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Abstract. Integrating new input devices and their associated interaction tech-
niques into interactive applications has always been challenging and time-
consuming, due to the learning curve and technical complexity involved. Mod-
eling devices, interactions and applications helps reducing the accidental com-
plexity. Visual modeling languages can hide an important part of the technical 
aspects involved in the development process, thus allowing a faster and less er-
ror-prone development process. Even with the help of modeling, a gap remains 
to be bridged in order to go from models to the actual implementation of the in-
teractive application. In this paper we use ICO, a visual formalism based on 
high-level Petri nets, to develop a generic layered framework for specifying ex-
ecutable models of interaction using gestural input devices. By way of the 
CASE tool PETSHOP we demonstrate the framework’s feasibility to handle the 
Kinect and gesture-based interaction techniques. We validate the approach 
through two case studies that illustrate how to use executable, reusable and ex-
tensible ICO models to develop gesture-based gaming applications. 
Keywords: model-driven engineering – gestural interfaces – executable model-
ing – Petri nets – unconstrained interaction 

1 Introduction 

The last decade has been very fruitful for the development and acceptance of novel 
forms of interaction. Gestural unconstrained interaction has gained widespread use 
since the release of new input devices such as Kinect, wiiMote and multi-touch sens-
ing surfaces. Gestural interaction was proposed many years ago as in the multimodal 
system proposed by Bolt [3] but it took nearly 30 years to be widely available in the 
mass market. With the release of Kinect1, a consumer 3D sensor packed with power-
ful real-time algorithms to track a user’s body without using any handheld controller, 
numerous applications demonstrating the capabilities of the 3D sensor were published 
on the internet [2,3,15]. 

                                                           
1 www.xbox.com/KINECT 



The technical complexity involved in the development of reactive interactive ap-
plications is very high, because developers need to address all low-level aspects re-
garding input and output devices in order to be able to tune adequately the interac-
tions. Beyond that, the toolkits and programming environments proposed by manufac-
turers integrate such innovations only after they have raised enough interest to devel-
opers and provide too little support. 

The usual way to fight this complexity is by raising the level of abstraction, sepa-
rating concerns, and providing generic and reusable software architectures. It is for 
this reason that we propose PETRINECT, a generic and reusable framework for gestural 
interaction. The framework is built using ICO, a powerful visual and executable 
model-based approach relying on high-level Petri nets [11]. Our framework enables 
the specification of executable models that receive gestural input from devices such as 
the Kinect. The raw Kinect data is converted into abstract events that are processed by 
the models and interpreted by virtual objects on an output device such as a graphical 
user interface or 3D rendering engine. Our gestural interaction framework has been 
realized using PETSHOP, a tool dedicated to the specification and execution of interac-
tive systems based on ICO models. As a proof of concept, we develop two different 
case studies to illustrate the expressiveness and reusability of our framework. This 
contribution counters the critique of [17] that Model-based approaches “model the 
previous generation of user interfaces”. 

The remainder of this article is structured as follows. Section 2 presents the two 
case studies and gives some insight about the requirements to create a generic execu-
table modeling framework for gestural interaction. Section 3 introduces the tool and 
modeling language we have used. Section 4 explains the architecture of our layered 
framework. Section 5 discusses the lessons learned from these case studies and pre-
sents related work. Finally, section 6 concludes. 

2 Case Studies and Generic Gestures 

The first case study is a Pong game, based on the eponymous two-player game that 
was very popular in the 70’s2. The goal of the original game was to prevent the oppo-
nent (the computer or a human player) from returning the ball with his paddle, just 
like in regular table tennis game. The original game was in 2D and the ball could 
bounce on the upper and lower parts of the gaming area. Our version of the game, 
developed using the Java Swing UI (Fig. 1(a)), uses a gestural interface to be able to 
play the game by using hand gestures instead of a joystick. The left hand controls the 
position of the paddle on the screen. As the player moves his hand, the paddle fol-
lows, thus allowing a natural and simple interaction. We also added the possibility to 
grab the ball by closing the hand when the ball is close to the paddle. When the player 
reopens his hand, the ball is released and the game continues. To recognize and track 
hand movements, we used Kinect’s 3D sensor to track a person’s body in real-time. 

                                                           
2 www.pong-story.com  



The second case study is considerably more complex. The user can interact with a 
virtual bookshelf on the screen using hand gestures (Fig. 1(b)). By moving an open 
hand, the user can browse books stored on the shelf. He can also drag a selected book 
towards him. To open the book he has to move both closed hands away from each 
other. Then, a drag from right to left (or left to right) will turn a page from the book. 
Finally, approaching both closed hands will close the book, and a drag towards the 
screen will place the book back on the bookshelf. A YouTube video of this case study 
is available here http://youtu.be/m9NIvZpQyjs 

    
 (a) The Pong game    (b) The bookshelf application 

Fig. 1. Screenshot of the two case studies. 

As apparent from the case studies, gestural interaction requires different combina-
tions of hand gestures. Therefore, we provide a generic set of gestures that may be 
reused in various applications to interact with a wide variety of different virtual ob-
jects. We extracted the following generic hand gestures from the case studies: 

• Close/Open: Close (respectively, open) a hand; a parameter indicates which hand.  
• Move: Move an open hand; a parameter indicates the hand and its direction.  
• Drag: Move a closed hand; a parameter indicates the hand and its direction.  
• ExpandClose: Drag both hands away from each other.  
• ShrinkClose: Drag both hands towards each other.  
• ColinearDrag: Drag both hands in different directions while being colinear.  
• NonColinearDrag: Drag both hands in different directions while being non-

colinear; a parameter indicates the direction of both hands.  

We have given a stereotype name to each different gesture (indicated in bold in the 
list above). These gestures are generic as they have no concrete behavior associated to 
them, and can therefore be applied in different ways to different types of virtual ob-
jects. The above list of gestures is deliberately incomplete, as it is impossible to enu-
merate all possible gestural interactions using two hands. To cope with this issue, our 
goal is to create an extensible framework for gestural interaction. The framework will 
include a limited set of gestures that can be analyzed in a short time interval (essen-
tially, two consecutive updates of the input sensor i.e., 60ms). These gestures can be 
combined into new ones. For example, we could combine the moving of both open 
hands to create a new gesture similar to ExpandClose. We will show how this can be 
achieved in section 4.3. 



3 PetShop and ICO Models 

PETSHOP is a tool developed at the ICS Lab of Toulouse for the specification, execu-
tion and verification of interactive critical systems. For many years, ICS has been 
developing dependable user interfaces with the help of formal methods. PETSHOP is 
actually used to create user interfaces for the next generation of Airbus aircrafts cock-
pits. PETSHOP uses the formal modeling language of Interactive Cooperative Objects 
(ICO) [13], which is based on high-level Petri nets [11] to describe the behavioral 
aspects of the interactive system to be designed. 

 
Fig. 2. ICO model of a room temperature control system  

An example of an ICO model is shown in Fig. 2. Data is represented by tokens that 
transit between places (represented by labeled ellipses) through transitions (labeled 
rectangles, connected to the places through incoming and outgoing arcs containing an 
arrow symbol at the end to specify their direction). A small numbered circle indicates 
the number of tokens in a nonempty place. Tokens can carry information in the form 
of Java objects with fields and operations. When a transition is fireable its color is 
changed to purple (it is gray otherwise). A condition can also be specified to act as a 
guard for a transition, and operations can be performed on the object stored in the 
tokens consumed by the transition. In addition to normal transitions, ICO models can 
contain inhibitor arcs (lines with a small circle at their endpoint, connecting the tran-
sition to a single place) that only allow the transition to fire if the place to which the 
arc is linked does not contain any token. Test arcs (represented by incoming arcs with 
a perpendicular small line just behind the arrow symbol) represent special transitions 
that do not consume the token used to trigger the transition. 

Ordinary transitions consume tokens from incoming places and produce new to-
kens in outgoing places. These transitions are visualized as rectangular depressed 
buttons. Synchronized transitions are transitions that have to wait for an event in order 
to fire. These transitions are presented as rectangular pressed buttons. In Fig. 2 all 
transitions are synchronized: openWin and closeWin have to be triggered by the user, 
while heatingSystem and window are time-event transitions that are triggered every 
1000ms. Fireable transitions are shown in purple. 



Fig. 2 presents a small example of an ICO model representing a room temperature 
control system. It is composed of five places. A place labeled heat stores the target 
room temperature in a token targetTemp containing a Java object of type float. A 
place labeled room stores the actual room temperature in a token roomTemp. Place 
out stores the outside temperature in a token outTemp. A token is created in place 
windowOpen (resp., windowClosed if the user opens (resp., closes) the window. Four 
transitions connect these five places. User-triggered transitions openWin and closeWin 
cause the token referring to the state of the window to travel between windowOpen 
and windowClosed or conversely. Time-triggered transition heatingSystem (triggered 
every 1000ms) uses token targetTemp stored in place heat and consumes token 
roomTemp stored in place room to produce a new token newRoomTemp with the new 
temperature of the room, but only if the window is not open (modeled by an inhibitor 
arc to place windowOpen). Time-triggered transition window is triggered every 
1000ms by a test arc from place windowOpen and another test arc from place out. If 
the window is opened, token outTemp is used and token roomTemp is consumed by 
the transition to produce a token newRoomTemp that replaces the original token 
roomTemp.  

Initially, place heat contains one token targetTemp=25, place room contains one 
token roomTemp=18, place out contains one token outTemp=5 and place win-
dowOpen contains one token with no associated value. When executing this model 
with PETSHOP, the room temperature changes every second, slowly decreases and 
converges to 5. If the user triggers the closeWin transition, the heating system turns on 
and the room starts to heat up, until it reaches the targetTemp temperature. The user 
can interact with the control system by opening or closing the window, and he can 
observe the temperature of the room evolve over time in the room place. 

Although not used in the example, an important feature of ICO is that multiple 
models can communicate through events contained in a transition. These events can 
carry a Java object, providing a useful and intuitive way of transferring data from one 
ICO model to another. When a specific event is triggered in a transition, it is received 
by all ICO models connected to the sending model by an Observer design pattern. 

4 Architecture of the Layered PetriNect Framework 

We have chosen to develop our gestural interaction framework as a layered client-
server architecture (see Fig. 3). Input devices such as the Kinect implement a simple 
client connected to a Java server that is located, as an entry point, in the lowest part of 
the framework. The received information is then forwarded to the first layer of the 
framework. All framework layers are modeled as ICO models in PETSHOP. Raw data 
coming from the gestural input device through the Java server are sent to layer 1, 
which processes the information and sends it further to layer 2 and so on. Information 
that has been processed in layer 4 is sent outside the framework to the target applica-
tion using the client-server architecture.  

We will validate our framework through two case studies, using the Kinect as in-
put device. The Kinect comes along with the NITE framework, providing a set of 



algorithms to perform real-time body tracking. These algorithms are used to retrieve 
the position of the hands and head of the user in 3D space, the origin of the coordinate 
system being located on the eye of the Kinect’s camera. As the provided algorithms 
do not allow knowing whether hands are open or closed, we implemented this feature 
to widen the range of possible gestures to be recognized (see section 4.3 for the list of 
supported gestures). 

On top of our framework, target applications can be developed using different 
output devices. To demonstrate the versatility of our approach, we have used a differ-
ent output device for each case study. The first case study uses a Java Swing user 
interface, and the second uses C++ in combination with the Ogre3D graphical render-
ing engine. 

 
Fig. 3. Layered client-server architecture of the gestural interaction framework  

4.1 Layer 1: Converting Raw Data into Positions 

The goal of Layer 1 is to detect new users and propagate them through the rest of the 
framework, but also to receive raw information from the input device about the hands 
and head of the current users and combine them to calculate the hands’ positions rela-
tive to the head. Every time such new information is available, an event is sent to 
Layer 1. Synchronized transitions HeadEvent_ (the underscore at the end is a naming 
convention to indicate that this transition receives an event from outside the model) 
and HandEvent_ are fireable, as they are only waiting for such an event to trigger, 
carrying the same name as the transition. The synchronized transition then generates a 
token, depending on which body part changed its position. The token generated by the 
transition contains positional information about the updated body part and the id of 
the user to whom the body part belongs. 

Every 30ms, layer 1 receives and updates information about the users’ positions. 
The ICO model of Fig. 4 contains two places for this purpose: handsSet stores one 
token per hand and per user, and headsSet stores a different token for the head of each 
user. When a new user id is encountered for the first time, transition emptySetHands 
is fired, and an event is sent to the next layer through transition raise_NewUser3. If 

                                                           
3 We use the notation raise as a convention for transition that send an event to another model. 



the user’s id is already known, transition CompareHeads (resp. CompareHands) is 
fired. It replaces the old position of the head (resp. hand) with the newly received 
ones.  

 
Fig. 4. Layer 1: ICO model converting raw input data into absolute positions.  

This replacement is achieved using label matching (called unification) on arcs. 
For example, transition CompareHeads has two incoming arcs with labels <id, 
head1> and <id,head2>, respectively. In order to be fireable, this transition requires a 
token in place newHeadEvent with the same id as another token in place headsSet. As 
the second part of the label (head1 and head2) does not match, they are considered to 
be different variables that can store different values. Unification is a very powerful 
feature of the ICO notation and is widely used throughout our layered framework. We 
will not further detail all unifications used; the attentive reader can observe their use 
by inspecting the depicted ICO models. 

Periodically, one hand token and one head token sharing the same user id are con-
sumed by the transition raise_HandEvent. This transition computes the position of the 
hand relative to the head using the code shown below. If the hand is located above the 
head then an UP label is associated to it. If the hand is located somewhere between 
the head and the hips then the NORMAL label is associated. Finally, if the hands are 
lower than the hips a LOW label is associated to the hand. This information can be 
useful depending on the type of designed interaction. For example one could consider 
that if the hands are not in NORMAL state, the gestures should not be interpreted. 

dist = head2.y - hand2.y; 
if(dist<0) hand2.pos = bodyParts.HandEvent.Pos.UP; 
else if(dist < 500) hand2.pos = bodyParts.HandEvent.Pos.NORMAL; 
else hand2.pos = bodyParts.HandEvent.Pos.LOW; 
trigger("HandEvent", new EventObject(hand1)); 



After associating this additional information to the hand, the transition raises an 
event HandEvent that is sent to Layer 2 (by means of the message trigger in the code 
snippet). This is done for all possible hand-head pairs belonging to each user. 

Due to space considerations we will no longer show any code associated to transi-
tions in the remainder of this paper. It should be noted that all models used in this 
paper are fully executable. 

4.2 Layer 2: Transforming Positions to Low-level Gestures 

Layer 2, shown in Fig. 5, transforms absolute positions of the hands in space to rela-
tive movements between two consecutive updates. It is in this layer that state changes 
of the hands (opened or closed) are detected. When a new user is detected, transition 
NewUser_ fires and creates a token in place handsSet while triggering a NewUser 
event. 

 
Fig. 5. Layer 2: transforming the absolute positions into low-level gestures.  

Events received from Layer 1 through synchronized transition HandEvent_ gener-
ate tokens in place newHandEvent. Transition replace consumes the token containing 
the newly received position of the hand as well as the last matching processed token 
(in place last_processed), in order to compute the relative movement of the hand and 
its potential state change (open or closed). The unification is made on the id and left 
labels, to ensure that the two consecutive tokens must belong to the same user and 
refer to the same hand in order to make transition replace fireable. 

Once the relative hand movement and state change is computed, they are stored as 
a token in place handsSet. Each time a new token arrives in this place, transition 
raise_Move can be fired to generate Move events. In addition, a token is created in 
place EventsToFilter. If the state of the hand has changed since the last processed 



frame, an Open or Close event can be triggered in places raise_Open or raise_Close, 
depending on the new state of the hand. If no change occurred in the hand’s state, the 
token should be deleted through transition trash. 

All 4 aforementioned generated events (NewUser, Move, Open and Close) are sent 
to Layer 3 together with information about the user id, the relative movement between 
two consecutive frames, and the updated left or right hand movement. 

4.3 Layer 3: Combining Low-level into High-level Gestures 

Layer 3 serves to combine the low-level gestures of Layer 2 (Open, Close, Move) into 
high-level ones that will be interpreted by virtual objects in Layer 4. Layer 3 is di-
vided into 2 models (shown in Fig. 6 and 7) having 4 places in common (leftClosed, 
rightClosed, twoOpened and twoClosed). The first model serves to process the state 
of the users’ hands. The second model combines low-level gestures into high-level 
ones by taking into account the state of the user’s hands (e.g., both hands open). More 
models can be added to define other high-level gestures according to the users’ needs.  

 
Fig. 6. Layer 3: Model processing the state of the users’ hands.  

Fig. 6 models the state of both hands of each user, that can either be open or 
closed. They are represented by 4 different places: twoOpened, twoClosed, leftClosed, 
rightClosed. (For the latter two states, we assume that the other hand is opened.) 

Transition NewUser_ processes the incoming event NewUser to consume a token 
from place players and associates an id to it when a new user joins the game. By de-
fault, the system initializes a new user with both hands open, and will produce a token 



in place twoOpened. When an Open2 (resp. Close2) event is received from Layer 2, 
transition OpenEvent_ (resp. CloseEvent_) is triggered, which will produce a new 
token in place openTokens (resp. closeTokens). Note that we use subscript “2" in the 
text to distinguish events coming from Layer 2 from events generated in Layer 3 it-
self. 

 
Fig. 7. Layer 3: Combining low-level gestures into high-level gestures. 

Regardless of the user’s state, Close and Open events are automatically generated 
by transitions raise_Close and raise_Open when a hand is closed or opened. Depend-



ing on the state of the user, one out of 8 possible transitions can be fired to change the 
user state. Imagine that a user enters the game with both hands opened. A token will 
be generated for his id in place twoOpened. If he closes the left hand, a Close2 event is 
received and the transition CloseEvent_ is fired, thus producing a token in closeTo-
kens place. The only transition that can then be fired is closeLeft. This transition con-
sumes both tokens and produces a new token for the user’s id in place leftClosed. 

The second part of Layer 3, depicted in Fig. 7, combines low-level gestures into 4 
high-level gestures: Move, Drag, ColinearDrag and NonColinearDrag. All of these 
rely on the incoming event Move2, received from Layer 2, which triggers to 
MoveEvent_ transition. This transition produces a token in place moveTokens. De-
pending on the user’s state, different transitions can then be fired. If the user had both 
hands opened, transition raise_Move will be fired and generate a Move event. If the 
left (resp. right) hand was closed, then the resulting gesture will be either Drag or 
Move depending on which hand moved. If the closed hand moved, a Drag event will 
ultimately be generated. If the opened hand moved, a Move event will ultimately be 
generated. 

If both hands were closed when a Move2 event was received, then the gesture will 
be interpreted as a ColinearDrag or a NonColinearDrag, depending on a more com-
plex calculation of the relative position of the moving hand w.r.t. the other hand. 
These calculations are done in the lower part of Fig. 7, in the sub-model connected to 
place twoClosed. The idea is to use the Move2 events and the positions of both hands 
to check wether the hands are colinear or not. 

Another way to specify high-level gestures in Layer 3 is by combining a series of 
low-level and/or high-level gestures. For example, GrabAndPull would be a high-
level gesture specified as a combination of a Close gesture and a consecutive series of 
Drag gestures along the z-axis. Such a high-level gesture could be used, for instance, 
to open a virtual door. 

4.4 Layer 4: Manipulating Virtual Objects Through Events 

Layer 4 differs from the previous layers in that it contains a different model for 
each type of object in the virtual scene the user needs to interact with. These objects 
can be controlled using the gestures provided by Layer 3. The same gesture can be 
interpreted differently by different objects, e.g., picking up an object lying on a desk 
or opening a door. By combining the provided gestures, one can create a wide range 
of behavioral models for an unbounded number of different types of objects. This 
versatility is illustrated through the case studies of Section 2. 

 
Fig. 8. Layer 4: Transferring gesture events to the virtual paddle object of the Pong game. 



For the first case study (the Pong game), we have created an ICO model (shown in 
Fig. 8) to represent the interaction with the Pong paddle. The virtual paddle object 
reacts to 4 types of gestures: Close, Open, Drag and Move. The model is very simple 
because the gestures do not need to be further processed. Their stored information can 
be directly used in the 3D application, such as the id of the player who is moving the 
hand (to move the right player’s paddle) or the position of the hand itself. When Move 
is received, the paddle will move according to the gestures of the hand, by updating 
its position in the game. When Drag is received, the paddle still has to move, but can 
also respond to a Close event, followed by a Open event some time later. It is the 
responsibility of the game itself to decide how to interpret these events, e.g., checking 
if the ball is close enough to the paddle and moving the paddle along with the ball. 
We have chosen not to model the whole game with ICO models in this article, be-
cause our focus is on the interaction framework. 

 
Fig 9. Layer 4: ICO model of the interaction behavior for a virtual book.  



The gestural interaction of the second case study is shown in the ICO models of 
Fig. 9 and 10. Fig. 9 represents the different book states together with the transitions 
between these states. For example, when a book is stored on the shelf, the user can 
only use Drag events to retrieve it. As we don’t want to trigger the retrieval of the 
book at the first encountered drag, we designed a simple heuristic based on a score 
place. A token in place score is incremented by 1 each time a new drag on z-axis is 
performed and decremented by 3 when the drag goes in the opposite direction or if 
another gesture is encountered. When the score reaches a certain threshold, the re-
trieve transition is fired and an event is sent to the rendering engine. This heuristic is 
used to avoid false positives. We want to trigger the retrieval of the book only after a 
certain amount of drags along the z-axis. To open the book and turn the pages, we use 
direct feedback. Each time a ColinearDrag (resp. Drag) event is received, the book 
(resp. page) flips a bit further, until a given threshold is reached and the book (resp. 
page) will be fully opened (resp. turned). Closing the book is modeled in a similar 
way. 

Fig. 10 represents the interaction of the ICO model with the Ogre3D graphical ren-
dering engine. All transitions from place ogreClient send messages to the rendering 
engine in order to give visual feedback to the user. All the transitions of this model 
can be found in Fig. 9. These transitions are not fireable as there is not a token in each 
incoming place. 

 
Fig. 10. Layer 4: Transitions of the book model connected to the Ogre3D Client 

When multiple objects compose the scene, it is not always straightforward to know 
to which object the user’s gestures should be applied. To solve this problem, we cre-
ated an ICO model for a 3D pointer, presented as a simple hand that can be either 
opened or closed. This pointer is used to give visual feedback to the user. By drawing 
the position of the 3D pointer in the 3D rendering window, the user sees what virtual 
object is the closest to his hand so that when gestures are made, they will be applied 
to the closest virtual object. In our framework, the pointers model is connected to 
Layer 2, as it just needs the position, state and amount of movement of the hands. 

4.5 Connecting the Layers 

Communication between layers is explicitly modeled by use of an Observer design 
pattern [8]. This model, depicted in Fig. 11, is executed only once at startup and is 
used to create the layers and establish the communication between them. It allows 
each higher layer of our architecture to receive and process events sent by the lower 
layers. Transitions containing the create primitives (depicted with a small green arrow 
inside the transition) consume a token to create a new model instance. For example, 



transition createLayer1 produces a token containing a reference to the model of 
Layer 1 and puts it in place layer1. Similarly, transition createLayer2 produces a to-
ken referring to the model of Layer 2 and puts it in place layer2. The models of both 
layers are connected by transition Listener specifying which events generated by the 
model of Layer 1 will be observed (i.e., received) by the model of Layer 2. Here, the 
events are NewUser and HandEvent. The same pattern is used to connect the other 
layers. 

 
Fig. 11. Model connecting the layers of the framework using the Observer pattern. 

5 Lessons Learned and Related Work 

We can derive a number of lessons learned from using a visual formalism based on 
Petri nets for developing a gestural interaction framework and having applied it to two 
case studies. The visual formalism reduces the technical complexity of developing 
gestural interaction behavior by raising the level of abstraction. We have personally 
experienced that hardcoding such behavior using standard textual programming lan-
guages can be quite cumbersome. A visual formalism facilitates system understanding 
as its behavior is highly concurrent within models and as several models evolve in 
parallel. The dynamic simulation facilities allow finding and correcting bugs more 
easily and offer an elegant way of bridging the gap between modeling and execution. 



When executing the models we can actually see the tokens moving from one place to 
another, and see their values changing as different transitions are fired. With 
PETSHOP, we can even change models during their execution, and study how this 
affects the running process. The fact that ICO is formally defined and that it is 
grounded in Petri nets theory makes it possible to exploit formal verification tech-
niques to assess and prove properties over a set of cooperating models. We have not 
presented these capabilities due to space constraints but more details can be found in 
[13]. 

One very useful additional feature was the ability of models to communicate by 
means of events, using synchronized transitions in the listening models to trigger 
transitions only when an event is received. This enabled the creation of a layered ar-
chitecture in which behavior can be added or modified easily. One way to do so is to 
modify each layer individually. Another possibility is to add new layers on top of the 
existing ones to extend the set of recognized gestures, by combining the existing set 
of gestures. The label unification capability of ICO models allowed us to implement 
multi-user functionality in our framework in a very straightforward way, without the 
need to change the structure of our models. Each user is represented by a different 
token, and the token id is matched when processing the transitions to ensure that the 
information of the correct user is being considered (for example in case of coordi-
nated hand and head movement). Thanks to the ability to store data in tokens, we 
were able to process hand state and position in a very straightforward way. This data 
could be used for calculations in the transitions thus resulting in an increased expres-
siveness. The notion of test arcs allowed us to create store places that always contain 
the latest update about the hands position/state. The tokens could be used without 
being consumed, which was very useful since we wanted to keep these tokens until 
the next update (to compute relative movement for instance). Inhibitor arcs were also 
used frequently to deal with special cases such as the very first token regarding a hand 
(to initialize the store places). 

The work presented in this article has convinced us that executable visual modeling 
is the way to go for developing interactive applications. Not only is it adapted for this 
kind of systems, but also the learning time is relatively low. Without any prior knowl-
edge of Petri nets or ICO models, it took the first author about 4 weeks to learn the 
formalism and the PETSHOP tool, and to design a first running version of our frame-
work. After that, it turned out to be very easy to add more functionality (such as 
pointers and new gestures) to our models. Excluded from the aforementioned learning 
time is the time needed to understand how to use and interface with the gestural input 
and graphical output devices, as they fall outside the scope of the framework. 

A relevant question is whether ICO is the most appropriate notation for specifying 
executable gestural interaction models. Other visual notations could be used instead. 
For example, [7] used statecharts to manipulate virtual objects displayed on screen 
using hand movements. It is difficult to compare the effectiveness of that approach 
with the current one, since the statecharts were hardcoded in Java using the Swing-
States API [1]. Although it would be possible to achieve the same result using execu-
table visual statechart models [11], the ability to add or remove new users or virtual 
objects dynamically would be more difficult to achieve.  



Another alternative for executable specification of gestural interaction is the use of 
heterogeneous modeling. [6] explored this alternative by developing a layered client-
server framework using the MODHEL’X environment [10]. The different layers were 
specified using different visual formalism such as Synchronous Data Flow models [9] 
and Timed Finite State Machines (TFSM). The challenge of heterogeneous modeling 
lies in the need for semantic adaptation between the different layers using different 
formalisms, as well as the need to master multiple formalisms.  

A limitation of our approach is the potential difficulty for domain experts and de-
signers of interactive applications to master the notation of ICO models. It is impor-
tant to note, however, that the low-level models are device-dependent and only have 
to be built once. Designers then only need to adapt the models to implement the de-
sired behavior for the target interaction technique. Beyond that, we believe that the 
full expressive power of ICO is not always needed and can be abstracted away by 
using a domain-specific modeling language. At the risk of a certain loss of expres-
siveness, this would allow designers to compose gestures and process them to create 
new behaviors for virtual objects more easily, without requiring detailed knowledge 
of the underlying visual formalism. 

Another current limitation is the performance issues encountered during our case 
studies, because PETSHOP interprets and simulates ICO models at runtime. To be able 
to apply it in real commercial applications, faster execution is necessary. This can be 
achieved by compiling the models directly into executable code, but it will go at the 
expense of no longer being able to dynamically visualize and modify the models dur-
ing their execution, which is very useful for development and debugging purposes. 

In [14], ICO models were proposed to model multimodal interactions in virtual re-
ality applications. As a proof-of-concept, a virtual chess game was developed that 
could be manipulated by a single user using a data glove on one hand. The design of 
this application was quite different from ours. It did not focus on reusable models, did 
not include the state of the user or the notion of virtual objects, and contained a very 
limited set of gestures using only one hand. 

Many other tools and flavors of high-level Petri nets exist. Flownets are an alterna-
tive that has been used for modeling virtual environments [16]. Based on the authors’ 
observation that virtual environments are made up of a complex combination of dis-
crete and continuous processes, the particularity of flownets relies in the combination 
of discrete and continuous behavior to specify the interaction with virtual environ-
ments. Resorting to continuous models is a possible solution, but it may not always be 
the most appropriate, especially in presence of sensors that provide discrete events at 
a variable frame rate, depending on the performance of the computer used.  

According to [17], one of the limitations of many virtual environment toolkits is 
the predefined and limited small amount of interaction means they provide, which are 
intended to be used regardless of context. To extend the flexibility of such toolkits, 
developers must be provided with the possibility to design, test and verify new inter-
action techniques. The authors presented Marigold, a toolset supporting such a devel-
opment process. This toolset allows visual specification of the interaction techniques 
(using flownets) but unlike our approach, it is not dynamic. C code is generated from 
the models, making it impossible to modify the models at runtime or to see the mod-



els running . Moreover, the entire specification resides in a single monolithic model, 
unlike our layered architecture that is more modular and easier to adapt. 

In the context of modeling for interaction, [5] proposed Interface Object Graphs, a 
method based on statecharts dedicated to the specification and design of new interac-
tion objects or widgets. In contrast to our approach, the user was not explicitly mod-
eled. In addition, the interaction was object-centric, making it difficult to specify mul-
timodal interaction with multiple users. 

6 Conclusions and Future Work 

We presented PETRINECT, a model-based approach for developing interactive applica-
tions allowing the execution of visual models and relieving the developer from writ-
ing complex and statically compiled code. PETRINECT is a generic, layered and modu-
lar framework to specify and execute gestural interaction based on the visual formal-
ism of high-level Petri nets. Our case studies illustrated how to use PETRINECT to 
allow a user to interact with multiple virtual objects displayed on screen. The client-
server architecture of our framework allows developers of interactive systems to eas-
ily integrate gestural interaction in their future entertainment projects. Other usage 
scenarios of our framework are conceivable, such as remotely controlling devices 
(e.g., domotics, multimedia).  

Our case studies have shown the feasibility of visually specifying executable mod-
els for real-life applications. These models are based on discrete events provided by 
the gestural input devices. High-level Petri nets, incarnated as ICO models in 
PETSHOP, proved to be particularly suited for expressing such models. One of the 
reasons was their ability to concurrently execute complex behavior involving a dy-
namically changing number of actors (e.g., players, virtual objects) and requiring a 
huge amount of user interaction. Using high-level Petri nets allowed us to cope with 
the high complexity by separating the behavior of gestural interactions in separate 
communicating layers. In addition, data manipulation and data flow were facilitated 
by the ability to encapsulate data in tokens. 

Future work will be carried in the directions mentioned in section 5. We plan to 
validate the framework further using other input devices such as the Wiimote, and we 
plan to define a domain-specific language on top of ICO as a mean to provide the 
scaffolding required for wider use by designers and developers. 
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