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Abstract The envelope theory, also known as the auxiliary field method, is a simple technique to compute
approximate solutions of Hamiltonians for N identical particles in D-dimension. The accuracy of this method
is tested by computing the ground state of N identical bosons for various systems. A method is proposed
to improve the quality of the approximations by modifying the characteristic global quantum number of the
method.

1 Introduction

The envelope theory (ET), also known as the auxiliary field method, is a technique to obtain approximate
solutions of N -body Hamiltonians in quantum mechanics [1,2]. It has been recently extended to treat systems
with arbitrary kinematics in D-dimension [3]. The basic idea is to replace the Hamiltonian H under study by
an auxiliary Hamiltonian ˜H which is solvable, the eigenvalues of ˜H being optimized to be as close as possible
to those of H . The method is easy to implement since it reduces to find the solution of a transcendental
equation. In the most favourable cases, the approximate eigenvalue is an analytical lower or upper bound. In
less favourable situations, a nonvariational numerical approximation can be computed. This is often interesting
for N -body problems which are always difficult and very heavy to solve numerically.

In a recent paper [4], accurate ground state energies and correlation functions of bosons interacting via
various potentials are calculated using Explicitly Correlated Gaussian (ECG) basis [5]. Up to 8 particles are
considered, allowing a plenty of numerical results to test the accuracy of theET for eigenvalues and eigenvectors
(the quality of eigenvectors for the ET has only been tested for N = 2 [6]). It is worth mentioning that the
purpose of the ET is not to compete with methods such as the ECG. The main goal of the ET is to produce
without great pain reliable estimations for the energy of a N -body system. If a lower or an upper bound
can be produced, this must be sufficient for some applications or can be used as a test for heavy numerical
computations. In the peculiar situations where an analytical expression is obtained, the result can give valuable
insights about the system.

In several cases, it has been shown that the approximation given by the ET can be largely improved by
modifying the structure of the characteristic global quantum number of the method [7,8]. The problem is that
the kind of modification must be guessed for each system, and can be found precisely only by comparing with
several exact (or accurate estimation of) eigenvalues. Clearly, a better defined procedure would be preferable.
A universal effective quantum number for centrally symmetric 2-body systems is proposed in [9].Wewill show
that this notion can be used to improve the ET. Let us note that the variational character of the approximation
cannot be guaranteed when the global quantum number is modified.
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The paper is organized as follows. The ET method is recalled in Sect. 2, where a modification of the global
quantum number is proposed to improve the quality of the approximation. The accuracy of the method is tested
with various systems in Sect. 3. Some concluding remarks are finally given.

2 The Envelope Theory

Here we consider the N -body Hamiltonian, in a D dimensional space (D ≥ 2), for identical particles with a
kinetic energy T , interacting via the one-body U and two-body V interactions (h̄ = c = 1)

H =
N

∑

i=1

T (| pi |) +
N

∑

i=1

U (|ri − R|) +
N

∑

i≤ j=1

V
(|ri − r j |

)

, (1)

where
∑N

i=1 pi = 0 and R = 1
N

∑N
i=1 ri is the centre of mass position. It is shown in [3] that an approximate

eigenvalue E is given by the following set of equations for a completely (anti)symmetrized state:

E = N T (p0) + N U
(r0
N

)

+ CN V

(

r0√
CN

)

, (2)

r0 p0 = Q, (3)

N p0 T
′(p0) = r0U

′ (r0
N

)

+ √

CN r0 V
′
(

r0√
CN

)

, (4)

where A′(x) = d A/dx , CN = N (N − 1)/2 is the number of particle pairs, and

Q =
N−1
∑

i=1

(2ni + li ) + (N − 1)
D

2
(5)

is a global quantum number (corresponding to N − 1 identical harmonic oscillators). Following the forms
of T , U and V , the approximate value E can have a variational character. The corresponding approximate
eigenstate is given by [8]

ψ = φcm(R)

N−1
∏

i=1

ϕni li (λi xi ), (6)

where ϕni li (λi xi ) is a D-dimensional harmonic oscillator wavefunction [10], depending on the Jacobi coor-

dinate xi [7], and decreasing asymptotically like e−λ2i x
2
i /2 (the magnetic quantum number is omitted). The

function φcm(R), which can be an oscillator state, describes the centre of mass motion (xN = R). The scale
parameters λi are given by

λi =
√

i

i + 1
NQ

1

r0
=

√

i

i + 1

N

Q
p0. (7)

A state (6) has neither a defined total angular momentum nor a good symmetry, but its is characterized by a
parity (−1)Q−(N−1)D/2. By combining such states with the same value of Q, it is generally possible to build
a physical state with good quantum numbers and good symmetry properties, but the task can be technically
very complicated, even for N = 3 [11].

It is possible to compute mean values for the power of interparticle distance 〈rk〉 with the pair correlation
function defined by

C(r) = 2

N (N − 1)

〈

ψ

∣

∣

∣

∣

∣

∣

N
∑

i< j=1

δ(ri − r j − r)

∣

∣

∣

∣

∣

∣

ψ

〉

. (8)

The value at origin, δ, of the radial part of this density is also interesting to compute. For the bosonic ground
state (ni = li = 0, ∀i), which is completely symmetrical, we have

C(r) = λD
1

πD/2 e
−λ21r

2
and δ = 2 λD

1

Γ (D/2)
. (9)
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In [9], it is shown that an effective quantum number q that determines with high accuracy the level ordering
of centrally symmetric 2-body systems has the following structure1

q = φ

(

n + 1

2

)

+ l + D − 2

2
, (10)

where the number φ depends on the system. For instance, exact results are obtained for a harmonic oscillator
with φ = 2, and for a Coulomb system with φ = 1. In the dominantly orbital state (DOS) method [12,13], the
approximate solutions are found by quantizing the radial motion around a semiclassical solution for a circular
motion. The same separation in a radial quantum number n + 1

2 and an orbital quantum number l + D−2
2

naturally occurs in this method. Its extension to 3-body systems seems to preserve the same separation [13].
Moreover, it has been shown, in the framework of the ET, that relations exist linking the energy of a N -body
system to the energy of the corresponding 2-body system by a rescaling of the global quantum numbers [14].
So, it is tempting to try to modify the global quantum number Q as

Qφ =
N−1
∑

i=1

(φ ni + li ) + (N − 1)
D + φ − 2

2
, (11)

which partly breaks the strong degeneracy of Q. The parameter φ can be determined by theoretical consider-
ations, or by a fit on a single known accurate solution. In the following, Q will be systematically replaced by
Qφ . The genuine ET, with its possible variational solutions, is then recovered with φ = 2. For other values of
φ, the variational character of the solution cannot be guaranteed.

3 Results

In this section, we consider various systems of N identical particles with the same mass m. The ET formalism
developed is valid for bosons or fermions with any values of D, but we will show only numerical results for
bosons in the D = 3 space. For the three first nonrelativistic systems taken from and named as in [4], only
the ground state is computed. The fourth case is an ultrarelativistic 3-body system studied in [7], for which
excited states are also available.

3.1 Weakly Interacting Bosons

In the first case, the nonrelativistic particles interact via a soft Gaussian potential

T (p) = p2

2m
, U (s) = 0, V (r) = −V0 e

−r2/R2
. (12)

The resolution of the system (2–4) gives the following upper bound for the energy E

r0 = N 1/2(N − 1)1/2
√−W0(Y ) R, (13)

E = −N (N − 1)

2
V0 Y

2 1 + 2W0(Y )

W0(Y )2
(14)

with Y = − 1

N 1/2 (N − 1)

Qφ

R
√
2m V0

. (15)

The multivalued Lambert function W (z) is the inverse function of z ez [15]. W0(z) is the branch defined for
z ≥ −1/e.

In order to test the quality of the approximation with accurate data, we compare with the results given in
[4], for the parameters 1/m = 43.281307 (a.u.)2 K, V0 = 1.227 K and R = 10.03 a.u. Results for the ground
state energies E are presented in Fig. 1 (the exact result for N = 20 is taken from [16]). The agreement is
quite good for the genuine ET, but irrelevant values for the energies (complex or positive real numbers) are

1 For practical purposes, our definition of φ differs from the one used in [9].
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Fig. 1 Binding energies, −E , of weakly-interacting bosons: exact results (circle) [4,16], ET results for φ = 2 (diamond), ET
results for φ = 1.82 (dashed line). Left log–log plot, right linear plot

Fig. 2 〈r〉 (left) and δ (right) for weakly-interacting bosons: exact results (circle) [4], ET results for φ = 2 (diamond), ET results
for φ = 1.82 (dashed line)

computed when the binding is very weak. This phenomenon has already been observed in [17] for N = 2. Note
that excited values of the energies are available up to N = 6 in [18], but the ET method can only produce one
relevant value of the energy for N = 6. So no tendency can be shown as a function of N . A better agreement
with the exact values for N ≥ 5 is obtained for φ = 1.82, but the improvement is not spectacular.

Mean values 〈r〉 are presented with δ in Fig. 2. The global agreement is good, but the value φ = 1.82
does not necessarily produce an improvement. Note that the values of δ are not so well reproduced. This is
typical for a given value of a density. Better results are obtained for mean values, for which an integration is
performed with the density over the whole domain of distances.

3.2 Self-gravitating Bosons

In this case, we consider nonrelativistic particle interacting via a Coulomb-like potential

T (p) = p2

2m
, U (s) = 0, V (r) = −g

r
. (16)

For a self-gravitating system, g = m2G where G is the gravitational constant. The ET method gives the
following upper bound

r0 = 23/2

N 1/2(N − 1)3/2
Q2

φ

m g
, (17)

E = −N 2(N − 1)3

16

m g2

Q2
φ

. (18)
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Fig. 3 Binding energies, −E , of self-gravitating bosons: exact results (circle) [4], ET results for φ = 2 (diamond), ET results for
φ = 1 (dashed line). Left log–log plot, right linear plot

Fig. 4 〈r〉 (left) and δ (right) for self-gravitating bosons: exact results (circle) [4], ET results for φ = 2 (diamond), ET results for
φ = 1 (dashed line)

For N = 2, the exact result is recovered with φ = 1 [10]. Moreover, for D = 3 and φ = 1, the ground state
bosonic energy is

Egs ≈ −0.0625 N 2(N − 1)m g2. (19)

This is comparable with the lower bound obtained in [19]

Egs > −0.0593 N 2(N − 1)m g2. (20)

As in the previous case, the comparison is performed with [4], for the parametersm = 1 and g = 1. Results
for the ground state energies E are presented in Fig. 3 for φ = 2 and φ = 1. If the global tendency is good for
the genuine ET, as indicated by the log-log plot, a spectacular improvement is reached with φ = 1 (a better
global agreement with the exact values for 2 ≤ N ≤ 8 is obtained for φ = 1.11).

Mean values 〈r〉 are presented with δ in Fig. 4. Again, for the genuine ET, values of 〈r〉 are globally
better reproduced than values of δ. The strong improvement obtained for the energy is not repeated for these
observables.

3.3 Confined Bosons

Now, we consider particles confined by a harmonic oscillator potential with a pairwise repulsive Coulomb
interaction

T (p) = p2

2m
, U (s) = 1

2
m ω2s2, V (r) = g

r
. (21)
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Fig. 5 Energies, E , of confined bosons: exact results (circle) [4], ET results for φ = 2 (diamond), ET results for φ = 2.58 (dashed
line). Left log–log plot, right linear plot

Fig. 6 〈r〉 (left) and δ (right) for confined bosons: exact results (circle) [4], ET results for φ = 2 (diamond), ET results for
φ = 2.58 (dashed line)

The ET method gives the following lower bound

r0 = N 5/6(N − 1)1/2

25/6

( g

m ω2

)1/3
G−(Y ), (22)

E = N 2/3(N − 1)

25/3
(

m ω2 g2
)1/3 (

G−(Y )2 + G−(Y )−1) (23)

with Y = 216/3

3

1

N 4/3(N − 1)2

(

ω

m g2

)2/3

Q2
φ. (24)

G±(Y ) is the only positive root of the quartic equation 4x4 ± 8x − 3Y = 0 with Y ≥ 0 [8]. 2 One can check
that E = ω Q when g = 0, which is the exact solution in this case.

Again, the comparison is performed with [4], for the parameters m = 1, ω = 0.5 and g = 1. The
Hamiltonian studied in this reference is defined with

∑N
i=1 r

2
i = ∑N

i=1(ri − R)2+N R2, that is to say with the
centre of mass motion ruled by a harmonic oscillator, with a mass Nm and a frequency ω. So, to compare the
results of this paper with ours, we must add the value 3

2ω (centre of mass ground state energy) to the internal
energy of the ground state of our Hamiltonian (21). Results for the ground state energies E are presented in
Fig. 5. The agreement is quite good for the genuine ET.With the values chosen for the parameters, an analytical
solution can be found for N = 2 [20]. This exact result can be reproduced by our formula with φ = 2.58. A
better global agreement is obtained for this value of φ, but the improvement is very weak.

Mean values 〈r〉 are presented with δ in Fig. 6. The agreement of the genuine ET results is just reasonable,
with again the values of 〈r〉 better reproduced than the values of δ. In this case, the quality of the observables
is deteriorated for φ = 2.58.

2 G±(Y ) = ∓ 1
2

√
V (Y ) + 1

2

√

4(V (Y ))−1/2 − V (Y ) with V (Y ) =
(

2 + √
4 + Y 3

)1/3 − Y
(

2 + √
4 + Y 3

)−1/3
.
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Table 1 Some eigenmasses in GeV of the Hamiltonian (25) for D = 3, N = 3, λ = 0.2 GeV and g = 2
3αS with αS = 0.4 [7]

n1 + n2 l1 + l2 Exact ET

φ = 2 φ = √
2 φ = 1.35 φ = 1.23

0 0 2.128 2.468 2.165 2.128 2.060
0 1 2.606 2.914 2.662 2.633 2.578
1 0 2.739 3.300 2.842 2.788 2.682
0 2 2.959 3.300 3.080 3.055 3.007
1 1 3.125 3.646 3.237 3.189 3.098
0 3 3.299 3.646 3.448 3.425 3.383
2 0 3.260 3.961 3.387 3.318 3.186
1 2 3.422 3.961 3.589 3.546 3.463
0 4 3.581 3.961 3.780 3.759 3.721
2 1 3.584 4.253 3.725 3.662 3.542
1 3 3.716 4.253 3.909 3.869 3.794
0 5 3.861 4.253 4.085 4.066 4.030
3 0 3.721 4.527 3.856 3.775 3.619
2 2 3.838 4.527 4.034 3.976 3.866
1 4 3.966 4.527 4.205 4.168 4.098
0 6 4.103 4.527 4.369 4.351 4.318

Δ 15.1% 4.4% 3.1% 2.4%
Accurate results obtained from an expansion in a harmonic oscillator basis [22] are given in the column “Exact”. Results computed
with the ET for four values of φ are listed in the four last columns, with the associated mean relative errors Δ. The sums n1 + n2
and l1 + l2 are the quantum numbers of the main component of the corresponding genuine eigenstate in the harmonic oscillator
basis. These numbers are used for the computation of Qφ

3.4 Large-N Baryons

Light baryons in a particular large-N limit (N is the number of colours) can be studied with the following
Hamiltonian [21]

T (p) = p, U (s) = λ s, V (r) = −g

r
. (25)

The baryons are then composed of N quarks u or d , with m = 0, moving ultrarelativistically. Quarks are
fermions, but the colour part of the wave-function is completely antisymmetrical. So, they behave like bosons
for the rest of the wave-function. With the ET, the following upper bound is obtained for the mass E of the
baryons

r0 = 1√
λ

√

N Qφ −
(

N (N − 1)

2

)3/2

g, (26)

E = √
4 λ

√

N Qφ −
(

N (N − 1)

2

)3/2

g. (27)

In order to test the relevance of Qφ for the ground state and some excited states, we consider the 3-body
system studied in [7]. For the genuine ET (φ = 2), the mean relative error Δ computed on the 16 eigenmasses
listed in Table 1 is 15.1%. With the value φ = √

2 predicted by the DOS method for g = 0 [13], Δ reduces to
4.4%. With φ = 1.35, the ET yields the exact value for the ground states and Δ drops to 3.1%. Finally, with
φ = 1.23, the minimal value of 2.4% is reached for Δ.

4 Conclusion

The ET is a powerful method to compute eigenvalues for quite general N -body systems with identical particles
in D dimensions [3]. The method is easy to implement since it reduces to find the solution of a transcendental
equation. Its interest is not to produce accurate results, but to yield rapidly reliable estimation of energies
and observables. Here, the method is tested with the ground states of three nonrelativistic systems, weakly
interacting bosons, self-gravitating bosons, and confined bosons, accurately computed in [4] up to N = 8. A
fourth case is an ultrarelativistic system of quarks (boson-like) studied in [7]. For all these cases, an analytical
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variational bound is computed. Considering the simplicity of the method, quite good results can be obtained
for energies and observables in all the systems considered.

A universal effective quantum number for centrally symmetric 2-body systems is proposed in [9]. As it
seems relevant to extend this notion to 3-body systems [13], the characteristic global quantum number of the
ET is modified accordingly. Only one parameter must be fixed either by theoretical considerations or by a fit
on a single known accurate solution. The variational character of the energies cannot then be guaranteed, but
the improvement is generally good, even for the excited states. Unfortunately, the behaviour of observables is
not really predictable.

Since N -body problems are always difficult and heavy to solve accurately, the ET can be used as a guide
for the study of these complicated systems. It could be interesting to test the method with other systems in
various dimensions, for different values of N , and not only for the ground state. In particular, it is not certain
that the modification of the global quantum number proposed in this work can always lead to improvement of
the energies.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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