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les bons moments comme dans les plus difficiles.



ii CONTENTS



Summary

In recent years, time-dependent materials have emerged as a powerful and versatile
platform to achieve a wide variety of photonic effects, from frequency conversion and
optical isolation to more exotic behaviours such as topological protection. The goal
of this thesis is to study and combine time-dependent photonics and plasmonics. To
this end, we employ analytical techniques, numerical tools and simulations to solve
time-dependent systems.

First, we study frequency combs produced by a time-modulated graphene plas-
monic cavity. We show that the combs are very efficiently produced by this setup,
and can be tailored by the graphene and modulation parameters. Then we study the
behaviour of propagating plasmons when the graphene properties suddenly change
in time. We show that an incident plasmon creates a reflected and a transmitted
plasmon, and that while their propagation constant is conserved, their frequency
changes. We study this conversion for several temporal perturbations and validate
our results via time domain finite-element simulations. We then extend the study of
time-modulated resonances by considering a system with two coupled cavities. We
show that a periodically modulated system supports so-called Floquet modes. We
study these modes with analytical and numerical techniques and discuss how one
can optimize the intermodal interaction to achieve selective frequency conversion.
Finally, we examine in more detail the decay mechanisms of the Floquet modes and
show that they can lead to a new type of bound states in the continuum. These
states are modes that, even if coupled to a continuum of radiation channels, can-
not leak because of destructive interference. We show that such modes can persist
in a time-modulated two-cavity system, when the resonances are modulated in the
correct way.
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Introduction

1.1 Context

Now more than ever, we live in a world of information and technology. There has
never been so much data generated by mankind, and transferred across the globe.
Tremendous progress has been achieved in communication technologies: we have
come from the first transatlantic cable laid in 1856, which could transfer a message
in more than 17 hours, to fiber optic cables that reach speeds of more than one
hundred terabits per second. Furthermore, the processing of data has also come
a long way. Since 1965, Moore’s law has correctly described the evolution of the
density of transistors in integrated circuits. However, by its nature, an exponential
law cannot last forever, especially because of the fundamental limit of electronics:
the atomic scale [1].

While technological progress has without question changed humanity forever,
numerous challenges are emerging. For example the power consumption of telecom-
munication systems is now requiring a significant amount of the global electricity
production [2], and is expected to require even more energy in the years to come. To
counter that augmentation, it is essential to develop new telecommunication tech-
nologies. To this end, new physical effects are investigated, to achieve functions such
as frequency conversion, modulation and optical isolation.
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Modulators are widely used in fiber optic communications, especially in optical
interconnects that link two electronic circuits. In these devices, an electronic signal
needs to be converted to an optical signal, generally by using and electro-optic mod-
ulator. These modulators usually use time-dependent properties to modulate a light
beam. In telecommunication technology it is often important to achieve frequency
conversion, amongst others for wavelength-division multiplexing, which sends multi-
ple signals at different frequencies through the same optical fiber. Usually, frequency
conversion is achieved with non-linear materials. However, this conversion is depen-
dent on the light intensity and travelling distance and is difficult to implement.
Another way to realize frequency conversion is to use time-modulated materials.

In optical systems it is extremely important to prevent light from reflecting back
to the source. For example, a light beam reflected on an optical element in an
optical setup can generate a feedback and perturb the laser cavity. To prevent this
from happening, it is necessary to use a device that allows light to pass in only one
direction. This type of device is called an optical isolator [3]. To build an optical
isolator, it is required to break time-symmetry, either by using magneto-optical
properties, non-linear materials or time dependent effects. All these technological
challenges show that there is a common class of effects that can be a part of the
solution: time-dependent materials [4].

Another field of research, plasmonics, has known a rapid emergence during the
last decade. Plasmonics studies surface plasmons, quasi-particles created by the
interaction of light and conduction electrons at the surface of a metal [5]. Plasmonic
properties of materials were used as early as Roman times [6] to achieve stained glass
colors. Surface plasmons exhibit interesting properties such as high confinement
and strong field enhancement. These properties have found applications e.g. in
biosensors [7], where they allow to measure adsorption of a material onto a metal
surface. Surface plasmons can be employed as guided modes, like photonic waveguide
modes, and it was envisioned that they could be used to create plasmonic circuits [8],
capable of manipulating light at a deep subwavelength scale. However, losses in
metals severely limit the practical use of such devices.

Recently, the experimental realization of graphene has opened new possibilities
for the plasmonics community [9]. Graphene is a 2D crystal of carbon atoms that
behaves as a metal for visible to far-infrared light. As such, it supports plasmonic
modes that exhibit amazing properties such as an extreme confinement of the modes
around the graphene sheet and high field enhancement. One striking property of
graphene is its tunability: unlike metals, when carriers are injected in graphene, its
conductivity properties drastically change. Graphene plasmonics is thus an ideal
platform for tunable devices, and to achieve time-dependent effects.

In this thesis, the ambition is to combine the fields of plasmonics and time-
dependent photonics. To this end, the versatile platform of graphene plasmonics is
ideal. The high field confinement and tunability of graphene plasmons promise to
enhance dynamic effects of time-modulated structures. We study the interaction of
light, surface plasmons and time modulation with analytical models and rigorous
numerical simulations. In the end, the systems we study throughout this work can
be generalized to other kinds of time-modulated resonances.



1.2 Outline 3

1.2 Outline

This work is structured as follows. In Chapter 2, we give a brief overview of pho-
tonic systems using time-modulated materials. We essentially introduce three kinds
of effects: frequency conversion, optical isolation and topological effects. Although
these three subcategories are not independent (for example topological systems usu-
ally have optical isolation properties), they give an intuitive categorization of time-
dependent effects already studied in the literature.

In Chapter 3, we introduce the general properties of graphene. We describe its
crystal structure and give the expressions describing its conductivity. The latter
is an essential concept since it governs the interaction between light and graphene,
and is responsible for the existence of graphene plasmonic modes. We show that the
conductivity can be described by a Drude model in a particular regime. We then
describe the different methods to affect graphene conductivity. First we introduce
chemical doping, where carbon atoms in the graphene crystal are replaced by other
chemical species. The second method we mention is the electric field effect, where
a gating voltage is used to modify the graphene Fermi level. The last technique
we consider is the optical pumping, that uses a light beam to excite electrons from
the valence band to the conduction band, modifying the occupation of electronic
states in graphene and changing its optical properties. We then discuss fabrication
issues, both for graphene sheets and patterned nanostructures, such as graphene
nanoribbons.

Chapter 4 is a brief introduction to plasmonics. We start by deriving the Drude
model for metals as it is needed to describe plasmonic modes. Then we describe
surface plasmons at a dielectric-metal interface to describe the optical response of
metals. This allows to find the dispersion relation linking the frequency and wavevec-
tor of metal surface plasmons, as well as their mode profile. We then investigate
graphene plasmons and give their dispersion relation and mode profiles. While these
two types of modes cannot be directly excited by plane waves (their dispersion lies
below the light line), graphene plasmons are much more confined than metal plas-
mons. The dispersion is also a function of the Fermi level, which implies that the
properties of propagation and the mode profiles can be changed via the Fermi level.

In Chapter 5 we discuss various methods and concepts used throughout the the-
sis. We start by introducing the Coupled Mode Theory (CMT) framework. CMT is
a powerful tool that describes the evolution of single or multimode cavities coupled
to ports. These cavities represent the resonant modes of a physical system. In pho-
tonics, these cavities often describe a resonator (a photonic crystal cavity or a ring
resonator for example) or a plasmonic resonance. We discuss the conditions that the
CMT system must obey, such as energy conservation and time reversal symmetry,
and the constraints that they impose on the CMT parameters. Then we discuss Fano
resonances, that occur when a resonant mode interacts with a continuum of states,
and use the CMT framework to derive the well known Fano lineshape. We finish
the chapter by describing a perturbation method used to investigate the eigenvalues
of an Hamiltonian in a time-periodic potential.

In Chapter 6, we study the interplay of time modulation and plasmonic reso-
nances in graphene gratings to efficiently generate frequency combs (work published
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in [10]). By using rigorous simulations and a coupled-mode theory model, we show
that the combs can be strongly tailored via both the grating and time modula-
tion properties, and can range from the mid-infrared to far-infrared. The grating
properties, via the resonance lifetime, strongly influence the conversion efficiency,
while the temporal modulation defines the comb’s frequency spacing and shape. We
examine in detail the dynamics of this interplay between cavity and modulation.
With the grating mechanism, a similar frequency comb generation is obtained with
a modulation amplitude that is three orders of magnitude smaller than in the planar
case.

We then study the behaviour of graphene plasmons incident on a time boundary
in Chapter 7. A sudden change of material properties induces a special type of reflec-
tion and refraction at a temporal discontinuity (work published in [11]). We study
the interaction of graphene plasmons with single and double temporal discontinu-
ities or shocks, leading to controlled in-plane scattering. We analytically determine
the Fresnel-like coefficients for graphene plasmons at these boundaries, and validate
our results by rigorous numerical simulations. Temporally controlled doping of two-
dimensional materials such as graphene thus leads to a new mechanism for planar
and compact plasmonic devices.

In Chapter 8, we extend on the work presented in Chapter 6. We present a
mechanism to achieve efficient and selective frequency conversion using a system of
two time-modulated cavities. This setup allows to fine-tune the conversion process
by controlling important parameters such as the inter-cavity coupling and the exter-
nal excitation frequency. Both symmetric and asymmetric (up- or down-conversion)
outputs can be targeted at will. We describe the processes extensively, with for
example a leading role for the dynamic modes of the coupled system, the Floquet
modes.

Finally in Chapter 9, we study the decay mechanisms of Floquet modes described
in the previous chapter. We start by showing that a system of two cavities exhibit
bound states in the continuum, modes that even though coupled to radiation chan-
nels do not emit radiation because of the interference between the cavity modes. We
then show that the Floquet modes can also be bound states even in the presence
of time modulation. Such a mode, once excited will stay trapped inside the cavity.
Other Floquet modes however can still radiate through the output ports.

1.3 Publications

Publications in international journals

In this section we list all the contributions in international journals published or
submitted during the PhD grant:

• G. Altares Menendez, G. Rosolen, B. Maes, “Graphene plasmons embedded
in a gain medium: layer and ribbon plasmons”, Journal of Optics, 18, 12,
125004, 2016.

• G. Altares Menendez, B. Maes, “Frequency comb generation using plasmonic
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resonances in a time-dependent graphene ribbon array”, Physical Review B,
95, 144307, 2017.

• G. Altares Menendez, B. Maes, “Time reflection and refraction of graphene
plasmons at a temporal discontinuity” Optics Letters, 42, 23, 5006-5009, 308602,
2017.

• G. Altares Menendez, B. Maes, “Selective Frequency Conversion With Coupled
Time-Modulated Cavities”, Physical Review B, 100, 014306, 2019.

Contributions to international conferences

In this section we list contributions to conferences during the PhD grant:

• G. Altares Menendez, G. Rosolen, B. Maes, “Graphene plasmons embedded in
a gain medium” in “20th Annual Symposium of the IEEE Photonics Benelux
Chapter”, Brussels, Belgium, 2016.

• G. Altares Menendez, B. Maes, “Frequency comb generation in a time-dependent
graphene ribbon lattice” in “Meta ’16 - 7th International Conference on Meta-
materials, Photonic Crystals and Plasmonics”, Malaga, Spain, 2016.

• G. Altares Menendez, B. Maes, “Frequency comb generation in a time-dependent
graphene ribbon array” in “21st Annual Symposium of the IEEE Photonics
Society Benelux Chapter”, Ghent, Belgium, 2016.

• G. Altares Menendez, B. Maes, “Time-modulated graphene arrays for effi-
cient frequency comb generation with plasmonic resonances” in “International
Workshop on Optical Wave and Waveguide Theory and Numerical Modelling”,
Eindhoven, The Netherlands, 2017.

• G. Altares Menendez, B. Maes, “Time reflection and time refraction of graphene
plasmons” in “The 11th International Congress on Engineered Material Plat-
forms for Novel Wave Phenomena”, Marseille, France, 2017.

• G. Altares Menendez, B. Maes, “Tunable frequency conversion with coupled
time-modulated resonances” in “The 15th international conference on near-
field optics, nanophotonics and related techniques”, P3A3, Troyes, France,
2017.

• G. Altares Menendez, B. Maes, “Tunable frequency conversion with time-
modulated cavities” in “12th International Congress on Artificial Materials
for Novel Wave Phenomena - Metamaterials 2018”, Espoo, Finland, 2018.

• G. Altares Menendez, B. Maes, “Efficient frequency conversion via Floquet
modes in time-modulated cavities” in “23rd Annual Symposium of the IEEE
Photonics Benelux Chapter”, Brussels, 2018.
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2
Time dependent photonics

In this chapter we briefly review three classes of phenomena induced by time mod-
ulation: frequency conversion, optical isolation and topological effects. While these
effects are not new, their realization using time-modulated materials has certainly
attracted much attention during the last few years. More specifically, the three
phenomena previously required the use of non-linear materials, or magnetic fields.
However, there are significant drawbacks to use non-linear materials (dependence
on the field intensity) and magnetic materials (difficulty to integrate on chip). Time
modulation therefore offers a new promising platform to implement these effects.

2.1 Frequency conversion

Frequency conversion is crucial for optical systems: it is possible to greatly enhance
the bandwidth of optical interconnect architectures by using wavelength-division
multiplexing. This application requires to perform frequency conversion at a chip
scale, which is challenging. Typically, frequency conversion is performed with non-
linear processes, using highly non-linear crystals, and depends on the light inten-
sity and travel distance. These limitations render on-chip frequency conversion
extremely difficult. However, it has been experimentally demonstrated in silicon
waveguides [12] and in micro-rings [13] by using all-optical modulation effects.
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A different way to achieve frequency conversion is to dynamically change the
material properties. This idea was proposed in photonic crystals: if the crystal is
suddenly compressed while light is propagating, the creation of a bandgap causes
light to be reflected at a different frequency [14, 15]. Later, it was demonstrated
that light trapped in a high-Q cavity can be converted to a different frequency
by dynamically changing the cavity resonance frequency [16]. This effect can be
achieved in photonic crystals by a change of the index of the material surrounding
the cavity, or by applying a mechanical constraint to the photonic crystal [17]. This
phenomenon corresponds to the adiabatic tuning of an oscillator. An analogy is
often used for this effect: when a guitar string is plucked, it oscillates at the string
resonance frequency and produces a corresponding pitch. If the string is shortened
while vibrating, the string resonance frequency changes as well as the sound created.

This principle was then used to experimentally achieve frequency conversion of
light trapped inside a silicon micro-ring resonator [18] using an electro-optic ap-
proach. The refractive index of the silicon ring was changed via the free carrier
plasma dispersion effect [19] induced by short optical pulses. The free-carriers re-
duce the ring refractive index, and both the resonance and light trapped inside it
are forced to blue-shift (Figure 2.1, left).

The works cited above mainly focus on the dynamical change of a cavity mode:
light is trapped inside a single cavity and is constrained to follow the cavity resonance
frequency. However, frequency conversion for propagative modes is also possible: it
was shown [20, 21] that slow light in a photonic crystal waveguide can be frequency
shifted during its propagation. This shift is achieved by changing the refractive in
the silicon parts of the photonic crystal via an intense pump illumination [22].

Using a similar setup, indirect photonic transitions have been demonstrated [23].
This effect combines the frequency conversion in a photonic waveguide described
above with a Doppler-like effect. A perturbation propagating through the crystal
interacts with the signal and induces a change in frequency and wavevector. These
‘indirect’ photonic transitions are achieved by temporal and spatial perturbations,
respectively. One way to realize this is to use a two step process [24]: first shift
the light frequency by generating free-carriers and then change the wave vector at
a spatial interface (see Figure 2.1, right).

2.2 Optical isolation

Optical isolators are devices that allow light to pass in one direction, but block
it in the opposite direction. Optical isolators are crucial in optical systems where
it is important to protect the source from backscattered light. An optical isolator
is a device that must break Lorentz reciprocity [3], and possesses an asymmetric
scattering matrix (Figure 2.2, top). Note that the scattering matrix links mode
amplitudes between them, and not the total power going through different ports.
There are three well-known ways of breaking Lorentz reciprocity: magneto-optic
materials, non-linear materials and time-dependent materials. It is interesting that
non-reciprocal devices can also be used to achieve isolators in other fields of physics,
for example in accoustics [25].
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Figure 2.1: Left: Frequency conversion inside a resonator [18]. Right: (a) Two step
process of an interband transition: light is frequency shifted by a temporal perturba-
tion and the wavevector changes at a spatial interface. The vertical and horizontal
arrows represent the changes induced by temporal and spatial perturbations, respec-
tively. (b) Group index spectra of the photonic crystal. Red lines are simulation
results and dashed lines are experimental measurements. (c) Representation of the
experimental setup [21].

Because they rely on time-dependent material properties, indirect photonic tran-
sitions can be used to achieve optical isolation. When a well-designed spatio-
temporal modulation is applied to a waveguide, a mode propagating in one direction
will undergo an indirect transition, while the same mode propagating in the other
direction will stay unchanged [26, 27]. The modulation of the waveguide relative
permittivity is of the form [4]:

ε(x, y, z, t) = εstatic(x, y) + ∆ε(x, y) cos (Ωt− βmz) (2.1)

where εstatic(x, y) is the unperturbed waveguide permittivity profile, ∆ε(x, y) is the
modulation profile, z is the propagation direction, Ω is the modulation frequency
and βm is the modulation wavenumber. The change in wavevector is achieved by
the spatial modulation of the waveguide, while the frequency change is achieved by
a temporal modulation. In this case, the time-dependence is essentially a travelling
wave modulation.

To achieve an indirect transition, the phase matching conditions Ω = ω2 − ω1

and βm = β2 − β1 must be respected. The mode conversion is only possible in
one direction because two modes with an opposite propagation direction have oppo-
site wavenumbers (−β1 and −β2) and cannot meet the phase matching condition.
This process is illustrated in the dispersion diagram of Figure 2.2 (bottom). The
converted mode can then be absorbed by a frequency filter since it has a different
frequency than the initial mode. This process has been experimentally demonstrated
in parallel waveguides [28]. The advantage in that case is that the mode conver-
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Figure 2.2: Top: Simple isolator between two single-mode waveguides. In this
case, the scattering matrix is asymmetric and the device therefore an optical iso-
lator [3]. Bottom: Dispersion diagram of a multimode photonic waveguide. The
spatio-temporal modulation induces an indirect transition if the final state is a
waveguide mode. This conversion process is relatively broadband because the pho-
tonic bands are nearly parallel [26].

sion occurs between the even and odd supermodes, which are separated by only a
small frequency and wave number, and therefore require a relatively low modula-
tion frequency (10 GHz) and a small modulation wavenumber to achieve an indirect
transition.

This optical isolation process is completely linear and is independent of the
phase, intensity and timing of the pulses in the system. In contrast, non-linear
isolators only work at higher power [29, 30], and cannot provide complete optical
isolation [31]. This setup has also the advantage of being easier to integrate on-
chip: a traditional way to achieve optical isolation is to use magneto-optical effects,
but these devices are usually bulky and not CMOS-compatible. To this extent,
time-dependent structures are a promising alternative to realize optical isolation.

It is also possible to design optical isolators for graphene plasmonic devices
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that are based on the same principle: a spatiotemporal modulation is applied to
a graphene plasmonic waveguide, which induces an interband transition [32]. The
modulation is implemented through graphene’s field effect via a set of gating pads
on the surface of the graphene waveguide. In regular plasmonic devices, modulation
by a gating process is not possible because the carrier density cannot be sufficiently
modulated. Instead, it is possible to achieve a time modulation using optomechan-
ical techniques and piezoelectric materials. This can lead to frequency conversion
in metallic plasmonic waveguides [33] and time modulation of plasmonic grating
couplers [34].

2.3 Topological effects

Figure 2.3: Top: A standard waveguide is formed by two topologically trivial mir-
rors. A topologically protected waveguide is formed at the interface of two bulk
materials with different topological invariants. Center: At the interface of two ma-
terials with different topologies, a topological phase transition occurs and the gap
frequency gap closes. This does not happen with materials that have the same
topology. Bottom: In reciprocal space, the number of gapless edge states is equal
to the change in Chern number at the interface [35].

Recently, topological photonic devices have attracted a lot of attention for their
unique properties [4, 35]. Topological photonics explores the topological properties
of photonic bands in materials. In particular, the edge modes in these structures are
immune to backscattering caused by defects and sharp bends. Since these properties
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come from the topology of the band diagram, topological edge modes are robust
against defects and disorder. The immunity to backscattering makes topological
devices a promising platform to achieve optical isolation.

Figure 2.4: Left: Simulations of a 2D topological magneto-optic photonic crystal
(operating in the microwave regime) [36]. The edge state propagates unidirection-
ally and is robust against metallic defects (the defects do not cause back reflec-
tion). Right: Simulations of an edge state propagating in a dynamically modu-
lated resonator array where the coupling constants between the resonators are time-
modulated [37]. The edge states are also unidirectional and immune to backscatter-
ing, even in the presence of sharp edges and defects.

The topology of a band is determined by the global behaviour of its wavefunctions
and is characterized by a topological invariant called the Chern number. Since
the Chern number is a topological invariant, it will not change under continuous
deformations of the physical system, hence the robustness of topological states.
The principle for the creation of a topologically protected state is highlighted in
Figure 2.3.

Topological effects have been experimentally demonstrated. The first experiment
used a 2D magneto-optical crystal in a magnetic field, fabricated in the microwave
regime [36] (Figure 2.4). The edge modes propagating in that crystal were immune
to backscattering, even when large metallic defects were introduced at the edges
of the crystal. Topological edge states can also be realized using electromagnetic
bianisotropy [38]. This constitutes a weaker form of topological protection since
it does not break time-reversal symmetry. However, the modes created in these
structures are also immune to backscattering and are immune to certain types of
defects.

In electronic topological insulators, time symmetry is usually broken with a static
magnetic field but time modulation can also be used to create topological effects,
by creating a synthetic magnetic field. This was realized in a 2D array of coupled
resonators, where the coupling constants are time-modulated [37]. This special form
of phase control forces photons to move in circles, much like electrons in a static
magnetic field. The time-symmetry breaking enables the edge states in that system
to be robust against defects, and to be immune to backscattering (Figure 2.4).



3
Graphene

A few years ago graphene started to attract much attention, leading e.g. to a Nobel
Prize in Physics in 2010 for K. S. Novoselov and A. K. Geim ‘for groundbreak-
ing experiments regarding the two-dimensional material graphene”. Graphene is an
exceptional material from many viewpoints: it is a true 2D material, which is ex-
tremely resistant and conducts heat and electricity. From an optical standpoint, it
is for example remarkable that in the visible range an atomically thin layer absorbs
2.3% of the incident light [39].

Although graphene possesses a wide range of interesting features, we focus on its
conductivity, as we will later use it to describe graphene plasmons. We also discuss
the tunability of its properties, as this is an important building block for our later
discussions. Finally, we briefly introduce graphene fabrication methods.

3.1 Graphene conductivity

Graphene is a 2D honeycomb crystal of carbon atoms. The electronic band structure
of graphene is very interesting as its valence and conduction band touch at the K
points of the 2D Brillouin zone. At these points the bands form Dirac cones, where
the energy dispersion can be considered linear:

E±(k) = ±vF~|k| (3.1)
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where E± are the energy of the conduction (+) and valence (−) bands, k is the
wavevector and vF is the Fermi velocity (vF ≈ 106 m/s) [40, 41]. This particular
band structure is the reason why graphene is often called a zero-gap semiconductor:
the conduction and valence bands touch at the Dirac point where the density of
states is zero.

In this section we are interested in the graphene conductivity expression as it can
be used to describe graphene plasmons. From the band structure, the conductivity
was derived in [40] and can be separated in two contributions. First, the conductivity
term corresponding to the intra-band electron-photon scattering process (Figure 3.1,
green arrow) can be expressed as (with the convention ejωt):

σintra(ω,EF ) =
−2je2kBT

π~2(ω − jτ−1)
ln

[
2 cosh

(
EF

2kBT

)]
(3.2)

where T is the temperature, kB is the Boltzmann constant, EF is the Fermi level and
τ is the electron scattering lifetime. This term actually corresponds to the Drude
conductivity. Indeed, when EF � kBT , this conductivity takes the form:

σintra(ω,EF ) =
−je2EF

π~2(ω − jτ−1)
. (3.3)

The second contribution to the conductivity is due to interband electronic transitions
(Figure 3.1, red arrow). In the case of zero temperature, this term reads:

σinter(ω,EF ) =
e2

4~

[
θ(ω − 2EF ) +

j

2π
ln

(~ω + 2EF )2

(~ω − 2EF )2

]
(3.4)

where θ(ω − 2EF ) is the step function. The interband terms is responsible for
absorption for frequencies ~ω > 2EF , while the Drude contribution is responsible
for graphene’s metallic behaviour at lower frequencies (~ω < EF ).

Figure 3.1: Graphene band structure and Dirac cones around the K points [9].
The electron-photon scattering process (green) and interband electronic transition
(red) are depicted. Because of the particular graphene band structure and the Pauli
exclusion principle, the interband transitions only occur for ~ω > 2EF .

For non-zero temperature, the step function must be replaced, and the interband
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conductivity term now reads:

σinter(ω,EF ) =
e2

4~

[
1

2
+

1

π
arctan

(
~ω − 2EF

2kBT

)
+

j

2π
ln

(~ω + 2EF )2

(~ω − 2EF )2 + (2kBT )2

]
.

(3.5)
The overall conductivity is then simply given by the sum of the two above contri-
butions:

σ(ω,EF ) = σintra(ω,EF ) + σinter(ω,EF ). (3.6)

Graphene sheets can be modelled as a plane with a conductivity given by Equa-
tion 3.6. Alternatively, one can also consider graphene as a thin slab with a permit-
tivity [5]

εr(ω,EF ) = 1− jσ(ω,EF )

ε0ωd
(3.7)

where d is the effective thickness of graphene (≈ 0.5 nm). Depending on the situation
we will choose different formulations in order to make simulations more efficient. For
example if we want to avoid meshing problems due to the small effective thickness
of graphene, we will prefer to describe graphene as a 2D conductivity plane.

3.2 Tunability

One of the many advantages of graphene (especially in the context of time modu-
lation) is its tunability. There are three main ways to change the graphene Fermi
level EF : by chemical doping, by electrostatic gating or by optical pumping. This
in turn modifies the conductivity and the optical properties of graphene.

3.2.1 Chemical doping

One can distinguish two main types of chemical doping: surface transfer doping
and substitutional doping [42]. In surface transfer doping, electrons are exchanged
between graphene and dopants that are adsorbed on its surface. This technique is
rather general and was introduced to achieve doping at the surface of a bulk semi-
conductor [43]. Note that because of this mechanism, graphene is also an excellent
sensor for gases and biomedical applications: molecules can adsorb on its surface and
modify its conductivity [44, 45]. Because this process does not break any chemical
bonds in graphene, it is reversible and adds to the tunability of graphene.

Another way to dope graphene is substitutional doping: removing carbon atoms
from the honeycomb lattice and replacing them by other atoms that act as electron
donors or acceptors [42]. For example, in [46] N-doped graphene was obtained by
N+ irradiation (introducing defects in the hexagonal crystal), subsequently occupied
by N atoms after annealing in NH3. This process is represented in Figure 3.2.

3.2.2 Electric field effect

A more physical way to change the electrical conductivity is to apply a gate voltage
to the graphene sheet. This technique was introduced very early in the graphene
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Figure 3.2: Representation of substitutional doping in graphene (from [46]). Top
left:Undoped graphene is a zero gap semiconductor and its Fermi level is such that
only the valence band is filled with electrons. Top right: Upon irradiation by N+

ions, defects are created. Bottom: Then graphene is annealed in NH3 and the
vacancies are filled with N atoms, creating N-doped graphene.

reseach field by K. S. Novoselov and A. K. Geim in 2004 [47]. This effect was one
of the reasons for the rapid emergence of graphene since it was envisioned that
one could use this effect to create graphene based transistors. Note that it is not
possible to use this effect in metals since their high bulk carrier concentration would
require atomically thin layers for the electric field effect to be significant. The
electric field effect allows to change not only the conductivity of graphene, but also
its optical properties [48], as the optical response of graphene is governed by its
conductivity. For that reason, graphene is often used for electro-optic applications
and in modulators [49–51].

A common way to achieve the field effect in graphene is to use a top-gate gold
contact in contact with an ion gel [52, 53]. A thin ITO layer deposited on an oxidized
Si substrate is used as bottom gate. The graphene structure can then be placed in
between, and its Fermi level can be controlled by the bias voltage. A schematic of
this method is represented in Figure 3.3.

Figure 3.3: Gating of a graphene nanodisk array [53]. A graphene structure is placed
in between two electrodes and surrounded by a polymer matrix (ion gel) containing
mobile ions.
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3.2.3 Optical pumping

A third way to tune the conductivity is to use optical pumping. An optical pump
allows to change the electron and hole populations of the bands around the K point
on an ultrafast timescale. Typically this is done by sending a pump pulse onto the
graphene sheet, inducing intraband and interband transitions. This process was first
studied through transient optical parameters (such as variations in transmission for
example) of pumped graphene [54–57]. These studies were able to estimate the re-
laxation time of photo excited carriers (see Figure 3.4). However, this kind of optical
measurements only gives indirect information about the energy and momentum of
carriers.

More recently, measurements by static angle-resolved photoemission spectroscopy
(ARPES) gave insight into the precise carrier dynamics taking place by monitoring
the band occupation with a high temporal resolution [58–61]. Both the ARPES
method and the transient optical parameter monitoring show excitation times of a
few femtoseconds, while the relaxation times are of the order of a picosecond. This
relaxation is due to electron-electron scattering, emission of optical phonons and
coupling from electrons to accoustic phonons in the presence of defects.

Figure 3.4: Top: Pump-probe investigation of carrier dynamics in graphene [54].
The relaxation process does not follow a simple exponential law, indicating that
multiple mechanisms are responsible for carrier relaxation. Bottom: difference of
ARPES measurements before and after the pump [58]. This allows to precisely
measure the carrier dynamics inside the Dirac bands.

Optical pumping is particularly useful for applications that require a fast mod-
ulation of graphene conductivity. Interestingly, the limiting factor in the achievable
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modulation speed is not the fast excitation of the carriers, but rather the slow re-
laxation times.

3.3 Fabrication

Initially, Novoselov and Geim used exfoliation to extract a graphene layer from
graphite in 2004. This very simple technique allowed to produce graphene sheets,
visible to the naked eye (since they absorb 2.3% of the visible light). Since then
a lot of progress in the fabrication techniques has been made. In this section, we
briefly introduce the most commonly used synthesis techniques, as well as patterning
methods used to obtain graphene nanostructures.

Figure 3.5: Illustration of the roll-to-roll process for transferring Cu grown graphene
onto another substrate [62]. This process was used to create transparent flexible
electrodes.

Chemical Vapor Deposition (CVD) is often used to fabricate graphene sheets. It
can synthesize macroscopic graphene areas, typically to produce flexible and trans-
parent electrodes for larger surfaces. For these reasons, graphene is a strong can-
didate to replace ITO films as a transparent electrode. CVD growth of graphene
is usually performed on a metallic substrate (usually Ni and Cu). Although Ni
is a good candidate for CVD graphene synthesis, the grain size of polycrystalline
Ni is a limiting factor, leading to a lower graphene film quality. To improve uni-
formity, monocrystalline Ni(1,1,1) substrates have been used, taking the graphene
monolayer percentage from 72.8% in the polycrystalline case to 91.4% [63]. Many
other substrates have been explored, but the best substrates are arguably copper
substrates [64]. With a copper substrate, this method allows to produce graphene
areas with a >95% percentage of monolayer graphene. The reason why copper is
such a good substrate for graphene growth is that carbon has a low solubility in cop-
per. Whereas graphene formation on a Ni surface ressembles a segregation process
(making the prevention of multilayer formation difficult), the growth on Cu is due
to the catalytic decomposition of hydrocarbons. Because of this, the growth on Cu
is a self limiting process: when the surface is covered by carbon atoms, there is no
more hydrocarbon decomposition and graphene growth stops, making this process
more effective at creating monolayer graphene.

Once synthesized, graphene can then be used on another substrate. Three steps
are usually necessary: first a polymer is placed on top of graphene and adheres
to it. Then the metallic film is etched and then the graphene layer is transferred
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Figure 3.6: Left: Optical images of graphene transferred on a SiO2/Si substrate
(left: Ni, middle: Cu [63]). Right: 5 nm nanoribbons produced by HIBL from Cu
grown graphene [65].

onto another substrate. In the case of graphene grown on copper foil (which are
both flexible materials), this allows for large scale roll-to-roll production [62] (see
Figure 3.5).

Once a graphene film has been placed on the desired substrate, it is also possible
to pattern it. Electron beam lithography in pair with O2 plasma etching can be
used to produce high quality graphene ribbons, with widths ranging from 15 to 100
nm [66]. However, breaking the sub-10 nm resolution has been a great challenge for
electron beam lithography. Another technique has since been used with great results:
Helium Ion Beam Lithography (HIBL) [67]. Note that however this technique might
contaminate the semiconductor substrates [68, 69]. With this method, patterning
of graphene nanoribbons down to a 5 nm width has been achieved [65].

All these methods and results show that we have come a long way from the first
exfoliation of graphene and that techniques to produce nanometer scale graphene
structures are well-established.
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4
Plasmonics

Plasmons (or plasmon-polaritons) are quasi-particles that arise from the interaction
of metals with light. More specifically, in metals, electrons can sustain volume and
surface oscillations at optical frequencies. This coupling of light with oscillating
electrons at the surface of a metal is called a surface plasmon polariton. In this
chapter we introduce plasmonics, as we will rely on these concepts for further de-
velopments. First we will discuss metal plasmons to describe the basic properties,
before describing graphene plasmons in planar sheets, as well as in nanoribbons.

4.1 Drude model

To describe metal plasmons, we need a way to describe the response of a metal to
an oscillating field. Maxwell’s equations describe how charges and currents create
electromagnetic fields, but to describe the interaction of these fields with materials,
constitutive relations are needed. In a non-dispersive linear and isotropic medium,
they are written as

D = ε0E + P = ε0εrE (4.1)

B = µ0(H + M) = µ0µrH (4.2)
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where D is the electric displacement, B the magnetic induction, P the polarization,
M the magnetization, ε0 the vacuum permittivity, and µ0 the vacuum permeability.
The information about the materials’ electromagnetic properties is contained in
the parameters εr (the relative permittivity) and µr (the relative permeability).
These two parameters can be frequency dependent in the case of dispersive media,
wavevector dependent if they exhibit a non-local response, or non-linear if they
depend on the field intensity. Typically, non-local effects are important for metallic
objects with a dimension of the order of the electron mean free path. In this thesis,
we will not consider non-local materials or non-linear materials. Moreover, we will
not deal with magnetic materials (which is rare at optical frequencies) so we can set
µr to 1.

The permittivity of a metal is often described by Drude’s model [5]. In this
model, the metal is a free electron gas and the equation of motion for an individual
electron in a time harmonic field is:

m
d2r(t)

dt2
+mγe

dr(t)

dt
= −eE(t) (4.3)

where m is the (effective) electron mass, γe is the electron damping rate (due to
electron-electron collisions e.g.) and r is the electron position. E(t) = E0e

jωt is the
amplitude of the driving electric field at frequency ω. By considering a solution of
the form r(t) = r0e

jωt, one gets the electron response:

r(t) =
e

m(ω2 − jγeω)
E(t). (4.4)

These electrons displaced by the driving field contribute to the macroscopic polari-
sation

P = −ner = − ne2

m(ω2 − jγeω)
E. (4.5)

Using the constitutive relation D = ε0E + P,

D = ε0

(
1−

ω2
p

ω2 − jγeω

)
E (4.6)

where ω2
p =

ne2

ε0m
is the plasma frequency. By comparing this relation to Equa-

tion 4.1, one finds the relative permittivity of metals:

εr(ω) = 1−
ω2
p

ω2 − jγeω
. (4.7)

This relation derived using the microscopic response of electrons can now be used
in the macroscopic Maxwell’s equations to describe the response of metals to a
harmonic electric field.

In metals, bulk plasmons are a collective oscillation of the electron density at
the plasma frequency ωp, while the movement of positive ions in the metallic lattice
is negligible [70]. These collective oscillations play an important role in the optical
properties of metals. For frequencies below ωp, the real part of the permittivity is
negative and no propagative modes exist inside the metal. For frequencies higher
than ωp however, the metal behaves as a dielectric and propagative modes do exist.
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4.2 Plasmons in standard metals

In this section, we will describe metal plasmons with the Drude permittivity for
metals of Equation 4.7. We consider standard 3D metals first, as we will consider
graphene (a 2D metal) in the next section. Here we suppose that materials are
isotropic and non-magnetic. We also assume that the fields have an harmonic time
dependence with the convention ejωt. With these assumptions, Maxwell’s equations
read

∇ ·D = ρ (4.8)

∇ ·B = 0 (4.9)

∇× E = −jωB (4.10)

∇×H = J + jωD. (4.11)

We now suppose that J = σE = 0, meaning that all the response of metals is
contained in the metal electric permittivity (Equation 4.7) and not in the metal
conductivity. Equations 4.10 and 4.11 now take the form:

∇× E = −jµ0ωH (4.12)

∇×H = jε0εrωE. (4.13)

We will investigate these equations in the context of propagative modes in struc-
tures that are invariant in the propagation direction and invariant in the transverse
direction. These structures are described by their relative permittivity εr(x), which
only depends on x in this case. Equations 4.12 and 4.13 are rather general and can
be used to describe stacks of dielectric and metallic layers (see Figure 4.1).

Figure 4.1: Left: Structure used to describe propagative modes. Invariant in the
propagation direction (along z) and in the transverse direction (along y). The red
arrow highlights the propagation direction. Right: TE (top) and TM (bottom)
polarizations. The arrows represent non-zero field components in each case.

With the coordinate choice represented in Figure 4.1, the electric and magnetic
fields can be expressed as:

E(x, z) = e(x)e−jβz (4.14)
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H(x, z) = h(x)e−jβz. (4.15)

By injecting Equations 4.14 and 4.15 into Equations 4.12 and 4.13 and examining
each individual component of the fields, one obtains two decoupled sets of three
equations. These decoupled systems of equations describe the Transverse Electric
(TE) and Transverse Magnetic (TM) polarizations (see Figure 4.1). For the TE
polarization:

βey(x) = −ωµ0hx(x) (4.16)

dey(x)

dx
= −jωµ0hz(x) (4.17)

ωε0εr(x)ey(x) = −βhx(x) + j
hz(x)

dx
(4.18)

And for the TM polarization:

βhy(x) = ωε0εr(x)ex(x) (4.19)

dhy(x)

dx
= jωε0εr(x)ez(x) (4.20)

ωµ0hy(x) = βex(x)− j ez(x)

dx
. (4.21)

By eliminating the x and z components in the TE and TM equation systems, one
obtains the following Helmholtz equations in each individual layer (by definition,
the permittivity is constant within the layers):

d2ey(x)

dx2
+ k2

0εrey(x) = β2ey(x) (4.22)

d2hy(x)

dx2
+ k2

0εrhy(x) = β2hy(x) (4.23)

for TE and TM polarizations, respectively. Even if the two equations 4.22 and
4.23 have an identical structure, their solutions are different because the boundary
conditions are different for E and H fields. From Maxwell’s equations, the boundary
conditions are:

n× (E1 − E2) = 0 (4.24)

n× (H1 −H2) = 0 (4.25)

n · (D1 −D2) = 0 (4.26)

n · (B1 −B2) = 0 (4.27)

where n is a normal vector to the interface between two layers. These conditions
impose that the E and H components tangent to the interface are continuous, while
the D and B components normal to the interface are continuous.

We can use Equation 4.23 along with the boundary conditions to get the generic
solution for modes in the TM polarization. The transverse profile is of the form

hy(x) = Aejkxx +Be−jkxx (4.28)
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inside a layer, where A and B are constants and kx =
√
εrk2

0 − β2. Note that we
are only interested in the TM polarization here because plasmonic modes only exist
in that polarization.

We now discuss the case of a single interface between a dielectric with permit-
tivity εd > 0 and a metal with permittivity εm < 0. This structure is represented
in Figure 4.2. If we only consider solutions confined to the interface and evanescent
in the x direction, we find by using Equation 4.28, along with the continuity of Hy

(the y component of H) and the definition of the total H field (Equation 4.15):

Hy(x, z) = Ae−jβze−δx for x > 0 (4.29)

Hy(x, z) = Ae−jβzeγx for x < 0 (4.30)

where δ =
√
β2 − εdk2

0 and γ =
√
β2 − εmk2

0.

Figure 4.2: Interface between a dielectric and a metal and sketch of the plasmonic
mode supported.

Using the TM equations and the continuity conditions, one can show that

δ

γ
= − εd

εm
. (4.31)

This means that since we require evanescent fields (δ and γ are real and positive),
εd and εm must have opposite signs, meaning that this type of mode (confined to
the interface) only exists between a dielectric and a metal. Equation 4.31 is actually
the dispersion relation for surface plasmons at a dielectric metal interface. It can be
rewritten as:

β = k0

√
εdεm
εd + εm

. (4.32)

This dispersion relation is plotted in Figure 4.3 for an arbitrary Drude metal. These
plasmonic modes are confined and non-radiative modes: they are below the light
line and thus cannot couple to radiation. For large wavevectors, the frequency of
Surface Plasmon Polaritons (SPPs) approaches the surface plasmon frequency ωsp:

ωsp =
ωp

1 +
√
εd
. (4.33)
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At this frequency, the propagation constant goes to infinity and the group velocity
vanishes. This means that the plasmonic mode becomes extremely confined around
the interface and that it becomes a static mode. For lower propagation constants,
β approaches the light line and the plasmonic mode resembles a grazing-incidence
plane wave, since it extends into the dielectric for many wavelengths. For frequencies
higher than the plasmon frequency ωp, the metal becomes transparent and the mode
becomes radiative as it lies above the light line. Since we defined plasmonic modes
as modes confined around the interface, this mode is no longer a SPP mode.

Figure 4.3: Dispersion plot for SPP at a single interface for two different di-
electrics [5]. Here only lossless metals were considered so the damping rate γe = 0
in Equation 4.7. The dashed lines represent the imaginary part of the propagation
constant, where plasmonic modes do not exist. In real metals, the non-zero damping
rate prevents β from reaching infinite values.

4.3 Graphene plasmons

As discussed in Section 3.1, graphene behaves as a metal in the far- to near-infrared.
Even though it is extremely thin, it can also support TM plasmonic modes in this
range. Graphene can either be modelled as a plane with a surface conductivity, or
as a (thin) slab with a Drude permittivity. In this section, we introduce graphene’s
plasmonic modes by considering the conductivity. The used geometry is represented
in Figure 4.4: a graphene sheet between two semi-infinite dielectric layers. This
structure is also invariant in the propagation direction and in the transverse direc-
tion, as in the previous Section 4.2.

Graphene plasmons are also TM modes and obey the Helmholtz Equation 4.23.
Once again, we are interested in solutions of the form 4.28 confined at the graphene
sheet. With this assumption for the field profile, the plasmonic mode can be written
as [71]:

Ei = (Ei,x, 0, Ei,z)e
−jβze−δi|x| (4.34)

Hi = (0, Hi,x, 0)e−jβze−δi|x| (4.35)
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Figure 4.4: Graphene sheet surrounded by two semi-infinite dielectric layers.
Graphene is modelled as a conducting plane.

where i = 1, 2 is the medium index (see Figure 4.4), β is the plasmon propagation
constant and δi =

√
β2 − εik2

0. Unlike in Section 4.2, we need to use different
boundary conditions. This is because graphene is described by its conductivity,
while we described metals with their permittivity. The boundary conditions in this
case read:

n× (E1 − E2) = 0 (4.36)

n× (H1 −H2) = n× J (4.37)

n · (D1 −D2) = ρ (4.38)

n · (B1 −B2) = 0 (4.39)

where ρ is the charge density and J = σ(ω,EF )Et is the surface current. Note that
Et is the electric field projected on the graphene plane, as electrons are confined to
this surface. Since we consider a TM polarized mode (so only Ez lies in the graphene
plane), Equation 4.37 reduces to H1,y−H2,y = σEz = Jz. Using these new boundary
conditions, the graphene plasmon relation is derived [9]:

jσ(ω,EF )

ωε0

=
ε1

δ1

+
ε2

δ2

=
ε1√

β2 − ε1k2
0

+
ε2√

β2 − ε2k2
0

.
(4.40)

In this thesis, we work in the frequency range from mid- to far-infrared. At these
frequencies, graphene plasmons are extremely confined and lie far below the light
line. This corresponds to the non-retarded regime (β � k0). In this regime, we can
safely make the approximation that δi =

√
β2 − εik2

0 ≈ β. The dispersion relation
of Equation 4.40 reduces to

β = −ε1 + ε2

2

2jωε0

σ(ω,EF )
. (4.41)

We can further simplify Equation 4.41 by dropping the interband term in the
graphene conductivity. In Section 3.1 we showed that σ(ω,EF ) = σintra(ω,EF ) +
σinter(ω,EF ) and that the interband terms becomes significant for frequencies such
that ~ω > EF . Since we work in the non-retarded regime, this condition will al-
ways be satisfied and we can neglect the interband term and only use the Drude
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conductivity of Equation 3.3. The dispersion relation of Equation 4.41 then reads

β =
ε1 + ε2

2

2π~2ε0

e2EF
ω
(
ω − jτ−1

)
. (4.42)

The graphene plasmon dispersion is represented in Figure 4.5 for both the exact
form (Equation 4.40) and the Drude approximation (Equation 4.42), for several
values of the Fermi level EF . All the dispersions lie far below the light line, meaning
that the modes are extremely confined, even compared to metal plasmons. Note
the small difference between the exact form and the Drude approximation for large
frequencies ω and small Fermi level EF . This is because interband transitions (that
are not accounted for in the Drude conductivity) start to take place. At larger
frequencies (and smaller Fermi levels), the assumption ~ω < EF is no longer satisfied
and the Drude conductivity no longer correctly describes the graphene conductivity.

Figure 4.5: Free-standing graphene plasmon dispersion for several Fermi levels EF
(with ε1,2 = 1). Solid lines are the exact form of Equation 4.40, while circles repre-
sent Equation 4.42. The whole dispersion curve lies below the light line, indicating
that graphene plasmons are extremely confined and do not couple with plane waves.

4.4 Graphene ribbon arrays

Graphene plasmons in a 2D sheet cannot be directly excited by an incident plane
wave, as they are far from the light cone. However, graphene nanostructures support
plasmonic modes that can couple to radiation, either in single elements or in arrays.
Since the plasmon wavelength λp is much smaller than the free-space wavelength,
resonance effects can occur at sub-wavelength scale. Moreover, because of the ex-
treme confinement of the fields around graphene, plasmonic resonances can be used,
amongst others, for SERS applications [72, 73], allowing to investigate the infrared
signature of biomolecules. Plasmonic resonances can also be exploited to enhance
the interaction of light with graphene. A planar graphene sheet ‘only’ absorbs 2.3 %
of visible light, but plasmonic resonances allow to increase this absorption. Reso-
nant enhancement of absorption has been proposed and demonstrated in [74–76].
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In future chapters, we will also use graphene plasmonic resonances to improve the
interaction of light with a time modulation. In the remainder of this section, we will
focus on one type of resonant structure: graphene nanoribbons.

Figure 4.6: Left: Sketch of a propagative plasmonic mode in a graphene sheet.
Right: Fabry-Pérot resonance created by a plasmon reflecting at the edges of a
graphene ribbon in a graphene ribbon array.

In optics, a Fabry-Pérot (FP) cavity typically consists of two parallel highly-
reflecting mirrors. Its transmission spectrum consists of peaks with high trans-
mission, corresponding to resonances in the cavity. These resonances occur when
constructive interferences are created between the light beams inside the cavity.
Plasmonic resonances in graphene nanoribbons can be seen as FP cavities (see Fig-
ure 4.6). When a graphene plasmon is incident on the nanorribon edge, it is reflected
with almost 100% amplitude [77, 78] and nearly no light is radiated. However, the
reflection phase is non-trivial [79] and thus, the conditions for a resonant cavity
mode read:
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Figure 4.7: Dispersion of the lattice modes (L = 10 µm and D = 8.75 µm) for several
EF values. Even modes that couple with incident light are shown with solid lines
while odd modes are only shown with dashed lines. The mode of interest in this
thesis is the third mode at normal incidence indicated by a black circle.



30 4 • Plasmonics

0.2 0.4 0.6 0.8 1 1.2 1.4

Frequency [Hz] ×1013

0

0.2

0.4

0.6

0.8

1

T
R
A

Figure 4.8: Transmission T , reflection R and absorption A spectra of a graphene
nanoribbon array under normal incidence. The Fermi level is EF = 0.635 eV, the
ribbon width is D = 8.75 µm and the period is L = 10 µm. Each dip in transmission
corresponds to a plasmonic resonance in the graphene nanoribbon array. Only even
modes are excited by incident light at normal incidence because of the mode parity.

2βD + 2ΦR = 2πn (4.43)

where D is the ribbon width, β is the plasmon propagation constant (in a lossless
graphene sheet), ΦR is the non-trivial reflection phase and n is an integer represent-
ing the mode order. The phase ΦR can be approximated to −3π/4 rad and does not
depend on the dielectric environment, doping level or plasmon frequency. By inject-
ing Equation 4.41 into Equation 4.43, one can find the frequencies corresponding to
each FP mode by solving

ω =
(n+ 3/4)π= [σ (ω,EF )]

2ε0εrD
(4.44)

where εr is the surrounding medium relative permittivity. This method is an ef-
fective way to estimate the resonance frequency of graphene ribbons. This resonance
frequency is a function of the surrounding medium permittivity, nanoribbon length
and Fermi level. These parameters can be chosen by design and will determine the
optical properties of a graphene nanoribbon. In graphene nanoribbon arrays, each
separate ribbon has localized Fabry-Pérot type modes (three are visible in the range
of Figure 4.8), which originate from the graphene plasmon propagating back and
forth. The vertically incident light (at kx = 0) can excite these array modes: they
are above the lightline, they are compatible with the incident polarization, and the
underlying Fabry-Pérot modes are ‘leaky’ or radiative.
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In Figure 4.7 we plot the simulated dispersion of the Bloch modes in the lattice.
Even if plasmonic modes exist for all kx, they can only be excited if they lie above
the light line (black line in Figure 4.7). Moreover, at normal incidence (kx = 0) only
the even modes are excited because of the parity of the incident light. Therefore,
half of the modes from the dispersion are not present in the spectra of Figure 4.8.

There is also the typical tight-binding lattice effect: the localized modes can
couple with each other because the ribbon interspacing is relatively small (D/L =
0.875 where D is the ribbon length and L is the lattice period). This causes the
sine-like shape of the dispersion curves around the resonance frequency of a single
ribbon mode. Note that the curvature is stronger for lower order modes, because
the overlap of adjacent ribbon modes is larger in that case.

Unlike plasmons supported by a graphene sheet, the plasmonic resonances in
graphene nanoribbons are leaky modes. This means that they can couple to radia-
tion, provided that the plasmonic mode has a matching parity (only even modes can
couple to radiation at normal incidence). The coupling of light with a plasmonic
resonance is important in the context of this thesis: light couples to a plasmonic
mode, which in turn interacts with a time modulation and then couples to radiation,
at a different frequency for example. Since graphene plasmonic modes strongly de-
pend on system parameters, graphene nanoribbons are an ideal platform for tunable
plasmonic responses, especially for dynamic modulation via the Fermi level. We will
exploit this property in Chapter 6 to dynamically modulate the resonance frequency
of a ribbon array.
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5
Optical concepts

5.1 Coupled Mode Theory

In this section we briefly introduce Coupled Mode Theory (CMT) as it will be applied
in many different cases throughout this thesis. This theory is particularly useful to
describe physical systems involving a resonant mode that is coupled to input and
output ports [80]. We will use this framework in the context of plasmonics and
photonics, but its range of application is much larger (acoustics, phononics, etc.).

5.1.1 Single mode resonator

In the following, we describe the formalism used to model a single mode optical
resonator coupled to m ports. The dynamic equation for the mode amplitude a is
given by [81, 82]:

da(t)

dt
=

(
jωres −

1

τ

)
a(t) + (〈κ|∗) |s+(t)〉 (5.1)

|s−(t)〉 = C |s+(t)〉+ a(t) |d〉 (5.2)
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where ωres is the cavity mode resonance frequency and τ is the total cavity decay
rate. The input and output ports are represented by the components of |s+〉 and
|s−〉, respectively:

|s+〉 =


s1+

s2+

...
sm+

 , |s−〉 =


s1−
s2−
...

sm−

 , (5.3)

The coupling between the cavity mode a and the input ports is the vector 〈κ|∗
containing the coupling constants κi for each input port, with i ranging from 1 to
m. The cavity mode is also coupled to the output ports by the coupling constants
di inside |d〉. In addition to these two coupling mechanisms, the model also includes
a direct pathway between input and output ports via the scattering matrix C. The
compact Dirac notation allows to simultaneously describe all the couplings in the
system. Explicitly the coupling matrices are given by

〈κ|∗ =


κ1

κ2

...
κm

 , |d〉 =


d1

d2

...
dm

 . (5.4)

This single mode system is represented in Figure 5.1. Since C accounts for a di-
rect pathway between the ports, the matrix needs to be unitary (to ensure energy
conservation) and symmetric (to respect time reversal symmetry). The cavity mode
amplitude a is normalized so that |a|2 is equal to the energy inside the cavity. The
validity of coupled mode theory is limited to the case were the width of the reso-
nance is far smaller than the resonance frequency [81], which will be the case each
time we use this model.

Figure 5.1: Single mode resonator with mode amplitude a(t) coupled to input and
output ports si±(t).

The coefficients |κ〉, |d〉, |τ〉 and C are not independent, but they follow a set of
rules set by conservation of energy and time reversal symmetry constraints. More-
over one can also use the geometric symmetries of the system and for example
impose that the resonant mode decays symmetrically or anti-symmetrically into
specific ports.
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For an incident excitation |s−〉 at frequency ω, the output |s−〉 can be expressed
as

|s−〉 =

[
C +

|d〉 〈κ|∗

j(ω − ωres) + 1/τ

]
|s+〉 ≡ S |s+〉 (5.5)

where S is defined as the scattering matrix that links input and output ports. Be-
cause of time reversal symmetry, S has to be symmetric. This constraint imposes
that

〈d|κ〉∗ = 〈κ|d〉∗ . (5.6)

The resonant mode amplitude in that case is given by

a =
(〈κ|∗) |s+〉

j(ω − ωres) + 1/τ
. (5.7)

When considering a resonator that is not coupled to any input excitation, but that
has a non-zero mode amplitude at t = 0, energy conservation requires that all the
energy will leak out into the output ports. When considering the variation of energy
in the resonator and imposing that all this energy leaks through the ports (〈s−|s−〉
is the total power leaking from the resonator), one finds

d|a|2

dt
= −2

τ
|a|2 = −〈s−|s−〉 . (5.8)

When considering Equation 5.2 in the case where no excitation is present, one finds

〈s−|s−〉 = |a|2 〈d|d〉 , (5.9)

which along with Equation 5.8 imposes that

〈d|d〉 = 2/τ. (5.10)

We now consider the time-reversed case of Equation 5.8. Now the resonator is
excited through |s−〉∗ by an exponentially growing incident wave at frequency ω =
ω0 − j(1/τ). The time-reversed solution to this system must be the time-reversed
version of Equation 5.7 with ω = ω0 − j(1/τ):

a∗ =
(〈κ|s−〉)∗

2/τ
=

(〈κ|d〉 a)∗

2/τ
(5.11)

where we used Equation 5.2 with no excitation. This imposes that

〈κ|d〉 = 2/τ = 〈κ|d〉∗ . (5.12)

This along with Equation 5.6 and 5.10 leads to

|κ〉 = |d〉 . (5.13)

The exponentially growing excitation |s−〉∗ in the time-reversed case must also
satisfy the constraint that no outgoing wave leaks through |s+〉. To insure this, we
must have in the time-reversed Equation 5.2

0 = C |s−〉∗ + a∗ |d〉 = a∗C |d〉∗ + a∗ |d〉 , (5.14)
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leading to one last constraint:

C |d〉∗ = − |d〉 . (5.15)

These considerations show that the coupling coefficients are connected to the direct
scattering process because of energy conservation and time reversal symmetry. When
designing a CMT model, one needs to account for all these constraints.

Until now we did not consider losses. In Equation 5.8, the resonator only loses
its energy through the ports and there are no absorptive losses inside the cavity. To
account for losses, a new term must be added to Equation 5.1:

da(t)

dt
=

(
jωres −

1

τ
− 1

τ0

)
a(t) + (〈κ|∗) |s+(t)〉 (5.16)

where τ0 is the cavity lifetime if the resonant mode does not couple to ports [81]. This
1/τ0 term is not constrained by energy conservation, and is independent from the
coupling coefficients and from the direct scattering process. A common practice is to
find a set of CMT parameters consistent with time reversal and energy conservation
and to add losses to that model [83].

5.1.2 Multimode resonator

In Section 5.1.1, we showed how to describe a single mode resonator coupled to
multiple ports with a CMT model. In this section, we will extend this case to
multimode resonators, again coupled to multiple ports, following [84]. We now
consider a cavity supporting n modes. In this case, the mode amplitude is now a
vector a(t) (with n rows) and the resonance frequency ω0 of the single mode case
becomes a n× n matrix Ω with the respective frequencies as the diagonal elements.
The mode amplitudes, when not coupled to any ports, obey the equation

da(t)

dt
= jΩa. (5.17)

The modes in a are typically coupled to each other and this coupling is determined
by the off-diagonal elements of Ω. As in Section 5.1.1, |ai|2 is normalized so that it
corresponds to the energy stored inside the i-th mode. If there is no loss or gain in
the resonator, the energy is conserved and Ω must be Hermitian. If the system is
connected to m ports, the CMT equations for the multimode resonator are similar
to those of the single mode resonator. In matrix notation, they read

da(t)

dt
= (jΩ− Γ)a(t) +KT |s+〉 (5.18)

|s−〉 = C |s+〉+Da (5.19)

where Γ is an n × n Hermitian matrix representing the decay rates, K and D are
m × n coupling matrices, and C is an m × m scattering matrix describing the
direct scattering pathway. Time reversal and energy conservation impose a set of
constraints on these matrices. With arguments similar as those developed in 5.1.1,
one can show that the following relations must be respected:

D+D = 2Γ (5.20)
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K = D (5.21)

CD∗ = −D. (5.22)

5.2 Fano resonances

In this section we will derive the transmission, reflection and absorption coefficients
of a lossy single-mode cavity coupled to two ports using the framework of Section 5.1.
We will then compare these results to the well-known Fano resonance lineshape,
where a discrete state (here the mode a with resonance frequency ωres) interacts
with a continuum of modes (here the radiation through the ports). This model will
be used in Chapter 6 to describe a graphene nanoribbon array. In that case, the
mode amplitude a will represent the plasmonic mode inside the plasmonic resonance
(see Figure 5.2). We suppose that light is incident only from port 1 (so s2+ = 0).

Figure 5.2: Diagram of the coupled mode system used to describe a graphene plas-
monic array resonance. The incident and transmitted/ reflected light is represented
by the four ports. If one wants to compute the transmission, reflection and ab-
sorption coefficients, one of the input port must be set to 0. The plasmonic mode
is represented by the mode amplitude a(t) and can couple to light through all the
ports.

Moreover, since the system possesses mirror symmetry, we suppose that d2
1 = d2

2.
Then by only considering even plasmonic modes (with respect to the mirror plane),
we can set d1 = d2 = d. From the previous section, we know that d must have the
form

√
2/τejθ where θ is real. In this case, the scattering matrix also acquires the

special form

C = ejφ
(
r jt
jt r

)
(5.23)

where r, t and φ are real and r2 + t2 = 1. By using Equations 5.10 and 5.15, one
finds that the constraint

t = sin(φ− 2θ) (5.24)
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must be respected. For this setup, Equations 5.1 and 5.2 become

da(t)

dt
=

(
jωres −

2

τ
− 1

τabs

)
a(t) +

√
2

τ
ejθs1+(t) (5.25)

s2−(t) = jteiφs1+ +

√
2

τ
ejθa(t) (5.26)

s1−(t) = reiφs1+ +

√
2

τ
ejθa(t). (5.27)

Note that here we added a 1/τabs to account for losses inside the plasmonic cavity.
This loss parameter is not connected to κ and d and is not constrained by energy
conservation [83]. We suppose that the incident light in port 1 has a harmonic
time dependence ejωt. Since in this case there are no non-linear properties or time-
dependent parameters, a(t) has the same harmonic time-dependence. This allows
to rewrite Equation 5.25 as

a =

√
2
τ
ejθs1+

j (ω − ωres) +
(√

2
τ

+
√

1
τabs

) (5.28)

The transmittance, reflectance and absorptance (T , R, and A respectively) are then
given by

T =
|s2+|2

|s1+|2
, R =

|s1−|2

|s1+|2
, A = 1− T −R. (5.29)

By using Equations 5.24 to 5.28, one finds the coefficients from Equation 5.29:

T (ω) =
[t(ω − ωres) + r(2/τ)]2 + t2(1/τabs)

2

(ω − ωres)2 + [(2/τ) + (1/τabs)]
2 (5.30)

R(ω) =
[r (ω − ωres)− t (2/τ)]2 + r2 (1/τabs)

2

(ω − ωres)
2 + [(2/τ) + (1/τabs)]

2 (5.31)

A(ω) =
(4/τ)(1/τabs)

(ω − ωres)2 + [(2/τ) + (1/τabs)]
2 . (5.32)

This specific type of resonance prevents the transmission to reach a 0 value when
losses are present in the cavity. In the lossless case however (when 1/τabs = 0),
Equations 5.30 and 5.31 are the well-known Fano asymmetric lineshapes.

A Fano resonance typically occurs when a discrete energy state interacts with
a continuum of energy states. This phenomena was first described by Ugo Fano
in 1961 [85] but a special case of Fano resonances had already been studied in
1935 [86]. The Fano resonance extinction cross-section σ(E) is described by the
general formula [87]

σ(E) = D2 (q + Ω)2

1 + Ω2
(5.33)

where E is the energy, q = cot δ is the Fano parameter describing the asymmetry of
the lineshape, δ is the phase shift of the continuum, Ω = 2(E−E0)/Γ where E0 and
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Γ are the resonator resonance frequency and width, respectively, and D2 = 4 sin2 δ.
This form of σ(E) can describe different optical spectra, such as the transmission
and scattering, and thus appears in a wide variety of photonic phenomena. For
example the scattering of dielectric spheres, rods and stacks of dielectric layers can
all be considered as Fano resonances [88–90]. A typical photonic design achieving a
Fano resonance is a waveguide coupled to a cavity resonance or to a defect [91, 92].
In the case of a side-coupled cavity, the transmission can be expressed using the Fano
formula. The demonstration in the beginning of this Section can actually describe
a waveguide coupled to a side-cavity (with losses). This shows that CMT models
are fairly general in their formulation and can be used to describe a wide range of
coupled systems.

The Fano parameter q is responsible for the symmetric or asymmetric lineshape
of the transmission and reflection coefficients. Figure 5.3 shows how the phase shift
δ and Fano parameter q affect that lineshape. For cases where q = ±∞ (or δ = nπ,
with n an integer), the external field does not couple to the continuum. When
q = 0 (or δ = π/2 + nπ, with n an integer), the cavity mode does not couple to the
continuum. These two cases yield symmetric Lorentzian lineshapes. For all other q
values, the lineshape is asymmetric and is called a Fano lineshape. In this thesis,
the coupled resonances we consider (graphene plasmonic resonances) have a Fano
lineshape, because the incident field is coupled to the cavity modes as well as to the
continuum modes.

5.3 Perturbation method

In this section, we will describe a method to find an approximate expression for the
eigenvalues of a Hermitian matrix. This method is useful to describe non-degenerate
eigenvalues, but also very appropriate for two nearly degenerate eigenvalues. This
will be employed in Chapter 8 when we deal with an infinite Floquet Hamiltonian,
where the unperturbed modes cross and give rise to nearly degenerate eigenval-
ues. These two unperturbed branches lead to an anti-crossing, and we will use this
perturbation method to approximate the eigenvalues in those specific cases.

This section is based on the perturbation method developed by J. Shirley in his
thesis [93] in the context of atomic physics, where the coupling between atomic states
in an intense field is considered as a time-dependent variable [94]. In this thesis, we
will consider time-dependent resonance frequencies (diagonal elements in the initial
Hamiltonian) instead of time-dependent coupling coefficients (off-diagonal elements
in the initial Hamiltonian), but the perturbation method remains identical.

We start by considering the eigenvalue equation(
E0 + V

)
A = AE (5.34)

where E0 and V are given Hermitian matrices, A is the unitary matrix of eigenvectors
and E is the diagonal matrix with the unknown eigenvalues. In this equation, the
initial Hamiltonian is separated into an unperturbed matrix E0 and the perturbation
matrix V . We also suppose that E0 is already diagonal. We rewrite Equation 5.34

AE − E0A = V A (5.35)
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Figure 5.3: Fano parameter as a function of the continuum phase shift and different
lineshapes in the corresponding cases [87]. Fano asymmetric lineshapes occur when
the Fano parameter is different than 0 and does not take infinite values.

and by writing it out component by component, we find∑
k

(
AikEkδkp − E0

i δikAkp
)

=
∑
k

VikAkp (5.36)

AipEp − E0
iAip =

∑
k

VikAkp. (5.37)

By solving for the eigenvectors Aip, we find

Aip =
∑
k

VikAkp
Ep − E0

i

. (5.38)

In this notation, p denotes a column (so a particular eigenvector), so Aip is a spe-
cific unknown eigenvector component, associated with the unknown eigenvalue Ep.
Equation 5.38 is a transcendental equation and we will use approximations to solve
it.
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We now suppose that two eigenvalues in the unperturbed initial Hamiltonian
E0 are nearly degenerate. This means that terms Ep − E0

i are small compared to
components of V except for two indices i = p and i = q. Now when considering
Equation 5.38, one notices that two terms (in App and Aqp) will be large compared
to the rest of the sum. We can explicitly separate these terms from the rest of the
sum:

Aip =
VipApp
Ep − E0

i

+
ViqAqp
Ep − E0

i

+
∑
k′

Vik′Ak′p
Ep − E0

i

(5.39)

where k′ runs over all the matrix indices except for p and q. The next step is to
solve the implicit Equation 5.39 by iteration:

Aip =

(
Vip

Ep − E0
i

+
∑
j′

Vij′Vj′p
(Ep − E0

i )(Ep − E0
j′)

+ ...

)
App

+

(
Viq

Ep − E0
i

+
∑
j′

Vij′Vj′q
(Ep − E0

i )(Ep − E0
j′)

+ ...

)
Aqp.

(5.40)

By setting i = p in Equation 5.40 and multiplying by (Ep − E0
p) we find

EpApp = E0
pApp + Vpp(Ep)App + Vpq(Ep)Aqp (5.41)

with

Vpp(E) = Vpp +
∑
i′

Vpi′Vi′p
E − E0

i′
+
∑
i′

∑
j′

Vpi′Vi′j′Vj′p
(E − E0

i′)(E − E0
j′)

+ ... (5.42)

Vpq(E) = Vpq +
∑
i′

Vpi′Vi′q
E − E0

i′
+
∑
i′

∑
j′

Vpi′Vi′j′Vj′q
(E − E0

i′)(E − E0
j′)

+ ... (5.43)

We cannot yet solve Equation 5.41 because we cannot cancel App terms because of
the presence of an Apq term. We need another equation that we obtain by considering
Equation 5.40 for i = q, and multiplying by (Ep − E0

q ). This gives

EpAqp = E0
pAqp + Vqp(Ep)App + Vqq(Ep)Aqp (5.44)

where Vqp and Vqq are defined by similar relations as Equations 5.42 and 5.43. Equa-
tions 5.41 and 5.44 can be combined into an equation system:(

E0
p + Vpp(E) Vpq(E)
Vqp(E) E0

q + Vqq(E)

)(
App
Aqp

)
= E

(
App
Aqp

)
(5.45)

which is an implicit equation for the eigenvalues Ep and Eq of the initial eigenvalue
problem of Equation 5.34. By diagonalizing the 2 by 2 matrix, we can find these
eigenvalues. To solve this implicit equation, we will choose a starting point for E
corresponding to an unperturbed energy and compute the Vij to the first order, to
obtain a relatively simple analytical expression. The same procedure can be applied
to more than two-fold degenerate cases, but the complexity of the expressions rapidly
increases.
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5.4 Finite Element Method

In this thesis, we study complex electromagnetic structures both in frequency do-
main and in time domain. We use numerical simulations methods such as the Finite
Element Method (FEM) to solve problems in both cases. We use a commercial pack-
age called COMSOL Multiphysics [95, 96] where these numerical tools are readily
available.

FEM methods are used to compute the approximation of a Partial Differential
Equation (PDE). First the simulation space is divided in a large number of volume
elements. This division is called a mesh. All these elements do not have to be equal
in size, or in shape. The mesh structure can be chosen depending on the expected
form of the solution. Typically, plasmonic modes exhibit a high field enhancement
around sharp edges (at the end of ribbons in graphene for example). In those cases,
one needs to choose a mesh with smaller elements around these sharp features,
while larger mesh elements in free space suffice (typically 10 1D mesh elements per
wavelength is adequate). Usually, tetrahedral elements are used in FEM because
they allow to closely follow curved boundaries (see Figure 5.4 for a mesh example).
However, depending on the symmetry of the structure, other types of elements can
be used.

Figure 5.4: Mesh used for a graphene ribbon array. Mesh elements close to the
ribbon edges are smaller so the sharp field features occurring at these positions are
accurately described. Mesh elements further away become larger but still remain
smaller than the vacuum wavelength.

In 2 dimensions, the unknown solution ψ(x, y) is then approximated for each
element by

ψ(x, y) =
M∑
i=1

uibi(x, y) (5.46)

where bi is one of the M basis functions chosen for a specific structure. To solve the
problem, one needs to find the coefficients ui for each of the K mesh elements. Then,
constraints are introduced at the boundaries to find M ∗ K equations connecting
the ui. Then one needs to find a functional J with variable ψ such that the function
ψ that minimizes J will be a solution of the physical problem. Typically, J is
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connected with the total power in the system. Since the basis function bi are chosen
in advance, J only depends on the parameters ui. In other words, one only needs to
find the ui that minimize J , for example by solving the linear system ∂J/∂ui = 0.

This technique is useful to solve eigenmode and eigenfrequency problems, as well
as to obtain numerical values for the scattering matrix of a structure. In this thesis,
we used COMSOL Multiphysics where the numerical method described above is
readily implemented. We used COMSOL’s Stationary solver to find the eigenvalues
and eigenmodes of plasmonic structures as well as their response to an external field
(to compute transmission, reflection and absorption coefficients).

In addition to these stationary techniques, we used time-dependent FEM to de-
scribe the evolution of plasmonic systems when a time-dependent modulation is
applied to the system’s material properties. We used the Time-Dependent COM-
SOL solver for these cases. Note that here the method used to solve the problem is
different: one needs to solve dynamic PDEs. For these, numerical methods such as
Backward Differentiation Formulas (BDF), generalized-α or Runge-Kutta methods
can be used. We chose to use the generalize-α methods because they include strate-
gies to minimize losses for high-frequency components. We also imposed a stepsize
of ∆t = T/40, where T is the period corresponding to the center frequency of the
initial pulse.

Now we will briefly explain how these methods are used throughout this thesis.
First, eigenfrequencies and eigenmode results from FEM simulations are used to
compute the resonance frequency of plasmonic modes. For example, the resonance
frequencies of plasmonic modes in graphene ribbon arrays can be calculated, as well
as their dispersion diagram. We also used these to compute the mode profiles in a
graphene plasmonic waveguide for Chapter 7. The stationary solver can also be used
to get the scattering matrix of a structure. This feature was used to compute the
transmission, reflection and absorption spectra of graphene plasmonic arrays. These
spectra are then used to extract the CMT parameters of the simulated structure by
fitting the CMT transmission expression to the numerical results. This allows us
to study the system with the CMT model when CMT parameters are a function of
time, as we do in Chapter 6.

The time dependent solver was used to study plasmonic structures where a pa-
rameter depends on time. We used this Solver in Chapters 6 and 7. This allows
us to compare time-dependent CMT results to time-dependent FEM simulations,
and to check that CMT stays accurate when a time dependence is introduced in
the system. We also used this solver to study propagative graphene plasmons when
graphene properties change dynamically. It is important to note that these sim-
ulations are not stationary: a wide range of frequency components are present in
the system and with this solver, we are able to describe their evolution, and to
characterize frequency changes that occur during the simulation time.
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6
Frequency comb generation

Graphene plasmonics has been under intensive investigation these past years [97],
as described in Chapter 4. The particular plasmonic modes exhibit very interesting
properties such as a strong confinement, a large tunability via the graphene Fermi
level and relatively low losses [98]. Arrays of graphene elements like disks [99] or rib-
bons [76, 100] lead to remarkable properties such as coherent perfect absorption [75].

In another line of research time modulation is studied to realize very special opti-
cal functions, such as optical isolation [26], wavelength conversion [16, 101], effective
magnetic fields [37, 102], topological states of light [35, 38] and more recently comb
generation [103, 104]. Indeed, time modulation proves useful to break certain sym-
metry constraints, for example in metasurfaces [105]. Furthermore, experimental
devices have already been built, amongst others to realize interband photonic tran-
sitions in waveguides [28] or non-reciprocal acoustic circulators [25], demonstrating
the experimental feasibility of such modulations.

Recently, time modulation and graphene were combined to achieve non-reciprocal
graphene devices [32], electro-optic modulators with a modulation of 30 GHz [51],
and to introduce a new mechanism for frequency comb generation [106]. The latter
work shows that a frequency comb can be achieved by sending a monochromatic
pulse through a non-patterned graphene sheet with a time-dependent conductivity,
generating an output composed of evenly spaced frequency components. These
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different spectral lines are separated by the frequency of the modulation applied to
the graphene sheet. In essence, the input signal becomes interrupted or screened by
the sheet in its high-conductivity state, leading to a modulated transmission, and
new frequency components.

In this chapter we expand upon this comb mechanism by using the interplay of
light with a graphene plasmonic cavity. Here, the cavity mode corresponds to the
plasmonic resonance of a patterned graphene ribbon grating with a time-dependent
conductivity. The grating structure is needed to obtain a resonance, as the incoming
light cannot excite plasmonic modes in a pristine graphene sheet.

With suitable parameters the grating mode drastically enhances comb genera-
tion requiring smaller Fermi level modulations, in comparison with the planar sheet.
In our method we tune the incoming signal close to a strong resonance, and the
graphene modulation periodically switches the signal in and out of resonance, lead-
ing to strong transmission modulations. Because the procedure works with a shifting
resonance, instead of a non-resonant screen modulation, we need much smaller mod-
ulations of the graphene Fermi level.

For this analysis we employ an accurate and efficient temporal coupled-mode
theory (CMT) model [81, 82], which is validated with finite element method (FEM)
simulations. With CMT we can show how the frequency comb is tuned via the
grating’s structural parameters. Subsequently, the interplay between the cavity
mode lifetime and the modulation time is elucidated. We first examine the general
optical properties of graphene gratings (Section 6.1) and show that the plasmonic
resonances in these arrays exhibit a high sensitivity to the Fermi level (Section 6.2).
We demonstrate how these systems can be modelled with CMT first in the ’static’
case (Section 6.3) and we compare our theoretical model with realistic simulations to
extract the parameters of our CMT model. Then we extend the model to dynamical
structures, where the resonant frequency of the system becomes a function of time
and generates frequency combs (Section 6.4). We compare FEM simulations with the
CMT predictions and show an excellent agreement between those two approaches.
Furthermore, using the CMT model we provide insight into the cavity dynamics and
its coupling with incoming light. Next we compare the combs of graphene gratings
with those of a non-patterned sheet and show that the patterned case is a significant
improvement since the Fermi level modulations needed to achieve similar combs are
smaller by three orders of magnitude (Section 6.5). In the penultimate section we
link the grating and time modulation parameters to the generated frequency combs
(Section 6.6) before concluding. This chapter is based on the work published in [10].

6.1 Graphene ribbon lattice

In this section we briefly describe the structure under investigation: a lattice of
graphene nanoribbons under normal light incidence (Figure 6.1). The structure is
periodic in the direction of the ribbon small axis (x), and infinite in the direction of
the ribbon long axis (z). This type of grating can be fabricated by chemical vapor
deposition, optical lithography and plasma etching [76]. Nanoribbon arrays can also
be produced using helium ion beam lithography [65], achieving ribbon widths down
to 5 nm with remarkable precision, as described in Chapter 3.
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Figure 6.1: Infinite lattice of graphene ribbons, with lattice period L and ribbon
width D. We use normal TM incidence to couple with the leaky plasmonic modes
of the lattice (fields are depicted in blue, k0 is the free space propagation constant).

For the two-dimensional FEM simulations graphene is modelled as a current line
with conductivity that follows a Drude-like model [41, 107]:

σ(ω) =
e2EF
π~2

−j
ω − jτ−1

gra

(6.1)

This expression is valid when the graphene Fermi level EF � kBT , with kBT ≈
0.026 eV at room temperature. The parameter τgra accounts for electron scattering
(we use τgra = 10 ps [74]). Since this expression only takes into account intraband
electronic transitions, it is valid for ~ω � EF . As we work in the infrared range and
with rather high Fermi levels this assumption is satisfied. The graphene conductivity
as a function of the frequency is represented in Figure 6.2. It is clear that the
conductivity depends on the Fermi level, therefore, in later sections we will exploit
a time-dependent Fermi level for dynamic modulation of the conductivity.

We first investigate the (static) optical properties of the grating by carrying out
FEM simulations with Comsol Multiphysics [95] to compute the transmittance,
reflectance and absorptance spectra (Figure 6.3) for a graphene grating with period
L = 10 µm, ribbon width D = 8.75 µm and EF = 0.635 eV. We obtain three
resonances: a broad fundamental mode at low frequency, and two narrower higher-
order modes. The higher-order modes have slightly asymmetric lineshapes, which is
characteristic of Fano resonances. It indicates the interference between a broadband,
‘background’ transmission, with the narrowband mode [83, 108] (as described in
Chapter 5).

For the incident light frequency and grating period we consider, there are no
(non-zeroth) Bragg diffraction orders in the surrounding air (the incident light has



48 6 • Frequency comb generation

0.2 0.4 0.6 0.8 1 1.2 1.4

Frequency [Hz] ×1013

0

0.5

1

1.5

2

2.5

ℜ
(σ
)
(S
)

×10−4

-0.015

-0.01

-0.005

0

ℑ
(σ
)
(S
)

EF = 0.535 eV
EF = 0.635 eV
EF = 0.735 eV

Figure 6.2: Real (solid lines) and imaginary parts (dashed lines) of the graphene
conductivity of Equation 6.1 for various Fermi levels. At these frequencies graphene
is metallic and supports plasmonic modes in graphene sheets and graphene ribbon
lattices.

a frequency of the order of 10 THz that gives a vacuum wavelength of 30 µm and
the lattice period is L = 10 µm giving a ratio L/λ = 0.3). One should note that
only even modes are excited because of the parity of the incident light [109]. We can
understand each resonance in Figure 6.3 as a coupling to a plasmonic cavity array
mode.

6.2 Dependence on the Fermi level

A key element required to generate frequency combs in this setting is that the
resonances of Figure 6.3 are sensitive to the graphene Fermi level. This will allow
us to modulate EF and change the resonance frequencies of the plasmonic modes.
Thus we need to know the dependence of the modal parameters on the Fermi level
to develop an analytic model describing this comb generation mechanism.

We compute with FEM the transmittance of the grating as a function of the fre-
quency and the Fermi level (Figure 6.4). The resonance frequency strongly depends
on the Fermi level, whereas the other parameters τ and τabs (influencing the shape
of the resonance) are fairly independent of EF . Moreover, we obtain a linear ex-
pression fres(EF ) = 1.46× 1013Hz eV−1EF + 6.23× 1011Hz that links the resonance
frequency to the Fermi level for a given lattice geometry (green line in Figure 6.4).

The lattice resonances lead to a transmission that depends much more strongly
on the Fermi level than in the planar case. To show this in detail we look at the
transmission of a free-standing graphene sheet [110], and compare it with the lattice
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Figure 6.3: Transmittance T , reflectance R and absorptance A of a graphene grating
with L = 10 µm, D = 8.75 µm and EF = 0.635 eV calculated with FEM. Each dip
in transmission indicates the presence of a plasmonic mode that matches the parity
of incident light and lies above the light line thus allowing coupling with radiation.

case. The Fresnel coefficients for free standing graphene are

ffresnel(ω,EF ) = 1− rfresnel(ω,EF ) (6.2)

rfresnel(ω,EF ) =
σ(ω,EF )η

[σ(ω,EF )η + 2]
(6.3)

where ffresnel and rfresnel are the Fresnel transmission and reflection coefficients, re-
spectively, and η is the vacuum impedance. These Fresnel coefficients give the
transmittance and reflectance via: T = |ffresnel|2 and R = |rfresnel|2. In Figure 6.5
we compare Equations 6.2 and 6.3 (solid lines) to FEM simulation results (dots)
where we use the Drude conductivity of Equation 6.1 with ω = 2π × 1013 rad/s,
EF = 0.635 eV and τgra = 10−11 s. These results are obtained at normal incidence.
We also plot the transmittance and reflectance from FEM simulations for the grat-
ing considered in the previous section (dashed lines). From Figure 6.5 it is clear
that the transmission does not change significantly with small EF variations in the
planar case, whereas the lattice case exhibits a strong sensitivity on the Fermi level.

6.3 CMT model of graphene ribbon arrays

We can fit each resonance of the spectrum in Figure 6.3 with a CMT model [81, 82],
which allows us to extract the cavity properties (such as its resonance frequency,
coupling coefficients and absorption losses). We only need a model with a single
resonant mode with amplitude a(t), coupled to two ports s1,2±(t), as introduced in
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Figure 6.4: Transmittance as a function of incident frequency and Fermi level. The
dip in transmittance corresponds to a plasmonic resonance (middle peak in Fig-
ure 6.3). The resonance frequency is a linear function of the Fermi level (green
line). The shape of the resonance remains unchanged, meaning that the coupling
coefficients do not depend on EF .

Chapter 5 (see Figure 6.6). These quantities are normalized so that |a(t)|2 is the
energy inside the cavity, and |s1,2±(t)|2 is the power flowing through the ports.

In our situation, incident light only comes from the top of our structure (port
1), so s2+ = 0. Furthermore, the system is symmetric so that the cavity coupling
is the same for both ports: κ1 = κ2 = κ and d1 = d2 = d. In a lossless cavity
time-reversal symmetry also requires that κ = d. Here, our system exhibits losses
so we add a term 1/τabs accounting for absorption in the cavity, which is separate
from the cavity external coupling: the total cavity decay rate 1/τtot = 2/τ + 1/τabs

is the sum of the decay rates from the coupling to the (two) outgoing ports 1/τ and
the absorption rate in the cavity 1/τabs.

Furthermore, the slightly asymmetric Fano lineshapes indicate a direct transmis-
sion channel f , for light passing the structure without interaction with the particular
mode. With these assumptions the CMT equations become:

da(t)

dt
=

(
jωres −

1

τtot

)
a(t) + κs1+(t) (6.4)

s2−(t) = κa(t) + jejφfs1+(t) (6.5)

where ωres is the resonance frequency of the cavity. Time-reversal arguments and
energy conservation require that κ = ejθ

√
2/τ [81, 83]. One of the phases θ or φ can
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Figure 6.5: Transmittance T and reflectance R of a graphene sheet as a function
of EF from Equations 6.2 and 6.3 (solid lines), and from FEM simulations (dots).
FEM simulation results for the lattice case with L = 10 µm and D = 8.75 µm are
shown in dashed lines. The lattice case exhibits a strong dependence on the Fermi
level whereas in the planar case this dependence is much weaker.

be chosen arbitrarily by a choice of reference planes, but time-reversal arguments
require that θ = [arcsin(f) + φ− π]/2 + kπ, where k is an integer.

This model allows to find expressions for the transmittance, reflectance and
absorptance spectra of such a cavity. They read:

T (ω) =
|s2−|2

|s1+|2
=

[f(ω − ωres) + r(2/τ)]2 + f 2(1/τabs)
2

(ω − ωres)2 + [(2/τ) + (1/τabs)]
2 (6.6)

R(ω) =
|s1−|2

|s1+|2
=

[r (ω − ωres)− f (2/τ)]2 + r2 (1/τabs)
2

(ω − ωres)
2 + [(2/τ) + (1/τabs)]

2 (6.7)

A(ω) =1− T (ω)−R(ω)

=
(4/τ)(1/τabs)

(ω − ωres)2 + [(2/τ) + (1/τabs)]
2

(6.8)

where r =
√

1− f 2. We then fit the parameters for the CMT spectrum (a fit to the
transmittance spectrum of Equation 6.6 suffices to extract all parameters) around
a specific resonance to the FEM simulations (Figure 6.7). This analysis is easily
generalized for other resonances by adjusting the CMT model parameters accord-
ingly. Finally, the obtained parameters are τ = 4.67× 10−12 s, τabs = 1.01× 10−11 s,
f = −0.98 and ωres = 2π 1.08× 1013 rad/s. Here, we use a dispersionless graphene
sheet: we work around a frequency of 10 THz (ω = 2π × 1013 rad/s) so we use
a conductivity value corresponding to that frequency for the forthcoming results.
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Figure 6.6: Schematic of the CMT model. The cavity models a single plasmonic
resonance of the lattice coupled to two ports. The direct channel (f) accounts for
light that passes through the grating without interacting with the plasmonic mode.

We use this assumption because the graphene conductivity is not very dispersive at
these frequencies.

We now know the CMT parameters for the graphene ribbon arrays. These
parameters are tunable via the lattice properties such as the ribbon spacing [74] or
the graphene Fermi level EF , as we exploit in the next sections.

6.4 Dynamic CMT model

The main focus of this chapter is frequency comb generation. In order to achieve
this, we use the graphene lattice and apply a dynamic modulation: the Fermi level
EF (and thus conductivity) of the graphene ribbons will be a function of time. This
can be achieved by applying a gating voltage to the graphene lattice [48, 50, 76, 111].
The exceptional tunability with gating voltage originates both from graphene’s 2D
structure and the low density of states around the Fermi level, allowing carrier
concentration changes to significantly shift the Fermi level [49].

As seen in Figure 6.4, the cavity resonance frequency ωres strongly depends on
EF so ωres will indirectly be a function of time. Explicitly, we adjust the CMT
Equation 6.4 as:

da(t)

dt
=

{
jωres[EF (t)]− 1

τtot

}
a(t) + κs1+(t) (6.9)

while Equation 6.5 is unchanged. Thus, we suppose that the coupling coefficients,
decay rates and direct transmission do not depend on the Fermi level (indeed, the



6.4 Dynamic CMT model 53

Frequency [Hz] ×1013
0.95 1 1.05 1.1
0

0.2

0.4

0.6

0.8

1

T
R
A

Figure 6.7: FEM simulation results (dots) and CMT fit (solid lines) of the transmit-
tance, reflectance and absorptance spectra of a graphene grating near a plasmonic
resonance (second peak in Figure 6.3). The CMT model allows for a good fit with
the FEM results.

shape of the transmission spectrum remains unchanged with respect to EF in Fig-
ure 6.4).

We solve Equation 6.9 with a nearly monochromatic Gaussian input pulse:

s1+(t) = exp
[
−(t− t0)2/q2

]
exp [jω0(t− t0)] , (6.10)

where q gives the width of the pulse, ω0 is the pulse central angular frequency, t0 is
the pulse center time. For the dynamics we use a sinusoidal modulation EF (t):

EF (t) =
EFmax − EFmin

2
sin(ωmodt) +

EFmax + EFmin

2
, (6.11)

where EFmin (EFmax) is the minimum (maximum) Fermi level of the grating during
the modulation, and ωmod is the modulation frequency.

The Fermi level and resonance frequency are linked: ωres is a linear function of
EF (Figure 6.4). Thus ωres has the same periodicity as EF (t), and since we know
the exact dependence ωres[EF (t)] we can numerically solve Equation 6.9. The cavity
amplitude a(t) is then injected in Equation 6.5 to get the output s2−(t).

The peak chosen for Figures 6.4 and 6.7 exhibits a strong dependence on the
Fermi level. This is a key element to enable frequency comb generation: if the
resonance frequency of the plasmonic mode does not strongly depend on the Fermi
level, there will be no efficient modulation of the resonance frequency, then the
response via the graphene conductivity changes only slightly, leading to similar
results as in the planar case. One can show that the resonance frequency dependence
on the Fermi level becomes stronger as the mode order increases (this can be seen in
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Figure 4.7 for example). The peak chosen here is the result of a trade-off: it is not
too narrow (we do not need to have a sharp pulse in the frequency domain and thus
not an excessively long simulation time) and it exhibits a dependence on the Fermi
level sufficient to enable efficient frequency comb generation. However this analysis
can be applied to any of the (even) plasmonic resonances of the graphene array.

Now we compare results predicted by our CMT model with FEM simulations.
The static graphene lattice parameters are the same as in Section 6.1. For the
modulation we use EFmin = 0.62 eV, EFmax = 0.65 eV and ωmod = 2π × 1011

rad/s. For the pulse parameters ω0 = 2π 0.99× 1013 rad/s and q = 1250/ω0. These
parameters are chosen so that ω0 is close to the dynamic resonance frequency ωres(t)
during the modulation, and the pulse length q is longer than the modulation period.
This allows the peaks in the frequency comb to be separate from each other: q is
linked to the frequency width of the pulse, and the spacing between the comb peaks
is given by the modulation frequency.

In order to validate the CMT model, we compare it with rigorous time domain
FEM simulations using Comsol Multiphysics. By fitting the transmission from
the CMT model (Equation 6.6) to our static simulation results (Figure 6.7), we
already established the parameters for the CMT model for a graphene grating with
L = 10 µm, D = 8.75 µm and EF = 0.635 eV.

We then numerically solve the CMT equations with the pulse from Equation 6.10.
The pulse s1+(t) is a nearly monochromatic signal whereas the output s2−(t) is a
frequency comb (Figures 6.8(a) and 6.8(c)).

In FEM simulations, the pulse is a TM wave sent at normal incidence on the
graphene grating (as shown in Figure 6.1), so the electric field Ex(t) in the input port
is a gaussian pulse given by Equation 6.10. The output field amplitude Ex obtained
in the output port from FEM simulations is then represented in Figures 6.8(b)
and 6.8(c) in time and frequency domain, respectively.

The output s2− from CMT is represented in Figures 6.8(a) and 6.8(c) in time
and frequency domain, respectively. The spacing between the frequency peaks of
the comb is exactly equal to the modulation frequency ωmod applied to the graphene
grating. The output field amplitude Ex from FEM simulations is represented in
Figures 6.8(b) and 6.8(c) in time and frequency domain, respectively. All the results
in the frequency domain are normalized with the incident pulse maximum amplitude.

Results obtained using the very simple CMT model are in excellent agreement
with the simulation results both in time and frequency domain. The time and
frequency features are almost perfectly replicated by Equations 6.9 and 6.5 even
though the physical process is a complex interplay between time modulation, a
graphene plasmonic resonance, and the incident light. Since the main condition
for this comb generation mechanism is the modulation of a resonance frequency,
this method can be generalized to many other physical systems that meet these
requirements. Furthermore, the CMT model is very simple to solve numerically,
therefore we will use it now to analyze the comb mechanism in detail.

In the remainder of this section, we provide insight into the modulated cav-
ity dynamics using the CMT model. Figure 6.9(a) shows the solution |a(t)|2 (in
blue) for a smaller modulation frequency fmod = 0.01 THz and a longer pulse
(q = 12500/ω0 � 1/ωmod which is needed so that the cavity goes through several
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Figure 6.8: (a) Result of CMT calculations for the output <(s2−) in time domain
and (b) result of FEM simulations for the outgoing electric field Ex in time domain.
(c) Results of FEM simulations for the outgoing electric field Ex in frequency domain
(red) and CMT calculations for the output <(s2−) in frequency domain (blue). The
CMT model allows to perfectly replicate the FEM results both in time and frequency
domains.

modulation periods during the pulse) with the same parameters as in the beginning
of the section: EFmin = 0.62 eV, EFmax = 0.65 eV and ω0 = 2π 0.99× 1013 rad/s.
A measure of the instantaneous absorption of the cavity, which we call Ainst(t), is
represented in red in Figure 6.9(a). This is the absorptance value (red curve in
Figure 6.7) where the static resonance frequency is replaced by the instantaneous
cavity resonance frequency ωres(t) at a given time.

This figure illustrates the mechanisms taking place: when the cavity resonance
frequency ωres matches the frequency of the incident light ω0, the instantaneous
absorption coefficient increases because light couples to the lossy cavity (|a(t)|2 in-
creases). When ωres and ω0 are different, light does not interact with the cavity and
the field amplitude decays with the rate 1/τtot. During this decay new frequency
components are generated because the light is trapped inside the cavity and follows
its time-dependent resonance frequency.

This mechanism is also illustrated in Figure 6.9(b), showing the dynamic reso-
nance frequency of the cavity as a function of time fres(t), and the constant incident
light frequency f0 (horizontal blue line). When those two frequencies are equal, so
when fres sweeps through f0, we see that Ainst(t) increases (Figure 6.9(a)) and light
couples into the cavity.
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Figure 6.9: (a) Solution |a(t)|2 of the CMT equations in blue. The instantaneous
absorption of the cavity is represented in red. (b) Dynamically modulated resonance
frequency of the cavity (fres(t) in red) and incident light frequency f0 (in blue). When
these two frequencies are equal, light couples into the cavity.

6.5 Limitations of planar graphene for comb gen-

eration

In this section we compare frequency combs generated by a graphene grating and
a pristine graphene sheet [106]. The planar mechanism relies on a large change
of the sheet conductivity, thus changing considerably the transmission and acting
as a shutter for the incident light. On the other hand, the grating effect is quite
different, as it exploits plasmonic resonances that cannot be excited by incident light
in a planar sheet. The resonances are extremely sensitive to the grating properties,
therefore a slight change in Fermi level (also meaning a slight change in conductivity)
will lead to a large transmission change, achieving frequency comb generation for
a smaller modulation of EF than in the planar case. Furthermore, other temporal
phenomena take place when there are resonances, as we described in Section 6.4
regarding the cavity dynamics. We will determine that the combs generated by
the graphene grating require lower Fermi level modulations than in the planar case
(of course for specifically chosen parameters: if one were to modulate the grating
around frequencies where no plasmonic resonances exist, the effects would be similar
for the planar and grating case).

In order to model comb generation in the planar case we use a time dependent
Fresnel transmission coefficient [110], and use the same notation for the input s1+(t)
and output s2−(t) as we use for the CMT model. The link between the two ports is
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now:

s2−(t) = ffresnel [EF (t)] s1+(t) (6.12)

where ffresnel is the Fresnel transmission coefficient of a free standing graphene sheet
at normal incidence [110] of Equation 6.2.

To compare the combs produced by gratings and planar sheets, we examine
two similar combs produced by the two structures (Figure 6.10), and check the
needed modulation amplitude. To match a comb produced by a graphene lattice
(Figure 6.10(a)) with a modulation of ∆EF = 0.03 eV, one needs a modulation of
∆EF = 10 eV (not a physically attainable value) in the planar case (Figure 6.10(b)).
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Figure 6.10: Generated frequency combs with (a) a graphene nanoribbon array
(L = 10 µm, D = 8.75 µm and f0 = 0.99× 1013 Hz) with Fermi level modulated
between 0.62 eV and 0.65 eV (dynamic CMT model results) and with (b) a planar
graphene sheet with Fermi level modulated between 0 eV and 10 eV. The lattice
case needs Fermi level modulation amplitudes that are three order of magnitude
smaller than in the planar case.

This significant improvement occurs because we exploit the sharp spectral fea-
tures of a graphene grating to efficiently generate frequency combs, whereas the
transmission of a graphene sheet is almost constant for a small variation of EF in
the planar case (Figure 6.5). The drastic change in transmission in the lattice case
is due to the strong dependence of the cavity resonance frequency, while the change
in transmission in the planar case only happens because of the conductivity change.

Note also that the combs in the planar case can only be tuned by choosing
the input frequency and the modulation frequency, leading to symmetric outputs,
whereas it is possible to obtain asymmetric combs in the lattice case, as discussed
in the next section.
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6.6 Connecting grating and comb properties

The generated frequency combs in gratings are widely tunable because of the numer-
ous lattice and time modulation degrees of freedom. For the lattice, the ribbon width
D, lattice period L, electron relaxation time τgra and Fermi level EF determine the
shape of the transmission spectrum [74]. Here we have additional parameters con-
cerning the modulation such as its frequency ωmod and bounds EFmin and EFmax. In
this section we determine how these parameters influence the shape of the generated
frequency combs.

Firstly, the different frequency components in the comb are always separated
exactly by the modulation frequency. Figure 6.11 shows several outputs produced
with different modulation frequencies fmod = ωmod/(2π): from fmod = 1011 (foremost
curve) to fmod = 1012 Hz (curve at back). The output signal is basically a modulated
version of the incident pulse consisting of smaller pulses separated by the period of
the modulation (see Figure 6.8(a)). In the frequency domain this corresponds to a
frequency comb where the spacing between frequency components is given by the
modulation frequency.
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Figure 6.11: Frequency combs generated for several values of fmod. Cavity param-
eters are the same as those described in Figure 6.7, the pulse is the same as in
the beginning of Section 6.4, the modulation has the form of Equation 6.11 with
EFmin = 0.535 eV and EFmax = 0.735 eV. The frequency spacing between the dif-
ferent components of the comb is always equal to fmod.

Furthermore, it turns out that the symmetry of the comb around the input fre-
quency f0 depends on the minimum and maximum frequency of the cavity during
the modulation (fmin = fres(EFmin) and fmax = fres(EFmax), respectively). If one
chooses modulation bounds such that (fmin+fmax)/2 = f0, the comb will be symmet-
ric with respect to the incident light frequency. By tuning these frequency bounds,
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one can shift the comb in the frequency domain (Figure 6.12). When fmax = f0,
the maximum frequency of the cavity during the modulation is equal to the inci-
dent light frequency (foremost curve in Figure 6.12). The generated frequencies are
mainly below f0, as the cavity resonance remains below f0 during modulation. For
the back curve in Figure 6.12, fmin = f0 so the cavity resonance frequency does not
pass below f0 and the generated frequency components are higher than f0. This
allows to tune the particular frequencies inside the comb and its shape.

Figure 6.12: Frequency combs generated for different EF modulation bounds. The
vertical red lines represent the modulation bounds fmin = fres(EFmin) and fmax =
fres(EFmax), and the green dashed and solid line represent f0 and fmin+fmax

2
− f0,

respectively. In this figure fmax − fmin = 2 THz is a constant so the comb width
remains the same for all the combs.

In addition to shifting the modulation bounds, one can also choose the amplitude
of the Fermi level modulation ∆EF = EFmax − EFmin. In Figure 6.13 we show
the frequency combs obtained for different ∆EF (we choose fmin and fmax so that
(fmin + fmax)/2 = f0 and thus the combs are symmetric with respect to f0). As
∆EF increases, more side frequencies are generated since the cavity frequency goes
further away from f0.

Another important parameter is the external coupling time of the cavity τ (Fig-
ure 6.14). If τ increases, the incident light will couple more slowly into the cavity,
but will be trapped longer (higher quality factor). If τ decreases, the incident light
will couple more rapidly with the cavity, but will also outcouple faster, leading to less
build-up. There is a balance between coupling to the cavity and conversion efficiency
inside the cavity: if the coupling is very fast (small τ), light does not stay in the
cavity long enough to generate frequency components far from f0 (τ = 5× 10−14 s,
foremost curve in Figure 6.14): since 1/τ � fmod, the light outcouples before the
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Figure 6.13: Frequency combs generated for different ∆EF modulation amplitudes
from 0.01 eV to 0.1 eV with fmod = 1011 Hz. Red solid lines are a guide to the
eye that indicate the frequency modulation bounds, in addition to the vertical red
dashed lines. As ∆EF increases, the combs become wider and more side frequencies
are generated.

cavity can reach the bounds of the modulation. As τ increases, the coupling becomes
slower, so light stays in the cavity during an entire or multiple modulations. The
comb amplitude is weaker, but wider because light stays in the cavity long enough to
generate frequency components far from f0 (1/τ > fmod, back curve in Figure 6.14
with τ = 10−11 s). There is a trade-off between coupling efficiency (for short τ) and
conversion efficiency (long τ) so the frequency comb generation process is overall
stronger in-between those two regimes.

It is also possible to tune the comb position in the infrared range. The resonance
frequency of a graphene ribbon array can range from near-infrared to far-infrared
by choosing the right grating parameters [74]. Since the generated frequency com-
ponents of the comb have frequencies close to the cavity resonance frequency, it is
therefore possible to design graphene devices that can achieve frequency comb gen-
eration for a specific frequency range. One should note that for this mechanism to
work, the incident light frequency must be close to the resonance frequency of the
cavity so light can excite the plasmonic mode.

The proposed mechanism thus allows for tunable frequency combs with a stable
inter-peak separation that is given by the modulation frequency. A small spacing
between comb peaks is achieved by a lower modulation frequency that is easier to
achieve experimentally and of more interest for comb applications. The frequency
comb generated with this method can contain a broad range of frequencies and its
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Figure 6.14: Frequency combs generated for different cavity coupling times τ =
5× 10−14 s (front curve), 3× 10−13 s, 1× 10−11 s (back curve). Here τmod =
1/fmod = 2× 10−12 s. For small τ (front curve) the cavity outcouples too rapidly,
so generation is less efficient. For large τ (back curve) the cavity couples too slowly,
so the combs become weaker again.

bounds broaden by using larger Fermi-level modulations, allowing to bridge over
frequency regions in the near and far-infrared.

6.7 Conclusion

We conclude that frequency comb generation can be achieved much more efficiently
than with a planar graphene sheet by using the interaction between a plasmonic
mode and time modulation, requiring modulation amplitudes that are three orders
of magnitude smaller. We study the modes of a graphene grating with a time-
dependent Fermi level, and present a simple model based on CMT to describe its
properties. The rigorous FEM simulations are in excellent agreement with our CMT
model, both in the static and dynamic cases.

Using CMT we show that the frequency combs are highly tunable. The spacing
between the different frequency components inside the comb is always equal to the
modulation frequency applied to the grating. The frequency bounds of the comb can
be chosen by tuning the Fermi level modulation bounds. The coupling coefficient of
the cavity determines how strongly light will interact with the plasmonic mode and
thus how efficiently light will be converted to new frequency components. Finally
the resonant mode in the graphene grating can be chosen over a wide range of
wavelengths, ranging from mid-infrared to far-infrared, because of the tunability of
the geometry and the material.
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We compare the grating results with non-patterned graphene sheets, the former
leading to much more efficient frequency comb generation, even for small Fermi level
modulations. This is a consequence of the underlying mechanism. In the grating
case the plasmonic mode is tuned in and out of resonance, which can be achieved by
modest gating changes. In the planar case the non-resonant screen needs to become
opaque, requiring much stronger modulations.

In the end, highly tunable and efficient frequency comb generation should be
achievable in the mid- and far-infrared using graphene structures. Moreover, the
mechanism is fairly general and can be applied to any cavity with a time-modulated
resonance frequency that couples efficiently to input and output ports.



7
Time reflection and time refraction of
graphene plasmons

In this chapter, we study the interaction of graphene plasmons with single and dou-
ble temporal discontinuities or shocks, leading to controlled in-plane scattering. We
show that a dynamical change of material properties during graphene plasmon prop-
agation induces reflection and refraction at the temporal interface. We analytically
determine the Fresnel-like coefficients for graphene plasmons at these boundaries,
and validate our results by rigorous numerical simulations. Temporally controlled
doping of two-dimensional materials such as graphene thus leads to a new mechanism
for planar and compact plasmonic devices.

Graphene plasmonics is an ideal platform for temporal interfaces, because the
plasmonic modes are widely tunable, show extreme confinement, and suffer relatively
low losses [48, 49, 107]. In parallel studies, dynamical modulation of materials was
shown to provide for a broad variety of unusual phenomena such as wavelength con-
version [10, 15, 16, 18, 101, 106], optical isolation [23, 26] and topological effects
[35, 37] (see Chapter 2). In this context, the behaviour of electromagnetic waves
incident on ‘time boundaries’ is known for a long time [112], and often referred
to as ‘time reversal’ [113]. These phenomena are very general, as works on sur-
face plasmons [114] and a recent implementation of time reflection for water waves
illustrate [115].
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Figure 7.1: (a) Representation of a time step temporal boundary, where the Fermi
level changes from EF1 to EF2. Effect of a step time boundary on a propagating
graphene plasmon: an incident plasmon (a) generates a reflected and transmitted
plasmon (b) at a different frequency.

However, graphene plasmonic waveguides with time discontinuities were not
yet addressed. Therefore, in this work we merge the fields of time boundaries
with graphene plasmons, leading to an interesting way to reflect plasmons in two-
dimensional compact circuits. These plasmons are highly suitable for this applica-
tion, as the Fermi level can be modulated rapidly. Additionally, the nature of the
plasmonic modes leads to straightforward expressions for the reflection and trans-
mission properties at single or double discontinuities (so-called temporal slabs). Im-
portantly, the phenomena and the analysis we report is general and valid for other
types of guided modes.

We study plasmons propagating in a graphene sheet incident on two types of
time boundaries: a single time step (Figure 7.1(a)), and a double time step (or
slab). The phenomenon at a single time step is sketched in (Figure 7.1(b)-(c)): a
forward propagating plasmonic mode (or pulse) is split into a backward (reflected)
and forward (transmitted) wave after the temporal boundary (an abrupt change of
the Fermi level EF).

Here, the time boundaries are abrupt changes in the Fermi level EF of the
graphene sheet. We employ a the Drude-like model for the graphene conductiv-
ity introduced in Chapter 3 (Equation 3.3):

σ(ω,EF) =
e2EF

π~2

−j
ω − jτ−1

gra

, (7.1)

which is valid for EF � kBT , with kBT ≈ 0.026 eV. Since this conductivity only
takes into account intraband transitions, we also require that ~ω � 2EF. Close to
a time interface (so without long propagation distances), we can ignore the losses
and set τ−1

gra = 0. However, the phenomena remain even with losses, as they do not
depend on the mode amplitude.
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The graphene plasmon dispersion in the nonretarded regime (β � ω/c with β
the mode propagation constant) directly depends on EF [9]:

Re(β) =
2ε0εrπ~2ω2

e2EF

, (7.2)

where εr is the permittivity of the surrounding medium (we use εr = 1).
Graphene plasmons are TM modes. In this chapter, we consider plasmonic

modes propagating along the z direction (see Figure 7.2 for the coordinate system).
In this case, the transverse magnetic field component is Hy (see Figure 7.2 for
all the graphene plasmon field profiles). We consider graphene plasmons in the
non-retarded regime, where the mode profiles are extremely confined around the
interface.
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Figure 7.2: Top left: Graphene sheet and coordinate system used to describe
graphene plasmonic modes. Top right: Ex, bottom left: Hy and bottom right:
Ez. Solid lines are the exact modes (Equations 4.34 and 4.35) and circles represent
the κ ≈ β approximation used in the non-retarded regime. For these field profiles,
EF = 0.6 eV and the graphene plasmonic mode frequency is 30 THz (10 µm vacuum
wavelength).

To describe graphene plasmons incident on a time boundary, different approxi-
mations have been used in the literature. In the first one [11], a quasi-static approach
is used: H and its derivative are supposed continuous across the temporal boundary
and the plasmon is entirely described by its transverse magnetic field. In another
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quasi-static approach [116], E and H are supposed continuous at the time boundary.
It is also possible to describe the temporal discontinuity in graphene by consider-
ing microscopic transport equations [117]. In this last approach, a jump in current
due to the sudden removal of carriers is considered, leading to a discontinuity in J.
This discontinuity occurs when carriers are removed (when EF diminishes) so this
approach was only developed for steps where the Fermi level suddenly decreases.

By combining the results from these 3 studies, one can get a better under-
standing of the application scope of each of these approximations. The quasi-static
approaches using the continuity of E and Jz are suitable to describe upward steps
(EF1 < EF2 and γ > 1, where EF1 and EF2 are the Fermi levels before and after the
temporal interface, respectively and γ =

√
EF2/EF1), while microscopic carrier re-

moval considerations better describe downward steps (EF1 > EF2 and γ < 1). Note
that it is also possible to take into account the (typically small) amount of radiation
and evanescent modes generated at the temporal interface by using more complex
theories, however, the quasi-static models seem to offer a good approximation.

7.1 Upward steps

To describe upward steps, it is appropriate to employ the continuity of the field E.
We also use a microscopic condition for the current Jz. After the shock, more free
carriers are available to contribute to the current upon excitation by an electric field.
However, the injected electrons do not have an initial speed and do not immediately
form a current. This is why we employ the continuity condition Jz(0

−) = Jz(0
+) for

the current. This approach uses the methods of [117] and produces results similar
to [116] where the continuity of E and H fields was used. Using continuity of E and
Jz (and convention ejωt):

E
(ωi)
i,z e

(ωi)
i,z (x)e−jβiz = E(ωr)

r,z e(ωr)
r,z (x)e−jβrz + E

(ωt)
t,z e

(ωt)
t,z (x)e−jβtz. (7.3)

The continuity condition for Jz = σ(ω,EF)Ez with σ(ω,EF) from Equation 7.1 at
t = 0 reads:

− j e
2

π~2

EF1

ωi
E

(ωi)
i,z = −j e

2

π~2

(
EF2

ωt
E

(ωt)
t,z +

EF2

ωr
E(ωr)
r,z

)
. (7.4)

where E
(ωα)
α,z is the mode amplitude, e

(ωα)
α,z (x) the mode profile and β the propa-

gation constant. Superscripts (ωα) indicate the frequency, and subscripts α = i, r, t
stand for incident, reflected or transmitted.

At a regular spatial interface (a change of index in space), the frequency is
conserved across the spatial discontinuity. In contrast, for a temporal discontinuity
the wavevector is conserved [118]: the z dependence in Equation 7.3 imposes that
all the propagation constants βα are equal:

βi = βt = βr. (7.5)

Since we change the Fermi level at the time interface, the frequency of the inci-
dent mode has to adapt to keep the wavevector unchanged (see Equation 7.2 and
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Figure 7.3). Consequently, when an incident mode with a propagation constant βi is
incident on a time boundary (so when the medium suddenly changes), it produces a
reflected and a transmitted (‘refracted’) mode with the same propagation constants
(βr, βt), but at a different frequency. Using the dispersion (Equation 7.2) we link
the frequencies to the Fermi levels around the temporal interface:

γωi = ωt = −ωr (7.6)

where ωi, ωr and ωt are the incident, reflected and transmitted frequencies, respec-
tively. The minus sign accounts for backward propagation. γ =

√
EF2/EF1 is the

shock amplitude, with EF1 (EF2) the Fermi level before (after) the time boundary.
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Figure 7.3: Time step and plasmon dispersion: the propagation constant is conserved
while the frequency changes. For transmitted plasmons (red), the frequency remains
positive since the plasmon is propagating in the same direction as the incident
plasmon (blue). However, for the reflected plasmon the frequency becomes negative
as its propagation direction is reversed. Here EF2 > EF1.

Since β is conserved and we are in the nonretarded regime, the plasmonic mode
profiles e

(ωα)
α,z (x) are very similar on both sides of the temporal interface. This is why

we cancel them out in the remainder (using the same normalization e
(ωα)
α,z (x = 0+) =

1), which is a very useful approximation stemming from the extreme confinement of
graphene plasmons. For lower-index modes this assumption should be reconsidered.

We define the Fresnel-like reflection and transmission coefficients as:

E(ωr)
r,z = rEE

(ωi)
i,z , E

(ωt)
t,z = tEE

(ωi)
i,z . (7.7)

The continuity of Ez at the temporal boundary (t = 0), along with Equation 7.7,
imposes a first condition on rE and tE:

rE + tE = 1, (7.8)

where we used the approximation that the field profiles are identical on both sides of
the interface. This assumption is justified because we are in the non-retarded regime
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and β is conserved. Using the continuity of Jz along with Equations 7.7 and 7.6, we
find that

tE − rE =
1

γ
. (7.9)

Equations 7.8 and 7.9 give the expressions for reflection and transmission for the Ez
field at a temporal upward step boundary:

rE =
1− γ

2γ
, tE =

1 + γ

2γ
. (7.10)

The transmittance and reflectance are then given by

R =
(1− γ)2

4γ2
, T =

(1 + γ)2

4γ2
. (7.11)

The transmittance and reflectance of Equations 7.11 are represented in Figure 7.4
as a function of γ.
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Figure 7.4: Transmittance and reflectance for upward step temporal interfaces
(Equation 7.11).

The expressions of Equation 7.11 can be used at a step interface where the
final Fermi level is higher than the initial Fermi level. For other types of step
interfaces, other approximations are needed. Since this derivation only depends on
the continuity of the fields, one can use the standard Finite Element Method (FEM)
simulations in time domain to simulate upward steps. We run FEM simulations [95]
to validate our results. We record (in time domain) the field profiles at two specific
points in space, and then separate incident, reflected and transmitted pulses as
shown in Figure 7.5.

Figure 7.6 shows simulated snapshots of a plasmon pulse at a temporal step,
visualizing clearly the reflection and transmission effects. Notice the dispersion
effects: modes with a lower β (so higher effective wavelength) propagate faster
in graphene sheets (see leading edge of the ‘transmitted’ pulse, Figure 7.6(c)). In
contrast, the reflected pulse is exactly like the incident pulse, showing the dispersion
compensation [115]. Note that the simulations are spatially two-dimensional (x, z),
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Figure 7.5: Incident (blue), reflected (green) and transmitted (red) pulses at an
upward step time boundary. Here the starting Fermi level is EF1 = 0.1 eV and the
final Fermi level is EF2 = 0.6 eV. The time step is located at t = 0. The incident and
reflected pulses (blue and green) are recorded at one position and the transmitted
pulse (red) is recorded at another position, further along the propagation direction.
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Figure 7.6: Simulations for a plasmonic pulse in an upward time step. The central
incident frequency is ω0 = 2π 30× 1012 rad/s, the plasmon period is Tp = 2π/ω0

and the shock happens at t = 0 s. The profile along the sheet is shown at time: (a)
−5Tp, (b) 0 and (c) 5Tp. We used EF1 = 0.1 eV and EF3 = 0.6 eV.

but we only show the field along the sheet, as radiation is negligible because of the
large impedance mismatch (Figure 7.7).

Usually, at spatial interfaces, the reflectance (transmittance) is computed by
taking the ratio of the reflected (transmitted) power over the incident power, and
all these quantities are connected to the field amplitudes at the same frequency. Here
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Figure 7.7: Snapshots the Ez field component in 2D simulations before, during, and
after the shock (from top to bottom). As it is apparent from the 2D field profiles,
radiation losses are negligible during the propagation, and at the temporal interface.

it is not the case: the transmitted and reflected pulses have a different frequency
than the incident pulse (except when the initial and final Fermi levels are equal, as
in a slab interface that returns to the original EF). In the case where two pulses
have a different frequency, one needs to compensate a spectral shift and a spectral
compression or expansion. The electric field amplitudes of the wavepackets are
defined as E

(ωα)
α,y . The transmission coefficients we computed theoretically are valid

for monochromatic plasmons, which means that we need a relation that links the
(non-monochromatic) simulation results to the theoretical coefficients.

If we consider an interval ∆ω1 in the frequency spectrum, the electric mode
amplitudes included in that interval will be converted to the interval ∆ω2 after
the temporal boundary. This analysis was reported in [117]. For the transmitted
wavepacket at a step interface, we have:

E
(ωt)
t,y ∆ωt = tEE

(ωi)
i,y ∆ωi (7.12)

where tE is the monochromatic transmission coefficient. This means that the fol-
lowing transformation must be applied to the simulation results:

tE = f
E

(ωt)
t,y

E
(ωi)
i,y

, f =
dωt(ωi)

dωi
. (7.13)

where E
(ωα)
α,y are the field amplitudes from FEM simulations. From Equation 7.6,

ωt = γωi, so f = γ. Equation 7.13 allows us to compare our simulation results
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to the theoretical predictions of Equation 7.10. Simulations of a step interface
(Figure 7.8) from EF1 = 0.1 eV to EF2 = 0.6 eV (γ = 2.45) show that the reflected
and transmitted plasmons indeed have a different frequency, in accordance with
Equation 7.6. Simulations agree well with the theory (Equation 7.11): Rth = 0.088,
RFEM = 0.088, Tth = 0.50 and TFEM = 0.49. Notice that for step time interfaces,
the reflectance and transmittance are frequency independent. Moreover, R and T
do not depend directly on the initial and final Fermi level, but only on the ratio of

these Fermi levels (R and T are functions only of γ =
√

EF2

EF1
).
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Figure 7.8: Simulated incident (blue), reflected (green) and transmitted (red) Ez
fields in the frequency domain for an upward step temporal boundary. Here the
starting Fermi level is 0.1 eV and the final Fermi level is 0.6 eV. Amplitudes are
normalized to the maximum incident amplitude.

7.2 Downward steps

For steps where EF1 > EF2 (γ < 1), one needs to consider different boundary
conditions [117]. The sudden diminution of Fermi level corresponds to a reduction
of the carrier density, while leaving the velocity of the remaining carriers unchanged.
This implies that the current density Jz will be discontinuous at the time interface.
The current density can be split into two contributions: Jz(0

−) = Jz1 + Jz2, one of
which vanishes after the shock Jz(0

+) = Jz2. These current densities are connected
to the Fermi level before and after the temporal interface by the relations Jz =
σ(ω,EF)Ez. The boundary condition for the current is

Jz(0
+)

Jz(0−)
=

Jz1
Jz1 + Jz2

=
EF2

EF1

. (7.14)

While the current is discontinuous at the temporal interface, the electric field
component responsible for the surface current Ez must be continuous, as in Equa-
tion 7.3:
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E
(ωi)
i,z e

(ωi)
i,z (x)e−jβiz = E(ωr)

r,z e(ωr)
r,z (x)e−jβrz + E

(ωt)
t,z e

(ωt)
t,z (x)e−jβtz. (7.15)

Using the boundary condition for the current density of Equation 7.14 and the
continuity of the Ez field (Equation 7.15), one finds the reflection and transmission
coefficients at a step interface with EF2 < EF1:

rE = −(1− γ)

2
, tE =

(1 + γ)

2
, (7.16)

and the transmittance and reflectance read

R =
(1− γ)2

4
, T =

(1 + γ)2

4
, (7.17)

Figure 7.9 represents the reflectance and transmittance of Equation 7.17.
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Figure 7.9: Transmittance and reflectance for downward step temporal interfaces
(Equation 7.17).

The derivation in this section remains a quasi-static approach, but this time it
is supplemented with a microscopic consideration of the carrier behaviour at the
interface. However it was proven in [117] that the quasi-static limit is in accordance
with a more complete theory, including evanescent modes and radiation.

Since we have studied the behaviour of graphene plasmons at upward and down-
ward step interfaces, we can combine these two cases and plot the transmittance and
reflectance of graphene plasmons as a function of γ in Figure 7.10. For both inter-
faces, the transmittance and reflectance have a limit of 1/4: For the downward step
interfaces, T = R = 1/4 for γ = 0, and for the upward step interfaces, T = R = 1/4
for γ → ∞. For γ = 0, EF is continuous with T = 1 and R = 0, as there is no
shock.

For both up and down modulations, no energy is injected into the system. The
losses from the shock can be modeled by 1− T −R, which becomes 1/2 in the limit
of strong shocks (γ very large or very small).
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Figure 7.10: Transmittance and reflectance for downward steps (γ < 1, Equa-
tion 7.11) and upward steps (γ > 1, Equation 7.17).

7.3 Temporal slabs

A slab consists of two successive temporal steps. We will consider one case where
the starting and final Fermi levels are equal, and one case where they are different.
A temporal slab is represented in Figure 7.11. The graphene Fermi level will go
from EF1 to EF2 and back to EF1. The two temporal steps are separated by the
time τ . It is interesting to note that in the case of a spatial slab, interferences occur
because of a phase βl (with l the slab length), whereas here the phase is described
γ12ωτ (with γ12 =

√
EF2/EF1, τ the slab duration, and γ12ω the frequency ‘inside’

the slab).

Figure 7.11: Representation of a slab temporal boundary. The initial and final
Fermi level are equal, which implies that γ12 = γ−1

21 . The two step boundaries are
separated by the slab duration τ .

This type of temporal interface is composed of an upward step and a downward
step. To compute the reflectance and transmittance of a temporal slab, one needs
to combine the reflection and transmission coefficients for the two different types of
steps (Equations 7.16 and 7.10):

T =
∣∣r12r21e

−jω2τ + t12t21e
jω2τ
∣∣2 (7.18)
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Figure 7.12: Analytical transmittance T of Equation 7.19 as a function of ω and
(left) γ12 (τ = 1.67× 10−13 s), or (right) τ (γ12 = 2).

where ω2 = γ12ω1 is the frequency inside the slab, the transmission and reflection
coefficients r12 and t12 are the upward step coefficients from Equation 7.10 while r21

and t21 are the downward step coefficients from Equation 7.16. Note that unlike
in a spatial slab, there cannot be an interaction with the same interface multiple
times because of causality. This is why there are only 4 terms in Equation 7.18.
Equation 7.18 simplifies to

T = γ2
21

[
1 +

1

4
(γ12 − γ21)2 cos2 γ12τ

]
. (7.19)

Similarly, the reflectance is computed as

R =
∣∣r12t21e

−jω2τ + t12r21e
jω2τ
∣∣2 (7.20)

and simplifies to

R =
γ2

21

4
(γ12 − γ21)2 sin2 γ12ωτ (7.21)

The reflectance and transmittance of a temporal step only depend on the (square
root of the) ratio of the initial and final Fermi levels γ12. In contrast, the slab char-
acteristics depend on the length τ , the amplitude γ12 and the incident frequency ω.
These parameters allow for a large tunability, see Figures 7.12(a,b). A larger shock
(γ12 more distant from 1) leads to an overall lower transmittance, but interferences
give oscillations (Figure 7.12(a)). For the same reason the slab length allows to tune
the reflectance and transmittance (Figure 7.12(b)).

This type of slab interface is a special case: the Fermi level of the graphene sheet
is the same before and after the temporal boundary. One can also study another type
of temporal slab where the initial and final Fermi levels are different, for example,
an interface composed of two upward steps (Figure 7.13). The reflectance and
transmittance in this case are given by:

T =
1

4γ4
13

[
(γ12 + γ23)2 +

(
1 + γ2

13 − γ2
12 − γ2

23

)
cos2(γ12ωτ)

]
, (7.22)

R =
1

4γ4
13

[
(γ12 − γ23)2 +

(
1 + γ2

13 − γ2
12 − γ2

23

)
cos2(γ12ωτ)

]
(7.23)
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Figure 7.13: Representation of a temporal boundary formed by two upward steps.
Here the initial and final Fermi levels are different, and it is necessary to use Equa-
tion 7.13 to interpret simulation results in terms of monochromatic transmission and
reflection coefficients.

were γ13 =
√
EF3/EF1 = γ12γ23. We compare these results with numerical simula-

tions in Figure 7.14 for different slab durations τ . The simulation results agree well
with the analytical calculations and show that it is possible to control the in-plane
scattering of graphene plasmons with temporal boundaries.
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Figure 7.14: Transmittance and reflectance of a time interface consisting of two
upward steps for different slab durations τ . Solid lines: Theoretical prediction of
Equations 7.22 and 7.23. Dots: FEM simulation results. In all these cases, T > R.
The successive Fermi levels are EF1 = 0.1 eV, EF2 = 0.35 eV and EF3 = 0.6 eV.
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7.4 Conclusion

In these effects the Fermi level variation occurs within a time comparable to the
graphene plasmon period, which is experimentally challenging, and the models pre-
sented in this chapter suppose that the density of carriers is a step function. This
constitutes a limit to the model, but a variation of graphene on a scale of 10 fs was
demonstrated [57, 59, 60], so our abrupt model still closely resembles more realistic
transitions. One could use lower frequency graphene plasmons to lift this limita-
tion. One may also use a longer slab duration, leading to more oscillations in the
transmittance. In the end, if the transmittance oscillates many times in the pulse
bandwidth, it is expected that the system will experience an average (increased)
transmittance for the whole pulse.

In order to achieve ultrafast switching, one can consider a direct external pump,
to excite carriers on a timescale faster than the electron relaxation time (on the
order of 10−12 s). Alternatively, one could exploit nonlinear Kerr-type effects, or
switch to other two-dimensional materials [119].

Using the highly tunable framework of graphene, we described the behaviour of
plasmons at temporal interfaces. Our analytical approach leads to very simple rela-
tions for reflectance and transmittance, which are in good agreement with rigorous
simulations. This process is highly tunable via the duration, shock height and plas-
mon frequency. Possible applications include frequency selective filters, amplifiers
and modulators. The phenomenon is very general, and our analysis can be adjusted
for other guided mode resonances, plasmonic or not.



8
Selective frequency conversion via Floquet
modes

In this chapter we present a mechanism to achieve efficient and selective frequency
conversion using a system of two time-modulated cavities. This setup allows to
fine-tune the conversion process by controlling important parameters such as the
inter-cavity coupling and the external excitation frequency. Both symmetric and
asymmetric (up- or down-conversion) outputs can be targeted at will. We describe
the processes extensively, with for example a leading role for the dynamic modes of
the coupled system, the Floquet modes.

Ginis et al. examined the possibility to produce a frequency comb by modulating
the conductivity of a planar graphene sheet [106]. However, the efficiency of this
process is hampered because of the large change in conductivity needed to obtain a
significant modulation in the transmission. In Chapter 6 we presented a way to over-
come this limitation using a graphene ribbon array [10], with interaction between
a single time-modulated resonance and the incident light. A plasmonic resonance
in such an array allows to produce combs with a greatly enhanced efficiency, and
with a fairly good control [120]. Typically, frequency comb generation is imple-
mented by four-wave mixing [121, 122], with effective implementation in micro-ring
resonators [123] or nanophotonic wire waveguides for example [124].
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In this chapter we extend the system to two time-modulated coupled resonances,
instead of a single one. Importantly, this system turns out to be effective for se-
lective frequency conversion, so that instead of an extensive frequency comb, we
are targeting conversion towards specific frequencies, by exploiting the interference
processes in play. The mechanism and our description are quite general, so that in
practice various dielectric or plasmonic implementations, such as graphene ribbons
with different widths, can be considered.

We mainly optimize the asymmetric conversion towards a single sideband, and
the symmetric conversion towards two equally spaced sidebands. We consider the
specific degenerate case first (when the two cavity resonance frequencies are equal),
and then compare with the more general non-degenerate case. We elucidate the
crucial role of the intermodal coupling constant and the source frequency, using
various semi-analytical approaches. It is very interesting that the so-called ‘Floquet
modes’ play an important role in these processes. We determine the band structure
of these modes of the dynamic system, and observe for example that the conversion
efficiency is greatly enhanced in the neighborhood of Floquet band anti-crossings.

We study the system using the well-established Coupled Mode Theory (CMT)
equations for coupled cavities (see Chapter 5). We employ this method with time-
dependent resonance frequencies in Section 8.1. We show that this system supports
Floquet modes in Section 8.2, and provide a method to obtain their frequencies. We
then discuss how to achieve selective frequency conversion in Section 8.3, with an
extensive evaluation of the process efficiency. In addition, Section 8.4 explains how
a simple three-frequency analysis can determine the system parameters to achieve
the desired conversion. Finally, in Section 8.5 we derive an analytic approximation
of the band structure of the Floquet modes using a perturbation analysis.

8.1 Setup and Coupled Mode Theory

We study a system of two coupled resonances, which can be created for example
by two nearby cavities. Here, the resonance frequency of one of the cavities will be
time-modulated, leading to the generation of new frequency components. A sketch
of the system is depicted in Figure 8.1(a). A possible way to physically implement
this setup could consist of two graphene ribbon arrays with different widths [65, 79]
(Figure 8.1(b)), as the conductivity can be dynamically modulated [51] in graphene.

To limit the number of parameters, we consider direct injection (amplitude s(t))
into one of the modes, which does not radiate (the so-called dark mode, amplitude
a(t)), whereas the other mode (the bright one, b(t)) radiates, providing the output.
We describe this two-cavity setup by a system of coupled equations with CMT [125]:

da(t)

dt
= jω1a(t) + jκb(t) + s(t) (8.1)

db(t)

dt
= jω2(t)b(t) + jκa(t)− γb(t) (8.2)

where a(t) and b(t) are respectively the dark and bright mode amplitudes, γ is the
outcoupling coefficient, κ is the coupling coefficient between the two cavities, ω1,2

are the (potentially time modulated) resonance frequencies, and s(t) is the input,
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Figure 8.1: (a) Representation of the system of coupled resonances. (b) Possible im-
plementation using two coupled arrays of graphene ribbons. Each cavity corresponds
to a plasmonic resonance in the graphene array, where different ribbon widths (D1

and D2) provide different resonance frequencies. The ribbons are repeated in the
horizontal direction creating two vertically offset gratings.

for which we use a nearly monochromatic gaussian pulse (with central frequency
ω0).

Here the source s(t) can be considered as a dipolar emitter coupling to the field
of the dark mode a(t), in the weak-coupling limit. For systems with one or more
input waveguides the model can be extended to take external interferences with
reflection and transmission into account.

In this model the κ values are real so energy conservation is ensured. In order to
get realistic parameter values for the CMT model, we ran Finite-Element Method
simulations of a graphene ribbon array [10] (Chapter 6). This allowed us to connect
the CMT parameters to the physical properties of graphene arrays. We determined
that the plasmon absorption rate in a typical setting can be one order of magnitude
smaller than the plasmon outcoupling time, so for simplicity we do not consider
these losses in this model.

Usually the resonant frequencies are constants, but here for time modulation
they become functions of time, and we will consider a periodic modulation. In this
chapter we focus on the case where only the bright mode resonance is modulated:

ω2(t) = ω2 + δ sin (Ωt) (8.3)
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with ω2 the ‘static’ resonance frequency, δ the modulation amplitude and Ω the
modulation frequency. The modulation amplitudes δ we consider here are of the
same order of magnitude as Ω. This modulation amplitude can be achieved with
modest EF changes [10], because resonance frequencies in graphene ribbons strongly
depend on EF and because we consider modulation frequencies such that ω1,2 � Ω.
The phenomena are similar if we modulate the other mode, or if we modulate both
modes. Other modulation functions [113], such as step-functions or shocks [11, 126],
could also be considered in future work.

This work is distinct from the effects in most modulators: Typically, the modu-
lation frequency is slow and the modulation amplitude is not too high compared to
the outcoupling rate [120]. In those cases (the adiabatic limit), the approximation
of a time-dependent transmission, neglecting the interaction with the cavity mod-
ulation, is often used. However, here the time-dependence is non-trivial, and the
light stays trapped in the cavity for a few modulation cycles. In this high-frequency
limit, new frequencies are generated and the parameters governing this frequency
conversion are investigated in detail further on.

In Chapter 6, with a single-cavity system that is time modulated, it was ob-
served that one obtains a wide frequency comb, with components separated by the
modulation frequency Ω. While that setup is useful for generating a wide range of
new frequencies, it is more difficult to obtain an efficient conversion to a specific
frequency. With the two-cavity setup described here, it becomes possible to obtain
more focused features, such as selective frequency conversion.

8.2 Floquet modes

In this section we introduce Floquet modes, as they play an important role to un-
derstand and optimize the frequency conversion process further on. Floquet modes
are the time analogues of Bloch modes in space, with a time-periodic modulation
of the index, instead of a space-periodic index distribution for Bloch modes. In our
setup the optical potential (via the resonance frequency ω2(t)) is periodic in time so
the Floquet modes can be defined.

The static non-driven coupled system (i.e. constant frequencies ω1,2) has two

modes with frequencies ω± = ω1+ω2

2
± 1

2

√
(ω1 − ω2)2 + 4κ2. In the degenerate case

where ω1 = ω2 = ω1,2, the two mode frequencies take the simple form ω± = ω1,2± κ
(see red dashed lines in Figure 8.2).

With the introduction of time modulation, these frequencies are adjusted, and
have multiple Floquet mode branches with frequency difference Ω (see blue solid
lines in Figure 8.2). Interestingly, when these branches meet as a function of κ they
can lead to anti-crossings (see around κ = Ω/2 in Figure 8.2). This is a different
effect than bandgaps that appear for propagative Floquet modes [127]. Here we
study two coupled localized resonances so no true bandgap is opened.

One way to compute the Floquet mode frequencies is to write Equations 8.1
and 8.2 (without the source term) in matrix form [94]:

− j dF (t)

dt
= H(t)F (t) (8.4)
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Figure 8.2: Blue lines: Floquet modes of the system for the degenerate case, where
ω1,2 = 2π × 1013 rad/s, Ω = 2π × 2.5 × 1011 rad/s and δ = Ω/2. Dashed red
lines: static resonance frequencies for the degenerate case (ω± = ω1,2 ± κ). The
four arrows near κ = Ω/2 represent the transitions of interest that we study in
Section 8.3.1 while the two arrows near κ = Ω represent the transitions that we
study in Section 8.3.2. An anti-crossing appears at κ = Ω/2 where the static modes
intersect.

where F (t) is a matrix of eigenvectors and H(t) is the time-modulated Hamiltonian.
Floquet’s theorem insures that a solution exists in the form

F (t) = Φ(t)ejQt (8.5)

where Φ(t) is a matrix of periodic functions and Q is a constant diagonal matrix
containing the Floquet eigenvalues (compare with the typical Bloch mode form).
Since Φ(t) and H(t) are matrices of periodic functions, it is convenient to expand
them in Fourier series:

Fab(t) =
∑
n

F n
abe

jnΩtejqbt (8.6)

Hab(t) =
∑
n

Hn
abe

jnΩt (8.7)

where qb are the diagonal elements of Q, Ω = 2π/T , and T is the period of Φ(t) (see
Equation 8.3). The indices a and b denote a cavity mode, while index n (and also m
in the following equations) represents Fourier components. By injecting these forms
into Equation 8.4, one obtains an eigenvalue equation for the (column) eigenvectors
F:b (the Floquet modes) and eigenvalues qb

HFF:b = QF:b (8.8)

with HF called the Floquet Hamiltonian defined by:

〈an|HF |bm〉 = Hn−m
ab + nΩδabδnm. (8.9)
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This infinite Floquet Hamiltonian for our case (only ω2(t) modulated as in Equa-
tion 8.3) has the following form:

HF = 

. . . . . . . . . . . . . . . . . . . . . . .
.

... ω1 − Ω κ 0 0 0 0
...

... κ ω2 − Ω 0 δ/2 0 0
...

... 0 0 ω1 κ 0 0
...

... 0 δ/2 κ ω2 0 δ/2
...

... 0 0 0 0 ω1 + Ω κ
...

... 0 0 0 δ/2 κ ω2 + Ω
...

. .
.

. . . . . . . . . . . . . . . . . .
. . .



(8.10)

This time-independent matrix is ordered in a special way: the indices go through
a and b before each change in n and m. In that representation, it is clear that
the coupling coefficient κ is responsible for the coupling between Floquet modes
‘inside’ a Fourier component, while the temporal modulation (represented by δ)
couples Floquet modes across Fourier components. In other words the coupling
between Floquet modes takes the form of a ‘cascaded’ nearest neighbor transition.
For example this means that in order to couple from one Floquet mode to another
mode separated by 3Ω, three successive transitions need to occur. This explains
why frequency comb components typically decay as they are further away from the
source frequency (see example in Figure 8.3).

In order to get an estimate of the Floquet eigenvalues, one truncates the time-
independent matrix HF and numerically computes its eigenvalues. An example
is shown in Figure 8.2, where the solid blue lines represent four Floquet mode
frequencies in the degenerate case (ω1 = ω2), as a function of the coupling constant
κ. As mentioned, the red dashed lines represent the static eigenfrequencies of the
degenerate system (ω± = ω1 ± κ). The Floquet frequencies form a band structure
and can exhibit anti-crossings, leading to bandgap-like features. The modulation
amplitude δ is the parameter responsible for the anti-crossing: a larger δ yields a
wider anti-crossing.

8.3 Selective frequency conversion

In this central section we examine the structure of the generated frequency combs,
and discuss the relevant shaping parameters for interesting cases. Figure 8.3 shows
a typical comb produced by the coupled cavities, with the frequency components
separated by the modulation frequency Ω. Furthermore, the sideband amplitudes
decrease rapidly further away from the excitation frequency ω0, as the conversion
is a cascade process (see e.g. the infinite Floquet matrix of Equation 8.10). In this
chapter we mainly focus on the left and right immediate sidebands (ω0±Ω), as they
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are expected to yield a better conversion efficiency, but some of the results can be
generalized to other frequency components as well.
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Figure 8.3: Typical frequency comb produced by a time-modulated two-cavity setup.
Here ω1 = ω2 and only the bright cavity is modulated. The parameters are such that
no particular enhancement is achieved (ω0 = ω1,2 = 2π × 1012 rad/s, Ω = ω0/40,
κ = Ω/2, δ = Ω/4 and γ = 2× 1011 rad/s).

The reason why the Floquet modes are so useful here is that the conversion
efficiency is much more efficient when we excite a Floquet mode. This holds both
for the excitation frequency ω0, and for the ‘destination’ frequencies ω0 ± Ω (one
statement leads to the other as the modes are spaced Ω apart). This means that if
we excite a combination of κ and ω0 values directly on a Floquet branch (so a point
on the blue lines in Figure 8.2), we are bound to have strong interactions between
the components.

This intuition leads to two important cases, which we discuss in detail in the
following subsections. The first case corresponds with a κ value around the first
anti-crossing (κ ≈ Ω/2) and when ω0 is equal to a Floquet mode frequency. This
leads to ‘transitions’ indicated by the four arrows at κ ≈ Ω/2 in Figure 8.2 (from
ω0 to ω0 ± Ω). Each of these arrows corresponds to a frequency conversion from a
Floquet mode to another Floquet mode. We call this case (around κ ≈ Ω/2) the
‘asymmetric conversion’ case, as it will be efficient in one direction only, leading to
a single large sideband.

The second case (or regime) corresponds with a κ value around the first mode
crossing (κ ≈ Ω), and when ω0 is equal to a Floquet mode frequency. The transitions
of interest here are represented by the two arrows in Figure 8.2 around κ ≈ Ω. This
is the ‘symmetric conversion’ case, as both sidebands (at ω0 ± Ω) will be generated
efficiently.

Furthermore, one expects that the coupling of the source to Floquet modes close
to the static modes of the system will be more efficient. This is because the other
Floquet harmonics are introduced in the system only via the time perturbation,
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whereas the two 0-order Floquet modes are connected to the static modes of the
system (see numbers in Figure 8.2 for the mode orders). In the end we typically
observe a lower conversion efficiency for transitions that originate from (or transition
to) higher order Floquet modes.

8.3.1 Asymmetric conversion

The first interesting case is the asymmetric one, as in extreme cases it leads to
a highly selective conversion, where the excitation is efficiently converted towards
a single new frequency. Interestingly, we will show that this is most effective at
the first bandgap condition (where κ = Ω/2). For simplicity we here discuss the
degenerate case where ω1 = ω2.

In order to characterize the conversion efficiency, we calculate two figures of merit
(FOMs) Γ± = γ|b(ω0±Ω)|

|s(ω0)| , which indicate the fraction of excitation converted to the

two direct sidebands. Here b(ω) and s(ω) are the Fourier components of the bright
mode amplitude b(t) and gaussian source s(t), respectively. This FOM is the ratio
of mode amplitudes converted from the source to a different frequency component.
This fraction is useful to establish the conversion efficiency inside the coupled mode
system.

Figure 8.4 shows the FOMs Γ± as a function of ω0 at the anti-crossing (κ = Ω/2).
In detail, this means we monitor Γ± along a vertical line (κ = Ω/2) in Figure 8.2.
The increased efficiency for four ω0 values (four peaks for both Γ+ and Γ−) is due
to the presence of the Floquet modes: the excitation ω0 sweep cuts through four
Floquet branches in this range.

In addition, there is a strong dependence concerning the direction of the tran-
sition in Figure 8.4: Γ+ is large for the two low-frequency peaks, and small for the
two high-frequency peaks (and vice versa for Γ−). This can be understood from
Figure 8.2: The two strong up-conversion peaks (Γ+ is up-conversion) correspond to
the blue and black arrows, leading to transitions with 0-order modes involved. The
two weak up-conversion peaks at high frequencies actually mean transitions that go
upwards beyond the data in Figure 8.4, so concerning higher order modes as des-
tination. Similarly, the two large down-conversion peaks (Γ−, so red in Figure 8.4)
correspond to the green and red arrows in Figure 8.2. Clearly, the coupling of the
source to higher order modes is less efficient since these modes only exist because of
the perturbation introduced by the time dependence.

The frequency conversion is indeed highly asymmetric and selective in this case,
see the example in Figure 8.5, with the comb for parameters corresponding to the
second peak in Figure 8.4 (ω0 = 0.9891 ω1,2). The light is efficiently converted to
the upper frequency sideband, with few energy in the lower sideband.

Thus, Floquet modes play an important role in the conversion process: when the
incident frequency ω0 matches a Floquet mode frequency, the conversion process is
enhanced. Now we describe ways of improving the conversion efficiency when the
incident frequency is on a Floquet branch. In this way, we try to exploit the Floquet
mode band structure.

To find where the conversion process is most efficient, we monitor the FOMs
for a few transitions of interest (see arrows in Figure 8.2). In detail, we move the
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Figure 8.4: Figures of merit Γ± as a function of the incident frequency ω0. The
frequency conversion is asymmetric at the anti-crossing (when κ = Ω/2). When ω0

is equal to a Floquet mode frequency, the conversion efficiency is enhanced. The
difference in conversion efficiency depends on the initial and final mode order: the
coupling between source and Floquet modes is better for lower order modes.
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Figure 8.5: Comb produced by a set of parameters corresponding to the second peak
of Figure 8.4 (ω0 = 0.9890 ω1,2). The conversion to the upper sideband (ω0 + Ω) is
more efficient than the conversion to the lower sideband (ω0−Ω) and as a result the
comb is asymmetric.

incident frequency along a Floquet band by changing the coupling coefficient κ,
and we plot the corresponding FOMs in Fig 8.6. This means that we follow the
blue lines in Figure 8.2 (mainly around κ = Ω/2), so for Figure 8.6 the incident
frequency is always equal to a Floquet frequency. The main trend is that all four
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transitions have a maximum around κ = Ω/2: clearly the conversion is most efficient
when one operates at the edge of the anti-crossing. Furthermore, one observes
that the blue and red transitions are always somewhat stronger than the green
and black transitions. This reflects their different mode order combinations (see
the corresponding arrows in Figure 8.2): the blue/red transitions start from modes
closest to the center frequency (ω1,2), and arrive at modes away from the center.
For the green/black transitions this is inverted, leading to a less efficient process.
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Figure 8.6: Figures of merit Γ± for the four transitions highlighted in Figure 8.2
around the bandgap. The conversion efficiency is greater when the incident mode is
a 0-order mode and at the band edge (for κ = Ω/2).

8.3.2 Symmetric conversion

Another useful regime in the two-cavity system leads to a ‘symmetric’ frequency
conversion, where the two first sidebands are favored and have a similar amplitude.
This type of frequency conversion occurs efficiently at the first band crossing (around
κ ≈ Ω), see the arrows in Figure 8.2.

The up- and down-conversion FOMs (Γ±) are shown in Figure 8.7, so we follow
a vertical line in Figure 8.2, around the central frequency. When ω0 is equal to the
Floquet mode frequency (in this degenerate case the modes cross), the conversion
efficiency is strongly enhanced (a strong peak for both FOMs). The conversion is
quite symmetric, as Γ+ ≈ Γ−. Due to the perturbation introduced by the time
modulation, the bands bend and do not cross exactly at κ = Ω, but slightly before.
The perturbation analysis of Section 8.5 gives a good estimate of the correct κ value
that we use in Figure 8.7 (κ = 0.9948 Ω).

Figure 8.8 shows a comb produced by the parameters corresponding to the central
peak of Figure 8.7. Conversion to both sidebands is enhanced, as the two sidebands
correspond to Floquet mode frequencies (see band diagram of Figure 8.2 at κ ≈ Ω).
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Figure 8.7: Figures of merit Γ± as a function of the incident frequency ω0. In this
case, δ = Ω/4 and ω1 = ω2. At the first band crossing (κ ≈ Ω), the frequency
conversion is efficient and symmetric.

In this case, the incident frequency corresponds to a first-order mode while the two
sidebands are zeroth order.
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Figure 8.8: Comb produced by a set of parameters corresponding to the central peak
of Figure 8.7. The conversion to the upper sideband (ω0 + Ω) is nearly as efficient
as the conversion to the lower sideband (ω0 − Ω).
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8.3.3 Non-degenerate case

In the above discussions we presented the degenerate case where ω1 = ω2. Here we
briefly discuss the non-degenerate case to show that the same general conclusions
apply. Firstly, the band structure is similar, which we can compare in Figure 8.9:
the solid line is the degenerate situation, the dashed line is non-degenerate. Clearly,
in the non-degenerate case, the Floquet bands no longer cross at κ = 0 as they did
in the degenerate case, as the two cavities now have different resonance frequencies.
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Figure 8.9: Solid blue lines: Floquet modes of the system for the degenerate case
(same as in Figure 8.2). Dashed blue lines: non-degenerate case (ω1 6= ω2). We
chose these two frequencies such that ω1 − ω2 = 2Ω/5.

We then consider the FOMs in the case where ω1 6= ω2 around the first anti-
crossing (κ = Ω/2), see Figure 8.10, in order to compare it with the degenerate
case (Section 8.3.1, Figure 8.4). Note that in the non-degenerate case, the Floquet
bands are slightly shifted towards smaller κ values (compare solid and dashed lines
in Figure 8.9). Here as well the conversion efficiency is improved when the source
frequency is equal to a Floquet mode. The exact efficiency is different than in the
degenerate case (Figure 8.4), because of the slight difference in resonance frequencies.
We will see in the next section that this can be predicted by a simple model.

We also computed the FOMs for the symmetric regime (κ ≈ Ω) in the non-
degenerate case, see Figure 8.11. Whereas in the degenerate case the two FOM
peaks Γ± are maximal at the same frequency (Figure 8.7), here a small gap appears,
meaning that the two Floquet modes do not have the same frequency, hence the
peak position difference in Figure 8.11. This difference is not simply due to the
slight shift of the band structure seen in Figure 8.9, here an anti-crossing opens
whereas the two non-degenerate bands cross.
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Figure 8.10: Figures of merit Γ± as a function of the incident frequency ω0. In this
case, δ = Ω, ω2 − ω1 = 2Ω/5 and κ = Ω/2 (around the anti-crossing).
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Figure 8.11: Figures of merit Γ± as a function of the incident frequency ω0. In this
case, δ = Ω, ω1 − ω2 = 2Ω/5 and κ ≈ Ω (around the second anti-crossing).

8.4 Three-frequency model

In order to find the correct system parameters that enable selective frequency con-
version, we can use a simplified model, where we only consider three frequencies for
the two cavity mode amplitudes a(ω) and b(ω): at the source frequency ω0 and at
the two sidebands (ω0−Ω) and (ω0 +Ω). In detail, we consider solutions of the form
f(ω) = f−δ [ω − (ω0 − Ω)]+f0δ [ω − ω0]+f+δ [ω − (ω0 + Ω)], where f represents the
two mode amplitudes a and b. With these assumptions the CMT Equations 8.1-8.3
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become:

j(ω0 − Ω)a− = jω1a− + jκb− (8.11)

jω0a0 = jω1a0 + jκb0 + s0 (8.12)

j(ω0 + Ω)a+ = jω1a+ + jκb+ (8.13)

j(ω0 − Ω)b− = jω2b− +
δ

2
b0 − γb− + jκa− (8.14)

jω0b0 = jω2b0 +
δ

2
b− +

δ

2
b+ − γb0 + jκa0 (8.15)

j(ω0 + Ω)b+ = jω2b+ +
δ

2
b0 − γb+ + jκa+ (8.16)

As seen in Equations 8.11-8.16, the coupling coefficient κ accounts for the cou-
pling between dark and bright mode at the same frequency, while the modulation
amplitude δ accounts for the coupling between the different frequency components of
the bright mode b. Note that this equation system actually corresponds to the 6 × 6
central part of the Floquet matrix of Equation 8.10. This model has the advantage
of being an algebraic system, whereas the previous results were obtained through
the numerical resolution of the differential equation system of Equations 8.1 and 8.2.
It can be used to rapidly explore various situations, for example the non-degenerate
case. However, since we only take into account three frequency components per
mode, this model is an approximation, but it can lead to quantitatively correct
results, especially in our selective cases.

We compare the results of this simple model with the numerical resolution of
Equations 8.1 and 8.2 for two specific cases. The first case is symmetric around ω0,
so we impose b− = b+ in Equations 8.11-8.16. A set of parameters found with that
constraint is κ = Ω, δ = Ω/4 and ω0 = ω1 = ω2. This specific case is represented
in Figure 8.12(a). In the second case, the parameters are chosen such that the
conversion to the lower frequency sideband is maximized. Parameters can be found
by imposing b0 = b+ = 0 in Equations 8.11-8.16, giving for example κ = Ω/2,
ω1 = ω0− κ, δ = Ω/4. The results for this second set of parameters are represented
in Figure 8.12(b). In both cases a qualitative agreement is found. The difference
between the three-frequency model and the numerical results can be explained by
the simplicity of the model: we only consider three frequency components while
more components are involved in the rigorous system.

This simple model allows for a more systematic approach in tuning the output
spectrum: one can impose constraints in Equations 8.11-8.16, and solve for the
system parameters that will give a desired response (as we did for Figure 8.12). It
also allows to understand the interference effects between the frequency components,
as in some cases terms in Equations 8.11-8.16 cancel out, giving a single frequency
output, as in Figure 8.12(b). Moreover it is a useful analytic alternative to the
numerical resolution of the CMT equations.
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Figure 8.12: Red circles are the results of the three-frequency model while the
blue line is the full numerical solution. In (a) we imposed the constraint b− = b+

so the comb generated is perfectly symmetric. In (b) we imposed the constraint
b0 = b+ = 0, so the frequency conversion is asymmetric.

8.5 Two-level perturbation

To obtain an analytical expression for the Floquet bands we can use a two-level
perturbation theory [93, 94, 128]. This is useful to obtain a simple expression for
the Floquet bands, so one knows which frequencies are bound to provide a good
potential conversion. For simplicity we only discuss the degenerate case.

We approximate the initial Floquet Hamiltonian by a 2 × 2 Hamiltonian, where
the contribution of the other Floquet modes is treated as a perturbation [93]. To
do so, we separate the Floquet Hamiltonian of Equation 8.10 into a static matrix
H0 and a perturbation matrix V containing only δ terms (the perturbation method
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is described in Section 5.3 and here the H0 corresponds to E0 in Equation 5.34).
We apply a transformation to H0 and V so that H0 is diagonal and write out the
eigenvalue equation component by component. Then we solve for the eigenvector
components and find that they are the solution of an implicit equation involving
the sum of the eigenvector components. We identify two large terms (corresponding
to the crossing of static modes) and separate them from the rest of the sum. Then
by iteration and by considering the first order of the perturbation, we find the two
resonance frequencies of the nearly degenerate states. As seen in Figure 8.2, the
unperturbed bands ω1,2 + κ and ω1,2 + Ω − κ cross at κ = Ω/2, and open an anti-
crossing in the Floquet bands. We choose these bands as the two unperturbed states
for the perturbation analysis. After a few manipulations, the perturbed Hamiltonian
becomes:

H2 =

[
ω1,2 + Ω− κ+ ∆(κ) δ/4

δ/4 ω1,2 + κ−∆(κ)

]
(8.17)

where ∆(κ) =
δ2

16(2κ+ Ω)
is the correction to the ‘static’ levels induced by the

time modulation. The eigenvalues of H2 are approximations of the Floquet mode
frequencies, and are given by:

ω± = ω1,2 +
Ω

2
±
√
δ4 + 64δ2κ(Ω + 2κ) + 64(Ω2 − 4κ2)2

16(2κ+ Ω)
(8.18)

Since the potential has a periodicity Ω, it is possible to completely describe all the
eigenvalues of the infinite Floquet Hamiltonian with the two eigenvalues of H2, by
adding multiples of the modulation frequency Ω. In Figure 8.13 we compare the
numerical eigenvalues of the Floquet matrix to the perturbation theory results. We
obtain a very good agreement between the numerical eigenvalues (truncated Equa-
tion 8.10) and the analytical eigenvalues obtained via perturbation theory (Equa-
tion 8.18).

Furthermore, this perturbation analysis allows us to find an analytical approx-
imation for the coupling coefficient κc, where the Floquet modes cross for the first
time (around κ = Ω). By imposing that the two eigenvalues ω± of Equation 8.18
must be equal and solving for κ, we find (after neglecting δ2 terms):

κc =
Ω

4

(
1 + 3

√
1− 2δ2

9Ω2

)
(8.19)

From this expression, we see that without perturbation the bands indeed cross at
κ = Ω as expected (see Figure 8.2). This is why we employed κ ≈ Ω for the band
crossing in the previous sections.

8.6 Conclusion

An efficient and tailored frequency conversion can be achieved with a system of cou-
pled time-modulated cavities. We describe this process using the CMT equations
adapted to time-dependent resonance frequencies. The system supports Floquet
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Figure 8.13: Solid lines: Numerical results for the eigenvalues of the Floquet matrix.
Circles: Equation 8.18 and with Ω offset. The parameters used are the same as in
Figure 8.2.

modes, arising from the time periodicity, which play an important role in the con-
version efficiency. Furthermore, their band-like structure is a key element, as the
conversion is enhanced in the neighbourhood of (anti-)crossings.

We exploit the coupled-cavity setup to achieve both symmetric and asymmetric
frequency conversion, using the important link of these two processes with the Flo-
quet modes. We employ perturbation theory to find an analytic approximation of
the Floquet bands. Furthermore, we show how to find useful system parameters for
selective frequency conversion using a straightforward three-frequency model.

This frequency conversion mechanism is fairly general, since it only requires two
coupled, time-modulated resonances, such as recently demonstrated in [129]. It can
thus be applied to a wide range of physical systems, ranging from photonics to
acoustics for example.
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9
Time-modulated BIC states

In this chapter we study the outcoupling of a time-modulated system of two cou-
pled modes inside a cavity, in a specifically tailored setup. As we saw in Chapter 8,
a system modulated periodically in time exhibits Floquet modes, and their eigen-
frequencies are separated by the modulation frequency Ω. This time, the system
under investigation is coupled to one channel, and we study in more detail the decay
mechanism, when the system exhibits a Bound State in the Continuum (BIC).

In contrast, in the two cavity system of Chapter 8, we only considered the case
where one cavity supports a dark mode (that does not couple to the ports) and
a bright mode (that couples to the continuum). The outcoupling was taken into
account only by considering the power escaping from the bright mode. In this
chapter, we consider a more general case.

9.1 Static BIC states

Bound States in the Continuum (BICs) are states that remain localized, even though
they are connected to a continuum of waves that should allow energy to leak from
the mode [130]. Usually, to determine if a mode is perfectly confined, one simple
clue is to look at its frequency: if the mode frequency is outside the spectral range of
the radiation channels, then the state is considered as decoupled from the radiation
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and it is perfectly confined: no energy can escape. An example is a localized defect
mode in the bandgap of a photonic crystal. In the opposite case, a state that lies in
a continuum of states is often a leaky mode, since its energy can couple to radiation
channels. A BIC state is a very peculiar case that does not fall in the two descriptions
above: it is a perfectly confined mode, yet inside a continuum of states.

BIC states can be found in a wide variety of physical systems, and one can
separate BIC states in several categories. In symmetry-protected BICs, a single
state with a given symmetry class can be embedded in a continuum of modes of
another symmetry class. In that case, since the two symmetry classes are usually
decoupled, no energy exchange occurs between the single mode and the continuum
of modes. This kind of BIC state has been studied in sound waves [131, 132], and in
water waves [133, 134]. In photonics, a realization of BIC states was implemented
by introducing an odd defect mode in a 1D waveguide supporting a continuum of
even modes [135–137].

A different common class of bound states are the Fabry-Pérot BICs. When a
resonant cavity is coupled to a single waveguide, it can cause unity reflection. If two
of these cavities are present in a waveguide, they can act as a pair of perfect mirrors,
effectively trapping light in between them. In this structure, BICs are formed when
the frequency of the individual resonators and the separation between them is tuned
so that the phase acquired during a round-trip is an integer multiple of 2π. In the
end this structure closely resembles a Fabry-Pérot cavity formed by two perfectly
reflecting mirrors. This type of BIC can be found in water waves [138, 139], and in
photonics in a waveguide connected to resonant defects [140].

Another type of bound state is closely related to the Fabry-Pérot BICs: Friedrich-
Wintgen BICs. In Fabry-Pérot BICs, the two resonances are separated by a given
distance. This is not necessary for the existence of a BIC state: if the two resonances
are supported by the same cavity and have different resonance frequencies, with dif-
ferent radiation rates into the same channel, the interference can lead to a BIC. In
other words, a multimode cavity coupled to a radiation channel can support BIC
states when the system parameters are properly tuned so that destructive interfer-
ences occur between the radiations leaving the cavity. In photonics, such BIC states
have been studied in multimode cavities coupled to microwave waveguides [141, 142]
and in ‘dark-state’ lasers [143].

In this chapter, the system under investigation consists of a single cavity sup-
porting two modes (Figure 9.1). These two modes are each coupled to two output
ports, so we expect Friedrich-Wintgen BICs for some specific cases. This system
could represent a multimode cavity coupled to a regular photonic waveguide, or to a
photonic crystal waveguide. The cavity can represent a plasmonic mode, for exam-
ple graphene plasmonic resonances, as we discussed in Chapter 6. We will describe
this setup with a CMT model for a multimode cavity, as introduced in Chapter 5:

da

dt
= (jΩ− Γ)a +KT |s+〉 , (9.1)

|s−〉 = C |s+〉+Da. (9.2)

The two modes inside the cavity are represented by their mode amplitudes a(t)
and b(t) contained in the vector a, normalized such that |a(t)|2 and |b(t)|2 corre-
spond to the energy of the corresponding modes. These two modes have resonance
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Figure 9.1: Schematic of the system described by Equations 9.1 and 9.2. Typically,
this model represents a multimode cavity coupled to a waveguide (2 output ports).
A direct channel is also present, taking into account the direct transport process,
without interaction with the cavity modes. This system is also suitable to describe
a plasmonic cavity (in graphene for example) coupled to plane waves.

frequencies corresponding to the diagonal elements of Ω and are coupled between
them by the off-diagonal elements of Ω. The two modes are coupled to input ports
|s+〉 via the matrix K, and to output ports |s+〉 via the matrix D. The matrix C ac-
counts for direct transport between the input and output ports, without interaction
with the cavity. As described in Chapter 5, energy conservation, mirror symmetry
and time-reversal symmetry impose that:

D+D = 2Γ, (9.3)

K = D, (9.4)

CD∗ = −D. (9.5)

Explicitly, by considering Equations 9.3 to 9.5 this system reads:

d

dt

(
a(t)
b(t)

)
=

[
j

(
ω1 κ
κ ω2

)
−
(
γ1 γ0

γ0 γ2

)](
a(t)
b(t)

)
+

(√
γ1
√
γ1√

γ2
√
γ2

)(
s1+(t)
s2+(t)

)
(9.6)(

s1−(t)
s2−(t)

)
=

(
rd td
td rd

)(
s1+(t)
s2+(t)

)
+

(√
γ1
√
γ2√

γ1
√
γ2

)(
a(t)
b(t)

)
(9.7)

where ω1,2 are the resonance frequencies of modes a and b, respectively, κ is the
coupling between the two modes, γ1,2 are the decay rates, and td and rd are the
transmission and reflection coefficients of the direct process. If the two modes have
the same parity, γ0 =

√
γ1γ2, but if the two modes have opposite parity, γ0 = 0. In

this chapter, we will consider the case where the two modes have the same parity,
as this leads to interesting interactions with the output ports.

One can define the Hamiltonian of this system as:

H =

(
ω1 κ
κ ω2

)
+ j

(
γ1

√
γ1γ2√

γ1γ2 γ2

)
. (9.8)
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We use the convention ejωt, so eigenvalues ω± of H such that Im(ω±) > 0 are the
eigenvalues of lossy modes. For the simple case where the modes are degenerate
(ω1 = ω2 = ω1,2 and γ1 = γ2 = γ1,2), the eigenvalues ω± of H take the simple form

ω− = ω1,2 − κ ω+ = ω1,2 + κ+ 2jγ1,2. (9.9)

This simple system already exhibit an interesting feature: one of the two eigen-
states (corresponding to the eigenvalue ω−) is a Friedrich-Wintgen BIC state (see
Figure 9.2). The state corresponding to the ω− eigenvalue is a BIC state because
it lies in a continuum of states (the radiation through the ports) and is coupled to
them but yet it does not decay into the continuum of modes. The lifetime of an
eigenstate can be defined as τmode = 1/ (2|Im(ω±)|), which means that a mode with
an eigenvalue such that Im(ω±) = 0 will have an infinite lifetime (and Q-factor). As
such, it cannot be excited through an input port and, once excited by other means,
does not decay in any of the output ports. Note that in this case, the BIC state
exists for all the values of κ. The eigenvectors corresponding to the eigenvalues ω±
are:

ω− =

(
−1
1

)
ω+ =

(
1
1

)
. (9.10)

One can get an intuitive understanding of the BIC state isolation from the ports:
the two cavity modes oscillate with opposite phases and radiate into the ports with
the same rate since the decay rates of the two cavity modes are equal. This leads
to destructive interference and prevents the BIC state from leaking to the output
ports.
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Figure 9.2: Solid lines: eigenvalues ω± for the degenerate case (ω1 = ω2, γ1 = γ2).
Dashed lines: eigenvalues ω± for the non-degenerate case (ω1 6= ω2, γ1 = γ2). We
define ω0 = (ω1 + ω2)/2. While a BIC state always exists for the degenerate case,
in the non-degenerate case both modes have a non-zero imaginary part for all the κ
values.

It is then expected that a system in the initial state ω+ corresponding to the ω+

eigenvalue will decay into the ports in the degenerate case since its eigenvalue always
has a non-zero imaginary part. We solved the system of Equations 9.6 and 9.7 for
an initial state ω+ in Figure 9.3 and ω− in Figure 9.4.
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Figure 9.3: Left: Evolution of the (modulus of the) ω+ eigenstate in the time
domain. The red line is the numerical resolution of the CMT system of equations
while the black dashed line is the theoretical result obtained with the imaginary
part of the eigenvalue. Right: output in the frequency domain (we use the notation
s− for the output port since s1−(t) = s2−(t). The outgoing wave has the frequency
of the eigenvalue ω+.

Once excited, both initial states oscillate at frequency Re(ω±) and decay with a
rate Im(ω±). The ω+ state decays into the ports and the outgoing wave is centered
around the frequency ω+. For the ω− state however, no outgoing wave is present,
and all the energy stays trapped in the BIC mode, even though both cavities are
coupled to output ports.
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Figure 9.4: Left: Evolution of the (modulus of the) ω− eigenstate in the time
domain. Light stays trapped into the eigenstate and does not decay, since the
imaginary part of the eigenvalue is equal to zero. Right: output in the frequency
domain. No wave leaves the eigenstate through the output port.

In the general case, a BIC mode in a system of two coupled cavities will exist
when the following condition is fulfilled [130]:

κ(γ1 − γ2) =
√
γ1γ2(ω1 − ω2). (9.11)

From this expression, one finds that all the degenerate systems (ω1 = ω2 and γ1 = γ2)
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will support a BIC state, for all κ values. For non-degenerate systems however, a
BIC state will only exist for one value of κ. We illustrate this in Figure 9.5.
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Figure 9.5: Imaginary part of the eigenvalues ω± as a function of the coupling
coefficient κ. A BIC state appears when the condition of Equation 9.11 is fulfilled
(vertical dashed line). At that value, one of the eigenvalues imaginary part vanishes.
In this case, ω2 − ω1 = 7.8 × 1011 rad/s, γ1 = 2 × 1010 rad/s, γ2 = 10γ1 and
ω0 = (ω1 + ω2)/2.

9.2 Dynamic BIC states

In this section we investigate the behaviour of BIC states in time-modulated struc-
tures. The system we use is the same as in Figure 9.1, but this time the resonance
frequencies ω1 and ω2 will be time-modulated. This modulation will be periodic,
meaning that the Hamiltionian of Equation 9.8 will also be periodic. As we saw in
Chapter 8, a Hamiltonian in that case supports Floquet modes, and we presented a
method to find its eigenvalues. We will use the same tools in this chapter.

First, we are interested in finding the imaginary part of the Floquet eigenvalues.
In the previous chapter, we only focused on the real part of these eigenvalues since
we were studying the interference effects between the two cavity modes. Here, we
will study the losses of the Floquet modes, governed by the imaginary part of the
corresponding Floquet eigenvalue. We will first consider the case where one of the
cavity modes is modulated. The time modulation for the cavity resonance frequency
is:

ω2(t) = ω2 + δ sin (Ωt) (9.12)

with ω2 the ‘static’ resonance frequency, δ the modulation amplitude and Ω the
modulation frequency. The modulation amplitudes δ we consider here are of the
same order of magnitude as Ω.

Using the tools from the previous chapter, we can represent the Floquet eigen-
values (real and imaginary parts) as a function of κ in Figure 9.6. These Floquet
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mode are different than the ‘static’ modes: as previously, the resonance frequencies
are adjusted, and there are multiple Floquet branches, separated by the modulation
frequency Ω.
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Figure 9.6: (Left:) Real and (Right:) imaginary part of the Floquet mode eigenfre-
quencies. Black (red) lines represent modes with a lower (higher) imaginary part.
An anti-crossing appears at κ = Ω/2. At that value, the modes mix and have the
same decay rate. For κ→∞ and κ→ 0, one of the Floquet modes is nearly a BIC
state. Here ω1 = ω2, γ1 = γ2 = 2 × 1010 rad/s and only the second cavity mode is
modulated (following Equation 9.12). The black dashed lines denote the cases used
in Figure 9.7.

In Figure 9.6, an anti-crossing appears at κ = Ω/2, where the unperturbed modes
(see Figure 9.2) would cross. The Floquet modes can be separated in two branches:
one branch (red) in Figure 9.6 with a ‘bright’ nature, and one (black) with a lower
imaginary part of the eigenvalues (partially ‘dark’). For a given κ, all the bright
and dark branches have the same imaginary part of their eigenvalue, respectively,
while the real part of their eigenvalue is separated by nΩ, where n is an integer.
The bright and dark Floquet branches follow the static system modes of Figure 9.2.

When the system is excited in a superposition of static states (ω+ + ω−), the
initial state will decay with two different rates into the port, corresponding to the
two different imaginary parts of the Floquet modes. The black lines in the Floquet
diagram of Figure 9.6 denote the two cases where the decay into the output port is
represented in Figure 9.7.

From Figure 9.7, we see that the two Floquet modes decay at very different rates
into the output port. The bright mode decays very rapidly from the cavity, leaving
only the dark mode inside, which decays at a much slower rate if the two Floquet
modes have a different imaginary part. However, at the anti-crossing (κ = Ω/2), the
two branches have the same imaginary part and therefore decay at the same rate.
So, in general, time modulation seems to break the BIC character, as the original
BIC mode becomes mixed with the non-BIC mode.

We also study the two-cavity system where the two resonance frequencies are
time-modulated. If they are both modulated in phase, so ω1 = ω2 and γ1 = γ2,
then at all times, the two cavity modes have the same frequency and decay rate,
and thus the system is at all times doubly degenerate. The Floquet modes of that
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Figure 9.7: Left: Double exponential decay of the cavity modes into the output port.
We used the system parameters from Figure 9.6, and κ/Ω = 0.3 (black dashed line
on the Floquet diagram). Right: Same parameters values but this time, since we
are at the anti-crossing (κ = Ω/2), the two modes decay with the same rate. The
red (black) dashed curves are exponentials with a decay rate corresponding to the
bright (dark) Floquet branches.

system are represented in Figure 9.8. In this case, the Floquet modes are simply the
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Figure 9.8: (Left:) Real and (Right:) imaginary part of the Floquet mode eigenfre-
quencies where ω1(t) = ω2(t) and γ1 = γ2. Unlike the case where only one mode is
modulated, here the crossing of the unperturbed modes does not open an anticross-
ing. The values used for this figure are the same as in Figure 9.6 (except that both
modes are identically modulated). In this case, the Floquet modes on the ‘dark’
branch always correspond to a BIC state, much like the static case of Figure 9.2.

static system modes separated by the modulation frequency Ω. Moreover, one of
the modes is a BIC state for all κ values because condition 9.11 is instantaneously
correct at all times. This is a first sign that a particular time modulation can restore
the BIC character.

If the two initial cavity modes have the same (real part of the) resonance fre-
quency, but a different decay rate, and when only one of the two modes is modulated,
the system is no longer degenerate. Then an anti-crossing appears at κ = Ω/2 where
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the eigenfrequencies of the two Floquet branches have the same imaginary part (Fig-
ure 9.9). Unlike the case represented in Figure 9.6, here there is no quasi-BIC state
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Figure 9.9: (Left:) Real and (Right:) imaginary part of the Floquet mode eigen-
frequencies where γ1 = 2 × 1010 rad/s and γ2 = 5γ1. Only the second mode is
modulated. Since γ1 6= γ2, the condition of Equation 9.11 is only fulfilled when
κ = 0.

for κ→∞. This is because the condition of Equation 9.11 cannot be fulfilled: the
left hand side of Equation 9.11 is non-zero, while the right hand side is zero because
the two cavities have the same resonance frequency. However a BIC state still exists
at κ = 0.

From Equation 9.11, it seems that it is possible to obtain a ‘dynamic BIC state’
for any κ value by choosing a modulation that satisfies

ω2(t) = ω1(t)− κγ1 − γ2√
γ1γ2

. (9.13)

By choosing an ω2(t) that satisfies Equation 9.13 for a given ω1(t), the Floquet
diagrams are modified (Figure 9.10). A BIC state exists even when ω1 6= ω2 and
γ1 6= γ2. In contrast, the dynamic BIC state in Figure 9.8 was obtained because the
‘static’ system was degenerate, which is no longer the case here. The ‘static’ modes
of that system are modified since the unperturbed frequency of the second mode is
now a function of κ (ω2 → ω2−κ(γ1−γ2)/

√
γ1γ2), while the unperturbed frequency

of the first mode stays unchanged.

As seen in Figure 9.10, the dark branch of the Floquet modes only contains
BIC states, which do not couple with the continuum. Their eigenvectors actually
correspond to those of the static system (Equation 9.10). As in the static system
supporting a BIC state, if an eigenvector is excited in the BIC state, it will stay
trapped in the cavity, even if the system is non-degenerate and if a time modulation
is present. We check this by solving the system of Equations 9.1 and 9.2 with the
initial state ω− from Equation 9.10. The time evolution of the cavity mode b(t) and
the output s− in the frequency domain are shown in Figure 9.11.
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Figure 9.10: (Left:) Real and (Right:) imaginary part of the Floquet mode eigen-
frequencies where ω1 is modulated as in Equation 9.12, ω2 follows Equation 9.13,
γ1 = 2× 1010 rad/s and γ2 = 5γ1. The Floquet eigenvalues follow the ‘static’ eigen-
values of the system with an added nΩ frequency, with n an integer. A BIC state
is present for all the κ values.
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Figure 9.11: Left: Time domain evolution of the (modulus of the) cavity mode b.
Once in the initial state ω−, the system evolves at the eigenfrequency ω− without
any decay into the output ports. Right: Output s− in the frequency domain. Since
the system is in a BIC state at all times, no light leaks through the ports, even
though the system is time-modulated. In this figure, the first mode frequency is
modulated around ω1 = 2π × 1013 rad/s, γ1 = 2× 1010 rad/s and γ2 = 5γ1.

9.3 Conclusion

In this section, we studied dynamic Floquet modes in a multimode coupled cavity.
We first described the modes of a ‘static’ system where in some cases BIC states
can exist. Once excited, these modes stay trapped inside the cavity and do not leak
through the output ports.

We then studied in detail the Floquet modes when this system is time-modulated,
using the tools of Chapter 8 to obtain the Floquet eigenfrequencies. The two main
Floquet branches are different, as one is formed of ‘dark’ modes, while the other is
composed of ‘bright’ modes. However, typically, a time-modulated static BIC will
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obtain a leaky character, as it mixes with the radiative mode.
The latter can be repaired though. The condition for the existence of a BIC state

in a ‘static’ system can be generalized to a dynamical system, where the resonance
frequencies of the cavity modes are time-modulated in a specific way. This dynamic
BIC state does not decay into the output ports.

When both a bright and a dark mode are simultaneously excited, these modes
decay at different rates, dictated by the value of the imaginary part of the Floquet
eigenfrequency.
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Conclusion and outlook

Throughout this thesis we studied the interaction of light, plasmonic modes and
temporal modulation. In particular, we employed the versatile platform of graphene
plasmonics that allows to dynamically change the material properties. We studied
different types of plasmonic structures: single resonances, coupled cavities, multi-
mode cavities and propagating graphene plasmons. This variety of time-modulated
structures enables a wide range of physical phenomena, such as frequency comb gen-
eration, frequency conversion and dynamic bound states. For practical implementa-
tion, temporal modulation offers a promising alternative to magnetic and non-linear
materials, leading towards a compact and efficient platform for novel phenomena
and applications.

We started in Chapter 6 by studying the interaction of a plane wave with a time-
modulated single-mode plasmonic cavity in graphene nanoribbons, which generates
a frequency comb. The frequency separation between the frequency components
of the comb is equal to the modulation frequency applied to the cavity. We first
studied the static system with a CMT model. The parameters of this model were
extracted from FEM simulations of the array (in the frequency domain), by fitting
the transmission spectrum to the CMT prediction. We then used the CMT model in
the time domain, where the resonance frequency of the cavity was modulated. We
found a good agreement between the dynamic CMT model and time domain FEM
simulations, proving that a simple CMT model can describe the complex interplay
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between light, plasmonic resonances and time modulation. Using the time domain
CMT model, we discussed the parameters that influence the shape of the comb, and
investigated the cavity dynamics. It was determined that the ribbon architecture
can be much more efficient for comb generation than the previously reported planar
graphene device.

In Chapter 7 we studied the behaviour of graphene plasmons incident on a time
boundary, a sudden change in the graphene conductivity. At such a temporal inter-
face the material properties change everywhere at the same time, so the field profile
and the wavevector of the propagating modes is conserved, which implies that the
frequency changes. We compared different modeling approaches in the literature
and discussed their scope of application. We derived the reflection and transmission
coefficients at a time interface for several types of interfaces (upward and downward
steps and slabs). We also compared our results with time domain FEM simulations
and found a good agreement between the theoretical predictions and the simulation
results.

Next in Chapter 8, we extended the work of Chapter 6 by considering a system
of two time-modulated cavities. This time, instead of frequency comb generation,
we focused on frequency conversion. To this end, we studied figures of merit char-
acterizing the conversion efficiency, as a function of the coupling between the two
cavities. We also determined the Floquet modes of the dynamic system, as they play
an important role in the frequency conversion process. We presented a method to
determine the eigenfrequencies of the Floquet modes, and a perturbation technique
to get an analytical expression for the Floquet branches. We also used a simple
three-frequency model to investigate the interferences between the cavity modes,
explaining why the conversion process is more efficient in some specific cases. In-
terestingly, we showed that the conversion efficiency is maximum at the edge of the
anti-crossings opened by the time modulation in the Floquet diagrams, so that a
single output frequency can be targeted.

Finally, in Chapter 9, we studied in more detail the decay mechanisms of Floquet
modes in a multimode time-modulated cavity. Such a system with two static cavities
can exhibit bound states in the continuum, modes that do not decay even if they
lie in a continuum of radiation states. We reviewed the conditions for such bound
states to exist, involving the coupling, decay rate and resonance frequencies of the
modes. We then showed that these states can persist in a system with a particular
modulation for both modes. We studied the losses of the Floquet modes in the
general case, and found that the two different Floquet branches have very different
decay rates. We verified that the bound states do not decay even in the presence of
a time modulation by using a time-dependent CMT model.

A very important follow up to these theoretical propositions would be an exper-
imental implementation. To this end, the graphene platform employed throughout
this thesis is ideal for several reasons. The graphene Fermi level can be changed
at GHz rates, and permits shifts in the resonance frequency of graphene plasmonic
resonances of the order of THz. The frequency of operation is in the plasmonic
regime of graphene, which ranges from mid-infrared to far-infrared. The initial res-
onance frequency can be tuned by using ribbon lengths ranging from hundreds of
nanometers to micrometers, covering the mid-infrared to far-infrared ranges. The
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initial Fermi level of graphene also allows to tune the initial resonance frequency of
the plasmonic mode. Typical values for the Fermi level range from 0 to 1 eV. All
these experimental parameters are already available in today’s technology.

The main advantage of the time-modulation approach presented in this thesis is
its tunability: both the graphene and the time modulation allow for a wide range
of degrees of freedom. The use of plasmonic resonances also allows to interact very
strongly with light, and to apply the time-modulation to a volume limited to the
area where the plasmonic mode is supported. Even though graphene seems an ideal
platform to implement time-dependent effects, the same analysis can be carried out
for other types of resonances and time-dependent materials. For example lithium
niobate has been used for a long time as electro-optic modulators in silicon photonics,
and could be used to implement time-modulated effects on that platform.

Limitations to this approach also exist. For example it can be difficult to modu-
late the graphene Fermi-level at rates higher than tens of GHz by electrical gating.
To lift this limitation, one needs to use fast pulsed lasers at optical frequencies, but
the modulation of graphene at these rates remains a challenge. Moreover, losses in
graphene have been an important limiting factor for graphene plasmonics since its
early developments. This is expected to limit the performance of comb generation
and frequency conversion presented in this thesis, as they decrease the quality factor
of the graphene plasmonic resonance. The experimental realization of the ideas pre-
sented in this thesis thus remains a challenge, but also an important opportunity to
achieve photonics effects that previously required non-linear or magnetic materials.

Potential applications range from direct implementation of frequency comb gen-
eration and frequency conversion using time-modulated graphene plasmonic reso-
nances to more involved ones. For example the time-modulated BIC states could
be used to realize lasers, as they have a theoretically infinite lifetime. These lasers
could actually produce frequency combs as the Floquet modes present in this setup
are separated by the modulation frequency. One other application would be tunable
lasers that use the interferences between Floquet modes, as used in the thesis for
frequency conversion.

Since the physical principles used here are very general, the results obtained in
this thesis could be transposed to different fields. One can mention acoustics, where
the resonance of a cavity can be mechanically modulated. These results offer a new
indication that time-modulation could be an alternative to the use of non-linear and
magnetic materials to achieve diverse optical effects. Even if challenging, the use of
graphene plasmonics to this end is a promising platform. The generality of results
obtained with time-modulation indicates that we could see time-modulated devices
in very different fields in the years to come.
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S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,”
Optics Letters, vol. 34, no. 16, pp. 2405–2407, 2009.

[137] Y. Plotnik, O. Peleg, F. Dreisow, M. Heinrich, S. Nolte, A. Szameit, and
M. Segev, “Experimental observation of optical bound states in the contin-
uum,” Physical Review Letters, vol. 107, no. 18, p. 183901, 2011.

[138] M. McIver, “An example of non-uniqueness in the two-dimensional linear water
wave problem,” Journal of Sound and Vibration, vol. 315, pp. 257–266, 1996.

[139] C. Linton and P. McIver, “Embedded trapped modes in water waves and
acoustics,” Wave Motion, vol. 45, no. 1-2, pp. 16–29, 2007.

[140] K.-K. Voo, “Trapped electromagnetic modes in forked transmission lines,”
Wave Motion, vol. 45, no. 6, pp. 795–803, 2008.



122 BIBLIOGRAPHY

[141] T. Lepetit, E. Akmansoy, J.-P. Ganne, and J.-M. Lourtioz, “Resonance contin-
uum coupling in high-permittivity dielectric metamaterials,” Physical Review
B, vol. 82, no. 19, p. 195307, 2010.

[142] T. Lepetit and B. Kante, “Controlling multipolar radiation with symme-
tries for electromagnetic bound states in the continuum,” Physical Review
B, vol. 90, no. 24, p. 241103, 2014.

[143] C. M. Gentry and M. A. Popovic, “Dark state lasers,” Optics Letters, vol. 39,
no. 14, pp. 4136–4139, 2014.


	Acknowledgements
	Summary
	Introduction
	Context
	Outline
	Publications

	Time dependent photonics
	Frequency conversion
	Optical isolation
	Topological effects

	Graphene
	Graphene conductivity
	Tunability
	Chemical doping
	Electric field effect
	Optical pumping

	Fabrication

	Plasmonics
	Drude model
	Plasmons in standard metals
	Graphene plasmons
	Graphene ribbon arrays

	Optical concepts
	Coupled Mode Theory
	Single mode resonator
	Multimode resonator

	Fano resonances
	Perturbation method
	Finite Element Method

	Frequency comb generation
	Graphene ribbon lattice
	Dependence on the Fermi level
	CMT model of graphene ribbon arrays
	Dynamic CMT model
	Limitations of planar graphene for comb generation
	Connecting grating and comb properties
	Conclusion

	Time reflection and time refraction of graphene plasmons
	Upward steps
	Downward steps
	Temporal slabs
	Conclusion

	Selective frequency conversion via Floquet modes
	Setup and Coupled Mode Theory
	Floquet modes
	Selective frequency conversion
	Asymmetric conversion
	Symmetric conversion
	Non-degenerate case

	Three-frequency model
	Two-level perturbation
	Conclusion

	Time-modulated BIC states
	Static BIC states
	Dynamic BIC states
	Conclusion

	Conclusion and outlook
	Bibliography

