As a result,

the GR solutions are unstable against scalar perturbations in re-

gions where the source term is significant, dynamically developing

scalar hair, i.e. spontaneously scalarising.

Various expressions of I have been considered in the literature,

that fall roughly into two types: I is a geometric invariant, such

as the Gauss-Bonnet invariant [20–36], the Ricci scalar for non-

conformally invariant BHs [37], or the Chern-Simons invariant [38];

or I is a “matter” invariant, such as the Maxwell F 2 term [39–46].

This phenomenon is actually not exclusive of scalar fields [47]. It

would be therefore interesting to understand the impact of a pos-

itive cosmological constant in this phenomenon, and if it can lead,

dynamically to hairy BHs in a dS Universe. Work in this direction

was reported in [48].

The goal of this paper is to assess the impact of a positive

cosmological constant in the BH spontaneous scalarisation phe-

nomenon, considering the two paradigmatic cases in the litera-

ture, but augmented with 3 > 0. We shall then focus on BHs in

Einstein-Maxwell-scalar-3 (EMS-3) and extended-Scalar-Tensor-

Gauss-Bonnet-scalar-3 (eSTGB-3) models, which, for 3 = 0, both

allow for BH scalarisation to occur. As we shall see, the impact

of the positive cosmological constant is substantially different in

the two cases, which is related to the nature of the tachyonic in-

stability, which for the matter model is asymptotically quenched,

leading to scalarised asymptotically dS charged BHs, but for the

geometric model it is not, leading to a non-asymptotically dS ge-

ometry.

This paper is organised as follows. In section 2 we discuss the

general framework, introduce the two models and the ansatz for

the fields, discuss the conditions for scalarisation to occur and

scalarised BHs to exist, providing the choice of the non-minimal

coupling that shall be used in our work. We also analyse the be-

haviour of a tachyonic scalar field on dS spacetime that will be

relevant for our results. We end this section with a no-go theorem

for smooth scalar hair confined between the BH and cosmological

horizon. In sections 3 and 4 we describe, respectively, the matter

and the geometric model. In each case we start with the construc-

tion of the zero modes, the scalar clouds on the scalar-free BH,

and then discuss some properties of the non-linear scalarised BH

solutions. Section 5 provides some final remarks.

2. The general framework

2.1. Models and ansatz

The considerations in this work apply to a family of models

described by the following action (setting c = G = 1):

S = −
1

16π

∫

d4x
√

−g
[

R − 23− 2(∇φ)2 − f (φ)I(ψ; g)
]

,

(2.1)

where R is the Ricci scalar, 3 > 0 is the cosmological constant,

φ is a real scalar field, f (φ) is the coupling function and I is the

source term. The latter may depend only on the spacetime metric

gµν or also on extra matter fields, collectively denoted by ψ . The

corresponding equation of motion for the scalar field and the met-

ric tensor read

✷φ = f,φ
I

4
, (2.2)

Rµν −
1

2
gµν +3gµν = 2Tµν , where Tµν = T

(φ)
µν + T

(ψ)
µν .

(2.3)

Here, T
(φ)
µν = ∂µφ∂νφ − 1

2 gµν(∇φ)
2 is the scalar field energy-

momentum tensor, whereas T
(ψ)
µν is the energy-momentum tensor

associated with the source term in the action (2.1). These equa-
tions must, of course, be supplemented with those describing the
dynamics of the matter fields ψ , if they are present.

To be more concrete, we shall focus on two specific models
within the family (2.1), corresponding to two different choices of
source term I . These are:

i) a “matter” source: I = LM ≡ Fµν F
µν , with ψ = Aµ and Fµν =

∂µAν − ∂ν Aµ ,

ii) a geometric source: I =LGB ≡ R2 − 4Rµν R
µν + Rµνρσ R

µνρσ .

We shall refer to these models, respectively, as the Einstein-

Maxwell-Scalar-3 (EMS-3) model and the extended Scalar-Tensor-

Gauss-Bonnet-3 model (eSTGB-3). For the former model, the

equations of motion (2.2)-(2.3) are supplemented by the Maxwell

equations for the electromagnetic field

∂µ(
√

−g f (φ)Fµν)= 0 , (2.4)

while the energy-momentum tensor associated to the source term

reads

T
(ψ)
µν = f (φ)

(

Fµρ Fν
ρ −

1

4
gµν Fρσ F

ρσ

)

. (2.5)

For the latter model, no extra matter fields are present (ψ = 0),

and the energy-momentum tensor associated to the source term

reads

T
(ψ)
µν = −2αPµγ να∇α∇γ f (φ) , (2.6)

where

Pαβµν = −
1

4
εαβρσ R

ρσγ δεµνγ δ

= Rαβµν + gαν Rβµ − gαµRβν + gβµRαν − gβν Rαµ

+
R

2

(

gαµgβν − gαν gβµ
)

.

In order to find solutions of the model (2.1), whatever its con-

crete realisation, an appropriate, sufficiently general ansatz must

be chosen. In asymptotically dS spacetimes different coordinate
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systems serve different purposes; we choose static coordinates. The

advantage of these (simple) coordinates is their independence on a

certain “time” coordinate, which is a adapted to the Killing vector

field which is timelike in the static patch. This coordinate system

is computationally convenient, since the relevant equations of mo-

tion in our problem reduce to ordinary differential equations; it

hides, however, the cosmological expansion and the fact that the

spacetime is not stationary. The metric ansatz in static coordinates

is of the form

ds2 = −e−2δ(r)N(r)dt2 +
dr2

N(r)
+ r2(dθ2 + sin2 θdϕ2) , (2.7)

where a convenient parametrisation of the metric function N(r) is

N(r)≡ 1−
2m(r)

r
−
3r2

3
. (2.8)

Empty de Sitter spacetime corresponds to δ(r) = 0 and m(r) = 0.

It has a cosmological horizon at r =
√
3/3. The Schwarzschild-de

Sitter (SdS) solution, on the other hand, which represents a neutral

BH in an accelerating Universe has

δ(r)= 0 , m(r)= M = constant . (2.9)

In the case of the EMS-3 model, we shall be interested in elec-

trically charged BHs. Then, an ansatz for the electromagnetic

4-potential must be set. We shall restrict ourselves to a purely

electric gauge potential,

A = V (r)dt . (2.10)

The choices

δ(r)= 0 , m(r)= M −
Q 2

2r
, V (r)=

Q

r
, (2.11)

yield the Reissner-Nordström-de Sitter (RNdS) BH, where M and Q

are the gravitational mass and the total electric charge, respectively

(whose definition is subtle for a dS background [52]). A discussion

of this solution can be found in [53,54]. Finally in all cases we shall

consider the scalar field is a function of r only:

φ = φ(r) . (2.12)

With the ansatz (2.7), (2.10) and (2.12) we aim at finding non-

singular, asymptotically dS spacetimes containing a BH. The func-

tion N(r) will have (at least) two zeros, corresponding to the BH

horizon at r = rh > 0 and the cosmological horizon located at

r = rc > rh > 0. Both these hypersurfaces are merely coordinate

singularities, where all curvature invariants are finite. A nonsin-

gular extension across both of them can be found. Both functions

N(r) and e−2δ(r) are strictly positive between these horizons. We

shall also assume that all matter fields (together with their first

and second derivatives) are smooth at both BH and cosmologi-

cal horizons. Outside the cosmological horizon, N(r) changes sign,

such that r becomes a timelike coordinate. To assure standard dS

asymptotics, we require m(r)→ M asymptotically outside the cos-

mological horizon, where the constant M is the BH mass, as can

be proven by using the quasilocal formalism and approach in [49].1

Moreover, we assume that the metric function δ(r) vanishes in the

far field, decaying faster than 1/r3 . The matter field(s) asymptotic

behaviour, on the other hand, will result from the field equations

1 For this purpose, the action (2.1) is supplemented with a boundary counterterm,

the BH mass being computed outside the horizon, at future/past infinity.

and, as we shall see, it will not always be compatible with the as-

sumed standard dS asymptotics.

Both the event and the cosmological horizons have their own

thermodynamical properties. For example, the Hawking tempera-

ture, TH and horizon area AH of each horizon is,

T
(h,c)
H =

1

4π
e−δ(r)|N ′(r)|

∣

∣

∣

r=rh,rc
, A

(h,c)
H = 4πr2|r=rh,rc .

(2.13)

Generically T
(c)
H 6= T

(c)
H ; thus two horizons are not in thermal equi-

librium.

2.2. Conditions for scalarisation and scalarised BHs; choice of f (φ)

The mechanism allowing for a dynamical evolution between a

scalar-free BH and a scalarised one is, in principle, the same as

for the case of asymptotically flat BHs. This has been described in

various references, e.g. [20,39], but we shall briefly spell it out to

keep this paper self-contained.

We assume that the model admits scalar-free solutions; that is,

φ = 0 is a solution of (2.2). This implies the condition

df

dφ

∣

∣

∣

φ=0
= 0 . (2.14)

The BH solution with φ = 0 is a standard 3-electrovacuum solu-

tion of Einstein’s gravity. For the two models we shall be inter-

ested, the scalar-free solution is either the RNdS BH or the SdS BH.

We also assume the model admits scalarised solutions, with

φ 6= 0. These solutions form a family, that can be labelled by an ex-

tra parameter (say, the value of the scalar field at the horizon) that

is continuously connected to the scalar-free solution, approaching

it as the extra parameter approaches the value for the scalar-free

3-electrovacuum solution. One can further impose that the lat-

ter solution is unstable against scalar perturbations, such that the

scalarised solution is dynamically preferred. Considering a small-φ

expansion of the coupling function (since one is dealing with a lin-

ear analysis in φ)

f (φ)= f |φ=0 +
1

2

d2 f

dφ2

∣

∣

∣

φ=0
φ2 +O(φ3) , (2.15)

the linearised form of (2.2) reads

(✷ −µ2
eff)φ = 0 , where µ2

eff =
1

4

d2 f

dφ2

∣

∣

∣

φ=0
I . (2.16)

Thus, the scalar-free solution is unstable if µ2
eff < 0; that is there

is a tachyonic instability triggered by a negative effective mass

squared of the scalar field.

Taking into account our specific models, we note that for the

RNdS BH,

I = Fµν F
µν = −

Q 2

r4
< 0 , (2.17)

whereas for a SdS BH,

I = R2 − 4Rµν R
µν + Rµνρσ R

aµνρσ

=
48M2

r6
+

8

3
32 > 0 . (2.18)

Now we need a specific choice of the coupling function f (φ). We

shall focus on a quadratic coupling function, the simplest function

that contains the necessary term in (2.15):
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f (φ)= a0 − αφ2 . (2.19)

The first constant is taken as a0 = 1 for the EMS-3 model and

an arbitrary value for the eSTGB-3 case. The second constant, α,

defines the sign of d2 f (φ)/dφ2 , and hence that of µ2
eff . In fact,

µ2
eff = −αI/2. From (2.16)-(2.19), the existence of a tachyonic in-

stability requires

α < 0 for EMS−3 and α > 0 for eSTGB−3 . (2.20)

Observe that α is dimensionless for the EMS-3 model and has
dimension [length]2 for the eSTGB-3 model.2

Solving (2.16) on the 3-electrovacuum BH spacetimes and
the above coupling function is an eigenvalue problem. The solu-
tions that obey the appropriate boundary conditions describe zero
modes or scalar clouds. For each choice of I , they exist for a spe-
cific (discrete) set of global charges. These linear zero modes mark
the onset of the instability triggered by the scalar field perturba-
tion and the branching off towards a new family of fully non-linear
solutions describing scalarised BHs.

Ensuring the above instability of the scalar-free solutions can
one really guarantee the existence of a new set of scalarised so-
lutions? Although this can only be done by explicitly computing
the latter, some Bekenstein-type identities put constraints on the
models that can have scalarised solutions. Let us provide three ex-
amples.

As a first example, we integrate eq. (2.2) along a hypersurface

V bounded by the BH horizon and the cosmological horizon. Since

the contribution of the boundary terms vanishes for smooth con-

figurations, this results in the identity
∫

V

d4x
√

−g f,φI = 0 . (2.21)

Assuming that the source term I does not change the sign be-
tween the BH and cosmological horizons, which is true in the test
field limit for the specific models described above, this identity im-
plies that f,φ , which equals −2αφ for choice (2.19), has to change
sign in the interval rh < r < rc for non-trivial scalar fields to be
possible. Thus, the number of nodes k ∈ N0 of the scalar field in
between the two horizons must be k > 1. In this work, for sim-
plicity, we shall focus on solutions with the minimal number of
nodes, k = 1. On the other hand, the eq. (2.21) excludes the exis-
tence of regular solutions for several usual choices of the coupling
function,3 e.g. f (φ)= eαφ or f (φ)= αφ2n+1 (with n an integer).

As a second example, we multiply eq. (2.2) by f,φ . After inte-

grating by parts and using the divergence theorem, this results is
∫

V

d4x
√

−g

(

f,φφ(∇φ)2 +
1

4
f 2,φI

)

= 0 . (2.22)

Again, if the source term I does not change the sign between the
BH and cosmological horizon this identity requires f,φφ and I to
have the opposite sign in some interval between the two horizons,
for a non-trivial scalar field profile to exist. From (2.16) and for
our coupling this is precisely the requirement that µ2

eff is nega-

tive. Thus, a non-tachyonic scalar field with µ2
eff > 0 everywhere

2 In this work we shall plot various quantities which are invariant under a scaling

of the radial coordinate r → λr (with λ > 0), and for the eSTGB-3 model, also α→
α/λ2 (and various global quantities scaling accordingly).
3 This observation, together with the results in Section 2.4, provide a partial ex-

planation for the negative results reported in Ref. [48]. The absence of solutions

there also for a quadratic coupling function (2.19), can presumably be attributed to

a choice of the input parameters in the numerical approach outside the domain of

existence of solutions.

cannot yield scalar hair (at least as a test field on the standard

3-electrovacuum BHs).

A third, related, example is found by multiplying (2.2) by φ, the

integration resulting in
∫

V

d4x
√

−g

(

(∇φ)2 +
1

4
φ f,φI

)

= 0 . (2.23)

Similarly, this now implies that φ f,φ and I must have the opposite

sign somewhere in the interval rh < r < rc . For our coupling this

leads to the same conclusion as the identity (2.22).

2.3. A tachyon on dS spacetime

From the above discussion, a scalar field must have a tachy-

onic behaviour somewhere in between the BH and cosmological

horizon, for scalar hair to exist. What is the asymptotic behaviour,

beyond the cosmological horizon, of such a tachyon? This question,

which impacts on our findings of the next sections, can be tackled

by considering the massive Klein-Gordon equation, (✷ −µ2)φ = 0,

with µ2 = constant, as a test field on an empty de Sitter space-

time. A closed form solution can be found, which consists of the

sum of two modes:

φ(r)=
1

r
Pu

(

r

rc

)

+
s

r
Q u

(

r

rc

)

, where u ≡
3χ − 1

2

and χ ≡

√

1−
4µ2

33
. (2.24)

Here, Pu , Q u are Legendre functions and s is an arbitrary constant.

Both terms in the above solution diverge at r = 0; Q u(r/rc) also di-

verges at the cosmological horizon, located at r = rc =
√
3/3. Thus,

in what follows we take s = 0. Then, the solution in the neighbour-

hood of the cosmological horizon expands as

φ(r)=
1

rc
−
µ2

2
(r − rc)+O(r − rc)

2 . (2.25)

For r ≫ rc , on the other hand, the approximate form of φ(r) is

φ(r)≃ c+r−
3
2 (1+χ) + c−r−

3
2 (1−χ) ,

where c± ≡
r
1±3χ

2
c Ŵ

(

∓ 3χ
2

)

√
π2

1±3χ
2 Ŵ

(

1∓3χ
2

) . (2.26)

For a tachyonic field µ2 < 0 and χ > 1; thus φ(r) diverges as

r → ∞. Let us stress this conclusion: a tachyonic test field (solely

depending on r) that is regular at the cosmological horizon is nec-

essarily asymptotically divergent, and the test field approximation

breaks down.

In the presence of a BH, one may expect this asymptotic be-

haviour to remain, again if one assumes regularity at the cosmo-

logical horizon, if the scalar field has an effective tachyonic mass,

asymptotically. This is corroborated by the numerical results in

the next Sections. Although in our models µ2
eff

is a function of

r, the existence (or absence) of an asymptotic tachyonic behaviour

in the region r ≫ rc will source a deviation from standard de Sit-

ter asymptotics. The r = 0 singularity of (2.24), on the other hand,

becomes irrelevant in the presence of a BH horizon.

2.4. No smooth scalar hair confined within the cosmological horizon

We have seen that, on the one hand, a tachyonic behaviour

is required for the scalar field to be non-trivial in between the
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BH and the cosmological horizon; on the other hand, an asymp-

totic tachyonic behaviour will potentially lead to divergences. One

may ask, thus, if one could confine the non-trivial scalar entirely

within the BH and cosmological horizon, thus excising the poten-

tial pathological behaviour.

If such confined scalar field is smooth, not only it vanishes at

the cosmological horizon, but its derivatives, and in particular the

first derivative, also vanish therein. Then, one can show that for a

large class of models, φ(rc) = 0 = φ′(rc) imply that φ ≡ 0 for the

whole region rh < r < rc . The proof goes as follows. For a scalar

field with k nodes in rh < r < rc , the assumption φ(rc)= 0 implies

the existence of (at least) k local extrema of its profile. Recall k> 1.

Let r0 be the largest root of the equation φ′(r)= 0 (r0 < rc). Then,

integrating the scalar field equation (2.2) between r0 and rc yields

e−δNr2φ′∣
∣

rc
r0

=
1

4

rc
∫

r0

dr e−δr2 f,φI . (2.27)

The left hand side of (2.27) vanishes. Indeed, a smooth configu-

ration has N(rc)e
−δ(rc)φ′(rc) → 0; moreover, both N and e−δ are

finite at r0 , where φ′(r0)= 0. However, for the EMS-3 model and

also for the test field limit of the eSTGB-3 model, the integrand of

the right hand side does not change the sign in that r-interval. We

conclude that φ ≡ 0 for the considered r-range. The argument can

easily be extended for all interval rh < r < rc , yielding the adver-

tised result.

3. The scalarised EMS-3 black holes

3.1. The zero modes

For the EMS-3 model, the scalar-free solution is the RNdS BH,

given by (2.7), (2.8) and (2.10) with (2.11) and φ = 0. Let us first

consider the zero modes of the scalar field perturbations. In this

paper we only consider spherical modes.

The small-φ limit of the scalar field equation (2.2) on a fixed

RNdS background gives

(r2Nφ′)′ −
αQ 2

r2
φ = 0 . (3.28)

For 3= 0, (3.28) admits an exact, closed form solution in term of

a Legendre function [39]

φ(r)= Pu

[

1+
2Q 2(r − rh)

r(r2
h

− Q 2)

]

, where u ≡
√
4α + 1− 1

2
.

(3.29)

The leading behaviour of this solution as the asymptotically flat

region is approached is

φ(r → ∞)= 2F1

[

1−
√
4α + 1

2
,
1+

√
4α + 1

2
,1;

Q 2

Q 2 − r2
h

]

+O

(

1

r

)

. (3.30)

Allowing a generic value of φ(r → ∞), there is a continuum of

zero mode solutions, as long as [39]

α < αmax ≡ −
1

4
. (3.31)

The asymptotic value of φ is fixed by the ratio Q /M . Requiring,

for a given α, that the scalar field vanishes asymptotically (i.e.

φ(r → ∞) = 0), only a discrete set of values of Q /M is allowed,

corresponding to solutions with different node number.

No exact solution of (3.28) appears to exist for 3 6= 0. In the

neighbourhood of the BH horizon, however, an approximate (regu-

lar) solution can be expressed as a power series in (r − rh), as

φ(r)= φh +
αQ 2rh(r

2
c + rcrh + r2

h
)φh

(rc − rh)rh[−rcr
2
h
(rc + 2rh)+ Q 2(r2c + 2rcrh + 3r2

h
)]

× (r − rh)+O(r − rh)
2 , (3.32)

where φh is the value of the scalar field at the BH horizon, a free
parameter. A similar expression holds in the neighbourhood of the

cosmological horizon, with rh and rc interchanged and φh replaced
by the value of the scalar field at the cosmological horizon, φc .

4

Performing a numerical integration in the region between the

BH and cosmological horizons, our numerical results indicate that

for a given RNdS background, as specified e.g. by the dimensionless

ratios (Q /M , rc/rh), solutions which are regular at both horizons

exist for a discrete set of α, being labelled by the node number

k > 0. Using these solutions, the boundary data at the cosmologi-

cal horizon is fixed; we then integrate from the horizon outwards,

extending the solutions to the asymptotic region r → ∞. For large

r, an approximate form solution can be found as a power series in

1/r, with the leading order terms being

φ(r)= φ∞ +
φ3

r3
+ . . . , (3.33)

where φ∞ and φ3 are constants fixed by the numerics.

An outstanding fact is that, differently from the 3= 0 case, so-

lutions with φ∞ = 0 were not found. That is, the scalar field does
not vanish asymptotically. This numerical finding agrees with the

analysis in section 2.3. Indeed, for the Maxwell case, the effective
tachyonic mass vanishes in the far field region, cf. (2.17), and thus

(2.26) reduces to (3.33). The behaviour of φ∞ , as well as the varia-

tion of the critical value of α as the BH charge to mass ratio Q /M

is varied, is illustrated in Fig. 1 (left panel) for two values of the

ratio rc/rh .

3.2. The non-linear solutions

Let us now consider the non-linear solutions that bifurcate from

the RNdS family at the scalar clouds. The ansatz (2.7), (2.8), (2.10)

and (2.12) yields the following set of coupled ordinary differential

equations5:

m′ =
r2Nφ′ 2

2
+

e2δr2V ′ 2

2 f (φ)
, δ′ + rφ′ 2 = 0 , (3.34)

( f (φ)eδr2V ′)′ = 0 , (e−δr2Nφ′)′ =
eδr2

2

df (φ)

dφ
V ′ 2 . (3.35)

The electric potential can be eliminated from the above equations

noticing the existence of a first integral,

V ′ = e−δ Q

r2 f (φ)
, (3.36)

where Q is an integration constant interpreted as the electric
charge.

The system of equation (3.34)-(3.35) will be solved numerically.

To do so, we first find the approximate form of the solutions at

4 In the numerics we have set φh = 1 without any loss of generality.
5 There is also an extra equation, which is a constraint, and can be derived from

(3.34)-(3.35).
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Fig. 1. (Left panel) Asymptotic value of the scalar field (φ∞) (main plot) and critical value of α (inset) vs. the charge to mass ratio for dS scalar clouds on the RNdS background,

for two illustrative values of rc/rh . (Right panel) Radial profiles for the metric functions and electrostatic potential of a typical EMS-3 BH with 3> 0.

Fig. 2. Normalise horizon area (left panel) and scalar field value at the horizon (right panel) vs. the charge to mass ratio for scalarised EMS-3 BHs, for a fixed value of rc/rh
and different values of the coupling constant α. The right panel also shows the value of the metric function e−δr at the horizon.

the boundary of the domain of integration. Firstly, close to the BH

horizon, the relevant functions are approximated as:

m(r)=
rh

2
−
3r2

h

6
+m1(r − rh)+ . . . ,

δ(r)= δh + δ1(r − rh)+ . . . , (3.37)

φ(r)= φh + φ1(r − rh)+ . . . ,

V (r)= Vh + v1(r − rh)+ . . . .

These expressions depend on the following set of constants:

rh,3,m1, δh, δ1, φh, φ1, Vh, v1 . The field equations relate these pa-

rameters. We obtain:

m1 =
Q 2

2r2
h
(1− αφ2

h
)
, v1 = −

e−δh Q

(1− αφ2
h
)r2

h

,

φ1 =
αφhe

2δ0rhv
2
1

1− 2m1 −3r2
h

, δ1 = −φ2
1rh . (3.38)

Thus, the independent parameters are rh,3, φh, δh, Vh , which de-

termine all others. A similar expression holds at the cosmological

horizon which is located at r = rc > rh , introducing the new inde-

pendent parameters φ(rc), δ(rc), V (rc). Also, one finds the follow-

ing asymptotics of the solutions in the far field:

m(r)= M −
Q 2

2r(1− α2φ2
∞)

+ . . . , δ(r)=
3q2s
2r6

+ . . . , (3.39)

φ(r)= φ∞ +
qs

r3
+ . . . , V (r)= V∞ +

Q

(1− αφ2
∞)r

+ . . . ,

which introduces the new independent parameters M, Q , V0,

qs, φ∞ .6

The field equations for this model (and also the model in the

next section) have been solved by the Newton-Raphson method,
with an adaptive mesh selection procedure, with the solver de-

scribed in [50]. The solutions are found in two steps: first, by

integrating from rh to rc , and then from the cosmological horizon

to infinity (the region inside the BH horizon is not considered, al-

though it could be studied following [51]). In our approach, both rh
and rc are input parameter, the corresponding value of 3 resulting

from the numerical output. In the following, we shall exhibit some

illustrative solutions, which reflect the most relevant properties of

the domain of existence studied.

The profile of a typical scalarised RNdS BH is shown in Fig. 1
(right panel). One checks that N(r) vanishes both at the BH and

cosmological horizons; the scalar field starts at a positive value at

the BH horizon and is negative at the cosmological horizon, pos-

sessing precisely one node; moreover it does not approach zero

asymptotically. One also observes that both the mass function m(r)

(which is monotonically increasing) and the metric function e−δ(r)

appear to converge for large r suggesting a smooth solution is

asymptotically attained.

Considering now a more global perspective on the full set of

computed solutions, the emerging picture has some similarities
with that found for the 3 = 0 EMS model [39,42], and can be

summarised as follows - see Fig. 2. For each α < αmax , a branch

of fully non-linear solutions bifurcates from a RNdS BH with a par-

6 The value of one of the parameters Vh, V (rc), V∞ can be fixed via a gauge

transformation.
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Fig. 3. (Left panel) The ratio α/M2 vs. the normalised cosmological constant for the critical SdS BH that supports a spherical cloud with k = 1 in the eSTGB-3 model. The

inset shows the value of the scalar field at the cosmological horizon. (Right panel) Radial profile functions for a typical solution of the EGBs-3 model.

ticular charge to mass ratio Q /M (and a given ratio rc/rh). The left
panel of Fig. 2 exhibits this bifurcation in a BH (normalised) hori-
zon area diagram vs. the charge to mass ratio. One can appreciate
that, for a fixed value of Q /M , the scalarised solution has a larger
BH horizon than the corresponding scalar-free solution. Also, over-
charged solutions exist, just as in the 3 = 0 model. Each branch
of the scalarised BHs can be specified by the value of the scalar
field at the horizon - Fig. 2 (right panel). Each such branch ends
at a critical, (likely) singular, configuration: the numerics indicate
the Kretschmann scalar and the horizon temperature diverge, the

BH horizon area vanishes (with A
(c)
H still finite), whereas the mass

parameter M stays finite. All these features resemble the 3 = 0
case.

Contrasting with the 3= 0 case, the scalarised BHs do not ap-
proach precisely the scalar-free solution as r → ∞. Indeed, the
scalar field does not vanish as r → ∞, approaching a constant
nonzero value, a feature anticipated from the analysis of the zero
modes.7

4. The scalarised eSTGB-3 black holes

4.1. The zero modes

For the eSTGB-3 model, the scalar-free solution is the SdS BH,
given by (2.7) and (2.8) with (2.9) and φ = 0. Increasing the value
of M in de SdS solution implies that the cosmological horizon (lo-
cated at the largest root of the equation N(r)= 0) shrinks in size,
pulled inwards by the gravitational attraction of the BH. As a re-
sult there is a largest BH, the Nariai solution [55], which occurs
when M = 1/(3

√
3). Spaces with larger values of M are unphys-

ical, containing naked singularities. Let us again first consider the
zero modes of the scalar field perturbations.

Restricting to the small-field limit, equation (2.16) on the SdS

background becomes

(r2N(r)φ′)′ + α
6(2r6 + r2c r

2
h
(rc + rh)

2)

r4(r2c + rcrh + r2
h
)2

φ = 0 , (4.40)

where we have eliminated the parameters M,3 in favour of the

two horizons radii rh, rc . The approximate expression of a regular

solution near the BH horizon reads

φ(r)= φh +
6αφh(2r

4
h

+ r2c r
2
h

+ r4c + 2rhr
3
c )

r3
h
(2r4

h
+ rcr

3
h

− r4c − 2r3c rh)
(r − rh)+ . . . , (4.41)

7 Despite this fact, using the approach in [52], it can be shown that the constant

Q can still be identified with the total electric charge, as evaluated at future/past

infinity.

where φh is the arbitrary constant corresponding to the scalar field
value at the horizon. A similar expansion exists near the cosmo-
logical horizon, which introduces another constant φ(rc), instead
of φh .

Similarly to the case in section 3.1, solving the perturbation
equation (4.40) can be viewed as an eigenvalue problem: impos-
ing smoothness for the scalar field at the BH horizon (r = rh) and
at the cosmological horizon (r = rc) selects a discrete set of back-
ground configurations, specified by the dimensionless ratio α/M2 .
For each value of this ratio, a discrete set of scalar profiles is found,
labelled by the number of nodes k > 0. For 3 = 0 these are dis-
cussed in [20,35,56]. The dimensionless ratio α/M2 and the scalar
field value at the cosmological horizon are shown against the cos-
mological constant for k = 1 scalar clouds in Fig. 3 (left panel). We
remark that as 3→ 0, the ratio α/M2 does not match the thresh-
old value for the fundamental mode in [20,35,56], which has k = 0,
but rather the first excited state, which has k = 1.

There is, however, a key difference between the scalar clouds

in this model and those in both the scalar clouds in the asymp-

totically flat eSTGB model and the EMS-3 model discussed in the

previous section. The scalar clouds always diverge as r → ∞. That

it, for large r, the leading terms of the asymptotic solution of the

eq. (4.40) consist in the sum of two modes

φ(r)= c1r
− 3

2 (1+
√
1+16α3/9) + c2r

− 3
2 (1−

√
1+16α3/9) + . . . , (4.42)

where c1 and c2 are two constants resulting from the numerics.
The solutions with c2 = 0 would possess the right asymptotic be-
haviour; but these do not arise when integrating from the near BH
region. This behaviour is interpreted from the discussion in sec-

tion 2.3. Since, from (2.18), µ2
eff

r→∞→ −8α/3 < 0 in the eSTGB-3
model, eq. (2.26) implies that the scalar field necessarily diverges
asymptotically. While the BH horizon indeed ‘cures’ the singularity
inside the cosmological horizon, no solutions with µ2

eff < 0 exist
which are regular at both horizons and for large r. Thus, the dis-
cussion of zero modes already anticipates that BH scalarisation in
the eSTGB-3 model will change the de Sitter asymptotics. More-
over, the test field approximation breaks down outside the cosmo-
logical horizon.

4.2. Including backreaction

With the ansatz (2.7) and (2.12), a suitable combination of the
equations of motion leads to first order equations for the metric
functions, m′ = F1(N, φ,φ

′), δ′ = F2(N, φ,φ
′) and a second order

equation for the scalar field, φ′′ = F3(N, φ,φ
′). These are the equa-

tions used in our numerical approach, but the expression for the F i
are long and unenlightening; we shall therefore not include them
here.
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Fig. 4. “Mass” (left panel), BH horizon area and the value of the metric function e−δ(r) at the horizon (right panel) for eSTGB-3 BHs vs. the scalar field at the BH horizon, for

different values of rc/rh . The red dots indicate the critical configurations where the branches stop to exist.

As for the EMS-3 model, the eSTGB-3 model possesses BH

solutions with a non-trivial scalar field which are interpreted as

the non-linear realisations of the zero modes discussed above. The

profile of a typical solutions is shown in Fig. 3 (right panel). Com-

paring with the corresponding profiles for the EMS-3 case, dis-

played in Fig. 1 (right panel) one both observes similarities and

differences. Again, N(r) vanishes both at the BH and cosmologi-

cal horizons; the scalar field starts again at a positive value at the

BH horizon and is negative at the cosmological horizon, possessing

precisely one node. Again, it does not approach zero asymptoti-

cally; indeed it diverges, although this is not apparent in the dis-

played range. But now one observes that the mass function m(r)

grows steeply in the displayed range, whereas the metric func-

tion e−δ(r) appear to converge for large r. The solution extends

smoothly through both horizons; both R and Kretschmann scalar

are finite as r → rh and r → rc . Indeed, one can check this by ob-

taining a power series of the solution, valid close to the BH/cosmo-

logical horizon. But asymptotically, the solutions do not approach

de Sitter spacetime.

Conveying a more global perspective of the domain of existence

of these solutions leads to the following remarks. Similarly to the

3 = 0 case, a branch of eSTGB-3 BHs bifurcates from any zero

mode. In appropriate variables, these eSTGB-3 solutions form a

line, starting from the smooth 3-vacuum limit, as φ → 0, and end-

ing at a limiting solution - Fig. 4. The existence of this limiting

solution can be understood by noticing that, similarly to the 3= 0

case [20–22], the nonlinearity associated with the Gauss-Bonnet

term implies that the derivative of the scalar field at r = rh solves a

second order equation in terms of φ(rh), 3 and α (the same holds

at the cosmological horizon). Then φ′(rh) becomes imaginary for

some critical configuration, and as result the numerical iterations

fail to converge. The “mass” Mc = m(rc), BH horizon area and the

value of the metric function e−δ(r) at the BH horizon are shown in

Fig. 4 for the eSTGB-3 BHs as a function of the scalar field at the

BH horizon, with φ(rh)= 0 corresponding to the SdS limit. The red

dots marking the critical configurations.

As before, we first numerically integrated the field equations

between the BH and cosmological horizon. In a second step, the

solutions were extended to the region r > rc . For all configura-

tions we considered, the scalar field diverges for r → ∞, a feature

inherited from the test field limit. As a result, the mass func-

tion diverges as m(r) ∼ r
3
2 (1+

√
1+16α3/9) which implies N(r) ∼

r
1
2 (1+3

√
1+16α3/9) > r2 . This means the solutions do not approach a

dS spacetime at future/past infinity. The tachyonic scalar field dom-

inates the behaviour asymptotically. This is (likely) a manifestation

of the cosmological instability in eSTGB models discussed in [57].

5. Further remarks

In this work we have studied the impact of a positive cosmo-

logical constant on two paradigmatic models of BH spontaneous

scalarisation. For 3= 0, their electrovacuum BH solutions may be-

come spontaneously scalarised, due to a tachyonic instability trig-

gered by scalar perturbations [20–22,39].

Our study shows that the response of the two models, that

share many features for 3 = 0, to a non-zero cosmological con-

stant is quite different. While the solutions of the EMS-3 model

share the key properties of their asymptotically flat counterparts,

with mild differences only, the eSTGB-3 model differs from both

their flat spacetime counterpart and the EMS-3. This difference

can be traced to the different asymptotic behaviour of the source

term I in the action (2.1). For both models, the scalar field ac-

quires an effective tachyonic mass µ for a region close to the BH

horizon. However, while for the EMS-3 the scalar field becomes

massless as r → ∞ (the square of the effective field mass being

proportional with Maxwell invariant F 2), this is not the case for

the eSTGB-3 model. In the latter, µ2 approaches asymptotically a

negative value, being proportional to the Gauss-Bonnet invariant

for dS spacetime. As a result, the scalar field diverges in the far

field, which results in non-dS asymptotics of the solutions, despite

the presence of a cosmological horizon. At the same time, the con-

sidered configurations are regular in the region between the BH

and cosmological horizon.

While the results in this work have been found for a quadratic

coupling of the scalar field, we expect that the basic features do

not depend on this specific choice of the coupling function. As a

direction of further research, it would be interesting to investigate

the stability of the EMS-3 solutions.
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