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Abstract: The smart use of water is a key factor in increasing food production. Over the years,
irrigation has relied on historical data and traditional management policies. Control techniques have
been exploited to build automatic irrigation systems based on climatic records and weather forecasts.
However, climate change and new sources of information motivate better irrigation strategies that
might take advantage of the new sources of information in the spectrum of systems and control
methodologies in a more systematic way. In this connection, two open questions deserve interest:
(i) How can one deal with the space–time variability of soil conditions? (ii) How can one provide
robustness to an irrigation system under unexpected environmental change? In this review, the
different elements of an automatic control system are described, including the mathematical modeling
of the crop–soil systems, instrumentation and actuation, model identification and validation from
experimental data, estimation of non-measured variables and sensor fusion, and predictive control
based on crop–soil and weather models. An overview of the literature is given, and several specific
examples are worked out for illustration purposes.

Keywords: crop–soil modeling; sensors; system identification; state estimation; control systems;
heterogeneous soil; smart irrigation

1. Introduction

The rise of the world population motivates the increase in food production. To achieve
this goal, irrigation plays a major role, since 70% of fresh water around the world is used
in agriculture [1]. A challenge is to increase production while following a sustainable
and efficient strategy [2,3]. Efficient irrigation has a determinant impact on the water
footprint of agricultural production, which depends not only on the amount of water that
is used, but also on the way it is exploited and on the water sources [4]. On the one hand,
sustainability is linked to water scarcity and climate change, since historical climatic data
may not be sufficient to determine irrigation strategies. This issue was discussed by [5],
where the authors proposed an adaptive irrigation strategy. On the other hand, the design
of irrigation systems involves a proper interpretation of the crop–soil system in order
to propose an optimal irrigation policy. One of the most relevant open challenges is the
management of land heterogeneity related to topography and soil properties [6]. Over the
years, the representation of crop–soil dynamics has been addressed with mathematical
models, where the cause–effect relations between environmental variables and plant/soil
components have been incorporated. These models mainly include mass balance equations,
heuristic relationships, and statistical functions. The historical evolution of these models
was described by [6–8]. Nevertheless, modeling of irrigation systems has traditionally
been limited to soil dynamics, neglecting the plants’ interactions and effects [9], which
has led to sub-optimal solutions [10]. Consequently, the design of irrigation systems can
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be enhanced by more comprehensive models that take interactions between the different
system compartments into account and by a more systematic use of system and control
theory to improve monitoring and predictive control.

This trend in smart farming and precision agriculture has been boosted by the avail-
ability of more sources of information, notably, through remote sensing [8,11,12], thus also
leading to the use of machine learning [13]. The applications of these tools have led to
improvements in production performance, as discussed in [14].

However, there is still room for a full exploitation of system and control methodologies,
particularly in this new era of massive data sources, as recently pointed out by [15]. In this
latter review article, the authors emphasized two research directions, i.e., minimal resource
usage and the exploitation of current technology to build better management systems. The
open challenges include the resource allocation problem, control-oriented modeling, and
sensor and actuator placement.

In this present article, the last ten years of developments related to irrigation in
agricultural systems are reviewed by following the methodological structure shown in
Figure 1. The objective is to highlight the several steps leading to an advanced control
strategy, including instrumentation, mathematical modeling, model identification and
validation, state estimation (software sensors), and model-based control. The main concepts
are illustrated by numerical examples that are carefully worked out. This review builds
upon past reviews, such as [16,17], which summarized fundamental control concepts
applied to irrigation systems.

The problem of irrigation can be divided into two subproblems, i.e., water transporta-
tion and water usage. In this review article, the focus is put on the latter subject, since a
complete review about water transportation was recently published [18], where the authors
presented a comprehensive description of an open-channel system that included modeling
and control features.

Figure 1. Diagram of a general irrigation system, where solid black blocks indicate physical elements,
red blocks are sensors or measurement instruments, solid black lines are physical interactions, red
dashed lines are signals, and green and yellow blocks are designed elements.

This paper is organized as follows. In Section 2, the main components of simulation-
oriented models are extracted to propose control-oriented models. Next, Section 3 presents
the sensing and measurement elements. Afterwards, in Section 4, the system identification
techniques used to determine the model parameters are presented, with an emphasis on
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parameter uncertainties and model validation. Section 5 reviews state estimation and the
reconstruction of non-measured variables. Then, in Section 6, the most popular control
techniques are discussed. Section 7 discusses spatial representation and soil heterogeneity.
Finally, Section 8 draws conclusions and perspectives.

2. Dynamic Crop–Soil Model Components

Crop-growth models are developed to understand how environmental and manage-
ment factors affect food production. In a predictive irrigation policy, these models are
a core component, as illustrated in Figure 1. Two types of models can be distinguished:
(i) simulation-oriented models (SOMs) and (ii) control-oriented models (COMs). The goal of
the models in the first category is to faithfully mimic the system behavior and to understand
the phenomena influencing crop growth. These models combine mechanistic descriptions
of biophysical phenomena and heuristic laws. In [19], the authors presented an extensive
list of crop-growth models (however, more than 50% of these models have become obsolete
over time). The models in the second group are usually reduced or simplified versions of
the previous models. Only 12 of the most cited SOMs are usually considered to build a
control-oriented framework (see Table 1) based on a hierarchy in growth and production
factors proposed by [20]. These include growth-defining factors, growth-limiting factors,
and growth-reducing factors. The growth-defining factors determine the maximum possi-
ble growth and are dependent on crop-specific parameters and weather influences, such
as temperature and solar radiation. The growth-limiting factors are due to a shortage or
excess of water and nutrients such as nitrogen. The growth-reducing factors are due to,
e.g., weeds and pests. Some of the mentioned factors are listed in Table 2 for representative
SOMs, whose evolution has been reviewed by [21]. Other related works, such as [22],
used a dynamic system approach to represent full agricultural production systems. These
agricultural production systems include livestock production, economic and labor modules,
environmental impact, and social components, which are outside of the scope of this review.

In this review, we describe the crop dynamics for a homogeneous portion of land by
following two approaches.

2.1. Crop and Growth Models

Food production includes perennial and seasonal crops. As mentioned in the intro-
duction, water has a determinant influence on the development of both. For instance, large
crops of almonds have been identified as the most significant consumers of freshwater,
followed by large-scale seasonal crops of rice, alfalfa, sugarcane, wheat, maize, and plan-
tains [23]. Therefore, efficient irrigation offers a global benefit for long- and short-term
crops. However, in short-term crops (e.g., cereals and legumes), the excess or lack of
water can be catastrophic, since the crop might be under irrecoverable conditions [24].
Consequently, most COMs are focused on seasonal and short-term crops.

The dynamics of crop processes can be described by a system of differential or dif-
ference equations, which represent the plant growth with at least three levels of detail.
In the first level, the crop growth is limited solely by weather conditions, primarily solar
radiation and air temperature. In the second level, growth is water-limited, i.e., limited by
the shortage or excess of water supply, in addition to the constraints imposed by weather
conditions. In the third level, growth is also limited by the shortage of nutrients—mainly,
but not limited to, nitrogen (N)—during some lapses in the growing season. The shortage
of other nutrients, such as phosphorus or potassium, follows the same logic as for nitrogen,
imposing more restrictive bounds on the growth function. These levels are explained next.
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Table 1. Main inputs and driving and output variables for selected SOM crop models.

Model

Inputs Driving Variable Output Variables

ReferencesEnvironmental Manipulated

Radiation Temperatures
(max, min)

Rainfall
Precipitation

Reference Evapo-
transpiration Wind Humidity Irrigation

Moisture
Fertiliz-

ation Other Yield Other

APEX X X X X X X X • Soil preparation Cumulative X • Carbon and nitrogen
transformations [25]

• Pesticide temperature • Costs
• Crop rotation
• Tillage

APSIM X X X X X X • Vapor pressure Thermal time X • Dry matter [26]
accumulation

AquaCrop X X X X • CO2 concentration Water content X • Irrigation [27]
• Soil fertility level and fluxes • Water losses
• Weed management • Soil water

CropSyst X X X • Soil profile Thermal time X • Above-ground root biomass
accumulation [28]

• Management of
scheduled events accumulation

• Fertilization
• Residue fate

DAISY X X X X X X X X • Soil properties Air temperature • Water balance [29]
• Sowing/planting • Heat balance
• Soil tillage • Solute balance
• Harvest • Pesticide fate

DNDC X X X X X X X • Redox potential Eh Air temperature X • Gas emissions [30,31]
• Oxygen
concentration • N leaching

• Climate file • Weather
• Soil profile • Soil carbon sequestration
• Tillage

DSSAT X X X X X X X • CO2 concentration Thermal time X • Weather [32]
• Soil profile accumulation • Soil profile
• Crop profile • Fertilization
• Management profile • Irrigation

EPIC X X X X X X X • Soil profile Solar X • Productivity [33]
• Soil erosion radiation • Waste management
• Pesticide • Plant competition
• Homogeneous soil
assumption • Pesticide fate

• Crop rotation • Furrow diking
• Tillage
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Table 1. Cont.

Model

Inputs Driving Variable Output Variables

ReferencesEnvironmental Manipulated

Radiation Temperatures
(max, min)

Rainfall
Precipitation

Reference Evapo-
transpiration Wind Humidity Irrigation

Moisture
Fertiliz-

ation Other Yield Other

SALUS X X X X X • Tillage Solar X • Development stages [34]
• Residue fate radiation • Fertilization
• Pesticide • N leaching
• Soil erosion • Irrigation

STICS X X X X X X X X Cropping Plant carbon X • Nitrate leaching [35]
schema accumulation [36] • Drainage

SWAP X X X X X X • Crop rotation Thermal time • Dry weight (stems/leaves) [37]
• Solute transport • Water management

WOFOST X X X X X X X X • CO2 concentration Thermal time X • Biomass [38]
• Vapor pressure • Water use
• Management profile

Table 2. Main functions related to the simulation processes of selected SOMs.

Model Water Balance Nutrient Balance Evapotranspiration Growth-Core Main State
Variable Biomass or Yield Formation Stresses

APEX Probabilistic distribution

• Penman (1948)
• Pemnam–Monteith

(1965)
• Priestly–Taylor (1972)
• Hargreaves (1985)
• Baier–Robertson (1965)

• Photosynthetically
Active Radiation (PAR)

• Leaf Area Index (LAI)
Potential increase in biomass
Monteith 1977

• Erosion
• Nitrogen
• Carbon
• Phosphorus
• Pesticide fate

APSIM

• Tipping bucket (soil
water)

• Richards equation
(SWIM)

Nitrogen uptake rate

• Transpiration efficiency
• Vapor Pressure Deficit

(VPD)
• Tanner and Sinclair

(1983)
• Priestley–Taylor (1972)
• Pemnam–Monteith

• Radiation-use efficiency
(RUE) LAI Potential biomass accumulation

• Temperature
• Nitrogen
• CO2
• Water
• Vapor pressure

AquaCrop Soil water balance Salt balance by transfer of
solutes

• Penman–Monteith
(FAO56)

• Green canopy cover (CC)
• Water productivity (WP)

Cumulative crop transpiration
limited by biomass water
productivity

• Water
• Temperature
• Soil fertility
• Soil salinity
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Table 2. Cont.

Model Water Balance Nutrient Balance Evapotranspiration Growth-Core Main State
Variable Biomass or Yield Formation Stresses

CropSyst

• Finite difference solution
of Richards equation

• Water transport
cascading approach

N Transformations N
absorption rate Chemical
budget (salinity, pesticide)

• Pemnam–Monteith
(1965)

• Priestly–Taylor (1972)
• Reduced Priestly–Taylor

(only requires air
temperature)

• PAR
• LAI
• Water u-se efficiency

(WUE)
• LAI

Tanner and Sinclair (1983),
daily biomass accumulation
Monteith (1977) at low vapor
pressure deficit

• Water
• Vernalization
• Temperature
• Nitrogen

DAISY
• Mass balance Richards

equation
• Darcy equation

Nitrogen dynamics
• FAO Penman–Monteith

(1990)
• Makkink equation (1984)

• Beer’s law Accumulation of dry matter
and nitrogen

• Nitrogen
• Water

DNDC • Algebraic equation
• Nitrification and

denitrification
• Fermentation

Water-use efficiency limited by
VPD [39]

• Maximum net
photosynthesis (Aber
and Federer, 1992) [39]

• LAI

Daily cumulative temperature
conditioned by N demand
uptake
Water demand uptake

• Water

DSSAT
Mass-balance
(Differential equations by soil
layer)

• Soil organic matter
• Nitrogen balance

• Priestly–Taylor (1972)
• FAO Penman–Monteith

(1990)
• Penman FAO

• Daily canopy RUE
• Hourly hedgerow

photosynthesis light
interception (Boote and
Pickering, 1994)

Growing degree-days (GDD)
• Nitrogen
• Nutrient
• Water

EPIC

• Peak rate runoff
equations

• Mass balance by soil
layer

Leaching equations
Sediment transport
Mineralization

• Penman (1948)
• Pemnan–Monteith (1965)
• Baier–Robertson (1965)
• Priestly–Taylor (1972)
• Hargreaves (1985)

• Crop interception of
solar radiation

• LAI
Conversion of
Intercepted light to biomass

• Water
• Nutrients
• Temperature
• Aeration
• Radiation

SALUS • Mass balance
• Mineralization
• Mass balance
• C:N ratios

• Penman (1948) (modified
by Shuttleworth 2007)

• LAI
• RUE
• Beer’s law analogy

Carbon assimilation
• Water
• Nitrogen

STICS • Mass balance equation Functional ratio equation
• Penman-Monteith

(FAO56)
• Priestley–Taylor (1972)

• Beer’s law analogy
• LAI Plant carbon accumulation [40]

• Nitrogen
• Water thermal

SWAP
• Richards equation
• Soil hydraulic functions Nitrogen cycle

• Penman (1948)
• Penman–Monteith

(FAO56)
• Hargreaves (1985)
• Makkink equation (1984)
• Priestley–Taylor (1972)

• LAI
Daily net assimilation
depending on the intercepted
light

• Drought
• Salinity
• Transpiration
• Oxygen

WOFOST
• Mass balance by soil

layer
SWAMP model for solute
transport

• Penman (1948) • PAR
• LAI

Daily net assimilation
depending on the intercepted
light

• Light
• Water
• Temperature
• Nutrients
• Weeds, pests, diseases
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2.1.1. First Level

The time evolution of the biomass y is related to the energy provided by sunlight:

dy
dt

= µw

(
1− y

y f

)
, (1)

where µ is the growth rate (i.e., the light-use efficiency (g/MJ)), w is the daily intercepted
solar radiation (MJ/m2), and y f is the maximum (or potential) biomass, which is related to
the crop species and the plant density. After the limit of accumulation of solar energy is
reached, the phenology of the crop involves maturity and the natural aging process.

The stresses caused by the lack or excess of environmental inputs, including the short-
age of nutrients (which can be remedied by fertilization), are accounted for by models in
two ways—first, by speeding up the aging process (e.g., shortening the maturity time or
cumulative temperature), and second, by using multiplicative factors of the growth function.
These multiplicative stress factors are usually in the range of [0, 1], where 1 represents a
non-stress condition and 0 represents a maximum stress factor. The shape of stress factors is
related to the mathematical representation of the observed experimental impact (see Table 3).
It is important to note that the multiplicative structure can present serious difficulties for
parameter identification.

Table 3. Stress factor shapes, where 0 ≤ S ≤ 1 is the relative stress level, α > 0 is the shape factor,
Sl and Su are the relative stress levels at the lower and upper threshold, respectively, and β is the
rate factor.

Shape Equation Uses Reference

Linear K = 1− S Water drought [41]
Water-logging [42]

Soil salinity [27]
CO2 concentration [43,44]

Air temperature [45]
Convex K = 1− eαS−1

eα−1 Soil fertility [31]
Water drought [27]

Logistic K = SuSl
Su+(Su−Sl)e−β(1−S) Air temperature [19,27]

Pests and diseases [46]

Other models consider the temperature (T) as a driving variable in order to describe
matter formation. The crop grows according to the thermal pace, which corresponds to the
number of days that the crop is subject to a range of temperature that has been experimentally
proven to be optimal for stomatal exchanges. Crop growth is expressed as the product of
the solar radiation (w), the radiation-use efficiency (r), the growth function G(T, t), and the
stress function K(X, T, N, t) depending on water (X), temperature (T), and nutrients (N),
i.e.,

dy
dt

= wrGK. (2)

The growth function G ∈ [0, 1] is formed by the combination of two logistic shapes:
one for the plant vegetative growth from germination to the half of crop life with a positive
slope, and the second one for aging from the maturity to harvest with a negative slope.

This type of model can be illustrated by considering the simple case in [43]. Originally,
this model was presented in a discrete-time version that used daily steps, as the environ-
mental inputs were typically sensed and reported daily. The potential growth function is
given by

G =


θ1

1+e−0.01(v−θ2)
, v ≤ θ3

2
θ1

1+e0.01(v+vs−θ3)
, v > θ3

2 ,
(3)
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where v represents the cumulative temperature, θ1 is the maximum fraction of radiation in-
terception that the crop can reach, θ2 is the cumulative temperature requirement for leaf area
development to intercept 50% of radiation, θ3 is the cumulative temperature requirement
from sowing to maturity, and vs is the temperature aging function accounting for the nega-
tive effects of water and temperature stresses. The stress function K, which penalizes the
growth in Equation (2), is represented as the product of single environmental stresses, but
also includes an additional positive effect of CO2 (KCO2 ∈ [1, 1.3]), i.e., K = KTKXKNKCO2 .

An example of wheat as a test crop that is sown on a deep loamy soil is shown in
Figure 2. Figure 2a shows the shape of the growth function and senescence for non-stress
crop growth (K = 1) and two stress levels (K < 1). The early senescence is directly related
to stress amplitude. In correspondence, Figure 2b shows the biomass evolution. Notice that
any stress factor in Equation (2) affects the growth function by narrowing the bell shape,
but also by attenuating its height. Consequently, the presence of stress factors changes the
slope of the biomass production graph and its final value.
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Figure 2. Potential crop growth (first-level description) and the stress effect on senescence (including
the second and third levels) with the parameters θ1 = 0.95, θ2 = 480, and θ3 = 2200. (a) Growth
engine shape under three levels of stress and (b) the corresponding biomass production.

2.1.2. Second Level

This level of model description involves water supply as a limiting growth factor.
Most of the water exchanges occur below the ground, which is why the water-in-soil mass
balance equation is considered. This equation is the core of COMs, and is often used to
compute the water stress factors. The water content in soil x is computed by

dx
dt

= −xT − xr − xd + u + wr, (4)

where xT represents the crop transpiration [47], xr represents the surface runoff, xd repre-
sents the drainage, u represents the irrigation, and wr represents the rainfall. As mentioned
earlier, a discrete-time version of the model equations is often preferred for practical
purposes. This discrete-time version can be obtained using an explicit Euler method for
numerical integration, i.e.,

dx
dt

=
x(t + ∆t)− x(t)

∆t
.

Equation (4) with ∆t = 1 day and k as the discrete time index, therefore, becomes

x(k + 1) = x(k)− xT(k)− xr(k)− xd(k) + u(k) + wr(k). (5)



Water 2022, 14, 889 9 of 37

An illustrative example of the behavior of water fluxes in a homogeneous area of soil
(Equation (5)) is depicted in Figure 3. The dynamics of water in soil are affected by rainfall
and temperature (not in the graph), where the negative effects (i.e., stresses for plants)
occur if the water in soil is above the field capacity (saturation) and below the wilting limit.
Notice that for proper crop development, it is not necessary to always fill the soil up to the
field holding capacity; instead, it is essential to avoid soil dryness.
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Transpiration
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Drainage

Figure 3. Water balance in a homogeneous soil with a reference root depth of 400 mm. The left axis
corresponds to water in soil, rainfall, and upper (field capacity) and lower (wilting limit) water limits.
The right-side axis corresponds to the outgoing soil fluxes (transpiration, runoff, and drainage). The
values of parameters used are α = 0.096, β = 0.55, η = 65, θ = 0.15, ζ = 400, and γ = 0.06, in
accordance with the full model description in Section 4.

An example of a more elegant soil representation (i.e., with compartmental vertical
layers) is the one proposed by AquaCrop [27]. In this latter model, the differential flow
equation is replaced by a set of finite difference equations, which are written in terms
of the dependent variable x and the independent variable of time (k). The vertical soil
profile is divided into m layers indexed from the surface to the maximum depth considered
(i = 1, ..., m), and the time k runs from the sowing to the harvest day. This representation
includes the evaporation effect in the surface layer and the rising effect due to the capillarity
in the presence of the water table. The moisture content xi(k) is determined for each layer
of the soil and for every time step as follows:

xi(k) = xi(k− 1) + xi
T(k) + xi

d(k) + xi
f (k) + xi

c(k) + xi
e(k), (6)

where the superscript i is the index of the soil layer, xi
T(k) is the crop transpiration, xi

d(k) is
the drainage of the soil profile, xi

f (k) is the water infiltration into the soil profile (after the

subtraction of surface runoff), xi
c(k) is the upward movement by capillary rise from a shal-

low groundwater table, and xi
e(k) represents the amount of water lost by soil evaporation.

Notice that the advantage of (6) over (5) is the separation of evaporation and transpiration,
which address the temperature effect in the top layers, and the vertical movements of water.
However, the price to pay is a large number of equations to solve.

2.1.3. Third Level

In this modeling level, the shortage of nitrogen (N) is considered. Nitrogen is funda-
mental for leaf development, production of chlorophyll, and the synthesis of carbohydrates.
However, nitrogen cycles in agriculture are asynchronous and evolve at different rates.
There is a slow rate of natural incorporation of nitrogen into the soil by microorganisms
and nitrogen uptake by plants, in contrast with the fast rates of nitrogen use inside the
plants and the nitrogen compounds withdrawn from the soil. Moreover, nitrogen provided
by fertilization is not fully retained in the soil, as only a fraction is used by plants before
emission of ammonia into the atmosphere and leaching losses [48].
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The nitrogen balance of the soil can be represented as the difference between the
nitrogen added by fertilization or mineralization and the nitrogen removed by crop uptake
and losses [49]. Therefore, the rate of nitrogen in the soil (Ns) is given by:

dNs

dt
= Nm + (αNR)−

dNu

dt
− Nl , (7)

where Nm is the nitrogen supply through mineralization and biological N fixation, α is
the fertilizer nitrogen application rate, NR is the fertilizer nitrogen recovery fraction, and
dNu
dt is the rate of nitrogen uptake by the crop, which is calculated as the minimum of the

N supply from the soil and the N demand from the crop, and Nl represents the nitrogen
losses by leaching.

The net rate of change of nitrogen is

dNn

dt
=

dNu

dt
− Nt − Nd, (8)

where Nt is the nitrogen translocation and Nd is the loss due to death of the biomass.
A crop is assumed to experience N stress at N concentrations below a critical value for

unrestricted growth. To quantify crop response to nitrogen shortage, a Nitrogen Nutrition
Index (NNI) is defined, ranging from 0 (maximum N shortage) to 1 (no N shortage)
as follows:

NNI =
Nn − Nr

Nc − Nr
, (9)

where Nn, Nc, and Nr are the actual, critical, and residual nitrogen content, respectively.
This index, as described in Section 2.1, can affect the growth function as a multiplicative
factor or as a modulator of the aging function.

2.2. Compartmental Approach

A modeling approach that differs from the three levels of detail described in the
previous subsections is the use of the concepts of storage compartments or pools. In these
pools, the organic matter is divided into shoots, or aboveground biomass (AGB), and
roots [50]. This compartmental approach has the advantage of discriminating phenological
development before germination and after germination, which is convenient for the use of
remote sensing technology to measure state variables. As the supply of carbon (C) creates a
demand for nitrogen (N), the biomass above and below the ground can be divided into
nitrogen and carbon pools. In this case, the biomass (Y in kg m−2) can be decomposed into
the shoot (YXsh) and root structures (YXrt), which are related to the C and N substrate pools
in shoots (YCSsh and YCSrt in kgC m−2) and roots (YNSsh and YNSrt in kgN m−2). Shoot and
root substrate concentrations are defined by

CSsh =
YCSsh
YXsh

, NSsh =
YNSsh
YXsh

, CSrt =
YCSrt
YXrt

, NSrt =
YNSrt
YXrt

,

and the differential equations of the state variables are:
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dYCSsh
dt

= Pnet − fCXGXsh −OCSshrt −OCSsh−→T , (10a)

dYCSrt
dt

= OCSshrt − fCXGXrt −OCSrt−→T , (10b)

dYNSrt
dt

= uN − fNXGXrt −ONSrtsh −ONSrt−→T , (10c)

dYNSsh
dt

= ONSrtsh − fNXGXsh −ONSsh−→T , (10d)

dYXsh
dt

= GXsh −OXsh−→Li, (10e)

dYXrt
dt

= GXrt −OXrt−→Li, (10f)

dYT
dt

= GT , YT(0) = 0, (10g)

where Pnet is the net photosynthetic rate (KgC m−2 d−1), GXsh and GXrt, are the shoot and
root growth rates, fCX and fNX are the substrate fluxes (kgC, N kg−1), OCSshrt is the flux of C
from shoot to root, ONSshrt is the flux of N from root to shoot (KgC, N m−2 d−1), OCSsh−→T,
OCSrt−→T, ONSrt−→T, and ONSsh−→T are the output fluxes of C and N from root and shoot to
the total product (Kg C, N m−2 d−1), OXsh−→Li and OXrt−→Li are the litter fluxes by the shoot
and root structure senescence, and GT is the growth rate of the total product (kg m−2 d−1).

This approach based on pools is attractive from a mathematical point of view. However,
it poses a challenge for the continuous measurement of the related variables in the pools,
particularly the measurement of nitrogen with nondestructive methods, which is still an
open research subject.

2.3. State-Space Representation and Variable Definition

To design irrigation strategies, mathematical models can be built based on mass
balance equations and mechanistic descriptions of crop–soil subprocesses, as illustrated
in Table 2 for some popular SOMs. These models can be cast into a standard nonlinear
state-space representation:

ẋ(t) = f (x, u, θ), x(0) = x0, (11a)

y(t) = h(x, θ), (11b)

where x is the vector of state variables, f (x, u, θ) is the vector of functions that describe
the dynamics of the crop–soil system, u represents the vector of inputs, including the
environmental inputs ue and the artificial, or manipulated, inputs ua, θ is the set of model
parameters, y is the vector of measurement outputs, and h(x, θ) is a vector of nonlinear
functions relating the state variables with the measurable variables. It is important to note
that the crop–soil system is a positive system, i.e., the trajectory of the state variables starting
from a positive initial condition always remains positive, regardless of the values of the
input variables. However, crop–soil models can preserve this fundamental property only if
they are properly formulated. The environmental inputs cannot be influenced, but can be
sensed at regular time intervals (for instance daily), whereas the manipulated variables,
e.g., fertilization or irrigation, allow one to act on the evolution of the soil–crop system. In
Table 2, the main modules (in many reported studies, the models are actually not presented
as a global system of equations, but more as a set of software modules achieving the
computation of the outcome of specific subprocesses) of selected SOMs are presented based
on a functional decomposition of the soil–crop subprocesses. Mass balance modules are
solutions of differential or difference equations, whereas other modules are sets of algebraic
equations or heuristic formulations, e.g., modules for the evapotranspiration subprocess.
Pests, diseases, and weeds may further limit crop production at all developmental stages.
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However, these factors are not considered in detail in this review, which is dedicated to
mathematical modeling and control to support irrigation.

The models have uncertainty related to the inputs, the structure, and the model pa-
rameters. These uncertainties can be formulated as probability distributions and can be
accounted for in the models. In [51], the authors demonstrated that the uncertainty in the
model structure was larger than in the model parameters. However, as SOMs were devel-
oped for scientific understanding as well as decision/policy support, the model uncertainty
was limited to the bias in the final output, and there was no tracking of how the uncertainty
was propagated in the model. As an alternative, in [52], the authors proposed the use of
multi-model ensembles (MMEs) to quantify model structural uncertainty, showing that they
rely on parts of models that are based on traditional heuristics. In contrast, the uncertainty
in a COM can be analyzed by considering the state-space structure.

3. Sensors and Instrumentation

In modern agricultural systems, there is a network of interconnections among farmers,
sensors, actuators, machinery, and cultivated areas, forming a so-called cyber–physical–
human system (CPHS) [53]. In this context, farmers play a key role as decision makers
regarding the management of cultivated areas and food production in general. A global
picture is rpresented in Figure 4.

Figure 4. Sensors, actuators, scheduling, and control in the context of farm decision making. When au-
tomatic irrigation control is enforced, the feedback is implicit in this block, as the sensors continuously
retrieve data and signals from the field to feed the control system.

Of course, the information provided by the sensors is a keystone for the development
of dynamic models, the estimation of parameters, and the development of more elaborate
monitoring and control schemes. For instance, soil moisture (SM) and soil water content
(SWC) are essential in irrigation. Traditionally, these variables were measured using
probes, e.g., stick probes, neutron probes, phene cells, time-domain reflectometers (TDRs),
and tensiometers. The variables are related to physical properties, such as capacitance,
resistivity, heat conductance, and mechanical force. Other methods involve collecting
samples to be analyzed offline, such as gravimetric measurement, with the drawback of
being noncontinuous in time and space. However, more reliable remote methods have
gained interest in the last decade due to their coverage of large fields. These include
ground-penetrating radar (GPR), aerial photography, multi- and hyperspectral imagery,
and electromagnetic induction (EMI). A list of common state variables included in SOMs,
as well as the possible types of sensing techniques, is provided in Table 4.
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Table 4. Common state variables and typed of sensing methods—D: direct measurement, P: proximity,
and R: remote sensing.

Variable Description Type Reference

SM Soil moisture D, R, P [54–57]
LAI Leaf area index R, P [58–60]
ET Evapotranspiration D, R [61,62]

PAR Photosynthetically active radiation R [8,63]
AGB Aboveground biomass D, R [64–66]
DVS Developmental state D [11,67]

NDVI Normalized vegetation index R [63,64,67]
EVI Enhanced vegetation index R [67,68]

TSAVI Transformed soil-adjusted vegetation index R [69,70]
VI Vegetation index R [63,71]

LNA Leaf nitrogen accumulation D, P [12,72]
CC Canopy cover R [72,73]

CNA Canopy nitrogen accumulation R [12,72]
VTCI Vegetation temperature condition index R [11,74]
SWC Soil water content D, P [55,75,76]
RH Relative humidity D, R, P [77,78]

AGN Aboveground nitrogen accumulation D, R [79,80]

The output equation of the state-space representation (Equation (11b)) is described by
the nonlinear vector function h(x, θ), whose structure will highly depend on the underlying
physical principles and technology of the measurements. In some specific cases, this
nonlinear equation can reduce to a linear one in the form

y = C(θ)x, (12)

where C(θ) is a constant matrix depending on parameter θ. As a practical example, let
us consider the soil moisture sensor presented in [81]. In this work, the output variable y
(relative soil moisture) is given by

y = w
(

γd
γw

)
, (13)

where w is defined as the ratio of the mass of moisture present in the soil sample to the
dried mass of the sample, γd is the dry unit weight of the soil, and γw is the unit weight of
water. However, many of the output variables are not linearly related to the state variables.

The data acquisition system includes sensors, measurement instruments, transducers,
and algorithms. The sensing devices can retrieve information about physical variables
through direct (i.e., ground sensors) or indirect contact (i.e., proximity or remote sensing).
Traditionally, direct measurements are restricted by the locations of the sensors. This issue
was discussed in [82,83], where the main conclusion was that direct measurements are still
required as a part of a monitoring and sensing system. Moreover, there are soil properties
that can only be sensed directly, e.g., soil organic carbon [84]. The big advantage of ground
sensors is the precision and reliability of measurements independently of environmental
conditions. The drawback is the limited capability of representing the heterogeneity of
a cropping area, as the ground sensors are fixed in particular locations. To alleviate this
latter issue, proximity sensors are used for their flexibility. These sensors require one to be
close to the crop and soil, but are portable and, therefore, can be installed in unmanned
aerial vehicles (UAV), ground robots, or agricultural machinery. However, portability
and mobility cannot ensure a simultaneous and global measurement of a cultivated area,
and arrays of sensors—especially wireless sensor networks, as suggested by [85,86]—can
resolve this global picture. However, this approach is, in turn, limited by the size of
the cropping field. Hence, remote sensing (RS) appears as the ultimate solution due to
the ability to simultaneously encompass multiple measurements over diverse scales of
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cropping land. These techniques are particularly well suited for water-related variables in
climate change scenarios [87].

RS is a current research and development trend due to its advantages of capturing
large amounts of data all at once. RS gathers Earth observations (EOs), which are limited by
the orbit and periodicity of satellites, and aerial imagery, which is limited by the frequency
of capture and weather conditions. In either case, some variables must be inferred by
combining data from multiple sensors in different wavelengths or other variables [67]. For
instance, in [61], the evapotranspiration (ET) was derived from the solution of the energy
balance equation by using short-wave and long-wave band inputs from satellite sensors to
estimate net radiation (Rn), soil heat flux (G), and sensible heat flux (H), with the latent heat
flux (LE) obtained as a residual (LE = Rn− G− H). The LE could then be extrapolated
from a quasi-instantaneous value at the time of the satellite overpass to a daily ET value
using different methods, such as the evaporative fraction or the reference ET fraction. For
large-scale crops, EOs are suited to collecting information that is simultaneously related to
crop and field variables. However, the spatial resolution is an issue for non-flat land. A
descriptive presentation of the sensors embedded in active satellites is provided in [12],
which includes frequency range and spatial and temporal resolution. Optical and thermal
sensors are highly sensitive to climatic conditions. For this reason, other sensors, such as
synthetic aperture radar (SAR), prove to be an effective technique for monitoring crops
and other agricultural targets, as they do not depend on weather conditions [88]. This
technology was discussed in [71], which provided a review of the diverse vegetation
indexes associated with state variables and discussed the limitations linked to the current
information retrieved from SAR sensors and optical/thermal signals to derive variables
such as crop height (which is typically sensed by airborne instruments, such as light
detection and ranging (LiDAR)).

Reviews of particular data acquisition systems have recently been published. For
instance, the authors of [89] surveyed soil moisture measurements by considering ground,
proximal, and satellite remote sensing. One of the main challenges is to combine point obser-
vations, which are commonly obtained with in situ techniques, such as simple gravimetric
sampling or various electromagnetic sensors, with a spatial representation of the water
distribution. The problem is to properly capture spatial variability without deploying too
many sensors. A possible solution is to combine ground-based and airborne or spaceborne
remote sensing techniques to provide a characterization and monitoring of large-scale
near-surface soil properties and processes at reasonable temporal and spatial resolutions.

Other environmental and weather variables can be retrieved from either portable or
official meteorological stations with regional coverage near the field. The portable stations
located in the field have the advantage of reducing the uncertainty of some variables,
as their measurement precision is comparable to that of regional meteorological stations,
which are usually situated several kilometers away from the field [90].

4. Model Identification

Once a model structure has been established based on mass and energy balances and
the use of physical and heuristic relations, the model needs to be calibrated in order to fit
to the experimental observations. This operation of model calibration is called parameter
estimation or identification in the systems and control literature. System identification
gathers a set of statistical techniques that allow the designer to assess the values of model
parameters based on signals and data from measurable inputs and outputs. Identification
is a broad subject that is well documented in the literature, and we refer the interested
reader to a few monographs and textbooks, including [91,92].

Basically, system identification proceeds in several steps, which can be iterated and
can be summarized as follows:

• data collection;
• definition of the model objectives (simulation or control) and of the model structure;
• identifiability study;
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• parameter estimation;
• evaluation of parameter uncertainties and of confidence intervals in the model prediction;
• model validation and cross-validation.

This section discusses the parameter estimation problem of a crop–soil mathematical
model with a known structure, i.e., once the selection of an appropriate model struc-
ture has been achieved by following the ideas in Section 2, starting with the question of
parameter identifiability.

4.1. Identifiability

Initially, an identifiability study will indicate whether it is possible to determine
the parameter values from the available data. More precisely, two types of identifiability
studies can be achieved, i.e., structural and practical [93]. The first assesses the possibility of
estimating the model parameters given ideal measurements, i.e., it allows the determination
of which output signals should be measured, assuming that they are available in continuous
time and without noise. Several mathematical approaches can be used to achieve this
analysis, and specialized software is available, e.g., DAISY [94], GENSSI [95], SIAN [96],
and STRIKE-GOLDD [97], among others. To the best of our knowledge, these methods and
software have rarely been used in the modeling of agricultural systems.

Practical identifiability deals with the possibility of assessing all or some of the model
parameters under realistic conditions, e.g., sampled data and measurement noise.

The basic tool in this latter study is parametric sensitivity analysis, which can be local
[91] or global, and it takes account of the interactions between parameter effects [98–100].
Sensitivity analysis has been applied in several studies of crop models. For instance,
in [101], the sensitivity of four yield outputs of the APSIM-Sugar model to 13 parameters
in rain-fed and irrigated conditions was studied using a global sensitivity method based on
the decomposition of variance of the outputs known as Gaussian process emulation. As
some crop models are difficult to analyze, as they are not fully mechanistic, but include
empirical rules, it might also be interesting to using automatic differentiation tools to
achieve sensitivity analysis, as demonstrated in [102].

In this paper, we limit ourselves to a brief introduction of the basic concepts related to
a local analysis and consider the model m(t; θ), which is based on the vector of parameters
θ, of the measured output y(t):

y(t) = m(t; θ) + ε(t). (14)

In the case of a Gaussian distribution of zero-mean white noise ε(t), the Fisher Infor-
mation Matrix (FIM) can be defined as

Fθ =
M

∑
i=1

∂m>(ti, θ)

∂θ
Ω−1 ∂m(ti, θ)

∂θ>
, (15)

where Ω is the covariance matrix of the measurement errors ε(t), ∂m(θ)
∂θ>

represents the
first-order parametric sensitivity matrix, and M represents the number of data points.
The inverse of the FIM provides a lower bound (the so-called Cramer–Rao bound) of the
covariance matrix of the parameter estimation errors, i.e.,

Pθ � F−1
θ . (16)

A parameter estimation method that can achieve the Cramer–Rao lower bound is
called efficient. The FIM is a covariance matrix and, as such, is positive semidefinite. The
FIM can be used to assess practical identifiability through a rank condition (a rank-deficient
FIM indicates that the model is not identifiable with the data at hand). In turn, if the
parameters are identifiable, the Cramer–Rao bound can be used to provide confidence
intervals for the estimated parameters (which are, unfortunately, often not given in the
published literature on parameter identification of crop models). In general, the use of
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(local or global) sensitivity analysis will be an important tool for determining the most
influential parameters of a model, which requires estimation based on experimental data
and may be re-estimated at a later stage if the environmental conditions have changed.

A challenge in the identification of crop–soil models is to deal with a large number
of parameters. For instance, DSSAT [32] has more than 300 parameters, STICS [103] has
232 parameters, AquaCrop [104] has 29 parameters, and EPIC [33] has 22 parameters.
An approach to reducing the number of parameters to consider is to use specific crop
models instead of generic models, e.g., CERES-Wheat [47]. Another option is to derive
more compact models, which are usually called summary crop models [6]. These summary
models can be developed in several ways—first, as a simplification of full-scale models, e.g.,
FIELD presented by [105] as a crop–soil subsystem based on APSIM [44] and mini-STICS, a
compact and limited version of STICS [103] presented in [106]. Further, compact models
can be included in additional software tools, e.g., the OptimiSTICS package [107]. In this
case, the aim is to guide the user into parameter estimation under various assumptions.
For instance, this software package was used in [108] to estimate a set of parameters of
the STICS model. Alternatively, it is possible to build simple new generic crop models
on a mechanistic basis, e.g., the simple model [43], which includes 14 equations with 13
parameters. In conclusion, the modeler will generally have to either reduce the model under
consideration or to decide on a subset of parameters to estimate in order to ensure practical
parameter identifiability before embarking on the actual parameter estimation task.

4.2. Parameter Estimation

Parameter estimation is based on the minimization of the deviation between the model
prediction m(t; θ), which depends on a set of parameters θ, and the measured outputs y(t).
A general approach is the maximum likelihood estimator (MLE) [91]:

θ̂ = arg min
θ

1
2

M

∑
i=1

(y(ti)−m(ti, θ))TΩ−1(y(ti)−m(ti, θ)), (17)

where M is the number of data points and Ω is the covariance matrix of the measurement errors.
Other weighting matrices can be considered, leading to weighted least-squares estimators.

For instance, the generalized least squares (GLS) method was used in [109] to estimate
the parameters and to compute the variance–covariance matrix of the cultivar parameters
of APSIM [44] and DSSAT [32]. In [108], a Bayesian approach was used to identify the
parameter of the STICS crop model [103] based on the Differential Evolution Adaptive
Metropolis (DREAM) algorithm [110], which is a variation of the Monte Carlo Markov
Chain (MCMC) algorithm.

One of the main dangers in achieving parameter estimation is the risk of local minima
of the cost function, leading to biased parameter estimates. This problem can be alleviated
by using multistart strategies [111], i.e., repeated optimization starting from a large set
of initial parameter guesses sampled in the design space, and through the use of global
optimization algorithms [112].

4.3. Model Validation and Uncertainty Analysis

After the model parameters have been determined, model cross-validation should be
achieved by comparing the model prediction to a fresh, unseen dataset in order to ensure
that the model identification has not been subjected to local minima. The uncertainty of
parameters should then be evaluated [113] by using various methodologies, including the
Fisher Information Matrix and Monte Carlo analysis.

In [101], an uncertainty propagation analysis was performed assuming both normal
and uniform distributions to conclude with a cross-validation. The results confirm the
distinct variation of parameter influence between climatic and management conditions.
The generalized likelihood uncertainty estimation (GLUE) method was used in [114] to
generate 10,000 random parameter sets, including one calibrated parameter set, to explore
the effects of parameter uncertainty on model output. GLUE was also exploited in [115] to
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analyze the DSSAT-CERES model [116]. In [108], the posterior distributions of nine specific
crop parameters of the STICS model were sampled with the aim of assessing the growth of
a winter wheat culture.

In addition, cross-validation is helpful in dealing with the parameter overfitting
problem [117]. In [118], the authors identified ten parameters of AquaCrop and used
the MCMC to infer the uncertainty in the parameters by approximating the posterior
distribution function with eight experimental datasets.

4.4. Illustrative Example: Water Balance in Soil

To illustrate the previous concepts, the model introduced in Equation (5) is used as an
example. This COM is based on water mass balance in soil. Considering that measurements
are available for transpiration (x1), runoff (x2), drainage (x3), and available water in the
root zone (x4), the model can be expanded as follows:

x1(k) = min(α(x4(k)− ζ γ), w2(k)), (18a)

x2(k) =

{
(w1(k)−0.2S)2

w1(k)+0.8S , w1(k) > 0.2S

0, w1(k) ≤ 0.2S,
(18b)

x3(k) =

{
−β(x4(k) + w1(k)− x2(k)− ζ(γ + θ)), x4(k) + w1(k)− f2(k) > ζ(γ + θ)

0, x4(k) + w1(k)− x2(k) ≤ ζ(γ + θ),
(18c)

x4(k + 1) = x4(k)− x1(k)− x2(k)− x3(k) + u(k) + w1(k), (18d)

y(k) = [x1(k) x2(k) x3(k) x4(k)], (18e)

where w1 is rainfall, w2 is the reference grass evapotranspiration, and there is no irrigation,
i.e., u = 0. The set of parameters are the water uptake coefficient α, the drainage coefficient
β, the runoff curve number η, the available water capacity θ, the root zone depth ζ, and the
wilting point γ. S = 25,400

η−254 is the potential maximum retention depending on the soil type.
First, we conduct an uncertainty and sensitivity analysis by applying Monte Carlo

simulations and a Sobol global sensitivity method, as implemented in the Python library
UncertainPy [119] and the Sensitivity Analysis Library SALib [120]. In [121], the same
model (Equation (18)) was used to compute a drought index named ARID. The authors
proposed different probability density functions (PDFs) (i.e., uniform, normal, triangular,
and custom) for five parameters (i.e., α, β, η, θ, ζ) and performed a Fourier amplitude
sensitivity test to assess the uncertainty and sensitivity. In contrast with this previous work,
we include the wilting point γ and consider the cumulative available water in the root zone
as an output variable, since our objective is to determine the positive and negative impacts
of water in soil.

The uncertainty decreases from 40 to 24% when changing from uniform to normal
distributions. The parameter β is the most relevant, with 36% participation in the global
sensitivity. ζ and α follow with 26% and 25%, respectively. The full sensitivity test ranks
the influence of the parameters as β > ζ > α > η > γ > θ, with negligible influence of the
last three. This result suggests that the parameters related to the mechanical properties of
soil are more relevant than the ones related to volume constraints.

Next, we perform a parameter estimation based on nonlinear least squares. The
basic assumption is that measurements can be collected daily for the four xi(k) variables
(i = 1, ..., 4). In the framework of this example, we generate the measurements using the
same model and add Gaussian noise to x1, x2, x3, and x4 corresponding to 8%, 3%, 5%, and
7% of the relative standard deviation, respectively. These noise levels are coherent with
the corresponding instrumentation [55,122], but they are assumed to be unknown to the
process modeler such that a simple weighted least-square approach is used here with a
weighting matrix that takes account of the scaling of several variables (the variables have
different orders of magnitude, and the scaling avoids distortion in the contributions of the
different variables to the cost function). Notice that the information content of the data
at hand is crucial. For x2, only seven measurements contain useful information, and for
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x3, sixteen samples do so (see Figure 5b,c). The nominal values of the process emulator
parameters and their estimates are presented in Table 5. Confidence intervals of 95% are
computed using the Fisher Information Matrix. The model prediction is shown in Figure 5.

Table 5. Parameters of the process emulator, identified values, and 95% confidence intervals.

Parameter Description Unit Nominal
Value

Identified
Value

Confidence
Lb

Interval
Ub Deviation

α Water uptake coefficient - 0.096 0.0869 0.0792 0.0947 8.9%
β Drainage coefficient - 0.55 0.6545 0.5825 0.7265 11.0%
η Runoff curve number - 65 64.9794 62.8535 67.1053 3.3%
θ Available water capacity - 0.24 0.1990 0.1791 0.2189 10.0%
ζ Root zone depth mm 600 464.9227 422.1499 507.6956 9.2%
γ Wilting point - 0.075 0.0865 0.0792 0.0938 8.4%
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Figure 5. Direct validation: (a) transpiration, (b) runoff, (c) drainage, and (d) available water in soil.
Rainfall and evapotranspiration were retrieved from [123].

A Monte Carlo simulation is used to assess the uncertainty of the model prediction
with the identified parameter values of the parameters in their 95% confidence intervals.
The results are shown in Figure 6, where 20,000 runs generate a shaded light-blue region
and the solid blue line corresponds to the identified parameters.

Afterward, cross-validation is performed using a new dataset. The results show that
the model with its previously estimated parameters is able to reproduce the dynamic
behavior of the soil for other climatic conditions with an error of less than 3%, as shown in
Figure 7.
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Figure 6. Monte Carlo simulation for (a) transpiration and (b) available water in soil. The dark blue
line corresponds to the model prediction with the identified parameter values.
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Figure 7. Cross-validation with a previously unseen (for the identification procedure) dataset [123]
for (a) transpiration and (b) available water in soil.

5. State Estimation and Software Sensors

State estimation algorithms allow the reconstruction of non-measured state variables
in real time based on a model of the system and some on-line measurements collected
from available sensors. In this way, a state estimator constitutes a so-called software
sensor, in contrast with a conventional hardware sensor. Aside from the estimation of
non-measured state variables, state estimators can also be used for the reconstruction of
discrete-time information in continuous time, the fusion of redundant information, the
detection and isolation of hardware sensor faults, or the estimation of model parameters.
Some introductory surveys related to biological systems can be found in [124,125], and a
monograph dedicated to crop systems is found in [113].

In the literature, the notion of data assimilation is also sometimes used to designate the
process of combining a mathematical model with measurements to improve the prediction
of some state variables or to estimate the initial condition of the model. Historically, data
assimilation originates from the field of weather forecasting, and it shares many common
features with state estimation techniques, even though the problem of reconstructing
non-measured variables and the notion of observability are more typical of the literature
dedicated to state estimation. In this review, we will stick with the wording of the system
and control community and use state estimation instead of data assimilation.

A state estimator (also known as a state observer) usually has the following extended
Luenberger form:

˙̂x(t) = f (x̂(t), u(t)) + K(y(t)− ŷ(t))
x̂(0) = x̂0,

(19)
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which embeds a copy of the dynamic system ẋ(t) = f (x, u) for predicting the state trajectory
and includes a correction term K(y− ŷ) that measures the deviation between the hardware
sensor information y and its prior estimate ŷ(t).

Many state estimation approaches have been proposed. Some of them take account
of measurement noise (such as Kalman filters or receding-horizon observers), model
uncertainties or disturbances (such as high-gain observers or sliding-mode observers), or
uncertainties in model parameters and inputs (such as interval observers). In general, a
system property called observability must be checked before embarking on the selection
and design of an estimator.

5.1. Observability

A system is said to be observable if the current state vector can be estimated using
the information from the sensors collected over a finite period of time. Observability is a
structural property of a system, but for nonlinear systems, this property also depends on
the input signals.

There are several approaches to the observability analysis of nonlinear systems. The ba-
sic one is based on the differentiation of the output and the construction of an observability
map. For output j of system (11), the following set of derivatives can be computed:

q
j
(x, u) =


yj(t)
ẏj(t)

...

y
(nqj−1)

j (t)

 =


qj,1(x, u)
qj,2(x, u)

...
qj,nqj

(x, u)

 =


hj(x)

∂qj,1
∂x f (x, u) +

∂qj,1
∂u u̇(t)

...
∂qj,nqj−1

∂x f (x, u) +
∂qj,nqj−1

∂u u̇(t)

. (20)

The observability map is given by:

q(x, u) =


q

1
(x, u)

...
q

ny
(x, u)

, dim(q(x, u)) = nq =
ny

∑
j=1

nqj ≥ nx. (21)

If a partition of the complete observability map is injective with respect to the state
variables, then the system is observable. However, the analytical solution of the nonlinear
system is often difficult, or even impossible, to find. Local observability can be checked
thanks to the inverse mapping theorem (local inverse):

O(x, u) =
∂q(x, u)

∂x
. (22)

If the Jacobian is nonsingular, an inverse function exists in some neighborhood of x,
and local observability is proven.

rank(O(x, u)) = nx or det(O(x, u)) 6= 0. (23)

Note that structural identifiability can be studied as observability by considering the
parameters as state variables with zero dynamics [126].

A second approach to global observability analysis is provided by the use of a canonical
form [127,128]:
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ẋ =



ẋ1

...
ẋi

...
ẋq−1

ẋq

 =



f 1(x1, x2, u)
...

f i(x1, ..., xi+1, u)
...

f q−1(x1, ..., xq, u)
f q(x1, ..., xq, u)


, y =


h1(x1

1)
h2(x1

1, x1
2)

...
hn1(x1

1, ..., x1
n1
)

, (24)

where

xT =
[

x1, . . . , xq
]
, f T =

[
f 1, . . . , f q

]
, xi,T =

[
xi

1, . . . , xi
ni

]
, hT = [h1, . . . , hn1 ]

∀i ∈ {1, ..., q}, xi ∈ Rni , n1 ≥ n2 ≥ ... ≥ nq, ∑
1≤i≤q

ni = nx.

A system is said globally observable if

∀j ∈ {1, ..., n1} :
∂hj

∂x1
j
6= 0. (25)

∀i ∈ {1, ..., q− 1}, ∀(x, u) ∈ Rnx ×Rnu : rank
∂ f i(x, u)

∂xi+1 = ni+1. (26)

Many systems naturally appear in this form, or can be brought into this form by a
change of variables.

Finally, an alternative approach to studying global observability that includes un-
known inputs (some system inputs can be uncertain or unknown, such as some environmen-
tal conditions) is provided in [129], where a dynamic interpretation of state observability
is developed.

Observability Analysis of a Plant-Growth Model

To illustrate these observability tests, let us consider a qualitative mathematical model
representing the relationship between supplied water and plant growth [130]. This model
relates the water in soil x1(t) with the water inside the plant for its growth x2(t) and the
amount of dry matter x3(t). The state-space representation is given by

ẋ1(t) = −θ1x1(t)− θ2
x2(t)x1(t)
1 + θ3x2(t)

+ u(t), (27a)

ẋ2(t) = θ4
x2(t)x1(t)
1 + θ3x2(t)

− θ5x2(t)−
θ6x3(t)x2(t)
1 + θ7x3(t)

, (27b)

ẋ3(t) =
θ8x3(t)x2(t)
1 + θ7x3(t)

− θ9x3(t), (27c)

y(t) = [x1(t) x3(t)], (27d)

where it is assumed that the variables x1 and x3 can be measured.
In this model, the water in soil is related to the biomass production.The soil is modeled

as a reservoir of water, and the changes are accounted for in (27a). The first term on the RHS
represents the water going out by drainage and evaporation, the second term represents
the plant water absorption per unit of time, and the last term u(t) is the irrigation input.
Next, the water dynamics inside the plant are described by (27b), where the first term on
the RHS stands for the water absorbed by the plants, the second term represents the water
removed by transpiration, and the last term relates the water used to produce biomass.
Finally, the change in biomass is accounted for in Equation (27c), where the first term on
the RHS represents the growth function, and the last term represents the plant degradation.
A complete description of the parameters and variables is given in Table 6.
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Table 6. Inputs, variables, and parameters of the generic model [130].

Name Description Unit Value

u(t) Irrigation [mass× time−1]

x1(t) Water in soil for plant water consumption [mass× time−1]
x2(t) Water inside the plant available for its growth [mass× time−1]
x3(t) Biomass (amount of dry matter) [mass× time−1]

θ1 Inner rate of decrease in the pond water [time]−1 0.00001
θ2 Intrinsic rate of water that goes to the plant [time×mass]−1 2.0
θ3 Limiting factor constant of x2(t) [mass]−1 20.0
θ4 Intrinsic rate of increase in the water inside the plant [time×mass]−1 1.0
θ5 Rate of decrease in water inside the plant [time]−1 0.1
θ6 Intrinsic rate of water decrease by photosynthesis [time×mass]−1 0.01
θ7 Limiting factor constant of x3(t) [mass]−1 0.1
θ8 Intrinsic growth rate per unit of water inside the plant [time×mass]−1 0.01
θ9 Plant degradation rate [time]−1 0.0001

Observability can be locally assessed using the Jacobian of the observability map,
considering a constant input u(t) = u:

O(x) =
∂

∂x

[
y(t)
ẏ(t)

]
=


1 0 0
0 0 1

−θ1 − θ2x2
1+θ3x2

θ2θ3x1x2
(1+θ3x2)2 − θ2x1

1+θ3x2
0

0 θ8x3
1+θ7x3

θ8x2
1+θ7x3

− θ9 − θ7θ8x2x3
(1+θ7x3)2

.

We can see that rank(O(x)) = 3, provided that either the third or fourth line of the
Jacobian matrix is independent of the first two lines. This will be the case if x1 and x3
are not simultaneously equal to zero over some periods of time. This makes sense in an
intuitive way, since this would correspond to the situation where the sensors would return
zero signals (thus providing no useful information on the dynamical system).

The same conclusion can be reached using the canonical form, rearranging the model
equations in the following way:

ẋ1 =

−θ1x1(t)− θ2
x2(t)x1(t)
1+θ3x2(t)

+ u(t),
θ8x3(t)x2(t)
1+θ7x3(t)

− θ9x3(t)

, ẋ2 =

[
θ4

x2(t)x1(t)
1 + θ3x2(t)

− θ5x2(t)−
θ6x3(t)x2(t)
1 + θ7x3(t)

]
, (28)

which satisfies properties ((25) and (26)).

5.2. Software Sensors in Agriculture

Bayesian estimation strategies have been particularly popular in the estimation of
variables in crop–soil systems. These techniques can be classified as: (i) Kalman filtering,
(ii) variational inference, and (iii) sampling algorithms [131]. Kalman filtering, e.g., the
Kalman filter (KF) and the extended Kalman filter (EKF), is based on linear or linearized
models and the assumption of Gaussian noise. The optimal estimator (or approximate
estimator in the case of the EKF) is provided in the form of the mean and is complemented
by the covariance of the estimation error, which is useful in assessing confidence intervals.
In variational inference, the approximate posterior distribution of the state (given the
measurements) can be obtained through the solution of an optimization problem. However,
in crop models with nonlinear observation operators and non-Gaussian observations or
non-Gaussian uncertainties, the assumption of normality in the posterior might be a poor
choice. In these cases, approaches based on sampling, such as the unscented Kalman filter
or particle filters, might be preferable. The first will be appropriate for nonlinear models
with Gaussian observations, while the second is appropriate for nonlinear systems with non-
Gaussian observations at the price of higher computational expenses. An overview of these
estimation techniques and their applications to crop–soil models is given in Tables 7 and 8.
The interested reader is also referred to the review papers in [8,11,132].
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Table 7. Summary of the main Kalman family estimation techniques.

Method Main Equations Basic Description Estimated
Variables Model References

KF

xk+1 = Fk+1,kxk + wk
The Kalman filter is an optimal estimator for linear systems with Gaussian
observations. It provides the expectation of the state and the covariance of
the estimation error. It proceeds in two steps: prediction and correction. It

exists in several forms: discrete time, continuous time and continuous
(prediction)–discrete (correction) time.

NDVI [133]
yk = Hkxk + vk
x̂−k = Fk,k−1x̂−k−1

P−k = Fk,k−1Pk−1F>k,k−1 + Qk−1

Gk = P−k H>k
[
HkP−k H>k + Rk

]−1

x̂k = x̂−k + Gk
(
yk −Hk x̂−k

)
Pk = (I−GkHk)P−k

EKF

xk+1 = f(k, xk) + wk

The extended Kalman filter is based on a model that is linearized along the
state estimate trajectory. It requires the on-line computation of the Jacobian

matrices. It is no longer an optimal estimator and may diverge. The EKF
provides a practical and popular solution for nonlinear systems with

Gaussian observations.

SM [134]
yk = h(k, xk) + vk SW [135]

Fk+1,k =
∂f(k,x)

∂x |x=xk
Hk =

∂h(k,x)
∂x |x=x−k

x̂−k = f(k, x̂k−1)
P−k = Fk,k−1Pk−1F>k,k−1 + Qk−1

Gk = P−k H>k
[
HkP−k H>k + Rk

]−1

x̂k = x̂−k + Gkyk − h
(
k, x̂−k

)
Pk = (I−GkHk)P−k

UKF

Xk−1 =
[
x̂k−1 x̂k−1 ±

√
(L + λ)Pk−1

]

The unscented Kalman filter propagates a few sampling points, called sigma
points, through the nonlinear model and computes the weighted sample’s
mean and covariance. The UKF does not require model linearization and

provides more accurate and precise estimates in the case of nonlinear systems
under Gaussian noise.

LAI, SM STICS [136]

X ∗k|k−1 = F[Xk−1, uk−1]

x̂−k = ∑2L
i=0 W(m)

i X ∗i,k|k−1

P−k = ∑2L
i=0 W(c)

i

[
X ∗i,k|k−1 − x̂−k

][
X ∗i,k|k−1 − x̂−k

]>
+ Q

Yk|k−1 = H
(
Xk|k−1

)
ŷ−k = ∑2L

i=0 W(m)
i Yi,k|k−1

Pỹkỹk
= ∑2L

i=0 W(c)
i

[
Yi,k|k−1 − ŷ−k

][
Yi,k|k−1 − ŷ−k

]>
+ R

Pỹkỹk
= ∑2L

i=0 W(c)
i

[
Yi,k|k−1 − ŷ−k

][
Yi,k|k−1 − ŷ−k

]>
+ R

Pxkyk = ∑2L
i=0 W(c)

i

[
Xi,k|k−1 − x̂−k

][
Yi,k|k−1 − ŷ−k

]>
K = Pxkyk P−1

ỹkỹk
x̂k = x̂−k +K

(
yk − ŷ−k

)
Pk = P−k −KPỹkỹk

K>

EnKF

X−k =
(
x1−

k , ..., xN−
k

)
The ensemble Kalman filter is a Monte Carlo filter, which is suitable for
systems with a large number of variables. It is well suited for systems

described by partial differential equations and their discretization by finite
difference or element techniques. It assumes Gaussian observations.

LAI CERES-Wheat [137]
x−k = 1

N ∑N
i=1 xi−

k LAI, SM WOFOST [138,139]
x̂i−

k = f (x̂k−1, uk−1) + wi
k LAI, SM, VTCI DSSAT [11]

P−k = 1
N−1 ∑N

i=1
(
xi−

k − x−k
)(

xi−
k − x−k

)>
x̂−k = 1

N ∑N
i=1 x̂i−

k

K = PxH>
(
HPxH> + R

)−1

Pk = [I−KkH]P−k
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Table 8. Summary of the main estimation techniques.

Method Main Equations Basic Description Estimated Variables Model References

PF

xi−
k = f

(
xi+

k−1, ui
k−1, k− 1

)
+ ηi

k−1
In the particle filter, a large number of particles are propagated through the nonlinear model,

and the posterior distribution is reconstructed. A PF is suitable for nonlinear systems with
non-Gaussian observations. It is computationally expensive, but it is amenable to parallel

computation.

AGB, LAI STICS [11]

wi
k = wi

k−1

p
(

yi
k

∣∣∣xi−
k

)
∑N

i=1 wi
k p
(

yi
k

∣∣∣xi−
k

) LAI DSSAT
LSP-DSSAT [11]

∑N
i=1 wi

k = 1 RZSM LSP-DSSAT [140]
xk = ∑N

i=1 xi−
k wi

kδ
(
xk − xi−

k

)

VF

p̂(zk |y1:k) ∝ p(yk |zk)p(zk)

The variational filter aims at approximating the posterior distribution with a parametric
density of an assumed form. The primary mechanism of the VF is to minimize the
Kullback–Leiber divergence between the assumed posterior distribution and the

hypothetically true posterior. This approximation approach lends itself to an optimization
problem.

LAI, HUR1, HUR2 mini-STICS [136]
q(zk) ∝ p(yk |zk)N (〈µk〉, 〈λk〉)

`i
k ∝ ∏N

j=1 p
(

zj
k

∣∣∣zi
k

)
ẑk = ∑N

i=1 `
i
kzi

k
p(zk |y1:k−1) ∝

∫
p(zk |zk−1)q(zk−1))dzk−1

qk|k−1(zk) ∝ N
(
〈µk〉qk|k−1

, 〈λk〉qk|k−1

)

3DVAR

J(X) = (X− Xb)
>B−1(X− Xb) Variational assimilation is the iterative minimization of a cost function J(x). This solution

represents the a posteriori maximum likelihood estimate of the true state given the
background (previous forecast) and observations. The use of adjoint operations (based on the
chain rule for partial differentiation) allows the calculation of the gradient of the cost function.

LAI CERES-Maize [141]
+(Y− HX)>R−1(Y− HX)
∇J(X) = 2B−1(X− Xb)
−2H>R−1(Y− HX)

4DVAR

J(X) = 1
2 (X− Xb)

>B−1(X− Xb)

4DVAR adds an extra time point in the cost function. 4DVAR is actually a direct
generalization of 3DVAR for handling observations that are distributed in time.

LAI WOFOST [11]
+ 1

2 (H(X)−Y)>R−1(H(X)−Y) LAI, NDVI DSSAT [11]
+ 1

2F (X)>C−1
f F (X)

Xi =M(xi−1) + ηi

δZ = AH>
(

R = HAH>
)−1(H(xg

)
−Y

)
HBM

p
(
θD , θp , Y

∣∣X) ≈ Hierarchical Bayesian modeling is based on the theoretical foundation of conditional
probability distribution. The problem is decomposed into layers. Each layer is connected by

the conditional probability, and the solution of a complex joint probability problem is
converted into the solution of a series of simpler problems.

NDVI [142]
p(X1|Y1, θD) · · · p(Xn |Yn , θD)

p
(
Y1
∣∣θp , Y2, ..., Yn

)
· · · p

(
Yn
∣∣θp
)

p(θD)p
(
θp
)
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The linear and extended Kalman filtering techniques often result in difficulties due to
the nonlinearity of the models, and particularly the threshold functions that are often part
of their expression. Moreover, the formulation of the uncertainty in the model itself due to
parameter, structural, and input uncertainty is often difficult [143].

In [137], the authors used an ensemble Kalman filter (EnKF) in combination with
the CERES-Wheat crop-growth model with remote sensing data in order to improve the
estimation of LAI parameters. However, the authors did not discuss the setup of the filter or
the convergence rate. In [140], the authors implemented an EnKF to estimate the root-zone
soil moisture (RZSM) in a coupled SVAT–vegetation model. They compared the results
with those of four variants of particle filter implementations. The results showed a small
difference in the estimation capabilities of the filters, and the discussion was centered on
the selection of the tuning parameters.

Sampling-based algorithms and, particularly, the particle filter (PF) or sequential
Monte Carlo filter allow the estimation of information from sources that have non-Gaussian
errors. In [144], a variant of the PF, which was called a convolution particle filter, was tested
on two models, namely, STICS and LNAS, with several datasets.

The estimation of parameters and state variables can be carried out simultaneously.
For instance, in [136], three parameters and three state variables (LAI and soil water
content of two soil layers) of the mini-STICS model were estimated. Three techniques
were used, namely, the EKF, PF, and VF. The improved performance of the VF method
when compared to that of the EKF and PF was demonstrated. The variational filter had
a low computational complexity, and the convergence speed of the state and parameter
estimation could be adjusted independently. However, the tests of the observers were
probably not fully conclusive, as the initial estimates did not display errors (and without
initial errors, convergence is not challenged).

5.3. Illustrative Example: State Estimation with a Generic Crop Model

As an illustration of a state estimation problem, an EKF is designed for model (27)
with the parameter values given in Table 6. For the sake of simplicity, the irrigation input
u = 0.

Some underlying assumptions are considered:

• The water absorption rate of the plant is less than or equal to the rate of loss of water
from the pond, i.e., θ4 ≤ θ2;

• The dry matter accumulation rate of the plant is approximately equal to the rate of
decrease in the water inside the plant that goes toward photosynthesis, i.e., θ8 ≈ θ6;

• The rate of water loss through transpiration is larger than the rate of water loss through
evaporation, i.e., θ5 > θ1;

• The degradation rate of the plant is larger than the rate of water loss through evapora-
tion, i.e., θ9 > θ1;

• The crop is wheat on a short life cycle of 140 days under no stress conditions. Therefore,
water and nutrients are readily available and do not limit growth;

• There is neither damage from pests and diseases nor any competition from weeds
growing in the field;

• x1 and x3 can be measured by existing technology, i.e., by RS based on images, and
the measurements are collected daily.

The software sensor is in charge of reconstructing x2 based on the model and the
measurements of the other state variables. The EKF design is based on the selection of

covariance matrices Q = 0.0001I and R =

[
0.001 0

0 0.01

]
, which are based on an evaluation

of the model and measurement noises. In Figure 8, the performance of the observer is
shown. Notice that the observer uses the first measurement values as initial conditions for
the measured variables. On the other hand, the initial value of x̂2 is intentionally taken far
away from the real trajectory to show the convergence speed of the observer (a test that is
seldom illustrated in the literature on state estimation in agricultural applications).
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Figure 8. Evolution of the real and estimated state variables. The initial conditions of the estimator
are the measured values of state variables x1 and x3, while x̂2(0) = 40.

6. Irrigation Control

In this section, we review some control techniques that can be used to improve and
possibly optimize the irrigation of the field. The manipulated variable u(z, t) is the amount
of water supplied in space and time, whereas the output variable is the biomass production.
However, in most cases, developers do not consider biomass as an output variable. Instead,
they consider a variable related to the soil water content, since models are mostly developed
based on the soil behavior.

A preliminary step to the design of an automatic irrigation system is to verify if the
state variables can be controlled using the manipulated variables. This issue is accounted
for by a property called controllability, which represents the possibility of driving the
states of the system from any initial value to a desired final value in a finite time. This
property is useful for the control system designer; however, it was not considered in the
applications reviewed.

6.1. Control Paradigms

Models for irrigation control can be classified into data-driven and mechanistic mod-
els [16]. Data-driven approaches are based on the collection of data from various sensors
and the use of machine learning techniques. On the other hand, the mechanistic approach
is based on the phenomenological models reviewed in the previous sections, which are
possibly simplified to account for only the main phenomena (those that will have a signifi-
cant effect in a closed-loop operation). Many control techniques can be applied, ranging
from classical proportional integral derivative (PID) control to advanced model predictive
control (MPC) [17].

A classical feedback control structure is presented in Figure 9. The error e(tk), i.e.,
the difference between the reference r(tk) and the measurement signal y(tk), feeds the
controller, which computes the control action u(tk) sent to an actuator, e.g., a valve of a
sprinkler. A PID controller [145] generates the following control law:

u(tk) = Kp

(
e(tk) +

∆t
Ti

k

∑
i=0

e(ti) +
Td
∆t

(e(tk)− e(tk−1))

)
, (29)
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where ∆t is the sampling time, Kp is the proportional gain, Ti is the integration time constant,
and Td is the derivative time constant. This control law was implemented and tuned for
irrigation using the heuristic methodology in [146], and was further elaborated in [147],
where a dielectric tensiometer was used to regulate soil moisture in a strawberry crop.

Controller
Crop-soil

system

w(tk)

u(tk)

Sensor

r(tk) e(tk) x(tk)

y(tk)

+
−

Figure 9. Classical feedback control system. The signals u(tk) and w(tk) represent the vectors of
manipulated and environmental inputs and y(tk) represents the measured system output.

Model-based control systems make use of a hydrologic model, e.g., related to Equation (4),
and some sensors of water in soil. These elements are coupled to an irrigation scheduler
to determine the irrigation regime. The main problem is that the output variables (soil
moisture, humidity, or evapotranspiration) are related to crop growth, but not to crop
performance, which makes irrigation solutions based on the maximization of production
suboptimal [148,149]. As an alternative, in [9], the authors described how hydrologic mod-
els can be combined with crop-growth models, such as APSIM (i.e., an SOM), to properly
account for multiple effects of water on biomass production.

Model predictive control (MPC) is a real-time optimal control strategy based on the
numerical optimization of a cost function J (or performance index) over a finite prediction
horizon [149]:

J =
Hp

∑
i=1

λxi (ri − xi)
2 +

Hp−1

∑
i=0

λui ∆u2
i , (30)

where xi is the ith controlled variable, ri is the ith reference variable, ∆ui is the ith manipu-
lated variable move, and λxi and λui are weighting coefficients, which allow the designer
to assign a relative importance to the reference tracking and control energy. Hp is the
prediction horizon. The main components of MPC are shown in Figure 10.

In [150], the MPC is formulated based on a linear stochastic state-space model of
the soil moisture that incorporates variables such as soil evapotranspiration and deep
percolation. A similar work is presented in [148], where the model uses the soil moisture
control and the climatic factors to determine the optimal amount of water required by
the crop while keeping soil moisture under specific thresholds (avoiding water stress).
MPC was also designed based on an SOM, i.e., AquaCrop as a crop emulator, in [151].
In this work, the authors described the design process and discussed the issues related
to the implementation. MPC can be improved, as proposed in [152], where the authors
presented a data-driven robust model predictive control (DDRMPC) approach for automatic
control of irrigation. This control framework integrates a set of mechanistic models, which
describe dynamics in soil moisture variations, and data-driven models, which characterize
uncertainty in forecast errors of evapotranspiration and precipitation.
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Figure 10. MPC generic diagram.

Data-driven systems are usually simple and easy to implement. Their main advantage
is that they do not require the development of mechanistic models of the crop dynamics
[148], and they can be improved over time by optimal learning strategies [153]. In [154], the
authors presented an example of a soil moisture control based on continuous measurements
of soil water content. This system uses a soil water balance equation to calibrate the model,
and then generates an irrigation schedule by combining previous knowledge that is updated
by current measurements in an expert system framework. However, the main drawback of
these approaches is that they are based on custom solutions for specific areas and crops,
which must be constantly calibrated/adapted, and their extrapolation to new situations is
not straightforward.

Fuzzy logic has been applied in various agricultural applications, such as irrigation
and fertilization. Thanks to its flexibility, this approach allows a qualitative and quantitative
interpretation of crop development, which can be defined using expert knowledge and
field observations. A design of a fuzzy logic control (FLC) for irrigation was presented
in [155]. The stability of the closed-loop system was analyzed using Lyapunov functions.
Another application of fuzzy control was presented in [156], where a closed-loop control
was integrated with remote sensing. In this work, the objective was to control the speed of
the irrigation device (i.e., the central pivot) by sensing the soil moisture, soil temperature,
and NDVI.

PID, MPC, and fuzzy logic controllers were compared in [157], where a soil water
balance that included soil moisture, temperature, and evapotranspiration was consid-
ered. However, the authors only provided general comments on the applicability of such
strategies, without design guidelines to support the comparison.

6.2. Illustrative Example: PID and Model Predictive Control

To illustrate an irrigation control application, let us consider the crop–soil model
presented in [158]. The discrete-time equations can be summarized as follows:

x1(k + 1) = x1(k)−
(w1(k)− 0.2S)2

w1(k) + 0.8S

− θ1(x1(k) + w1(k)−
(w1(k)− 0.2S)2

w1(k) + 0.8S
− K1)

−min(θ2(x1(k)− K2), w2(k)) + w1(k) + u(k), (31a)

x2(k + 1) = x2(k) + w3(k), (31b)

x3(k + 1) = x3(k) + K3(1− h(w3(k)))K4(1− h(x1(k))), (31c)

x4(k + 1) = x4(k) + K5K6w4(k)h(x1(k))
θ3

1 + e−0.01(x2(k)−θ4)
, (31d)

where the state variables are the water content available in soil x1, the cumulative temper-
ature x2, the cumulative temperature until maturity to reach 50% radiation interception
due to leaf senescence x3, and the biomass x4. The independent inputs are the precipitation
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w1, the reference evapotranspiration w2, the air temperature w3, solar radiation w4, and the
management input, i.e., the amount of water irrigated u.

The parameters K1, K2, K3, K4, K5 and K6 represent the maximum water content at
field capacity, the root water uptake, the maximum daily reduction due to heat stress,
the maximum daily reduction due to drought stress, the radiation-use efficiency, and the
impact of the CO2 growth rate on biomass, respectively. θ1 is the drainage coefficient, θ2 is
the water-holding capacity, θ3 is the maximum fraction of radiation interception, and θ4
is the cumulative temperature requirement for leaf area development. h(·) represents an
algebraic function computed by following the procedure described in [113].

For a wheat crop in loamy soil, a comparison of four situations aimed at assessing
the biomass production is presented. First, the model is used under no irrigation policy
to establish a minimum performance that is only bounded by environmental conditions.
Second, the system is tested while following a fixed irrigation policy, which is a common
practice in agriculture. Third, the model is used in a control loop, as shown in Figure 9,
using a PID controller, and finally, the model is used in an MPC strategy. The design of the
PID controller is achieved with the auto-tune algorithm in Matlab, whereas the MPC cost
function targets a maximization of the final biomass in combination with the minimization
of the amount of water required to achieve it, i.e.,

min
u(tk)

− 1
Hp

Hp

∑
k=1

x4(tk)

x4,max(th)
+ λ

th

∑
k=1

u(tk)

WmaxT
(32a)

s.t. 0 ≤ u(tk) ≤Wmax (32b)

where Hp is the prediction horizon in days, th is the harvest time, λ is a weighting factor
between the biomass profitability and water expense, and WmaxT = thWmax is the maximum
amount of water available for the entire crop season. Notice that the proposed cost function
considers the maximization of biomass over a limited period Hp, whereas the minimization
of the water usage is considered over the full crop season. The reason for the short span of
maximization is that biomass production is highly affected by rainfall, while the availability
of water for irrigation during the crop season is defined in advance. In addition, the
weighting factor λ gives the designer the possibility to limit the water usage based on the
price or availability of the resource.

The results of the comparison are shown in Figure 11 for the water in soil x1 and
biomass x4. Without irrigation, the amount of water in the soil reaches a minimum, and
biomass production reaches the lowest level for the season. For the case of fixed irrigation,
a total of 340 mm of water is applied in the full season. This irrigation policy increases the
production by 70% with respect to the no-irrigation case. However, when control actions
are enforced, biomass production and water consumption increase compared to the fixed
irrigation scenario. When PID control is active, the reference is to keep the water in the
soil at field capacity, implying 405 mm of water, which is about 17% more water than
the fixed irrigation. Nevertheless, this represents an increase in biomass production of
95% concerning the case of no irrigation. When the MPC is applied, the increase in the
production is about 93% with respect to the no-irrigation case by using about 13−% more
water than in the case of the fixed irrigation policy. Hence, PID increases production by 2%
more than MPC, but requires 6−% more water. MPC can be adjusted to relax the constraint
related to the water used to reach the same performance as that of the PID control regarding
biomass production. The main advantage of MPC is the predictive capability, which can be
combined with weather forecasts to reduce water usage to achieve production objectives.
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Figure 11. Comparative responses for (a) water in soil and (b) biomass with th = 197 days. The
values of the PID parameters are Kp = 1.7 × 10−6, Ti = 0.0096, and Td = 0.0024. For the MPC,
λ = 0.01, Wmax = 2 mm/day, and Hp = 8 days.

7. Spatial Heterogeneity

The structure of cultivated fields across the world shows non-uniform characteristics.
This can be attributed to the topography and soil properties that change spatially and over
time. For a continuous modeling of specific soil properties (related to state variables), the
formalism of partial differential equations (PDEs) provides an appropriate mathematical
representation. In general, the variation of soil properties is considered only with respect to
depth, and solvers of the corresponding PDEs have been developed (e.g., for seepage [159]).
As an illustration of the above, let us consider the vertical water movement presented
in [160], where the soil moisture is computed using the Richards equation, which is a
nonlinear parabolic PDE that describes the movement of water in an unsaturated zone. The
one-dimensional form of the Richards equation is given by:

∂θ

∂t
=

∂

∂t

[
k

∂h
∂z

]
+

∂k
∂z

, (33)

where θ is the volumetric soil moisture, t is time, z is the vertical coordinate (positive
in the upward direction), k is the hydraulic conductivity, and h is the pressure head. A
discrete-time formulation is used with regard to the standard availability of samples (i.e.,
daily) and the implementation of the models in dynamic simulation algorithms. Moreover,
spatial discretization of the soil into layers or compartments is applied to the vertical water
movement, yielding fully discrete (in time and space) simulators. In Section 2, we presented
an example of such a model using soil layers, i.e., AquaCrop. A general assumption is a
flat land topography with no significant side movements of water.

An alternative to the PDE formalism and the associated spatial discretization is the
agent-based approach proposed in [161]. In this work, the layers were treated as agents that
interacted with their upper and lower neighbors, exchanging water downward through
infiltration or gravity and upward through evaporation or capillarity. The monitoring
of vertical water modeling is linked to the availability of sensors, especially for direct
measurements. This has limited the applicability of the models.

Partial differential equations have apparently not yet been used by the crop modeling
community to represent movements of water to the side, which is probably due to the
multidimensional nature of the problem, the more advanced discretization into finite
elements or volumes, and the distributed instrumentation required in order to develop
monitoring or control.

Instead, other approaches are emerging, such as the stochastic distribution approach [162]
and agent-based modeling [123]. In [162], the authors discussed modeling and monitoring
complex systems that vary in both space and time given a limited number of agents or
sensors providing measurements that are spread out across a large area. They described the
land using Gaussian process modeling and addressed data incorporation with a machine
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learning technique named Kernel Observers. In [123], the idea was to represent the changes
across the surface thanks to a discretization of the land into small patches that were linked
by the side exchange of water due to the saturation of its retention capacity and the runoff.
This latter representation is well suited for crops located in mountain slopes or rugged
terrains.

8. Conclusions and Perspectives

A vast body of knowledge about dynamic modeling of crop–soil systems exists, which
has resulted in various mathematical models and numerical simulators that allow the
understanding and prediction of biomass production as a function of environmental fac-
tors and human actions, such as fertilization and irrigation. This modeling approach can
be complemented by various concepts of system and control theory to develop efficient
monitoring, control, and optimization tools. In this review article, we attempted to draw
an overview of these concepts, including model parameter identification, validation, un-
certainty analysis, observability analysis, nonlinear state estimation, model-based control,
expert systems, and real-time optimization.

Moreover, predictive models can nowadays exploit various sources of information
provided by ground sensors, aerial measurements, and satellite imaging, resulting in a big-
data perspective and the incorporation of machine learning techniques into the so-called
smart farming trend. An important aspect to consider is stochasticity in environmental
inputs, which is not a widespread practice in current studies.

There are many appealing directions for future research, including the design of
state estimation techniques that exploit sensor networks and take account of uncertainty
in the model description and environmental inputs, the development of agent-based
models describing soil heterogeneity and incorporating distributed instrumentation and
actuation in a possibly asynchronous way, and the design of distributed model predictive
control to take full advantage of agent cooperation, real-time optimization, and embedded
system technology.
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