
PetriNect – A Generic Framework for
Executable Modeling of Gestural Interactions

Romuald Deshayes1, Philippe Palanque2, Tom Mens1

1 Service de Génie Logiciel, Institut COMPLEXYS, Université de Mons, Place du Parc 20,

7000 Mons, Belgium
2 ICS Research Team, IRIT, Université Paul Sabatier, 31062 Toulouse, France

{romuald.deshayes, tom.mens}@umons.ac.be palanque@irit.fr

Abstract. Integrating new input devices and their associated interaction tech-
niques into interactive applications has always been challenging and time-
consuming, due to the learning curve and technical complexity involved. Mod-
eling devices, interactions and applications helps reducing the accidental com-
plexity. Visual modeling languages can hide an important part of the technical
aspects involved in the development process, thus allowing a faster and less er-
ror-prone development process. Even with the help of modeling, a gap remains
to be bridged in order to go from models to the actual implementation of the in-
teractive application. In this paper we use ICO, a visual formalism based on
high-level Petri nets, to develop a generic layered framework for specifying ex-
ecutable models of interaction using gestural input devices. By way of the
CASE tool PETSHOP we demonstrate the framework’s feasibility to handle the
Kinect and gesture-based interaction techniques. We validate the approach
through two case studies that illustrate how to use executable, reusable and ex-
tensible ICO models to develop gesture-based gaming applications.
Keywords: model-driven engineering – gestural interfaces – executable model-
ing – Petri nets – unconstrained interaction

1 Introduction

The last decade has been very fruitful for the development and acceptance of novel
forms of interaction. Gestural unconstrained interaction has gained widespread use
since the release of new input devices such as Kinect, wiiMote and multi-touch sens-
ing surfaces. Gestural interaction was proposed many years ago as in the multimodal
system proposed by Bolt [3] but it took nearly 30 years to be widely available in the
mass market. With the release of Kinect1, a consumer 3D sensor packed with power-
ful real-time algorithms to track a user’s body without using any handheld controller,
numerous applications demonstrating the capabilities of the 3D sensor were published
on the internet [2,3,15].

1 www.xbox.com/KINECT

The technical complexity involved in the development of reactive interactive ap-
plications is very high, because developers need to address all low-level aspects re-
garding input and output devices in order to be able to tune adequately the interac-
tions. Beyond that, the toolkits and programming environments proposed by manufac-
turers integrate such innovations only after they have raised enough interest to devel-
opers and provide too little support.

The usual way to fight this complexity is by raising the level of abstraction, sepa-
rating concerns, and providing generic and reusable software architectures. It is for
this reason that we propose PETRINECT, a generic and reusable framework for gestural
interaction. The framework is built using ICO, a powerful visual and executable
model-based approach relying on high-level Petri nets [11]. Our framework enables
the specification of executable models that receive gestural input from devices such as
the Kinect. The raw Kinect data is converted into abstract events that are processed by
the models and interpreted by virtual objects on an output device such as a graphical
user interface or 3D rendering engine. Our gestural interaction framework has been
realized using PETSHOP, a tool dedicated to the specification and execution of interac-
tive systems based on ICO models. As a proof of concept, we develop two different
case studies to illustrate the expressiveness and reusability of our framework. This
contribution counters the critique of [17] that Model-based approaches “model the
previous generation of user interfaces”.

The remainder of this article is structured as follows. Section 2 presents the two
case studies and gives some insight about the requirements to create a generic execu-
table modeling framework for gestural interaction. Section 3 introduces the tool and
modeling language we have used. Section 4 explains the architecture of our layered
framework. Section 5 discusses the lessons learned from these case studies and pre-
sents related work. Finally, section 6 concludes.

2 Case Studies and Generic Gestures

The first case study is a Pong game, based on the eponymous two-player game that
was very popular in the 70’s2. The goal of the original game was to prevent the oppo-
nent (the computer or a human player) from returning the ball with his paddle, just
like in regular table tennis game. The original game was in 2D and the ball could
bounce on the upper and lower parts of the gaming area. Our version of the game,
developed using the Java Swing UI (Fig. 1(a)), uses a gestural interface to be able to
play the game by using hand gestures instead of a joystick. The left hand controls the
position of the paddle on the screen. As the player moves his hand, the paddle fol-
lows, thus allowing a natural and simple interaction. We also added the possibility to
grab the ball by closing the hand when the ball is close to the paddle. When the player
reopens his hand, the ball is released and the game continues. To recognize and track
hand movements, we used Kinect’s 3D sensor to track a person’s body in real-time.

2 www.pong-story.com

The second case study is considerably more complex. The user can interact with a
virtual bookshelf on the screen using hand gestures (Fig. 1(b)). By moving an open
hand, the user can browse books stored on the shelf. He can also drag a selected book
towards him. To open the book he has to move both closed hands away from each
other. Then, a drag from right to left (or left to right) will turn a page from the book.
Finally, approaching both closed hands will close the book, and a drag towards the
screen will place the book back on the bookshelf. A YouTube video of this case study
is available here http://youtu.be/m9NIvZpQyjs

 (a) The Pong game (b) The bookshelf application

Fig. 1. Screenshot of the two case studies.

As apparent from the case studies, gestural interaction requires different combina-
tions of hand gestures. Therefore, we provide a generic set of gestures that may be
reused in various applications to interact with a wide variety of different virtual ob-
jects. We extracted the following generic hand gestures from the case studies:

• Close/Open: Close (respectively, open) a hand; a parameter indicates which hand.
• Move: Move an open hand; a parameter indicates the hand and its direction.
• Drag: Move a closed hand; a parameter indicates the hand and its direction.
• ExpandClose: Drag both hands away from each other.
• ShrinkClose: Drag both hands towards each other.
• ColinearDrag: Drag both hands in different directions while being colinear.
• NonColinearDrag: Drag both hands in different directions while being non-

colinear; a parameter indicates the direction of both hands.

We have given a stereotype name to each different gesture (indicated in bold in the
list above). These gestures are generic as they have no concrete behavior associated to
them, and can therefore be applied in different ways to different types of virtual ob-
jects. The above list of gestures is deliberately incomplete, as it is impossible to enu-
merate all possible gestural interactions using two hands. To cope with this issue, our
goal is to create an extensible framework for gestural interaction. The framework will
include a limited set of gestures that can be analyzed in a short time interval (essen-
tially, two consecutive updates of the input sensor i.e., 60ms). These gestures can be
combined into new ones. For example, we could combine the moving of both open
hands to create a new gesture similar to ExpandClose. We will show how this can be
achieved in section 4.3.

3 PetShop and ICO Models

PETSHOP is a tool developed at the ICS Lab of Toulouse for the specification, execu-
tion and verification of interactive critical systems. For many years, ICS has been
developing dependable user interfaces with the help of formal methods. PETSHOP is
actually used to create user interfaces for the next generation of Airbus aircrafts cock-
pits. PETSHOP uses the formal modeling language of Interactive Cooperative Objects
(ICO) [13], which is based on high-level Petri nets [11] to describe the behavioral
aspects of the interactive system to be designed.

Fig. 2. ICO model of a room temperature control system

An example of an ICO model is shown in Fig. 2. Data is represented by tokens that
transit between places (represented by labeled ellipses) through transitions (labeled
rectangles, connected to the places through incoming and outgoing arcs containing an
arrow symbol at the end to specify their direction). A small numbered circle indicates
the number of tokens in a nonempty place. Tokens can carry information in the form
of Java objects with fields and operations. When a transition is fireable its color is
changed to purple (it is gray otherwise). A condition can also be specified to act as a
guard for a transition, and operations can be performed on the object stored in the
tokens consumed by the transition. In addition to normal transitions, ICO models can
contain inhibitor arcs (lines with a small circle at their endpoint, connecting the tran-
sition to a single place) that only allow the transition to fire if the place to which the
arc is linked does not contain any token. Test arcs (represented by incoming arcs with
a perpendicular small line just behind the arrow symbol) represent special transitions
that do not consume the token used to trigger the transition.

Ordinary transitions consume tokens from incoming places and produce new to-
kens in outgoing places. These transitions are visualized as rectangular depressed
buttons. Synchronized transitions are transitions that have to wait for an event in order
to fire. These transitions are presented as rectangular pressed buttons. In Fig. 2 all
transitions are synchronized: openWin and closeWin have to be triggered by the user,
while heatingSystem and window are time-event transitions that are triggered every
1000ms. Fireable transitions are shown in purple.

Fig. 2 presents a small example of an ICO model representing a room temperature
control system. It is composed of five places. A place labeled heat stores the target
room temperature in a token targetTemp containing a Java object of type float. A
place labeled room stores the actual room temperature in a token roomTemp. Place
out stores the outside temperature in a token outTemp. A token is created in place
windowOpen (resp., windowClosed if the user opens (resp., closes) the window. Four
transitions connect these five places. User-triggered transitions openWin and closeWin
cause the token referring to the state of the window to travel between windowOpen
and windowClosed or conversely. Time-triggered transition heatingSystem (triggered
every 1000ms) uses token targetTemp stored in place heat and consumes token
roomTemp stored in place room to produce a new token newRoomTemp with the new
temperature of the room, but only if the window is not open (modeled by an inhibitor
arc to place windowOpen). Time-triggered transition window is triggered every
1000ms by a test arc from place windowOpen and another test arc from place out. If
the window is opened, token outTemp is used and token roomTemp is consumed by
the transition to produce a token newRoomTemp that replaces the original token
roomTemp.

Initially, place heat contains one token targetTemp=25, place room contains one
token roomTemp=18, place out contains one token outTemp=5 and place win-
dowOpen contains one token with no associated value. When executing this model
with PETSHOP, the room temperature changes every second, slowly decreases and
converges to 5. If the user triggers the closeWin transition, the heating system turns on
and the room starts to heat up, until it reaches the targetTemp temperature. The user
can interact with the control system by opening or closing the window, and he can
observe the temperature of the room evolve over time in the room place.

Although not used in the example, an important feature of ICO is that multiple
models can communicate through events contained in a transition. These events can
carry a Java object, providing a useful and intuitive way of transferring data from one
ICO model to another. When a specific event is triggered in a transition, it is received
by all ICO models connected to the sending model by an Observer design pattern.

4 Architecture of the Layered PetriNect Framework

We have chosen to develop our gestural interaction framework as a layered client-
server architecture (see Fig. 3). Input devices such as the Kinect implement a simple
client connected to a Java server that is located, as an entry point, in the lowest part of
the framework. The received information is then forwarded to the first layer of the
framework. All framework layers are modeled as ICO models in PETSHOP. Raw data
coming from the gestural input device through the Java server are sent to layer 1,
which processes the information and sends it further to layer 2 and so on. Information
that has been processed in layer 4 is sent outside the framework to the target applica-
tion using the client-server architecture.

We will validate our framework through two case studies, using the Kinect as in-
put device. The Kinect comes along with the NITE framework, providing a set of

algorithms to perform real-time body tracking. These algorithms are used to retrieve
the position of the hands and head of the user in 3D space, the origin of the coordinate
system being located on the eye of the Kinect’s camera. As the provided algorithms
do not allow knowing whether hands are open or closed, we implemented this feature
to widen the range of possible gestures to be recognized (see section 4.3 for the list of
supported gestures).

On top of our framework, target applications can be developed using different
output devices. To demonstrate the versatility of our approach, we have used a differ-
ent output device for each case study. The first case study uses a Java Swing user
interface, and the second uses C++ in combination with the Ogre3D graphical render-
ing engine.

Fig. 3. Layered client-server architecture of the gestural interaction framework

4.1 Layer 1: Converting Raw Data into Positions

The goal of Layer 1 is to detect new users and propagate them through the rest of the
framework, but also to receive raw information from the input device about the hands
and head of the current users and combine them to calculate the hands’ positions rela-
tive to the head. Every time such new information is available, an event is sent to
Layer 1. Synchronized transitions HeadEvent_ (the underscore at the end is a naming
convention to indicate that this transition receives an event from outside the model)
and HandEvent_ are fireable, as they are only waiting for such an event to trigger,
carrying the same name as the transition. The synchronized transition then generates a
token, depending on which body part changed its position. The token generated by the
transition contains positional information about the updated body part and the id of
the user to whom the body part belongs.

Every 30ms, layer 1 receives and updates information about the users’ positions.
The ICO model of Fig. 4 contains two places for this purpose: handsSet stores one
token per hand and per user, and headsSet stores a different token for the head of each
user. When a new user id is encountered for the first time, transition emptySetHands
is fired, and an event is sent to the next layer through transition raise_NewUser3. If

3 We use the notation raise as a convention for transition that send an event to another model.

the user’s id is already known, transition CompareHeads (resp. CompareHands) is
fired. It replaces the old position of the head (resp. hand) with the newly received
ones.

Fig. 4. Layer 1: ICO model converting raw input data into absolute positions.

This replacement is achieved using label matching (called unification) on arcs.
For example, transition CompareHeads has two incoming arcs with labels <id,
head1> and <id,head2>, respectively. In order to be fireable, this transition requires a
token in place newHeadEvent with the same id as another token in place headsSet. As
the second part of the label (head1 and head2) does not match, they are considered to
be different variables that can store different values. Unification is a very powerful
feature of the ICO notation and is widely used throughout our layered framework. We
will not further detail all unifications used; the attentive reader can observe their use
by inspecting the depicted ICO models.

Periodically, one hand token and one head token sharing the same user id are con-
sumed by the transition raise_HandEvent. This transition computes the position of the
hand relative to the head using the code shown below. If the hand is located above the
head then an UP label is associated to it. If the hand is located somewhere between
the head and the hips then the NORMAL label is associated. Finally, if the hands are
lower than the hips a LOW label is associated to the hand. This information can be
useful depending on the type of designed interaction. For example one could consider
that if the hands are not in NORMAL state, the gestures should not be interpreted.

dist = head2.y - hand2.y;
if(dist<0) hand2.pos = bodyParts.HandEvent.Pos.UP;
else if(dist < 500) hand2.pos = bodyParts.HandEvent.Pos.NORMAL;
else hand2.pos = bodyParts.HandEvent.Pos.LOW;
trigger("HandEvent", new EventObject(hand1));

After associating this additional information to the hand, the transition raises an
event HandEvent that is sent to Layer 2 (by means of the message trigger in the code
snippet). This is done for all possible hand-head pairs belonging to each user.

Due to space considerations we will no longer show any code associated to transi-
tions in the remainder of this paper. It should be noted that all models used in this
paper are fully executable.

4.2 Layer 2: Transforming Positions to Low-level Gestures

Layer 2, shown in Fig. 5, transforms absolute positions of the hands in space to rela-
tive movements between two consecutive updates. It is in this layer that state changes
of the hands (opened or closed) are detected. When a new user is detected, transition
NewUser_ fires and creates a token in place handsSet while triggering a NewUser
event.

Fig. 5. Layer 2: transforming the absolute positions into low-level gestures.

Events received from Layer 1 through synchronized transition HandEvent_ gener-
ate tokens in place newHandEvent. Transition replace consumes the token containing
the newly received position of the hand as well as the last matching processed token
(in place last_processed), in order to compute the relative movement of the hand and
its potential state change (open or closed). The unification is made on the id and left
labels, to ensure that the two consecutive tokens must belong to the same user and
refer to the same hand in order to make transition replace fireable.

Once the relative hand movement and state change is computed, they are stored as
a token in place handsSet. Each time a new token arrives in this place, transition
raise_Move can be fired to generate Move events. In addition, a token is created in
place EventsToFilter. If the state of the hand has changed since the last processed

frame, an Open or Close event can be triggered in places raise_Open or raise_Close,
depending on the new state of the hand. If no change occurred in the hand’s state, the
token should be deleted through transition trash.

All 4 aforementioned generated events (NewUser, Move, Open and Close) are sent
to Layer 3 together with information about the user id, the relative movement between
two consecutive frames, and the updated left or right hand movement.

4.3 Layer 3: Combining Low-level into High-level Gestures

Layer 3 serves to combine the low-level gestures of Layer 2 (Open, Close, Move) into
high-level ones that will be interpreted by virtual objects in Layer 4. Layer 3 is di-
vided into 2 models (shown in Fig. 6 and 7) having 4 places in common (leftClosed,
rightClosed, twoOpened and twoClosed). The first model serves to process the state
of the users’ hands. The second model combines low-level gestures into high-level
ones by taking into account the state of the user’s hands (e.g., both hands open). More
models can be added to define other high-level gestures according to the users’ needs.

Fig. 6. Layer 3: Model processing the state of the users’ hands.

Fig. 6 models the state of both hands of each user, that can either be open or
closed. They are represented by 4 different places: twoOpened, twoClosed, leftClosed,
rightClosed. (For the latter two states, we assume that the other hand is opened.)

Transition NewUser_ processes the incoming event NewUser to consume a token
from place players and associates an id to it when a new user joins the game. By de-
fault, the system initializes a new user with both hands open, and will produce a token

in place twoOpened. When an Open2 (resp. Close2) event is received from Layer 2,
transition OpenEvent_ (resp. CloseEvent_) is triggered, which will produce a new
token in place openTokens (resp. closeTokens). Note that we use subscript “2" in the
text to distinguish events coming from Layer 2 from events generated in Layer 3 it-
self.

Fig. 7. Layer 3: Combining low-level gestures into high-level gestures.

Regardless of the user’s state, Close and Open events are automatically generated
by transitions raise_Close and raise_Open when a hand is closed or opened. Depend-

ing on the state of the user, one out of 8 possible transitions can be fired to change the
user state. Imagine that a user enters the game with both hands opened. A token will
be generated for his id in place twoOpened. If he closes the left hand, a Close2 event is
received and the transition CloseEvent_ is fired, thus producing a token in closeTo-
kens place. The only transition that can then be fired is closeLeft. This transition con-
sumes both tokens and produces a new token for the user’s id in place leftClosed.

The second part of Layer 3, depicted in Fig. 7, combines low-level gestures into 4
high-level gestures: Move, Drag, ColinearDrag and NonColinearDrag. All of these
rely on the incoming event Move2, received from Layer 2, which triggers to
MoveEvent_ transition. This transition produces a token in place moveTokens. De-
pending on the user’s state, different transitions can then be fired. If the user had both
hands opened, transition raise_Move will be fired and generate a Move event. If the
left (resp. right) hand was closed, then the resulting gesture will be either Drag or
Move depending on which hand moved. If the closed hand moved, a Drag event will
ultimately be generated. If the opened hand moved, a Move event will ultimately be
generated.

If both hands were closed when a Move2 event was received, then the gesture will
be interpreted as a ColinearDrag or a NonColinearDrag, depending on a more com-
plex calculation of the relative position of the moving hand w.r.t. the other hand.
These calculations are done in the lower part of Fig. 7, in the sub-model connected to
place twoClosed. The idea is to use the Move2 events and the positions of both hands
to check wether the hands are colinear or not.

Another way to specify high-level gestures in Layer 3 is by combining a series of
low-level and/or high-level gestures. For example, GrabAndPull would be a high-
level gesture specified as a combination of a Close gesture and a consecutive series of
Drag gestures along the z-axis. Such a high-level gesture could be used, for instance,
to open a virtual door.

4.4 Layer 4: Manipulating Virtual Objects Through Events

Layer 4 differs from the previous layers in that it contains a different model for
each type of object in the virtual scene the user needs to interact with. These objects
can be controlled using the gestures provided by Layer 3. The same gesture can be
interpreted differently by different objects, e.g., picking up an object lying on a desk
or opening a door. By combining the provided gestures, one can create a wide range
of behavioral models for an unbounded number of different types of objects. This
versatility is illustrated through the case studies of Section 2.

Fig. 8. Layer 4: Transferring gesture events to the virtual paddle object of the Pong game.

For the first case study (the Pong game), we have created an ICO model (shown in
Fig. 8) to represent the interaction with the Pong paddle. The virtual paddle object
reacts to 4 types of gestures: Close, Open, Drag and Move. The model is very simple
because the gestures do not need to be further processed. Their stored information can
be directly used in the 3D application, such as the id of the player who is moving the
hand (to move the right player’s paddle) or the position of the hand itself. When Move
is received, the paddle will move according to the gestures of the hand, by updating
its position in the game. When Drag is received, the paddle still has to move, but can
also respond to a Close event, followed by a Open event some time later. It is the
responsibility of the game itself to decide how to interpret these events, e.g., checking
if the ball is close enough to the paddle and moving the paddle along with the ball.
We have chosen not to model the whole game with ICO models in this article, be-
cause our focus is on the interaction framework.

Fig 9. Layer 4: ICO model of the interaction behavior for a virtual book.

The gestural interaction of the second case study is shown in the ICO models of
Fig. 9 and 10. Fig. 9 represents the different book states together with the transitions
between these states. For example, when a book is stored on the shelf, the user can
only use Drag events to retrieve it. As we don’t want to trigger the retrieval of the
book at the first encountered drag, we designed a simple heuristic based on a score
place. A token in place score is incremented by 1 each time a new drag on z-axis is
performed and decremented by 3 when the drag goes in the opposite direction or if
another gesture is encountered. When the score reaches a certain threshold, the re-
trieve transition is fired and an event is sent to the rendering engine. This heuristic is
used to avoid false positives. We want to trigger the retrieval of the book only after a
certain amount of drags along the z-axis. To open the book and turn the pages, we use
direct feedback. Each time a ColinearDrag (resp. Drag) event is received, the book
(resp. page) flips a bit further, until a given threshold is reached and the book (resp.
page) will be fully opened (resp. turned). Closing the book is modeled in a similar
way.

Fig. 10 represents the interaction of the ICO model with the Ogre3D graphical ren-
dering engine. All transitions from place ogreClient send messages to the rendering
engine in order to give visual feedback to the user. All the transitions of this model
can be found in Fig. 9. These transitions are not fireable as there is not a token in each
incoming place.

Fig. 10. Layer 4: Transitions of the book model connected to the Ogre3D Client

When multiple objects compose the scene, it is not always straightforward to know
to which object the user’s gestures should be applied. To solve this problem, we cre-
ated an ICO model for a 3D pointer, presented as a simple hand that can be either
opened or closed. This pointer is used to give visual feedback to the user. By drawing
the position of the 3D pointer in the 3D rendering window, the user sees what virtual
object is the closest to his hand so that when gestures are made, they will be applied
to the closest virtual object. In our framework, the pointers model is connected to
Layer 2, as it just needs the position, state and amount of movement of the hands.

4.5 Connecting the Layers

Communication between layers is explicitly modeled by use of an Observer design
pattern [8]. This model, depicted in Fig. 11, is executed only once at startup and is
used to create the layers and establish the communication between them. It allows
each higher layer of our architecture to receive and process events sent by the lower
layers. Transitions containing the create primitives (depicted with a small green arrow
inside the transition) consume a token to create a new model instance. For example,

transition createLayer1 produces a token containing a reference to the model of
Layer 1 and puts it in place layer1. Similarly, transition createLayer2 produces a to-
ken referring to the model of Layer 2 and puts it in place layer2. The models of both
layers are connected by transition Listener specifying which events generated by the
model of Layer 1 will be observed (i.e., received) by the model of Layer 2. Here, the
events are NewUser and HandEvent. The same pattern is used to connect the other
layers.

Fig. 11. Model connecting the layers of the framework using the Observer pattern.

5 Lessons Learned and Related Work

We can derive a number of lessons learned from using a visual formalism based on
Petri nets for developing a gestural interaction framework and having applied it to two
case studies. The visual formalism reduces the technical complexity of developing
gestural interaction behavior by raising the level of abstraction. We have personally
experienced that hardcoding such behavior using standard textual programming lan-
guages can be quite cumbersome. A visual formalism facilitates system understanding
as its behavior is highly concurrent within models and as several models evolve in
parallel. The dynamic simulation facilities allow finding and correcting bugs more
easily and offer an elegant way of bridging the gap between modeling and execution.

When executing the models we can actually see the tokens moving from one place to
another, and see their values changing as different transitions are fired. With
PETSHOP, we can even change models during their execution, and study how this
affects the running process. The fact that ICO is formally defined and that it is
grounded in Petri nets theory makes it possible to exploit formal verification tech-
niques to assess and prove properties over a set of cooperating models. We have not
presented these capabilities due to space constraints but more details can be found in
[13].

One very useful additional feature was the ability of models to communicate by
means of events, using synchronized transitions in the listening models to trigger
transitions only when an event is received. This enabled the creation of a layered ar-
chitecture in which behavior can be added or modified easily. One way to do so is to
modify each layer individually. Another possibility is to add new layers on top of the
existing ones to extend the set of recognized gestures, by combining the existing set
of gestures. The label unification capability of ICO models allowed us to implement
multi-user functionality in our framework in a very straightforward way, without the
need to change the structure of our models. Each user is represented by a different
token, and the token id is matched when processing the transitions to ensure that the
information of the correct user is being considered (for example in case of coordi-
nated hand and head movement). Thanks to the ability to store data in tokens, we
were able to process hand state and position in a very straightforward way. This data
could be used for calculations in the transitions thus resulting in an increased expres-
siveness. The notion of test arcs allowed us to create store places that always contain
the latest update about the hands position/state. The tokens could be used without
being consumed, which was very useful since we wanted to keep these tokens until
the next update (to compute relative movement for instance). Inhibitor arcs were also
used frequently to deal with special cases such as the very first token regarding a hand
(to initialize the store places).

The work presented in this article has convinced us that executable visual modeling
is the way to go for developing interactive applications. Not only is it adapted for this
kind of systems, but also the learning time is relatively low. Without any prior knowl-
edge of Petri nets or ICO models, it took the first author about 4 weeks to learn the
formalism and the PETSHOP tool, and to design a first running version of our frame-
work. After that, it turned out to be very easy to add more functionality (such as
pointers and new gestures) to our models. Excluded from the aforementioned learning
time is the time needed to understand how to use and interface with the gestural input
and graphical output devices, as they fall outside the scope of the framework.

A relevant question is whether ICO is the most appropriate notation for specifying
executable gestural interaction models. Other visual notations could be used instead.
For example, [7] used statecharts to manipulate virtual objects displayed on screen
using hand movements. It is difficult to compare the effectiveness of that approach
with the current one, since the statecharts were hardcoded in Java using the Swing-
States API [1]. Although it would be possible to achieve the same result using execu-
table visual statechart models [11], the ability to add or remove new users or virtual
objects dynamically would be more difficult to achieve.

Another alternative for executable specification of gestural interaction is the use of
heterogeneous modeling. [6] explored this alternative by developing a layered client-
server framework using the MODHEL’X environment [10]. The different layers were
specified using different visual formalism such as Synchronous Data Flow models [9]
and Timed Finite State Machines (TFSM). The challenge of heterogeneous modeling
lies in the need for semantic adaptation between the different layers using different
formalisms, as well as the need to master multiple formalisms.

A limitation of our approach is the potential difficulty for domain experts and de-
signers of interactive applications to master the notation of ICO models. It is impor-
tant to note, however, that the low-level models are device-dependent and only have
to be built once. Designers then only need to adapt the models to implement the de-
sired behavior for the target interaction technique. Beyond that, we believe that the
full expressive power of ICO is not always needed and can be abstracted away by
using a domain-specific modeling language. At the risk of a certain loss of expres-
siveness, this would allow designers to compose gestures and process them to create
new behaviors for virtual objects more easily, without requiring detailed knowledge
of the underlying visual formalism.

Another current limitation is the performance issues encountered during our case
studies, because PETSHOP interprets and simulates ICO models at runtime. To be able
to apply it in real commercial applications, faster execution is necessary. This can be
achieved by compiling the models directly into executable code, but it will go at the
expense of no longer being able to dynamically visualize and modify the models dur-
ing their execution, which is very useful for development and debugging purposes.

In [14], ICO models were proposed to model multimodal interactions in virtual re-
ality applications. As a proof-of-concept, a virtual chess game was developed that
could be manipulated by a single user using a data glove on one hand. The design of
this application was quite different from ours. It did not focus on reusable models, did
not include the state of the user or the notion of virtual objects, and contained a very
limited set of gestures using only one hand.

Many other tools and flavors of high-level Petri nets exist. Flownets are an alterna-
tive that has been used for modeling virtual environments [16]. Based on the authors’
observation that virtual environments are made up of a complex combination of dis-
crete and continuous processes, the particularity of flownets relies in the combination
of discrete and continuous behavior to specify the interaction with virtual environ-
ments. Resorting to continuous models is a possible solution, but it may not always be
the most appropriate, especially in presence of sensors that provide discrete events at
a variable frame rate, depending on the performance of the computer used.

According to [17], one of the limitations of many virtual environment toolkits is
the predefined and limited small amount of interaction means they provide, which are
intended to be used regardless of context. To extend the flexibility of such toolkits,
developers must be provided with the possibility to design, test and verify new inter-
action techniques. The authors presented Marigold, a toolset supporting such a devel-
opment process. This toolset allows visual specification of the interaction techniques
(using flownets) but unlike our approach, it is not dynamic. C code is generated from
the models, making it impossible to modify the models at runtime or to see the mod-

els running . Moreover, the entire specification resides in a single monolithic model,
unlike our layered architecture that is more modular and easier to adapt.

In the context of modeling for interaction, [5] proposed Interface Object Graphs, a
method based on statecharts dedicated to the specification and design of new interac-
tion objects or widgets. In contrast to our approach, the user was not explicitly mod-
eled. In addition, the interaction was object-centric, making it difficult to specify mul-
timodal interaction with multiple users.

6 Conclusions and Future Work

We presented PETRINECT, a model-based approach for developing interactive applica-
tions allowing the execution of visual models and relieving the developer from writ-
ing complex and statically compiled code. PETRINECT is a generic, layered and modu-
lar framework to specify and execute gestural interaction based on the visual formal-
ism of high-level Petri nets. Our case studies illustrated how to use PETRINECT to
allow a user to interact with multiple virtual objects displayed on screen. The client-
server architecture of our framework allows developers of interactive systems to eas-
ily integrate gestural interaction in their future entertainment projects. Other usage
scenarios of our framework are conceivable, such as remotely controlling devices
(e.g., domotics, multimedia).

Our case studies have shown the feasibility of visually specifying executable mod-
els for real-life applications. These models are based on discrete events provided by
the gestural input devices. High-level Petri nets, incarnated as ICO models in
PETSHOP, proved to be particularly suited for expressing such models. One of the
reasons was their ability to concurrently execute complex behavior involving a dy-
namically changing number of actors (e.g., players, virtual objects) and requiring a
huge amount of user interaction. Using high-level Petri nets allowed us to cope with
the high complexity by separating the behavior of gestural interactions in separate
communicating layers. In addition, data manipulation and data flow were facilitated
by the ability to encapsulate data in tokens.

Future work will be carried in the directions mentioned in section 5. We plan to
validate the framework further using other input devices such as the Wiimote, and we
plan to define a domain-specific language on top of ICO as a mean to provide the
scaffolding required for wider use by designers and developers.
Acknowledgments. We thank Alexander Serebrenik, Gilles Geeraerts and Frédéric Boulanger
for giving us feedback on a draft version of this article. The first author is financed by a FRIA
scholarship. This research has been partially supported by research project AUWB-08/12-
UMH-3 “Model-Driven Software Evolution”, an Action de Recherche Concertée financed by
the Ministère de la Communauté française – Direction générale de l’Enseignement non obliga-
toire et de la Recherche scientifique, Belgium.

References

1. Appert, C. and Beaudouin-Lafon, M.: SwingStates: Adding state machines to Java and the
Swing toolkit. Software Practice and Experience, 38(11):1149–1182 (2008)

2. Bailly, G., Walter, R., Müller, J., Ning, T. and Lecolinet, E.: Comparing free hand menu
techniques for distant displays using linear, marking and finger-count menus. In Proc.
INTERACT, pp. 248–262 (2011)

3. Bolt, R. A.: "Put-that-there": Voice and gesture at the graphics interface. In Proceedings
SIGGRAPH '80, pp. 262-270. ACM, New York (1980)

4. Boulos, M.K.N., Blanchard, B., Walker, J.M.C. and Tripathy R.G.-O.A.: Web GIS in prac-
tice X: a Microsoft Kinect natural user interface for Google earth navigation. International
Journal of Health Geographics, 10:14 (2011)

5. Carr, D.A.: Specification of interface interaction objects. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 372–378, ACM (1994)

6. Deshayes, R., Jacquet, C., Hardebolle, C., Boulanger, F. and Mens, T.: Heterogeneous
modeling of gesture-based 3D applications. In MoDELS Workshop on Multi-Paradigm
Modeling (2012)

7. Deshayes, R. and Mens, T.: Statechart modelling of interactive gesture-based applications.
In First International Workshop on Combining Design and Engineering of Interactive Sys-
tems through Models and Tools (ComDeisMoto), satellite event of INTERACT (2011)

8. Gamma, E., Helm, R., Johnson, R.E., and Vlissides, J.M.: Design patterns: Elements of re-
usable object-oriented software. Addison-Wiley (1994)

9. Halbwachs, N., Caspi, P., Raymond, P. and Pilaud, D.: The synchronous dataflow pro-
gramming language Lustre. Proceedings of the IEEE, 79(9):1305–1320. IEEE (1991)

10. Hardebolle, C. and Boulanger, F.. ModHel’X: A component-oriented approach to multi-
formalism modeling. In MoDELS Workshops, LNCS 5002, pp. 247–258. Springer (2008)

11. Harel, D. and Gery, E.: Executable object modeling with statecharts. Computer, 30(7):31–
42. IEEE (1997)

12. Jensen, K. and Rozenberg, G., editors. High-level Petri nets: theory and application.
Springer-Verlag, London, UK (1991)

13. Navarre, D., Palanque, P., Ladry, J.-F. and Barboni, E.: ICOs: A model-based user inter-
face description technique dedicated to interactive systems addressing usability, reliability
and scalability. ACM Trans. Comput.-Hum. Interact., 16(4):18:1–18:56. ACM (2009)

14. Navarre, D., Palanque, P.A., Bastide, R., Schyn, A., Winckler, M., Nedel, L.P. and Freitas,
C.M.D.S.: A formal description of multimodal interaction techniques for immersive virtual
reality applications. In INTERACT, LNCS 3585, pp. 170–183. Springer (2005)

15. Ren Z., Meng J., Yuan J., and Zhang Z.: Robust hand gesture recognition with Kinect sen-
sor. In ACM Multimedia, pp. 759–760 (2011)

16. Smith S. and Duke D.: Virtual environments as hybrid systems. In Proceedings 17th An-
nual Conference Eurographics UK, United Kingdom (1999)

17. Sukaviriya, P. N., Kovacevic, S., Foley, J. D., Myers, B. A., Olsen Jr., D. R. and Schnei-
der-Hufschmidt, M.: Model-Based User Interfaces: What Are They and Why should we
casre? In Proceedings UIST’94, November 1994, pp133-135; ACM DL

18. Willans, J.S. and Harrison M.D.: A toolset supported approach for designing and testing
virtual environment interaction techniques. Int. J. Hum.-Comput. Stud., 55(2):145–165
(2001)

