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Abstract

The resolution of the Schrodinger equation for the translation-invariant N-body harmonic oscillator
Hamiltonian in D dimensions with one-body and two-body interactions is performed by
diagonalizing a matrix J of order N — 1.Ithasbeen previously established that the diagonalization
can be analytically performed in specific situations, such as for N < 5 or for Nidentical particles. We
show that the matrix J is diagonal, and thus the problem can be analytically solved, for any number of
arbitrary masses provided some specific relations exist between the coupling constants and the masses.
We present analytical expressions for the energies under those constraints.

1. Introduction

The general translation-invariant N-body harmonic oscillator Hamiltonian in D dimensions with one-body and
two-body forces is given by [1-3]

N p2 2 N N
Hhpo=) == ——+ Y ki —R* + Y g (i — 1) ey
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where in the last term the double sum runs over all pairs {1, j} with i < j. According to their module and sign, the
coupling constants k;and g;; determine the strength and the attractive or repulsive character of the interactions. The
momentum p; of the ith particle of mass m; is the conjugate variable of its position r;. The center of mass coordinate
isnoted R = SN | m; r;/M where M = 3"~ | m;, and the total momentumisnoted P = 3"~ | p..

This Hamiltonian is particularly interesting since analytical eigensolutions are available for some special
values of the parameters {m;, k;, g;}. Indeed, many approximation methods rely on analytical solutions of
simpler Hamiltonians, such as expansions in oscillator basis [4] or in Gaussian states [5]. Furthermore, the
existence of analytical solutions for the Hamiltonian Hy, is at the heart of the envelope theory [6] used to solve
general translation-invariant N-body Hamiltonians [7, 8]. So, it is particularly relevant to study and expand the
availability of analytical solutions of Hy,,.

The general procedures already existing in the literature to formally compute the eigensolutions of Hy, are
recalled in section 2. New analytical solutions are given in section 3. Some concluding remarks and perspectives
are presented in section 4.

2. General procedures

The Schrodinger equation for Hy, can be solved because the Hamiltonian can be rewrittenasasumof N — 1
decoupled harmonic oscillators
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where m is an arbitrary mass scale (1 can be one of the masses of the system or M, for instance), m; = m «; for
i =1, 2,...,N,and wj are frequencies of the relative oscillations (see below). The z; and o; are new conjugate
variables resulting from a change of variables defined in [3] where the center of mass reference frame has been
adopted.

All the eigenvalues of the system are then given by (7 = 1)

N-1
Eno = Y wi Qi (3)

i=1

where Q; = n; + 1/2forD = land Q; = 2n; + I; + D/2 for D > 2[9]. The n;, I; are the quantum numbers
associated with the coordinates of the harmonic oscillators in equation (2). Let us note that degeneracies can
occur if some frequencies w; are commensurable. These frequencies w; are given by d; = m w7 /2 where d; are
the eigenvalues of a symmetrical matrix of order N — 1, let ussay J. This matrix can be writtenas ] = F + G
where each term corresponds to the contributions from the one-body and two-body interactions respectively.
The matrix elements of IF are given in [3] and those of G in [2, 3], and they can be written as follows

a<lLm <N-1),

N N
B = M Am Y kiBiBim, Gim = NAm Y &;Bi — Bi) Bim — Bjm), (4)

i=1 i<j=2

,....j = a1 + ...+ «jand where B is an invertible matrix whose elements can

be found on equation (24) of [3]. The matrix B is built with ratios of the masses of the system and establishes the
relation between the individual momenta and the relative ones plus the total momentum. Let us note that some
parameters k; or g;; can be null or negative, provided all values found for w; are strictly positive. In this case only,
bound states can exist with well defined eigenvalues Ej,.

When N < 5, finding the eigenvalues d; comes down to solving a polynomial of order O < 4, thus
analytical expressions for the w; can be obtained. For instance, the complete solution for 3 different particles is
given in [3]. Analytical expressions for the w; can also be found when all particles are identical
(m; = m, k; =k, 8 =8 Vi, j), and the eigenvalues are given by [3]

N—-1
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In this case, the degeneracy is maximal. When the system contains N sets of identical particles which interact via
two-body forces, another very elegant way to compute the N-body problem is presented in [1]. In that case, Hy,
can be expressed as a sum of Hamiltonians, a term H for each set s of identical particles and one term H,, which
describes the motion of the centers of mass of the sets of identical particles. All Hamiltonians H; are completely
solvable, and the solutions of Hyy, are given by equation (3), meaning that analytical solutions can be found in
specific cases such as when N; < 5 or when the total mass of every set is equal. This procedure is generalized in
[8] for one-body and two-body forces, where an explicit example is calculated for N, = 2.

3. New analytical solutions

In the following, we show that the matrix J is diagonal, and thus H},, completely solved, for any number of
arbitrary masses provided some specific relations exist between the coupling constants and the masses.

After some tedious calculations, from equation (4) one can deduce the matrix elements of the symmetrical
matrices F and G,
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positive numbers. We must note at this point that g; with i > N or j > N arein principle not defined, however
in these equations and later in this paper they should be considered as zero.
From equations (7) and (9) one can notice that the off-diagonal matrix elements of both F and G will vanish
under certain conditions. In particular, it is easy to see thatif k; = p m; Vi, where pisareal constant, then [F
becomes diagonal, and its eigenvalues are all given by p m. For G, if 8 = &; :—: then G becomes diagonal, and

where [ (a) =

@it &8st - TaNG g,

its eigenvalues are given by ~withi = 1,...,N — 1.The condition g; = g;°*
a

Qi
should not be mistaken for a special requirement on a given particle as the choice of the assignment of particle 1

is completely free. With this choice of numberingj (>1) can take any value from 2 to N.
Under these very specific conditions over the nature of the one-body and two-body forces and the masses of
the system, we find analytical solutions to Hp, given by

Nl (gir+ &t Fa¥i+ &, o, it
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One can check that formula (5) is recovered when all particles are identical. The parameters p and g;; can be
positive, null or negative numbers provided all expressions under the square roots are strictly positive. When
N = 3,wehave k; = p mj, g&,; = g5 ™2 /1, and g1, and g5 arbitrary. Formula (10) reduces then to
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When only one-body or two-body forces are present, equation (10) gives eigenvalues of

N-1
1B
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When only one-body forces are present, p must be strictly positive. Since k; = p m;, this implies that all
relative oscillations associated with E}\> are characterized by the same frequency w = /2p.

A simpler expression for EZ can be found under more restrictive conditions: if g = B mim;where Fisa
strictly positive constant, then

N-1
E}%glgij:ﬁ mim; = V26M Y Qi (14)
i=1

4. Concluding remarks

As mentioned in the introduction, finding analytical solutions to specific Hamiltonians can be crucial to some
approximation methods. In particular, the envelope theory [6] is a simple and powerful method to obtain
approximate but reliable eigensolutions of quite general N-body Hamiltonians [7, 8]. As this method relies on
the existence of analytical solutions of the translation-invariant N-body harmonic oscillator Hamiltonian, it is
particularly relevant to study and expand the availability of these analytical solutions. For instance, relation (14)
has been used to study the possible existence of a quasi Kepler’s third law for quantum many-body systems [10].

The results presented here are obtained by imposing that matrices FF and G are both diagonal. However, it is
possible that off-diagonal elements of these two matrices cancel out each other in particular situations resulting
in a diagonal matrix J. This is an interesting study case that might be considered in a future work.
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