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Abstract
The resolution of the Schrödinger equation for the translation-invariantN-body harmonic oscillator
Hamiltonian inD dimensions with one-body and two-body interactions is performed by
diagonalizing amatrix  of order -N 1. It has been previously established that the diagonalization
can be analytically performed in specific situations, such as for N 5 or forN identical particles.We
show that thematrix  is diagonal, and thus the problem can be analytically solved, for any number of
arbitrarymasses provided some specific relations exist between the coupling constants and themasses.
We present analytical expressions for the energies under those constraints.

1. Introduction

The general translation-invariantN-body harmonic oscillatorHamiltonian inD dimensions with one-body and
two-body forces is given by [1–3]
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where in the last term the double sumruns over all pairs i j,{ }with <i j. According to theirmodule and sign, the
coupling constants ki and gijdetermine the strength and the attractive or repulsive character of the interactions. The
momentum pi of the ith particle ofmassmi is the conjugate variable of its position ri. The center ofmass coordinate
is noted = å =R rm Mi

N
i i1 where = å =M mi

N
i1 , and the totalmomentum is noted = å =P pi

N
i1 .

ThisHamiltonian is particularly interesting since analytical eigensolutions are available for some special
values of the parameters m k g, ,i i ij{ }. Indeed,many approximationmethods rely on analytical solutions of

simplerHamiltonians, such as expansions in oscillator basis [4] or inGaussian states [5]. Furthermore, the
existence of analytical solutions for theHamiltonian Hho is at the heart of the envelope theory [6]used to solve
general translation-invariantN-bodyHamiltonians [7, 8]. So, it is particularly relevant to study and expand the
availability of analytical solutions of Hho.

The general procedures already existing in the literature to formally compute the eigensolutions of Hho are
recalled in section 2.New analytical solutions are given in section 3. Some concluding remarks and perspectives
are presented in section 4.

2.General procedures

The Schrödinger equation for Hho can be solved because theHamiltonian can be rewritten as a sumof -N 1
decoupled harmonic oscillators
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wherem is an arbitrarymass scale (m can be one of themasses of the systemorM, for instance), a=m mi i for
= ¼i N1, 2, , , and wi are frequencies of the relative oscillations (see below). The zi and si are new conjugate

variables resulting from a change of variables defined in [3]where the center ofmass reference frame has been
adopted.

All the eigenvalues of the system are then given by ( = 1)
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where = +Q n 1 2i i forD=1 and = + +Q n l D2 2i i i for D 2 [9]. The n l,i i are the quantumnumbers
associatedwith the coordinates of the harmonic oscillators in equation (2). Let us note that degeneracies can
occur if some frequencies wi are commensurable. These frequencies wi are given by w=d m 2i i

2 where di are
the eigenvalues of a symmetricalmatrix of order -N 1, let us say . Thismatrix can bewritten as = +  
where each term corresponds to the contributions from the one-body and two-body interactions respectively.
Thematrix elements of  are given in [3] and those of in [2, 3], and they can bewritten as follows
( - l m N1 , 1),
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with a a a= +¼+¼ j j1, , 1 andwhere  is an invertiblematrix whose elements can

be found on equation (24) of [3]. Thematrix  is built with ratios of themasses of the system and establishes the
relation between the individualmomenta and the relative ones plus the totalmomentum. Let us note that some
parameters ki or gij can be null or negative, provided all values found for wi

2 are strictly positive. In this case only,
bound states can exist withwell defined eigenvalues Eho.

When N 5,finding the eigenvalues di comes down to solving a polynomial of order  4, thus
analytical expressions for the wi can be obtained. For instance, the complete solution for 3 different particles is
given in [3]. Analytical expressions for the wi can also be foundwhen all particles are identical
( = = =m m k k g g, ,i i ij , " i j, ), and the eigenvalues are given by [3]
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In this case, the degeneracy ismaximal.When the system containsNs sets of identical particles which interact via
two-body forces, another very elegant way to compute theN-body problem is presented in [1]. In that case, Hho

can be expressed as a sumofHamiltonians, a termHs for each set s of identical particles and one term Hcm which
describes themotion of the centers ofmass of the sets of identical particles. All HamiltoniansHs are completely
solvable, and the solutions of Hcm are given by equation (3), meaning that analytical solutions can be found in
specific cases such aswhen N 5s orwhen the totalmass of every set is equal. This procedure is generalized in
[8] for one-body and two-body forces, where an explicit example is calculated forNs=2.

3.New analytical solutions

In the following, we show that thematrix  is diagonal, and thus Hho completely solved, for any number of
arbitrarymasses provided some specific relations exist between the coupling constants and themasses.

After some tedious calculations, from equation (4) one can deduce thematrix elements of the symmetrical
matrices  and,
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( ) . Notice that aGF ( ) and aGG( ) are strictly

positive numbers.Wemust note at this point that gijwith >i N or >j N are in principle not defined, however
in these equations and later in this paper they should be considered as zero.

From equations (7) and (9) one can notice that the off-diagonalmatrix elements of both  andwill vanish
under certain conditions. In particular, it is easy to see that if r= "k m ii i , where ρ is a real constant, then 
becomes diagonal, and its eigenvalues are all given by r m. For, if = a

a
g gij j1

i

1
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its eigenvalues are given by
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should not bemistaken for a special requirement on a given particle as the choice of the assignment of particle 1
is completely free.With this choice of numbering j (>i) can take any value from2 toN.

Under these very specific conditions over the nature of the one-body and two-body forces and themasses of
the system,wefind analytical solutions to Hho given by
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One can check that formula(5) is recoveredwhen all particles are identical. The parameters ρ and g1j can be
positive, null or negative numbers provided all expressions under the square roots are strictly positive.When
N=3, we have r=k mi i, =g g m m23 13 2 1, and g12 and g13 arbitrary. Formula(10) reduces then to
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When only one-body or two-body forces are present, equation (10) gives eigenvalues of
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When only one-body forces are present, ρmust be strictly positive. Since r=k mi i, this implies that all
relative oscillations associatedwith E B

ho
1 are characterized by the same frequency w r= 2 .

A simpler expression for E B
ho
2 can be found undermore restrictive conditions: if b=g m mij i j whereβ is a

strictly positive constant, then
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4. Concluding remarks

Asmentioned in the introduction, finding analytical solutions to specificHamiltonians can be crucial to some
approximationmethods. In particular, the envelope theory [6] is a simple and powerfulmethod to obtain
approximate but reliable eigensolutions of quite generalN-bodyHamiltonians [7, 8]. As thismethod relies on
the existence of analytical solutions of the translation-invariantN-body harmonic oscillatorHamiltonian, it is
particularly relevant to study and expand the availability of these analytical solutions. For instance, relation (14)
has been used to study the possible existence of a quasi Kepler’s third law for quantummany-body systems [10].

The results presented here are obtained by imposing thatmatrices  and are both diagonal. However, it is
possible that off-diagonal elements of these twomatrices cancel out each other in particular situations resulting
in a diagonalmatrix . This is an interesting study case thatmight be considered in a future work.
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