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Abstract

An extensive group-theoretical treatment of linear relativistic field equations on Minkow-
ski spacetime of arbitrary dimension D ¾ 3 is presented. An exhaustive treatment is per-
formed of the two most important classes of unitary irreducible representations of the
Poincaré group, corresponding to massive and massless fundamental particles. Covari-
ant field equations are given for each unitary irreducible representation of the Poincaré
group with non-negative mass-squared.
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1 Group-theoretical preliminaries

Elementary knowledge of the theory of Lie groups and their representations is assumed (see
e.g. the textbooks [1, 2] or the lecture notes [3]). The basic definitions of the Lorentz and
Poincaré groups together with some general facts on the theory of unitary representations are
reviewed in order to fix the notation and settle down the prerequisites.

1.1 Universal covering of the Lorentz group

The group of linear homogeneous transformations x ′µ = Λµνxν (µ,ν = 0, 1, . . . , D − 1) pre-
serving the Minkowski metric ηµν of “mostly plus" signature (−,+, . . . ,+) ,

ΛTηΛ= η ,

where ΛT denotes the matrix transpose of Λ , is called the Lorentz group O(D− 1,1).
A massless particle propagates on the light-cone x2 = 0 . Without loss of generality, one

may consider that its momentum points along the (D − 1)th spatial direction. Then it turns
out to be convenient to make use of the light-cone coordinates

x± =
1
p

2
( x D−1 ± x0 ) and xm (m= 1, . . . , D− 2) ,

where the Minkowski metric reads η++ = 0 = η−− , η+− = 1 = η−+ and ηmn = δmn
(m, n= 1, . . . , D− 2).

On physical grounds, one will mainly be interested in the matrices Λ’s with determinant
+1 and such that Λ0

0 ¾ 0 . It can be shown that such matrices Λ’s also form a group that one
calls the proper orthochronous Lorentz group denoted by SO(D − 1,1)↑ . It is connected to
the identity, but not simply connected, that is to say, there exist loops in the group manifold
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SO(D−1, 1)↑ which are not continuously contractible to a point. In order to study the represen-
tations (reps) of SO(D−1, 1)↑ , one may first determine its universal covering group, i.e. the Lie
group which is simply connected and whose Lie algebra is isomorphic to so(D− 1,1) , the Lie
algebra of SO(D−1,1)↑ . For D ¾ 4 , the universal covering group, denoted Spin(D−1,1) , is
the double cover of SO(D−1, 1)↑ . The spin groups Spin(D−1,1) have no intrinsically projec-
tive representations. Therefore, a single (or double) valued “representation" of SO(D− 1,1)↑

is meant to be a genuine representation of Spin(D− 1,1) .
Warning: The double cover of SO(2,1)↑ is the group SU(1,1), in close analogy to the fact that
the double cover of SO(3) is SU(2) . The group SU(2) is also the universal covering group of
SO(3) , but beware that the universal cover of SO(2, 1)↑ is actually R3 , covering SO(2,1)↑

infinitely many times. Thus one may not speak of the spin group for the case of the proper
orthochronous Lorentz group in spacetime dimension three. The analogue is that the universal
cover of SO(2)∼= U(1) is R , that covers U(1) infinitely many times, so that one may not speak
of the spin group for the degenerate case of the rotation group in two spatial dimensions.

1.2 The Poincaré group and algebra

The transformations
x ′µ = Λµνxµ + aµ ,

where a is a spacetime translation vector, form the group of all inhomogeneous Lorentz trans-
formations. If one denotes a general transformation by (Λ, a) , the multiplication law in the
Poincaré group is given by

(Λ2, a2) · (Λ1, a1) = (Λ2Λ1, a2 +Λ2a1) ,

so that the inhomogeneous Lorentz group is the semi-direct product denoted by

IO(D− 1,1) = RD oO(D− 1,1) .

The subgroup ISO(D−1, 1)↑ of inhomogeneous proper orthochronous Lorentz transformations
is called the Poincaré group. The Lie algebra iso(D − 1,1) of the Poincaré group is presented
by the generators { Pµ , Mνρ } and by the commutation relations

i [Mµν, Mρσ] = ηνρMµσ −ηµρMνσ −ησµMρν +ησνMρµ (1)

i [Pµ, Mρσ] = ηµρPσ −ηµσPρ , (2)

i [Pµ, Pρ] = 0 . (3)

Two subalgebras must be distinguished: the Lie algebra so(D − 1, 1) of the Lorentz group
presented by the generators {Mνρ } and by the commutation relations (1), and the Lie algebra
RD of the Abelian translation group presented by the generators { Pµ } and by the commutation
relations (3). The latter algebra RD is an ideal of the Poincaré algebra, as can be seen from
(2). Altogether, this implies that the Lie algebra of the Poincaré group is the semi-direct sum
iso(D− 1,1) = RD B so(D− 1, 1) .

The Casimir elements of a Lie algebra g are homogeneous polynomials in the generators
of g providing a distinguished basis of the center Z

�

U(g)
�

of the universal enveloping algebra
U(g) (see e.g. the part V of the lecture notes [3]). The quadratic Casimir operator of the
Lorentz algebra so(D− 1, 1) is the square of the generators Mµν:

C2

�

so(D− 1, 1)
�

=
1
2

MµνMµν . (4)
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The quadratic Casimir operator of the Poincaré algebra iso(D − 1, 1) is the square of the mo-
mentum

C2

�

iso(D− 1,1)
�

= −PµPµ , (5)

while the quartic Casimir operator is

C4

�

iso(D− 1, 1)
�

= −
1
2

P2MµνMµν +MµρPρMµσPσ , (6)

which, for D = 4, is the square of the Pauli-Lubanski vector Wµ,

Wµ :=
1
2
εµνρσMνρPσ .

1.3 ABC of unitary representations

The mathematical property that all non-trivial unitary reps of a non-compact simple Lie group
must be infinite-dimensional has some physical significance, as will be reviewed later.

Finite-dimensional unitary reps of non-compact simple Lie groups: Let U : G → U(n) be
a unitary representation of a Lie group G acting on a (real or complex) Hilbert space H of finite
dimension n ∈ N. Then U is completely reducible. Moreover, if U is irreducible and if G is a
connected simple non-compact Lie group, then U is the trivial representation.

Proof: For the property that U is completely reducible, we refer e.g. to the proof of the proposi-
tion 5.15 in [1]. The image U(G) for any unitary representation U defines a subgroup of U(n) .
Moreover, the kernel of U is a normal subgroup of the simple group G. Therefore, either the
representation is trivial and ker U = G , or it is faithfull and kerU = {e} . In the latter case, U
is invertible and its image is isomorphic to its domain, U(G) ∼= G. Actually, the image U(G) is
a non-compact subgroup of U(n) because if U(G) was compact, then U−1

�

U(G)
�

= G would
be compact since U−1 is a continuous map. But the group U(n) is compact, thus it cannot
contain a non-compact subgroup. Therefore the representation cannot be faithful, so that it is
trivial. (A different proof of the second part of the theorem may be found in the section 8.1.B
of [2].)

Another mathematical result which is of physical significance is the following theorem on
unitary irreducible representations (UIRs) of compact Lie groups.

Unitary reps of compact Lie groups: Let U be a UIR of a compact Lie group G, acting on
a (real or complex) Hilbert space H. Then H is finite-dimensional. Moreover, every unitary
representation of G is a direct sum of UIRs (the sum may be infinite).

Proof: The proofs are somewhat lengthy and technical so we refer to the section 7.1 of [2] for
complete details.

Examples of (not so) simple groups:
• On the one hand, all (pseudo)-orthogonal groups SO(p, q) are either Abelian (p + q = 2),
non-simple (p+ q = 4) or simple (p+ q = 3 and p+ q > 4). Moreover, the orthogonal groups
(p q = 0) are compact, while the pseudo-orthogonal groups (p q 6= 0) are non-compact.
• On the other hand, the inhomogeneous Lorentz group IO(D−1, 1) is non-compact (both RD

and O(D − 1,1) are non-compact) but it is not semi-simple (because its normal subgroup RD

is Abelian).
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2 Elementary particles as unitary irreducible representations of
the isometry group

Except for the final remarks, this section is based almost ad verbatim on the introduction of
the illuminating work of Bargmann and Wigner [4], modulo some changes of notation and
terminology in order to follow the modern conventions.

The wave functions | ψ 〉 describing the possible states of a quantum-mechanical system
form a linear vector space H which, in general, is infinite-dimensional and on which a positive-
definite inner product 〈 φ | ψ 〉 is defined for any two wave functions | φ 〉 and | ψ 〉 (i.e.
they form a Hilbert space). The inner product usually involves an integration over the whole
configuration or momentum space and, for particles of non-vanishing spin, a summation over
the spin indices.

If the wave functions in question refer to a free particle and satisfy relativistic wave equa-
tions, there exists a correspondence between the wave functions describing the same state in
different Lorentz frames. The transformations considered here form the group of all inhomo-
geneous Lorentz transformations (including translations of the origin in space and time). Let
|ψ 〉 and |ψ 〉′ be the wave functions of the same state in two Lorentz frames L and L′, respec-
tively. Then | ψ 〉′ = U(Λ, a) | ψ 〉, where U(Λ, a) is a linear unitary operator which depends
on the transformation (Λ, a) leading from L to L′ . By a proper normalization, U is determined
by Λ up to a factor ±1 . Moreover, the operators U form a single- or double-valued representa-
tion of the inhomogeneous Lorentz group, i.e., for a succession of two transformations (Λ1, a1)
and (Λ2, a2), we have

U(Λ2, a2)U(Λ1, a1) = ±U(Λ2Λ1, a2 +Λ2a1) . (7)

Since all Lorentz frames are equivalent for the description of our system, it follows that,
together with | ψ 〉 , U(Λ, a) | ψ 〉 is also a possible state viewed from the original Lorentz
frame L . Thus, the vector space H contains, with every | ψ 〉 , all transforms U(Λ, a) | ψ 〉 ,
where (Λ, a) is any inhomogenous Lorentz transformation.

The operators U may also replace the wave equation of the system. In our discussion, we
use the wave functions in the “Heisenberg" representation, so that a given |ψ 〉 represents the
system for all times, and may be chosen as the “Schrödinger" wave function at time t = 0 in a
given Lorentz frame L. To find |ψ 〉t0

, the Schrödinger function at time t0 , one must therefore
transform to a frame L′ for which t ′ = t − t0 , while all other coordinates remain unchanged.
Then |ψ 〉t0

= U(Λ, a) |ψ 〉 , where (Λ, a) is the transformation leading from L to L′ .
A classification of all unitary representations of the inhomogeneous Lorentz group, i.e.

of all solution of (7), amounts, therefore, to a classification of all possible relativistic wave
equations. Two reps U and eU = V UV−1 , where V is a fixed unitary operator, are equivalent.
If the system is described by wave functions |ψ 〉 , the description by

ß|ψ 〉= V |ψ 〉 (8)

is isomorphic with respect to linear superposition, with respect to forming the inner product of
two wave functions, and also with respect to the transition from one Lorentz frame to another.
In fact, if |ψ 〉′ = U(Λ, a) |ψ 〉 , then

ß|ψ 〉
′
= V |ψ 〉′ = V U(Λ, a)V−1

ß|ψ 〉= eU(Λ, a)ß|ψ 〉 .

Thus, one obtains classes of equivalent wave equations. Finally, it is sufficient to determine
the irreducible representations (irreps) since any other may be built from them.

Two descriptions which are equivalent according to (8) may be quite different in appear-
ance. The best known example is the description of the electromagnetic field by the field
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strength and the vector potential, respectively. It cannot be claimed either that equivalence
in the sense of (8) implies equivalence in every physical aspect. It should be emphasized that
any selection of one among the equivalent systems involves an explicit or implicit assumption
as to possible interactions, etc. Our analysis is necessarily restricted to free particles and does
not lead to any assertion about possible interactions.

The present discussion is not based on any hypothesis about the structure of the wave
equations provided that they be covariant. In particular, it is not necessary to assume differ-
ential equations in configuration space. But it is a result of the group-theoretical analysis that
every irreducible field equation is equivalent, in the sense of (8), to a system of differential
equations for fields on Minkowski spacetime.

Remarks:
• An important theorem proved by Wigner is that any symmetry transformation that is con-
tinuously related to the identity must be represented by a linear unitary operator (see e.g.
the appendix A of [5]). Strictly speaking, physical states are represented by rays in a Hilbert
space. Therefore the unitary representations of the symmetry group are actually understood
to be projective representations. In spacetime dimensions D ¾ 4 , this subtlety1 reduces to the
standard distinction between single and double valued representations of the Poincaré group,
as was taken for granted in the text.
• Notice that the previous discussion remains entirely valid if the Minkowski spacetime RD−1,1

is replaced everywhere by any other maximally symmetric spacetime (i.e. de Sitter spacetime
dSD, or anti de Sitter spacetime AdSD) under the condition that the inhomogeneous Lorentz
group IO(D − 1, 1) be also replaced everywhere by the corresponding group of isometries
(respectively, O(D, 1) or, O(D− 1, 2) ).
• In first-quantization, particles are described by fields on the spacetime and isometries are
represented by unitary operators. A particle is said to be “elementary" if the representation is
irreducible, and “composite" if the representation is made of a product of irreps.
• A modern point of view on Quantum Field Theory [5] is that a quantum field (not to be
confused with the state vector discussed above) is an operator defined at each point of space
and time, that acts in a Fock space of states, the field being represented by a superposition,
for different values of the momentum, of one-particule annihilation and creation operators for
particle and the associated antiparticle. The approach of [5] is to build up the quantum field
by imposing Lorentz invariance at every stage. To quote Weinberg, the field equation satisfied
by the quantum field arises almost incidentally, as a byproduct of his construction.
• A unitary representation of the isometry group describes the one-particle Hilbert space of
states. The group-theoretical argument of Bargmann and Wigner [4] applies to the one-
particule states of a free particle.2 The classification of the UIRs of the Poincaré group indeed
yields the Klein-Gordon equation for a massive particle, or the D’Alembert equation in the case
of a massless particle [4]. This comes automatically from the group-theoretical analysis and
is not an assumption.

Summary: On the one hand, the rules of quantum mechanics imply that quantum symmetries
correspond to unitary representations of the symmetry group carried by the Hilbert space
of physical states. Furthermore, if time translations constitute a one-parameter subgroup of
the symmetry group, then the Schrödinger equation for the time evolution of a state vector
essentially is a unitary representation of this subgroup. On the other hand, the principle of
relativity dictates that the isometries of spacetime be symmetries of the physical system. All
together, this implies that linear relativistic field equations may be identified with unitary reps
of the isometry group.

1The case D = 3 is even more subtle and is treated in Appendix B.
2See e.g. Eq. (2.5.1) of [5] where the one-particle state vectors are denoted by Ψp,σ .
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3 Classification of the unitary representations

3.1 Induced representations

The method of induced reps was introduced by Wigner in his seminal paper [6] on the unitary
representations of the inhomogeneous Lorentz group IO(3,1) in four spacetime dimensions,
which admits a straightforward generalization to any spacetime dimension D, as reviewed
now. The content of this subsection finds its origin in the section 2.5 of the comprehensive
textbook [5].

From (3) one sees that all the translation generators commute with each other, so it is nat-
ural to express physical states |ψ 〉 in terms of eigenvectors of the translation generators Pµ .
Introducing a label σ to denote all other degrees of freedom, one thus considers states Ψq,σ
with PµΨq,σ = qµΨq,σ . From the infinitesimal translation U = 1l− iPµεµ and repeated applica-
tions of it, one finds that finite translations are represented on H by U( 1l, a) = exp(−i Pµaµ) ,
so one has

U( 1l, a)Ψq,σ = e−i q·aΨq,σ .

Using (2), one sees that the effect of operating on Ψp,σ with a quantum homogeneous trans-
formation U(Λ, 0) ≡ U(Λ) is to produce an eigenvector of the translation generators with
eigenvalue Λp :

PµU(Λ)Ψp,σ = U(Λ)[U−1(Λ)PµU(Λ)]Ψp,σ = U(Λ)((Λ−1)ρ
µPρ)Ψp,σ

= Λµρ pρ U(Λ)Ψp,σ ,

since (Λ−1)ρµ = Λµρ . Hence U(Λ)Ψp,σ must be a linear combination of the states ΨΛp,σ :

U(Λ)Ψp,σ =
∑

σ′

Cσ′σ(Λ, p)ΨΛp,σ′ . (9)

In general, it is possible by using suitable linear combinations of the Ψp,σ to choose theσ labels
in such a way that the matrix Cσ′σ(Λ, p) is block-diagonal; in other words, so that the Ψp,σ
with σ within any one block by themselves furnish a representation of the Poincaré group. It is
natural to identify the states of a specific particle type with the components of a representation
of the Poincaré group which is irreducible, in the sense that it cannot be further decomposed
in this way. It is clear from (9) that all states Ψp,σ in an irrep of the Poincaré group have
momenta pµ belonging to the orbit of a single fixed momentum, say qµ.

One has to work out the structure of the coefficients Cσ′σ(Λ, p) in irreducible representa-
tions of the Poincaré group. In order to do that, note that the only functions of pµ that are
left invariant by all transformations Λµν ∈ SO(D−1,1)↑ are, of course, p2 = ηµνpµpν and, for
p2 ¶ 0 , also the sign of p0 . Hence, for each value of p2 , and (for p2 ¶ 0) each sign of p0 , one
can choose a standard four-momentum, say qµ , and express any pµ of this class as

pµ = Lµν(p)q
ν ,

where Lµν is some standard proper orthochronous Lorentz transformation that depends on pµ ,
and also implicitly on our choice of qµ . One can define the states Ψp,σ of momentum pµ by

Ψp,σ ≡ N(p)U
�

L(p)
�

Ψq,σ , (10)

where N(p) is a numerical normalization factor. Operating on (10) with an arbitrary homo-
geneous Lorentz transformation U(Λ) , one now finds

U(Λ)Ψp,σ = N(p)U
�

ΛL(p)
�

Ψq,σ

= N(p)U
�

L(Λp)
�

U
�

L−1(Λp)ΛL(p)
�

Ψq,σ . (11)
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The point of this last step is that the Lorentz transformation L−1(Λp)ΛL(p) takes q to L(p)q = p ,
then to Λp , and finally back to q , so it belongs to the subgroup of the Lorentz group consisting
of Lorentz transformations Wµ

ν that leave qµ invariant : Wµ
νqν = qµ . This stability subgroup

is called the little group corresponding to q . For any W, W̄ in the little group, one has

U(W )Ψq,σ =
∑

σ′

Dq
σ′σ
(W )Ψq,σ′ (12)

and
Dq
σ′σ
(W̄W ) =

∑

σ′′

Dq
σ′σ′′
(W̄ )Dq

σ′′σ
(W ) ,

that is to say, the coefficients Dq(W ) furnish a representation of the little group. In particular,
for W (Λ, p)≡ L−1(Λp)ΛL(p) , the equation (11) becomes

U(Λ)Ψp,σ = N(p)
∑

σ′

Dσ′σ(W (Λ, p))U
�

L(Λp)
�

Ψq,σ′

or, recalling the definition (10),

U(Λ)Ψp,σ =
N(p)

N(Λp)

∑

σ′

Dσ′σ
�

W (Λ, p)
�

ΨΛp,σ′ . (13)

Apart from the question of normalization, the problem of determining the coefficients Cσ′σ in
the transformation rule (9) has been reduced to the problem of determining the coefficients
Dσ′σ. In other words, the problem of determining all possible irreps of the Poincaré group
has been reduced to the problem of finding all possible irreps of the little group, depending
on the class of momentum to which qµ belongs. This approach, of deriving representations of
a semi-direct product like the inhomogeneous Lorentz group from the representations of the
stability subgroup, is called the method of induced representations.

The wave function Ψp,σ depends on the momentum, therefore its Fourier transform Ψx ,σ
depends on the spacetime coordinate, so that the wave function is called a (complex) field on
Minkowski spacetime RD−1,1 and the quantities Ψx ,σ at fixed x and for varying σ are referred
to as its physical components at x .

3.2 Orbits and stability subgroups

The orbit of a given non-vanishing vector qµ of Minkowski spacetime RD−1,1 under Lorentz
transformations is, by definition, the hypersurface of constant momentum square p2 . Geomet-
rically speaking, it is a quadric of curvature radius m> 0. More precisely, the hypersurface

• p2 = −m2 is a two-sheeted hyperboloid, each sheet of which is called a mass-shell. The
corresponding UIR is said to be massive.

• p2 = 0 is a cone, each half of which is called a light-cone. The corresponding UIR is said
to be massless (m= 0).

• p2 = +m2 is a one-sheeted hyperboloid. The corresponding UIR is said to be tachyonic.

Orthochronous Lorentz transformations preserve the sign of the time component of vectors of
non-positive momentum-squared, thus the orbit of a time-like (light-like) vector is the mass-
shell (respectively, light-cone) to which the corresponding vector belongs.

Remarks:
• Notice that the Hilbert space carrying the irrep is indeed an eigenspace of the quadratic
Casimir operator (5), the eigenvalue of which is C2 = ±m2 (the eigenvalue is real because the
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representation is unitary), as it should according to Schur’s lemma. Moreover, the quadratic
Casimir classifies the UIRs but does not entirely characterize them.
• For any pair of fields that transform in the same UIR of the Poincaré group, the Poincaré-
invariant scalar product for p2 ¶ 0 is given by 〈Ψ|Φ〉=

∫

dDpδ(p2 +m2)Θ(p0)
∑

σΨ
∗
p,σΦp,σ .

• As quoted in Section 2, it is not necessary to assume differential equations in position space,
because the group-theoretical analysis directly leads to a wave function which is a function
of the momenta on the orbit, the Fourier transform of which is a function in position space
obeying the Klein–Gordon equation �Ψx ,σ = ±m2Ψx ,σ . By a slight abuse of terminology,
states or fields that satisfy their relativistic equations of motion are called “on-(mass-)shell"
in physics literature, while those for which those equations have not been imposed are called
“off-shell".

By going to a rest-frame, it is easy to show that the stabilizer of a time-like vector qµ =
(m,
−→
0 ) 6= 0 is the rotation subgroup SO(D − 1) ⊂ SO(D − 1,1)↑. For a space-like vector, one

may choose a frame such that the non-vanishing momentum is along the (D−1)th spatial axis:
qµ = (0, 0, . . . , 0, m) 6= 0. Thus its stabilizer is the subgroup SO(D − 2, 1)↑ ⊂ SO(D − 1, 1)↑.
In the case of a light-like vector, the little group “is not quite so obvious" to determine, as was
stressed by Wigner himself [7]. It clearly contains the rotation group SO(D− 2) in the space-
like hyperplane RD−2 transverse to the light-ray along the momentum. Now, we will provide
an algebraic proof that the stabilizer of a light-like vector is the Euclidean group ISO(D− 2) .
According to Wigner, reviewing his D = 4 analysis, “no simple argument is known (...) to
show directly that the group of Lorentz transformations which leave a null vector invariant is
isomorphic to the two-dimensional Euclidean group, desirable as it would be to have such an
argument. Clearly, there is no plane in the four-space of momenta in which these transformations
could be interpreted directly as displacements (...) because all transformations considered here
are homogeneous" [7]. Even though there is no simple geometric way to understand this fact,
the algebraic proof reviewed here is rather straightforward.

Proof: By going in a light-cone frame (see Section 1.1), it is possible to express the compo-
nents of a momentum pµ obeying p2 = 0 as pµ = (p−, 0, 0, . . . , 0) . In words, one can set
the component p+ to zero, as well as all the transverse components pm (m = 1, . . . , D − 2).
The condition that the component p− be unaffected by a Lorentz transformation translates

as 0
!
= i[p−, Mνρ] = η−ν pρ − η−ρ pν due to (2). Obviously, the transformation generated

by M+− does modify p−, hence it cannot be part of the little group for p . The other Lorentz
generators preserve p− , but they should also satisfy the equations [pm, Mµν] = 0= [p+, Mµν] .
It is readily seen that i[pm, Mn−] = δmnp− 6= 0 (for m = n), therefore Mn− does not belong to
the little group of pµ either. We are left with the generators {Mmn, M+n} which preserve the
(vanishing) value of p+ . It turns out to be more convenient for later purpose to work with the
generators πn := p−M+n = pµMµn instead. This redefinition does not modify the algebra since
p− commutes with all the generators of the little group. From the Poincaré algebra (1)–(3)
one finds, in the light-cone frame,

i [Mmn, Mpq] = δnpMmq −δmpMnq −δqmMpn +δqnMpm , (14)

i [πm, Mnp] = δmnπp −δmpπn , (15)

i [πm,πn] = 0 . (16)

As can be seen, the generators {Mmn,πm} span the Lie algebra of the inhomogeneous orthog-
onal group ISO(D− 2) .

For later purpose, notice that the quadratic Casimir operator of the Euclidean algebra
iso(D−2) presented by the generators {Mmn,πm} and the relations (14)-(16) is the square of
the “translation" generators

C2

�

iso(D− 2)
�

= πmπm . (17)
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To end up this discussion, one should consider the case of a vanishing momentum. Of
course, the orbit of a vanishing vector under linear transformations is itself while its stabilizer
is the whole linear subgroup. Therefore, the subgroup of SO(D − 1, 1)↑ leaving invariant the
zero-momentum vector pµ = 0 is the whole group itself. This ends up the determination of
the orbit and stabilizer of any possible vector ∈ RD−1,1 .

Remark: The zero-momentum (qµ = 0) representations are essentially UIRs of the little group
SO(D − 1,1)↑ because the translation group acts trivially. The proper orthochronous Lorentz
group may be identified with the isometry group of the de Sitter spacetime dSD−1. In other
words, the wave function of the zero-momentum representation may be interpreted as a wave
function on a lower-dimensional de Sitter spacetime, and conversely. Even though their phys-
ical meaning may differ, both UIRs may be mathematically identified.

3.3 Classification

To summarize the previous subsection, the UIRs of the Poincaré group ISO(D−1,1)↑ have been
divided into four classes according to the four possible orbits of the momentum, summarized
in the following table (where m2 > 0):

Gender Orbit Stability subgroup UIR

p2 = −m2 Mass-shell SO(D− 1) Massive
p2 = 0 Light-cone ISO(D− 2) Massless

p2 = +m2 Hyperboloid SO(D− 2,1)↑ Tachyonic

pµ = 0 Origin SO(D− 1,1)↑ Zero-momentum

The problem of classifying the UIRs of the Poincaré group ISO(D − 1,1)↑ has been reduced
to the classication of the UIRs of the stability subgroup of the momentum, which are either a
unimodular orthogonal group, an Euclidean group or a proper orthochronous Lorentz group.

Actually, the method of induced representation may also be applied to the classification
of the UIRs of the Euclidean group ISO(D − 2), the little group of a massless particle. The
important thing to understand is that the light-like momentum pµ is fixed and that what should
be examined is the action of the little group on the physical components characterized by σ .
From (16) one sees that the D − 2 “translation" generators πi commute with each other, so
it is natural to express physical states Ψp,σ in terms of eigenvectors ξm of these generators
πm. Introducing a label ς to denote all remaining physical components, one thus considers
states Ψp,ξ,ς with πmΨp,ξ,ς = ξmΨp,ξ,ς . The discussion presented in Subsection 3.1 may be
repeated almost identically, up to the replacement of the momentum p by the eigenvector ξ,
the label σ by ς, the Poincaré group ISO(D − 1,1)↑ by the Euclidean group ISO(D − 2) and
the proper orthochronous Lorentz group SO(D − 1,1)↑ by the unimodular orthogonal group
SO(D−2) . The conclusion is therefore similar: the problem of determining all possible irreps
of the massless little group ISO(D−2) has been reduced to the problem of finding all possible
irreps of the stability subgroup of the (D − 2)-vector ξ , called the short little group in the
literature [8].

The massless representations induced by a non-trivial representation of the little group
may therefore be divided into distinct categories, depending on the class of momentum to
which ξm belongs. The situation is simpler here because there exist only two possible classes
of orbits for a vector in the Euclidean space RD−2: either the origin ξm = 0 , or a (D − 3)-
sphere of radius µ > 0 . In the first case, the action of the elusive “translation" operators
πm is trivial and, effectively, the little group is identified with the short little group SO(D−2).
These representations are most often referred to as helicity representations by analogy with the
D = 4 case. In the second case, the corresponding representations are most often referred to as
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continuous spin representations [8], even though Wigner also used the name infinite spin [7].
The former name originates from the fact that the transverse vector ξm has a continuous range
of values. Nevertheless, the latter name is more adequate in some respect, as will be argued
later on. Roughly speaking the point is that, on the orbit ξ2 = µ2, the components spanned
by the internal vector ξm take values on the sphere SD−3 ⊂ RD−2 of radius µ = |ξ| . The
“radius" µ of this internal sphere has actually the dimension of a mass parameter (the reason
is that the sphere SD−3 is somehow in internal “momentum" space). Indeed, for massless
representations, the parameter µ classifying the various irreps should be understood as the
analogue of the mass for massive irreps, while the angular coordinates on the sphere SD−3 are
the genuine “spin" degrees of freedom, the Fourier conjugates of which are discrete variables
as is more usual for spin degrees of freedom. This point of view motivates the name “infinite
spin."3

To summarize, the UIRs of the Euclidean group ISO(D − 2) are divided into two classes
according to the two possible orbits of the (D − 2)-vector ξm, summarized in the following
table:

Gender Orbit Stability subgroup Massless UIR

ξ2 = µ2 Sphere SO(D− 3) Infinite spin
ξm = 0 Origin SO(D− 2) Helicity

As a consequence of the method of induced representations, the physical components of
a first-quantized elementary particle span a UIR of the little group. The number of local de-
grees of freedom (or of physical components) of the field theory is thus given by the dimension
of the Hilbert space carrying the UIR of the little group. In the light of the standard results
of representation theory (reviewed in Subsection 1.3) and using the method of induced rep-
resentation, the UIRs of the Poincaré group may alternatively be divided into two distinct
classes: the finite-component ones (the massive and the helicity reps) for which the (short)
little group is compact, and the infinite-component ones (the infinite-spin, the tachyonic and
the zero-momentum reps) for which the little group is non-compact.

Remarks:
• More precisely, the lower-dimensional cases D = 2,3 are degenerate in the following sense
(when pµ 6= 0). In D = 2 , all little groups are trivial, thus all physical fields are scalars. In
D = 3 , all little groups are Abelian (massive: SO(2), massless: R, tachyonic: SO(1,1)↑ ∼= R)
hence all their UIRs have (complex) dimension one: generically, fields have one physical de-
grees of freedom. Notice that the helicity reps may be assigned a “conformal spin" if they are
extended to irreps of the group SO(D, 2) ⊃ SO(D − 1,1)↑ . Notice also that the “spin" of a
massive representation is not discretized in D = 3 but can be an arbitrary real number4 [10]
because the universal cover of SO(2, 1)↑ covers it infinitely often.
• For massive and helicity representations, the number of local physical degrees of freedom
may be determined from the well known formulas for the dimension of any UIR of the orthog-
onal groups (reviewed in Subsection 4.3 for the tensorial irreps).
• This group-theoretical analysis does not probe topological theories (such as Chern-Simons
theory) because such theories correspond to identically vanishing representations of the little
group since they have no local physical degrees of freedom.

The following corollary provides a group-theoretical explanation of the fact that combining
the principle of relativity with the rules of quantum mechanics necessarily leads to field theory.

3Actually, in Subsection 5.3 an explicit derivation of the continuous spin representation from a proper “infinite
spin" limit of a massive representation is reviewed. All the former comments find their natural interpretation in
this point of view.

4This peculiarity is related to the existence of anyons in three spacetime dimensions, cf. Appendix B.
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Corollary: Every non-trivial unitary irreducible representation of the isometry group of any
maximally-symmetric spacetime is infinite-dimensional.

Proof: The Hilbert space carrying a non-trivial unitary representation of the Poincaré group is
infinite-dimensional because (i) in the generic case, qµ 6= 0, the orbit is either a hyperboloid
(p2 6= 0) or a cone (p2 = 0) and the space of wave functions on the orbit is infinite-dimensional,
(ii) the zero-momentum representations of the Poincaré group are unitary representations of
the de Sitter isometry group. Thus, the proof is ended by noticing that all non-trivial unitary
representations of the isometry group of (anti) de Sitter spacetimes (A)dSD also are infinite-
dimensional, because their isometry groups are pseudo-orthogonal Lie groups.

4 Tensorial representations and Young diagrams

Most of the material reviewed here may be found in textbooks such as [11–13]. Nevertheless,
large parts of this section are either copied or adapted from the reference [14] because alto-
gether it provides an excellent summary, both for its pedagogical and comprehensive values.
The material collected in the present section goes slightly beyond what is strictly necessary for
these lectures, but the reader may find it useful in specific applications.

4.1 Symmetric group

An (unlabeled) Young diagram, consisting of n boxes arranged in r (left justified) rows, rep-
resents a partition of the integer n into r parts:

n=
r
∑

a=1

λa , (λ1 ¾ λ2 ¾ . . .¾ λr) .

That is, λa is the number of boxes in the ath row. Successive row lengths are non-increasing
from top to bottom. A simpler notation for the partition is the list of its parts: λ= {λ1,λ2, . . . ,
λr} . For instance,

{3, 3,1}= .

Examples: There are five partitions of 4:

{4}, {3,1}, {2,2}, {2, 1,1}, {1,1, 1,1} . (18)

Partitions play a key role in the study of the symmetric group Sn . This is the group of all
permutations of n objects. It has n! elements and its inequivalent irreducible representations
may be labeled by the partitions of n . [In the following, Greek letters λ, µ and ν will be used
to specify not only partitions and Young diagrams but also irreducible representations of the
symmetric group and other groups.]

The connection between the symmetric group and tensors was initially developed by H.
Weyl. This connection can be approached in (at least) two equivalent ways.

A. Let Tµ1...µn
be a ‘generic’ n-index tensor, without any special symmetry property. [For the

moment, ‘tensor’ just means a function of n indices, not necessarily with any geometri-
cal realization. It must be meaningful, however, to add — and form linear combinations
of — tensors of the same rank.] A Young tableau, or labeled Young diagram, is an as-
signment of the numbers 1,2, . . . , n to the n boxes of a Young diagram λ . The tableau
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is standard if the numbers are increasing both along rows from left to right and down
columns from top to bottom. The entries 1, . . . , n in the tableau indicate the n succes-
sive indices of Tµ1...µn

. The tableau defines a certain symmetrization operation on these
indices: symmetrize on the set of indices indicated by the entries in each row, then anti-
symmetrize the result on the set of indices indicated by the entries in each column. The
resulting object is a tensor, eT , with certain index symmetries. Now let each permutation
of Sn act (separately) upon eT . The n! results are not linearly independent; they span a
vector space VSn

λ
which supports an irreducible representation of Sn . Different tableaux

corresponding to the same diagram λ yield equivalent (by not identical) representations.

Example: The partition {2, 2} of 4 has two standard tableaux:

1 2
3 4 and

1 3
2 4 . (19)

Let us construct the symmetrized tensor eTabcd := Rab|cd corresponding to the second of
these:

a c
b d . (20)

First symmetrize over the first and third indices (a and c), and over the second and
fourth (b and d):

1
4
(Tabcd + Tcbad + Tadcb + Tcdab) .

Now antisymmetrize the result over the first and second indices (a and b), and over the
third and fourth (c and d);5 dropping the combinatorial factor 1

16 , we get

Rab|cd = Tabcd + Tcbad + Tadcb + Tcdab − Tbacd − Tcabd − Tbdca − Tcd ba

− Tabdc − Td bac − Tacd b − Tdcab + Tbadc + Tdabc + Tbcda + Tdcba .

It is easy to check that R possesses the symmetries of the Riemann tensor. There are two
independent orders of its indices (e.g. Rab|cd and Rac|bd), and applying any permutation
to the indices produces some linear combination of those two basic objects. On the other
hand, performing on T the operations prescribed by the first tableau in (19) produces a
different expression Pac|bd , which, however, generates a two-dimensional representation
of S4 with the same abstract index structure as that generated by R . A non-standard
tableau would also yield such a representation, but the tensors within it would be linear
combinations of those already found. One finds

Pac|bd = Tabcd + Tbacd + Tabdc + Tbadc − Tcbad − Tbcad − Tcbda − Tbcda

− Tadcb − Tdacb − Tad bc − Tdabc + Tcdab + Tdcab + Tcd ba + Tdcba .

As the reader may check, no linear combinations of P can reproduce R . The objects
Pab|cd , Pac|bd , Rab|cd and Rac|bd are linearly independent. Although R and P are charac-
terized by the same Young diagram, they are associated with different standard Young
tableaux and therefore span two different (although equivalent) irreducible representa-
tions of Sn . Two representations may indeed be equivalent without being identical.
This happens in particular for the irreducible decomposition of the regular representa-
tion of Sn where every irreducible representation appears with a multiplicity equal to

5Here we adopt the convention that the second round of permutations interchanges indices with the same
names, rather than indices in the same positions in the various terms. The opposite convention is tantamount to
antisymmetrizing first, which leads to a different, but mathematically isomorphic, development of the representa-
tion theory. The issue here is analogous to the distinction between space-fixed and body-fixed axes in the study of
the rotation group (active or passive transformations).
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its dimension. When the dimension of an Sn irreducible representation is d > 1 , then d
copies of that irreducible representation appear in the decomposition of the regular rep-
resentation of Sn and all these d representations are equivalent, although not identical.

Example: Define a symmetrized Riemann tensor (the Jacobi tensor) by Jad;bc := 1
2 (Rab|cd

+Rac|bd) . It obeys Jab;cd = Jba;cd = Jab;dc . Then it is easy to show that Rab|cd =
2
3 (Jad;bc

− Jbd;ac) . Thus the tensor J has no fewer independent components and contains no less
information than the tensor R, despite the extra symmetrization; R is recovered from
J by an antisymmetrization. The tensors R and J are really the same tensor expressed
with respect to different bases.

B. The regular representation ofSn is the n!-dimensional representation obtained by letting
Sn act by left multiplication on the formal linear combinations of elements of Sn . [That
is, one labels the basis vectors of Rn! by elements of Sn, defines that action of each
permutation on the basis vectors in the natural way, and extends this definition to the
whole space by linearity.] Equivalently, the vector space of the regular representation is
the space of real-valued functions defined on Sn . [In general the regular representation
is defined with complex scalars, but for Sn it is sufficient to work with real coefficients.]

Regular representation: The regular representation contains every irreducible represen-
tation with a multiplicity equal to its dimension. Each Young diagram λ corresponds to an
irreducible representation of Sn . Its dimension and multiplicity are equal to the number of
standard tableaux of diagram λ .

The symmetrization procedure described under A. can be transcribed to the more abstract
context B. to construct a projection operator onto the subspace of Rn! supporting each rep-
resentation. [The numerical coefficient needed to normalize the tableau operation as a pro-
jection — an operator whose square is itself — is not usually the same as that accumulated
from the individual symmetrization operations. For example, to make Rabcd into a projection
of Tabcd , one needs to divide by 12, not 16.]

Example: In (18), the partition {4} corresponds to the totally symmetric four-index tensors,
a one-dimensional space VS4

{4} . Similarly, {1, 1,1, 1} yields the totally antisymmetric tensors. A
generic rank-four tensor, Tabcd , can be decomposed into the sum of its symmetric and antisym-
metric parts, plus a remainder. The theory we are expounding here tells how to decompose
the remainder further. The partition {2,2} yields two independent two-dimensional subrepre-
sentations of the regular representation; in more concrete terms, there are two independent
pieces of Tabcd ( 1

12 Rab|cd and 1
12 Pac|bd) constructed as described in connection with (19). One

of these (Rab|cd) has exactly the symmetries of the Riemann tensor; the other (Pac|bd , coming
from the first tableau of (19)) has the same abstract symmetry as the Riemann tensor, but with
the indices ordered differently. Finally, each of the remaining partitions in (18), i.e., {3, 1} and
{2, 1,1} , can be made into a standard tableau in three different ways. Therefore, each of these
two representations has three separate pieces of T corresponding to it, and each piece is three-
dimensional (has three independent index orders after its symmetries are taken into account).
Thus the total number of independent tensors which can be formed from the irreducible parts
of Tabcd by index permutations is

12 + 12 + 22 + 32 + 32 = 24= 4! ,

which is simply the total number of permutations of the indices of T itself, as it must be.

To state a formula for the dimension of an irreducible representation VSn
λ

of Sn , we need
the concept of the hook length of a given box in a Young diagram λ . The hook length of a box
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in a Young diagram is the number of squares directly below or directly to the right of the box,
including the box once:

↓
−→−| .
•

Example: In the following diagram, each box is labeled by its hook length:

6 4 3 1
4 2 1
1

.

One then has the following hook length formula for the dimension of the representation
VSn
λ

of Sn corresponding to the Young diagram λ :

dim VSn
λ
=

n!
∏

( hook lengths)
. (21)

Remark: Note carefully that the “dimension” we have been discussing up to now is the number
of independent index orders of a tensor, not the number of independent components when
the tensor is realized geometrically with respect to a particular underlying vector space or
manifold. The latter number depends on the dimension (say D) of that underlying space,
while the former is independent of D (so long as D is sufficiently large, as we tacitly assume in
generic discussions). For example, the number of components of an antisymmetric two-index
tensor is D(D−1)

2 , but the number of its index orders is always 1, except in dimension D = 1
where no non-zero antisymmetric tensors exist at all.

4.2 General linear group

We now turn to the representation theory of the general linear and orthogonal groups, where
the (spacetime) dimension D plays a key role. The theory of partitions and of the representa-
tions of the permutation groups is the foundation on which this topic is built.

Let {va} represent a generic element of RD∗ (or of the cotangent space at a point of a
D-dimensional manifold). The action of non-singular linear operators on this space gives a D-
dimensional irreducible representation V ∼= RD∗ of the general linear group GL(D) ; indeed,
this representation defines the group itself. The rank-two tensors, {Tab}, carry a larger repre-
sentation of GL(D) (V⊗V , of dimension D2), where the group elements act on the two indices
simultaneously. The latter representation is reducible: it decomposes into the subspace of sym-
metric and antisymmetric rank-two tensors V⊗V ∼= (V�V )⊕(V∧V ), of respective dimensions
D(D+1)

2 and D(D−1)
2 . Similarly, the tensor representation of rank n, V⊗n, decomposes into ir-

reducible representations of GL(D) which are associated with the irreducible representations
of Sn acting on the indices, which in turn are labeled by the partitions of n , hence by Young
diagrams. Young diagrams with more than D rows do not contribute [if λ is a partition of n
into more than D parts, then the associated index symmetrization of a D-dimensional rank-n
tensor yields an expression that vanishes identically; in particular, there are no non-zero totally
antisymmetric rank-n tensors if n> D ].

More precisely, let λ be a Young tableau. The Schur module V GL(D)
λ

is the vector space of
all rank-n tensors T̃ in V⊗n such that:

(i) the tensor T̃ is completely antisymmetric in the entries of each column of λ ,

(ii) complete antisymmetrization of T̃ in the entries of a column of λ and another
entry of λ that is on the right-hand side of the column vanishes.
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This construction is equivalent to the construction A.

Example: Associated with the Young tableau (20), the tensor Rab|cd introduced in the subsec-
tion 4.1 obeys to the conditions (i) and (ii): Rab|cd = −Rba|cd = −Rab|dc and Rab|cd + Rbc|ad +
Rca|bd = 0 .

As explained in the footnote 5, if one interchanges everywhere in the previous construc-
tions the words “symmetric" and “antisymmetric," then the (reducible) representation spaces
characterized by the same Young diagram [but not by the same Young tableau] are isomorphic
and the conditions (i)-(ii) must be replaced with:

(a) the tensor is completely (or totally) symmetric in the entries of each column
of λ,

(b) complete symmetrization of the tensor in the entries of a row of λ and another
entry of λ that sits in a lower row vanishes.

Example: Taking the standard Young tableau (20) and constructing, following the “manifestly
symmetric convention”, the irreducible tensor associated with it, one obtains a tensor R with
the same abstract index symmetries as J [i.e. obeying the constraints (a) and (b)] but which is
however linearly independent from J , thence linearly independent from R alone. The tensor
R can be expressed as a linear combination of both R and P . Similarly, taking the first standard
Young tableau in (19) and following the manifestly symmetric convention, one obtains a tensor
P obeying (a) and (b). This tensor is linearly independent from P alone as it is a linear
combination of both P and R . Summarizing, associated with the Young diagram {2, 2}we have
the (reducible) representation space spanned by either {R, P} in the manifestly antisymmetric
convention or by {R,P} in the manifestly symmetric convention.

Remarks:
• An important point to note is that, by the previous construction featuring irreducible tensors
with definite symmetry properties, one generates essentially all the finite-dimensional irre-
ducible representations of GL(D,R) . To be more precise, GL(D,R) tensors can be of type
(p, q) , i.e., having p contravariant indices and q covariant ones. The exhaustive list of finite-
dimensional irreducible representations of GL(D,R) is provided by (p, q)-type tensors charac-
terised by a pair of Young tableaux of rank p and q , respectively, and such that the contraction
of any covariant index with a contravariant one gives zero identically. See e.g. Chapter 13
of [9] for more details.
• In order to make contact with an alternative road to the representation theory of GL(D),
one says that the irreducible representation Γλ1 ...λD−1 of sl(D,C) ≡ AD−1 with highest weight
Λ= λ1Λ(1)+λ2Λ(2)+. . .+λD−1Λ(D−1) [see e.g. the Part II of the lecture notes [3] for definitions
and notations] is obtained by applying the Schur functor Sλ [i.e. the construction presented
above] to the standard representation V , where the Young diagram is

λ= {λ1 + . . .+λD−1 , λ2 + . . .+λD−1 , . . . ,λD−1 , 0} .

In terms of the Young diagram for λ , the Dynkin labels λa (1¶ a ¶ D−1) are the differences
of lengths of rows: λa = λa −λa+1 .

Example: If D = 6, then

︸ ︷︷ ︸

λ1
︸︷︷︸

λ2

︸ ︷︷ ︸

λ4
λ5
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is the Young diagram corresponding to the irrep Γ3,2,0,3,1 of A5 ≡ sl(6,C) .

The dimension of the representation V GL(D)
λ

of GL(D) corresponding to the Young diagram
λ is:

dim V GL(D)
λ

=
∏ D− row+ column

hook length
, (22)

where the product is over the n boxes while “row" and “column" respectively give the place of
the corresponding box. As was underlined before, the formula (22) is distinct from the hook
length formula (21).

Examples:
• In the following diagram

5 6 7 8
4 5 6
3

,

each box is labeled by its value in the numerator of (22) for D = 5. Observe that, for the
corresponding diagram λ , dim V GL(5)

λ
= 1050 6= 70= dim VS8

λ
.

• The space of (anti)symmetric tensors of V of rank n are denoted by �n(V ) (respectively,
∧n(V )). It carries an irreducible representation of GL(D) labeled by a Young diagram made of
one row (respectively, column) of length n . The dimensions

dim�n(V ) =
� D+ n− 1

n

�

, dim∧n(V ) =
� D

n

�

, (23)

are easily computed from the formula (22) and reproduce the standard results obtained from
combinatorial arguments.

If T1 and T2 are tensors of ranks n1 and n2 , respectively, then their tensor product is a
tensor of rank n1+ n2 . Each factor T j transforms under index permutation according to some
representation of Sn j

, and under linear transformation by the corresponding representation
of GL(D) . It follows immediately that the tensor product T1⊗T2 transforms as some represen-
tation of Sn1

×Sn2
. This induces a representation of the full permutation group Sn1+n2

which
is associated with a corresponding representation of GL(D) . It is possible to reduce these last
two representations into a sum of irreducible ones. We may assume that the factor represen-
tations are irreducible, since the original tensors T j could have been broken into irreducible
parts at the outset.

Littlewood–Richardson rule: The decomposition of an “outer product” µ·ν of irreducible rep-
resentations µ and ν of Sn1

and Sn2
, respectively, into irreducible representations of Sn1+n2

can be determined by means of the following algorithm involving Young diagrams. The prod-
uct is commutative, so it does not matter which factor is regarded as the “right-hand” one. [In
practice, on should choose the simpler Young diagram for that role.]

(I) Label each box in the top row of the right-hand diagram, ν, by “a”, each box in the
second row by “b”, etc.

(II) Add the labeled boxes of ν to the left-hand diagram µ, one at a time, first the as, then
the bs, ..., subject to these constraints:

(A) No two boxes in the same column are labeled with the same letter;

(B) At all stages the result is a legitimate Young diagram;
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(C) At each stage, if the letters are read right-to-left along the rows, from top to bottom,
one never encounters more bs than as, more cs than bs, etc.

(III) Each of the distinct diagrams constructed in this way specifies an irreducible subrepre-
sentation λ, appearing in the decomposition of the outer product. The same labeled
Young diagram may arise in more than one way; the multiplicity of that representation
must be counted accordingly.

Remarks:
• This rule enables products of distinct tensors to be decomposed. When the factors are the
same tensor, the list is further restricted by the requirement of symmetry under interchange
of the factors. This is the problem of plethysm, whose solution requires more complicated
techniques than the Littlewood–Richardson rule.
• Representations with too many parts (columns of length greater than D) must be deleted
from the list of subrepresentations of the GL(D). [If irreducible representations of the special
linear group SL(D) are considered instead, every column of length D must be removed from
the corresponding Young diagram.]

4.3 Orthogonal group

It remains to consider index contractions. Up to now we considered only covariant tensors, be-
cause in the intended application there is a metric tensor which serves to relate contravariant
and covariant tensors. Contractions are mediated by this metric. Implicitly, therefore, one is
restricting the symmetry group of the problem from the general linear group to the subgroup
that leaves the metric tensor invariant, the orthogonal group O(D) . [If the metric has indefi-
nite signature, the true symmetry group is a non-compact analogue of the orthogonal group,
such as the Lorentz group. This does not affect the relevant aspects of the finite-dimensional
representation theory.] Each irreducible GL(D) representation V GL(D)

λ
decomposes into irre-

ducible O(D) representations V O(D)
ν , labeled by Young diagrams ν obtained by removing an

even number of boxes from λ . The branching rule for this process involves a sort of inverse
of the Littlewood–Richardson rule:

Restriction from GL(D) to O(D): The irreps of GL(D) may be reduced to direct sums of irreps
of O(D) by extracting all possible trace terms formed by contraction with products of the metric
tensor and its inverse.

The reduction is given by the branching rule for GL(D) ↓ O(D):

V GL(D)
λ

= V O(D)
λ/∆

≡ V O(D)
λ

⊕ V O(D)
λ/{2} ⊕ V O(D)

λ/{4} ⊕ V O(D)
λ/{2,2} ⊕ . . . , (24)

where ∆ is the formal infinite sum [15]

∆= 1 + + + + . . .

corresponding to the sum of all possible plethysms of the metric tensor, and where λ/µmeans
the sum of the Young diagrams ν such that ν · µ contains λ according to the Littlewood–
Richardson rule (with the corresponding multiplicity).

Examples:
• The GL(D) irreducible representation labeled by the Young diagram {2, 2} decomposes with
respect to O(D) according to the direct sum {2, 2}/∆= {2,2}+{2, 0}+{0,0}which corresponds
to the decomposition of the Riemann tensor into the Weyl tensor, the traceless part of the Ricci
tensor and the scalar curvature, respectively.
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• The GL(D) irreducible representation labeled by the Young diagram {n} decomposes with
respect to O(D) according to the direct sum {n}/∆ = {n} + {n − 2} + {n − 4} + . . . , cor-
responding to the decomposition of a completely symmetric tensor or rank n into its trace-
less part, the traceless part of its trace, etc. This provides an alternative proof of the obvi-
ous fact that the number of independent components of a traceless symmetric tensor of rank
n is equal to the number of independent components of a symmetric tensor of rank n mi-
nus the number of independent components of a symmetric tensor of rank n − 2 (its trace):
dim V O(D−2)

{n} = dim V GL(D)
{n} − dim V GL(D)

{n−2} . Using the formula (23) allows to show that

dim V O(D)
{n} =

(D+ 2n− 2)(D+ n− 3)!
n!(D− 2)!

. (25)

The very useful formula (25) contains as a particular case the well-known fact that all the
traceless symmetric tensorial representations of O(2) are two-dimensional (indeed, any UIR
of an Abelian group is of complex dimension one). Moreover, the traceless symmetric ten-
sorial representations of rank n of the rotation group O(3) are the well-known integer spin
representations of dimension equal to 2n+ 1 .

The following theorem is very important (see e.g. the first reference of [11–13]):

Vanishing irreps for (pseudo-)orthogonal groups: Whenever the sum of the lengths of the first
two columns of a Young diagram λ is greater than D = p+q , then the irreducible representation
of O(p, q) labeled by λ is identically zero.

Young diagrams such that the sum of the lengths of the first two columns does not exceed
D are said to be allowed.

Finite-dimensional irreps of (pseudo-)orthogonal groups: Each non-zero finite-dimensional
irreducible representation of O(p, q) is isomorphic to a completely traceless tensorial representa-
tion, the symmetry properties of which are labeled by an allowed Young diagram λ .

The dimension of the tensorial irrep is determined by the following rule due to King [16]:

(α) The numbers D− 1, D− 3, D− 5, . . . , D− 2r + 1 are placed in the end boxes of the 1st,
2nd, 3rd, . . ., rth rows of the diagram λ . A labeled Young diagram of n numbers is then
constructed by inserting in the remaining boxes of the diagram, numbers which increase
by one in passing from one box to its left-hand neighbor.

(β) This labeled Young diagram is extended to the limit of the triangular Young diagram τ

of r rows. This produces a Young diagram eλ the ath row of which has length equal the
maximum between the two integers τa = r − a+ 1 and λa.

(γ) The series of numbers in any row of the Young diagram eλ is then extended by inserting in
the remaining boxes of the diagram, numbers which decrease by one in passing from one
box to its right-hand neighbor. The resulting numbers will be called the “King length."

(δ) The row lengths λ1, λ2, . . ., λr are then added to all of the numbers of the Young diagram
eλ which lie on lines of unit slope passing through the first box of the 1st, 2nd, . . ., rth
rows, respectively, of the Young diagram λ .

The dimension is equal to the product of the integers in the resulting labeled Young diagram
eλ divided by the product of

- the hook length of each box of λ, and of

- the King length of each box of eλ outside λ .
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Examples:

• In the following diagram, allowed for D = 5,

7 6 5 4
4 3 2
0

,

each box is labeled by its King length, while in the diagram

11 9 6 4
7 4 2
1

,

each box is labeled by the number obtained at the very end of King’s rule. Observe that, for
the corresponding diagram λ , it was not necessary to perform the steps (β)-(γ) and that,
dim V O(5)

λ
= 231< 1050= dim V GL(5)

λ
.

• In the following Young diagram λ= {2,2, 1} , allowed for D = 5,

5 4
3 2
0

,

each box is labeled by the number obtained after step (α) . The step (β) is now necessary and
gives the Young diagram eλ= {3, 2,1} . At the end of steps (γ) and (δ), respectively, the result
is

(γ)
−→

5 4 3
3 2
0

(δ)
−→

7 6 4
5 3
1

,

so that dim V O(5)
λ

= 7·6·5·4·3
(4·3·2)·(3) = 35< 75 = dim V GL(5)

λ
.

• The space of traceless symmetric tensors of V of rank n carries an irreducible representation
of O(D) labeled by a Young diagram made of one row of length n for which the dimension
(25) is easily reproduced from the King rule, since the rules (β)-(γ) may be omitted
• Computing the number of components of the Weyl tensor and of a symmetric, traceless, rank-
two tensor in D = 4 dimensions, enables one to give the decomposition {2,2}/∆= {2, 2}+
{2, 0}+ {0, 0} of the Riemann tensor into the Weyl tensor, the traceless part of the Ricci tensor
and the scalar curvature, respectively, in terms of the corresponding dimensions. This gives
the well-known result 20= 10+ 9+ 1 .

Unitary irreps of orthogonal groups: Each non-zero inequivalent UIR of O(D) corresponds to
an allowed Young diagram λ , and conversely.

Proof: The orthogonal group is compact, thence any UIR is finite-dimensional (see Subsec-
tion 1.3). Furthermore, any finite-dimensional irrep of the orthogonal group is labeled by an
allowed Young diagram. Moreover, an important result is that any finite-dimensional repre-
sentation may be endowed with a sesquilinear form which makes it unitary.

The quadratic Casimir operator of the orthogonal algebra so(D) presented by its generators
and its commutation relations

i [Mµν, Mρσ] = δνρMµσ −δµρMνσ −δσµMρν +δσνMρµ , (26)

is the sum of square of the generators (similarly to the definition (4) for so(D−1, 1) since these
two complex algebras are isomorphic). Its eigenvalue on a finite-dimensional irrep labeled by
an allowed Young diagram λ= {λ1,λ2, . . . ,λr} is given in the subsection 9.4.C of [2]:

�

C2

�

so(D)
�

−
r
∑

a=1

λa(λa + D− 2a)
�

V O(D)
λ

= 0 . (27)
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Examples:
• The UIRs of the Abelian group O(2) ∼= U(1) are labeled by one integer only, which is the
eigenvalue of the single generator on the irrep, say h ∈ Z . The only allowed Young diagrams
are made of a single row of length equal to the non-negative integer s = |h| . The traceless
symmetric tensorial representations of O(2) are two-dimensional, the sum of the two irreps
labeled by h = ±s . The formula (27) with D = 2 , r = 1 and λ1 = s gives the obvious
eigenvalue s2 , since the quadratic Casimir operator of the rotation group O(2) is equal to the
square of the single generator.
• The quadratic Casimir operator of the rotation group O(3) is the square of the angular mo-
mentum. The irrep of O(3) with spin s ∈ N is labeled by the allowed Young diagram made of
a single row of length equal to the integer s . The formula (27) with D = 3 , r = 1 and λ1 = s
gives the celebrated eigenvalue s(s+ 1) .
• The irrep of O(D) carried by the space of traceless symmetric tensors of rank n is labeled
by the allowed Young diagram {n} made of a single row of length equal to an integer n . The
formula (27) with r = 1 and λ1 = n gives the eigenvalue n(n+D−2) for the quadratic Casimir
operator.

The following branching rule is extremely useful in the process of dimensional reduction.

Restriction from GL(D) to GL(D− 1): The restriction to the subgroup GL(D− 1) ⊂ GL(D) of
a finite-dimensional irrep of GL(D) determined by the Young diagram λ contains each irrep of
GL(D− 1) labeled by Young diagrams µ such that

λ1 ¾ µ1 ¾ λ2 ¾ µ2 ¾ . . .¾ µr−1 ¾ λr ¾ µr ¾ 0 ,

with multiplicity one. The same theorem holds for the restriction O(D) ↓ O(D− 1) where λ is an
allowed Young diagram.

These rules are discussed in the section 8.8.A of [2]. They may be summarized in the
following branching rule for GL(D) ↓ GL(D− 1),

V GL(D)
λ

= V GL(D−1)
λ/Σ

≡ V GL(D−1)
λ

⊕ V GL(D−1)
λ/{1} ⊕ V GL(D−1)

λ/{2} ⊕ V GL(D−1)
λ/{3} ⊕ . . . , (28)

where Σ is the formal infinite sum of all Young diagrams made of a single row.

Example: The branching rule applied to symmetric irrep labeled by a Young diagram {n}
made of one row of length n gives as a result:

{n}/Σ = {n }+ {n− 1}+ {n− 2}+ . . .+ {1}+ {0} .

This implies the obvious fact that a completely symmetric tensor of rank n whose indices run
over D values may be decomposed as a sum of completely symmetric tensors of rank n, n−1,
. . . , 1, 0 whose indices run over D− 1 values. A non-trivial instance of the branching rule for
O(D) ↓ O(D− 1) is that the same result is true for traceless symmetric tensors as well.

4.4 Auxiliary variables

Let λ be a Young diagram with s columns and r rows.
The Schur module V GL(D)

λ
in the “manifestly antisymmetric convention" can be built via a

convenient construction in terms of polynomials in s × D graded variables satisfying appro-
priate conditions. More precisely, the vector space V GL(D)

λ
is isomorphic to a subspace of the

associative algebra

A= (⊗s ∧RD∗)⊗ C∞(RD) = ⊗s
C∞(RD)Ω(R

D) (29)
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of s tensor products of antisymmetric forms. The elements of A are called multiforms [17].
The D generators of the Ith factor RD∗ in (⊗s∧RD∗) are written d

I
xµ (µ= 0,1, . . . , D−1).

By definition, the multiform algebra A is presented by the graded commutation relations

d
I
xµ d

J
xν = (−)δI J d

J
xν d

I
xµ , (30)

where the wedge products are not written explicitly. The condition (i) of Subsection 4.2 is
automatically verified for any element Φ ∈ A due to the fact that the variables are anticom-
muting in a fixed column (I = J). The GL(D)-irreducibility condition (ii) of Subsection 4.2 is
implemented by the conditions

�

d
I
x ·

∂ L

∂ (d
J
x)
− δ

I J
`

I

�

Φ = 0 , (I ¶ J) , (31)

where the dot stands for the contraction of the indices, `I for the length of the Ith column
in the Young diagram λ and ∂ L stands for “left" derivative. By the Weyl construction, an
element Φ ∈A satisfying (31) belongs to the Schur module V GL(D)

λ
. Following the discussion

of Subsection 4.3, if λ denotes an allowed Young diagram, such an element Φ ∈ V GL(D)
λ

is
irreducible under the (pseudo)-orthogonal group O(p, q) (p+ q = D) if it is traceless, that is

� ∂ L

∂ (d
I
x)
·
∂ L

∂ (d
J
x)

�

Φ = 0 , (∀ I , J) , (32)

where the dot stands now for the contraction of indices via the use of the metric preserved
by O(p, q). An element Φ ∈ A such that (31)-(32) are fulfilled belongs to the Schur module
V O(p,q)
λ

labeled by the Young diagram λ .

The Schur module V GL(D)
λ

admits another convenient realization in terms of polynomials

in r × D commuting variables. In other words, the vector space V GL(D)
λ

is isomorphic to a
subspace of the polynomial algebra in the variables uµa (a = 1,2, . . . , r) where the index a
corresponds to each row. The condition (a) of Subsection 4.2 is automatically verified for
any such polynomial due to the fact that the variables are commuting in a fixed row. The
GL(D)-irreducibility condition (b) of Subsection 4.2 is implemented by the conditions

�

ua ·
∂

∂ ub
− δ

ab
λa

�

Φ = 0 , (a ¶ b) , (33)

where the dot still stands for the contraction of the indices. The degree of homogeneity of
the polynomial Φ in the variables uµa (for fixed a) is λa . The corresponding coefficients are
tensors irreducible under the general linear group. By the Weyl construction, a polynomial
Φ(ua) satisfying (33) belongs to the Schur module V GL(D)

λ
. Again, such an element Φ ∈ V GL(D)

λ
is irreducible under the (pseudo)-orthogonal group O(p, q) (p+ q = D) iff it is traceless, that
is

� ∂

∂ ua
·
∂

∂ ub

�

Φ = 0 , (∀ a, b) , (34)

where the dot stands for the contraction of indices via the use of the metric preserved by
O(p, q). A polynomial Φ(ua) such that (33)-(34) are fulfilled belongs to the Schur module
V O(p,q)
λ

labeled by an allowed Young diagram λ .

Example: Consider an irreducible representation of the orthogonal group O(D) labeled by
the Young diagram {n} made of a single row of length equal to an integer n . The polynomial
Φ(u) ∈ V O(D)

{n} obeys to the irreducibility conditions

�

u ·
∂

∂ u
− n

�

Φ = 0 ,
� ∂

∂ u
·
∂

∂ u

�

Φ = 0 . (35)
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They mean that the polynomial is homogeneous (of degree equal to n) and harmonic, so that
its components correspond to a symmetric traceless tensor of rank n :

Φ(u) =
1
n!
Φµ1...µn

uµ1 . . . uµn , δµ1µ2Φµ1µ2µ3...µn
= 0 .

Of course the integral of the square of such a polynomial over RD is, in general, infinite. But
the restriction of an harmonic polynomial on the unit sphere −→u 2 = 1 is square integrable
on SD−1. This restriction is called a spherical harmonic of degree n . Therefore the space
of spherical harmonics of degree n provides an equivalent realization of the Schur module
V O(D)
{n} . For D = 3 , the space V O(3)

{n} is spanned by the usual spherical harmonics Y m
n (θ ,φ) on

the two-sphere with |m|¶ n .

Remarks:
• The infinitesimal generators of the pseudo-orthogonal group O(p, q) are represented by the
operators

Mµν = i
r
∑

a=1

uρa
�

gρµ
∂

∂ uνa
− gρν

∂

∂ uµa

�

.

Reordering the factors and making use of (33)-(34) allows to reproduce the formula (27) for
the eigenvalues of the quadratic Casimir operator.
• Instead of polynomial functions in the commuting variables, one may equivalently consider
distributions obeying to the same conditions. The space of solutions would carry an equivalent
irrep, as follows from the highest-weight construction of the representation. However, it does
not make sense any more of talking about the “coefficients" of the homogeneous distribution
so that the link with the equivalent tensorial representation is more intricate.

The example of the spherical harmonics suggests that it might be convenient to realize any
unitary module of the orthogonal group O(D) as a space of functions on the unit hypersphere
SD−1 satisfying some linear differential equations. Better, the symmetry under the orthogonal
group would be made manifest by working with homogeneous harmonic functions on the
ambient space RD , evaluated on any hypersphere SD−1 ⊂ RD .

Spherical harmonics: To any UIR of the isometry group O(D) of a hypersphere SD−1, one may
associate manifestly covariant differential equations for functions on SD−1 embedded in RD whose
space of solutions carry the corresponding UIR.

Proof: Any UIR of the isometry group O(D) corresponds to a Schur module V O(D)
λ

which may be
realized as the space of polynomials Φ(−→u a) such that (33)-(34) are obeyed. Let us introduce
the notation: −→x := −→u 1 and −→t a−1 := −→u a for a = 2, . . . , r . One interprets the polynomial
Φ(−→x ,−→t a) (where the index a runs from 1 to r−1) as a tensor field on the Euclidean space RD

parametrized by the Cartesian coordinates−→x , with some auxiliary variables−→t a implementing
the tensor components. The conditions (33)-(34) for a and b strictly greater than 1 imply that

�

ta ·
∂

∂ tb
− δ

ab
λa

�

Φ = 0 , (a ¶ b)
� ∂

∂ ta
·
∂

∂ tb

�

Φ = 0 , (36)

where λ = {λ2, . . . ,λr} is the Young diagram obtained from λ by removing its first row. Thus
the components of the “tensor field" Φ(−→x ,−→t a) carry an irreducible representation of O(D)
labeled by λ. The conditions (33) for a = b = 1 imply that

�

x ·
∂

∂ x
−λ1

�

Φ= 0 ,
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so the polynomial Φ(−→x ,−→t a) is homogeneous of degree λ1 in the radial coordinate |−→x | . The
condition (34) for a = b = 1 is interpreted as the Laplace equation

� ∂

∂ x
·
∂

∂ x

�

Φ = 0 (37)

on the ambient space RD, it imples that the tensor field Φ is harmonic in ambient space. The
condition (33) for b > a = 1 states that the radial components vanish,

�

x ·
∂

∂ ta

�

Φ = 0 , (38)

so the tensor components are longitudinal to the hyperspheres SD−1 . Therefore the evaluation
of the non-vanishing components of Φ(−→x ,−→t a) on the unit hypersphere |−→x |= 1 is an intrinsic
tensor field living on the hypersphere SD−1 and whose tensor components carry an irrep of
the stability subgroup O(D − 1) labeled by λ . These tensor fields generalize the spherical
harmonics to the generic case r ¾ 1 . Finally, the condition (34) for b > a = 1 states that the
tensor field is divergenceless in ambient space,

� ∂

∂ x
·
∂

∂ ta

�

Φ = 0 . (39)

The differential equations (37) and (39) are written in ambient space but they may be refor-
mulated in intrinsic terms on the hypersphere, at the price of losing the manifest covariance
under the full isometry group O(D) .

4.5 Euclidean group

The method of induced representations was introduced in Subsection 3.1 for the Poincaré
group ISO(D − 1,1)↑ and applied to the Euclidean group ISO(D − 2) in Subsection 3.3. Fo-
cusing on the faithful (i.e. with a non-trivial action of the translation generators) irreps of the
inhomogeneous orthogonal group, all of them are induced from an UIR of the stability sub-
group. Using the results of the previous section 4.3, one may summarize the final result into
the following classification.

Unitary irreps of the inhomogeneous orthogonal groups: Each inequivalent UIR of the group
IO(D) with a non-trivial action of its Abelian normal subgroup is associated with a positive real
number µ and an allowed Young diagram of the subgroup O(D− 1) , and conversely.

The orbits of the linear action of the orthogonal group O(D) on the Euclidean space RD

are the hyperspheres SD−1 of radius R . The isometry group of any such hypersphere SD−1 is
precisely O(D) . Considering a region of fixed size on these hyperspheres, in the limit R→∞
the sphere becomes a hyperplane RD−1 . Therefore the homogeneous and inhomogeneous
orthogonal groups are related by some infinite radius limit: O(D)→ IO(D− 1). Such a process
is frequently referred to as an Inönü-Wigner contraction in the physics literature [18]. This is
better seen at the level of the Lie algebra. Specializing the Dth directions, the commutation
relations (26) take the form

i [Mmn, Mpq] = δnpMmq −δmpMnq −δqmMpn +δqnMpm , (40)

i [MmD, Mpq] = δmnMpD −δmpMnD , (41)

i [MmD, MpD] = Mpm , (42)
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where the latin letters take D − 1 values. Defining MmD = R Pm and taking the limit R→∞
(with Pm fixed) in the relations (40)-(42) lead to

i [Mmn, Mpq] = δnpMmq −δmpMnq −δqmMpn +δqnMpm , (43)

i [Pm, Mpq] = δmnPp −δmpPn , (44)

i [Pm, Pp] = 0 . (45)

As can be seen, the generators {Mmn, Pm} span the Lie algebra of the inhomogeneous orthog-
onal group IO(D− 1) . The former argument proves the contraction so(D)→ iso(D− 1) .

The limit of a sequence of irreps of the homogeneous orthogonal group O(D), in which
one performs an Inönü-Wigner contraction, is automatically a representation of the inhomo-
geneous orthogonal group IO(D − 1) (if the limit is not singular). An interesting issue is the
inverse problem: which irreps of IO(D − 1) may be obtained as the limit of such a sequence
of irreps of O(D)? The problem is non-trivial because, generically, the limit of a sequence of
irreps is a reducible representation.

Contraction of UIRs of the homogeneous orthogonal groups: Each inequivalent UIR of the
group IO(D−1) with a non-trivial action of its Abelian normal subgroup may be obtained as the
contraction of a sequence of UIRs of the group O(D).

More precisely, the Inönü-Wigner contraction R → ∞ of a sequence of UIRs of O(D) ,
labeled by allowed Young diagrams ν = {s,λ1, . . . ,λr} such that the limit of the quotient s/R
is a fixed positive real number µ, is the UIR of IO(D− 1) labeled by the parameter µ and the
Young diagram λ= {λ1, . . . ,λr} .

Proof: The use of the spherical harmonics construction discussed at the end of Subsection 4.4 is
very convenient here. The main idea is to solve the homogeneity condition in a neighborhood
of x D 6= 0 as follows:

Φ(xm, x D, ta) = zsφ

�

xm

z
, ta

�

, (46)

where −→x = (xm, x D) and φ(ym, ta) := Φ(ym, s
µ , ta) . In other words, one may perform a

convenient change of coordinates from the homogenous coordinates (xm, x D) to the set (ym, z)
where

ym =
xm

z

are the inhomogenous coordinates (on the projective space PRD−1 minus the point at infinity
z = 0) and

z =
µ x D

s
is a scale variable. The magic is that the equations for the generalized spherical harmonics
have a well-behaved limit x D →∞ in terms of φ(ym, ta) when x D/s is fixed to be equal to
the ratio z/µ , where z and µ are finite [19]. To see that, one should use the relations

∂

∂ xm
=

1
z
∂

∂ ym
,

∂

∂ x D
=

µ

s

�

∂

∂ z
−

1
z

ym ∂

∂ ym

�

. (47)

Moreover, the equations in this limit may be identified with equations for the proper UIR
of the inhomogeneous orthogonal group IO(D − 1) realized homogeneously in terms of the
inhomogenous coordinates.
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Example: The simplest instance is when λ = {0} because one considers the sequence of
harmonic functions Φ(xm, x D) of homogeneity degree s . The Laplace operator acting on
Φ(xm, x D) reads in terms of φ(ym) as follows

∆RDΦ= zs−2

�

∂

∂ y
·
∂

∂ y
+
µ2

s2

�

s(s− 1)− (2s− 1)
�

y ·
∂

∂ y

�

+
�

y ·
∂

∂ y

�2
��

φ ,

due to the homogeneity condition (46) and the relations (47). The Laplace equation∆RDΦ= 0
is thus equivalent to the equation

�

∂

∂ y
·
∂

∂ y
+
µ2

s2

�

s(s− 1)− (2s− 1)
�

y ·
∂

∂ y

�

+
�

y ·
∂

∂ y

�2
��

φ = 0 ,

whose limit for s→∞ is the Helmholtz equation [∆RD−1+µ2 ]φ = 0 , where∆RD−1 = ∂
∂ y ·

∂
∂ y .

The space of solutions of the Helmholtz equation carries an UIR of IO(D− 1) induced from a
trivial representation of the stability subgroup O(D− 2) .

5 Relativistic field equations

The Bargmann -Wigner programme amounts to associating, with any given UIR of the Poincaré
group, a manifestly covariant differential equation whose (positive-energy) solutions trans-
form according to the corresponding UIR. Physically, it might be natural to restrict this pro-
gramme to the two most important classes of UIRs: the massive and massless representations.
Mathematically, this restriction is convenient because the group-theoretical analysis is simpler
since any of these UIRs is induced from an UIR of a unimodular orthogonal group SO(n) (with
D− 3¶ n¶ D− 1), as can be checked easily on the tables of Subsection 3.3.

In 1948, this restricted programme was completed by Bargmann and Wigner in four dimen-
sions when, for each such UIR of ISO(3,1)↑ , a relativistic field equation was written whose
positive-energy solutions transform according to the corresponding UIR [4]. But this case
(D = 4) will not be reviewed here in details because it may cast shadow on the generic case.
Indeed, it is rather peculiar in many respects:

• The quadratic and quartic Casimir operators essentially classify the UIRs, but this is
no more true in higher dimensions where more Casimir operators are necessary and
the classification quickly becomes technically cumbersome in this way. Moreover, one
should stress that the eigenvalues of the Casimir operators do not characterize uniquely
an irreducible representation (for instance, the quadratic and quartic Casimir operators
vanish for all helicity representations).

• The (complex) Lorentz algebra so(3, 1) is isomorphic to the direct sum of two (complex)
rotation algebras so(3) ∼= sp(2) . These isomorphisms allow the use of the convenient
“dotted-undotted" formalism for the finite-dimensional (non-unitary) irreps of the spin
group Spin(3,1).

• The symmetric tensor-spinor fields are sufficient to cover all inequivalent cases.

• The helicity short little group SO(2) is Abelian, therefore its irreps are one-dimensional,
for fixed helicity. Notice that the helicity is discretized because the representation of the
“little group" SO(2) is a restriction of the representation of the group Spin(3) ∼= SU(2)
which has no intrinsically projective representations.

• The infinite-spin short little group SO(1) is trivial, thus there are only two inequivalent
infinite-spin representations (single- or double-valued) [6].
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• etc.

Moreover, there exists an extensive literature on the subject of UIRs of ISO(3,1)↑ and we refer
to the numerous pedagogical reviews available for more details on the four-dimensional case
(see e.g. the inspiring presentations of [5] and [21]).

It is standard to require time reversal and parity symmetry of the field theory. More pre-
cisely, the field equations we will consider are covariant under the two previous transforma-
tions. As a consequence of the time reversal symmetry, the representation is irreducible under
the group ISO(D − 1,1) but reducible under the Poincaré group ISO(D − 1, 1)↑ : the Hilbert
space of solutions contain both positive and negative energy solutions. Furthermore, the par-
ity symmetry implies that the representation is irreducible under the inhomogeneous Lorentz
group IO(D− 1,1) but reducible under the group ISO(D− 1,1) (for instance, both chiralities
are present in the massless case for D even). To conclude, the Bargmann -Wigner programme
is actually understood as associating, with any given UIR of the inhomogeneous Lorentz group,
a manifestly covariant differential equation whose solutions transform according to the corre-
sponding UIR.

5.1 General procedure

The lesson on induced representations that we learned from Wigner implies the following
strategy:

1. Pick a unitary representation of the (short) little group.

2. Introduce a wave function on RD−1,1 taking values in some (possibly non-unitary) rep-
resentation of the Lorentz group O(D−1, 1) the restriction of which to the (short) little
group contains the representation of step 1.

3. Write a system of linear covariant equations, differential in position space xµ thus alge-
braic in momentum space pν , for the wave function of step 2. These equations may not
be independent.

4. Fix the momentum and check in convenient coordinates that the field equations of step
3 put to zero all “unphysical" components of the wave function. More precisely, verify
that its non-vanishing components carry the unitary representation of step 1.

Proof: The fact that the set of linear differential equations is taken to be manifestly covariant
ensures that the Hilbert space of their solutions carries a (infinite-dimensional) representation
of IO(D− 1,1) . The fourth step determines the representation of the little group by which it
is induced.

In the physics literature, the fourth step is referred to as “looking at the physical degrees of
freedom." If the (possibly reducible) representation is proven to be unitary, then this property
is summarized in a “no-ghost theorem."

The Klein-Gordon equation (p2 ± m2)Ψ = 0 is always, either present in the system of
covariant equations or a consequence thereof. Consequently, the Klein-Gordon equation will
be assumed implicitly from now on in the step 3. Therefore, the step 4 will be immediately
performed in a proper Lorentz frame. (We refer the reader to the Subsection 3.2 for more
details.)

The two completions [22] and [23–25] of the Bargmann -Wigner programme for finite-
component representations in Minkowski spacetime of dimension D > 3 are reviewed, respec-
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tively, in the appendix A and in the subsections 5.2-5.3 for single-valued UIRs of the Poincaré
group.6

The tachyonic case7 is more briefly discussed in Subsection 5.4. The zero-momentum
representations are not considered here since they essentially are the unitary irreducible rep-
resentations of the de Sitter spacetime dSD−1 . The latter have been reviewed in [27].

The Bargmann -Wigner programme for fractional-spin fields in three spacetime dimensions
has been completed in [29,30]. More generally, the exhaustive completion of the Bargmann -
Wigner programme (for all representations) in Minkowski spacetime of dimension D = 3 is
briefly summarised in Appendix B.

5.2 Massive representations

The Bargmann -Wigner programme is easy to complete for massive UIRs because the massive
stability subgroup is the orthogonal group O(D − 1) ⊂ O(D − 1, 1) . By going to a rest-frame,
the time-like momentum vector takes the form pµ = (m,

−→
0 ) 6= 0 . The physical components of

the field are thus carrying a tensorial irrep of the group O(D−1) of orthogonal transformations
in the spatial hyperplane RD−1 orthogonal to pµ . In other words, the linear field equations
should remove all components including time-like directions. These unphysical components
are responsible for the fact that the Fock space is not endowed with a positive-definite norm.

Step 1. From the sections 1.3 and 4, one knows that any unitary representation of the
orthogonal group O(D−1) is a sum of UIRs which are finite-dimensional and thus, equivalent
to a tensorial representation. Let us consider the UIR of O(D − 1) labeled by the allowed
Young diagram λ = {λ1,λ2, . . . ,λr} (i.e. the sum of the lengths of its first two columns does
not exceed D− 1).

Step 2. The simplest8 way to perform the Bargmann -Wigner programme in the massive
case is to choose a covariant wave function whose components carry the (finite-dimensional
and non-unitary) tensorial irrep of the Lorentz group O(D − 1,1) labeled by the Young dia-
gram λ . As explained in the subsection 4.4, a convenient way of realizing this is in terms of
a wave function Φ(p, ua) polynomial in the auxiliary commuting variables uµa satisfying the
irreducibility conditions (33)-(34).

Step 3. The massive Klein-Gordon equation

(p2 +m2)Φ= 0 (48)

has to be supplemented with the transversality conditions

�

p ·
∂

∂ ua

�

Φ = 0 , (49)

of the wave function.
Step 4. Looking at a fixed-momentum mode in its corresponding rest-frame pµ = (m,

−→
0 )

leads to the fact that the components of the wave function along the timelike momentum are
set to zero by (49): Φ = Φ(p,−→u a) . In words, Φ does not depend on the time components
u0

a , ∀ a . In this case, the conditions (33)-(34) read as irreducibility conditions under the
orthogonal group O(D− 1) .

Example: Massive symmetric representations with “spin" equal to s correspond to Young dia-
grams λ= {s}made of one row of length equal to the integer s . In four spacetime dimensions,

6Spinorial irreps may be adressed analogously by supplementing the system of differential equations with Dirac-
like equations and gamma-trace constraints (see e.g. [19,26] for more details).

7The discussion presented in the section 5.4 was not published before, it directly derives from private conver-
sations between X.B. and J. Mourad.

8There are other possible equivalent representations. In the case D = 4 , see Sec. 5.7 of [5], Eq. (5.7.33).
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this representation is precisely what is usually called a “massive spin-s field."9 The covariant
wave function Φ(p, u) obeys to the irreducibility conditions (33)-(34) of the components

�

u ·
∂

∂ u
− s

�

Φ = 0 ,
� ∂

∂ u
·
∂

∂ u

�

Φ = 0 . (50)

The wave function Φ is homogeneous of degree s and harmonic in the auxiliary variable u .
If the wave function Φ(p, u) is polynomial in the auxiliary variable u , then its components
correspond to a symmetric tensor of rank s

Φ(p, u) =
1
s!
Φµ1...µs

(p)uµ1 . . . uµs ,

which is traceless
ηµ1µ2Φµ1µ2µ3...µs

(p) = 0 . (51)

The covariant field equations are the massive Klein-Gordon equation together with the transver-
sality condition

�

p ·
∂

∂ u

�

Φ = 0 , (52)

which reads in components as
pµ1Φµ1µ2...µs

(p) = 0 . (53)

The non-vanishing components of a solution of (53) must be along the spatial directions,
i.e. only Φi1...is(p) may be 6= 0 . This symmetric tensor field is traceless with respect to the
spatial metric: δi1 i2Φi1 i2 i3...is(p) = 0 , thus the physical components carry a symmetric irrep
of the orthogonal group O(D − 1) , the dimension of which can be computed by making use
of the formula (25). The polynomial wave function Φ(p, u) evaluated on the internal unit
hypersphere uiui = 1 corresponds to a decomposition of the physical components in terms
of the spherical harmonics on the internal hypersphere SD−2 , which is an equivalent, though
rather unusual, way of representing the physical components (usually, the use of spherical
harmonics is reserved to the “orbital" part of the wave function).

The quartic Casimir operator of the Poincaré algebra is easily evaluated in components in
the rest frame

−1
2 P2MµνMµν + MµρPρ MµσPσ

=
1
2

m2(Mi j M
i j + 2Mi0M i0) − m2Mi0M i0 = m2 1

2
Mi j M

i j ,

giving as a final result for a massive representation associated with a Young diagram λ

C4

�

iso(D− 1, 1)
�

= C2

�

iso(D− 1,1)
�

C2

�

so(D− 1)
�

,

= m2
r
∑

a=1

λa(λa + D− 2a− 1) , (54)

where the eigenvalues of the quadratic Casimir operator of the rotation algebra are given by
the formula (27).

Example: In any dimension D , the eigenvalue of the quartic Casimir operator for a massive
symmetric representation of rank s is equal to m2 s(s+ D− 3). In four spacetime dimensions,
the square of the Pauli-Lubanski vector acting on a massive field of spin-s is indeed equal to
m2 s(s+ 1).

9To our knowledge, the Bargmann -Wigner programme for the massive integer-spin representations in four-
dimensional Minkowski spacetime was adressed along the lines reviewed here for the first time by Fierz in [31].
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Each massive representation in D ¾ 4 dimensions may actually be obtained as the first
Kaluza–Klein mode in a dimensional reduction from D+1 down to D dimensions. There is no
loss of generality because the massive little group SO(D−1) in D dimension is identified with
the (D+1)-dimensional helicity (short) little group. Such a Kaluza–Klein mechanism leads to
a Stückelberg formulation of the massive field.

The massless limit m → 0 of a massive irrep with λ fixed is, in general, reducible be-
cause the irrep of the massive little group SO(D − 1) is restricted to the helicity (short) little
group SO(D − 2) ⊂ SO(D − 1). This argument combined with the known branching rule for
O(D− 1) ↓ O(D− 2) (reviewed in Subsection 4.3) allows to prove that the massless limit of a
massive irrep of the homogeneous Lorentz group labeled by a fixed Young diagram λ contains
each helicity irrep labeled by Young diagrams µ such that

λ1 ¾ µ1 ¾ λ2 ¾ µ2 ¾ . . .¾ µr−1 ¾ λr ¾ µr ¾ 0 ,

with multiplicity one. The zero modes of a dimensional reduction from D + 1 down to D
dimensions are determined by the same rule.

Example: The zero modes of the dimensional reduction of a massive symmetric represen-
tations with “spin" equal to s are all helicity symmetric representations with integer “spins"
not greater than the integer s, each with multiplicity one. For the dimensional reduction of a
gravitational theory (i.e. a spin-two particle), one recovers the usual result that the massless
spectrum is made of one “graviton" (spin-2), one “photon" (spin-1) and one “dilaton" (spin-0).

5.3 Massless representations

The quartic Casimir operator of the Poincaré algebra is evaluated easily in components in the
light-cone coordinates (see Subsection 3.2 for notations),

−
1
2

P2 MµνMµν + MµρPρ MµσPσ = 0 + Mm+P+M m−P− = πmπ
m ,

giving as a final result for a massless representation

C4

�

iso(D− 1, 1)
�

= C2

�

iso(D− 2)
�

= µ2 , (55)

where the quadratic Casimir operator of the massless little group is written in (17).

5.3.1 Helicity representations

Helicity representations correspond to the case µ = 0 , so that πm = 0 and in practice the
representation is induced from a representation of the orthogonal group O(D− 2) .

Step 1. Again, any unitary representation of the orthogonal group O(D − 2) is a sum of
finite-dimensional UIRs. Let us consider the UIR of the helicity short little group O(D − 2)
labeled by the allowed Young diagram λ = {λ1,λ2, . . . ,λr} (that is, the sum of the lengths of
its first two columns does not exceed D− 2):

λ=

λr

λr−1

. . . ...

λ3

λ2

λ1

. (56)

The step 2 is more subtle to perform than for massive representations because the field
equations must set to zero all components along the light-cone of the covariant wave function,

30

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.30


SciPost Phys. Lect. Notes 30 (2021)

because they are unphysical. In other words, the covariant wave equations should remove two
directions, and not only one like in the massive case. This fact implies that the transversality
is not a sufficient condition any more, it must be supplemented either by other equations or by
gauge symmetries asserting that one may quotient the solution space by pure gauge fields. In
these lecture notes, one focuses on two gauge-invariant formulations which may be respectively
referred to as “Bargmann -Wigner formulation" in terms of the field strength and “gauge-fixed
formulation" in terms of the potential.

Bargmann -Wigner equations

The so-called “Bargmann -Wigner equations" were actually first written by Dirac [32] in
four-dimensional Minkowski spacetime in spinorial form. Their name originates from their
decisive use in the completion of the Bargmann -Wigner programme [4]. The generalization
of the Bargmann -Wigner equations to any dimension was presented in [23–25] for tensorial
irreps (reviewed here) and in [26] for spinorial irreps. The latter programme had previously
been completed in [28] with different equations.

Step 2. Let λ= {λ1,λ1,λ2, . . . ,λr} be the Young diagram depicted as

λ=

λr

λr−1

. . . ...

λ3

λ2

λ1

λ1

. (57)

It is obtained from the Young diagram λ represented in (56) by adding a row of equal length
on top of the first row of λ . The Young diagram λ has at least two rows of equal lengths
and the sum of the lengths of its first two columns does not exceed D . The covariant wave
function is chosen to take values in the Schur module V O(D−1,1)

λ
realized in the manifestly

antisymmetric convention. Following Subsection 4.4, the wave function K(p, d
I
x) is taken

to be a polynomial in the graded variables d
I
xµ ( I = 1, 2, . . . ,λ1 ) obeying the commutation

relations (30). Moreover, the irreducibility conditions of the components under the Lorentz
group O(D− 1,1) are

�

d
I
xµ

∂ L

∂ (d
J
xµ)
− δ

I J
`

I

�

K = 0 , (I ¶ J) , (58)

where `I stands for the length of the Ith column in the Young diagram λ , and

�

ηµν
∂ L

∂ (d
I
xµ)

∂ L

∂ (d
J
xν)

�

K = 0 . (59)

Step 3. The covariant field equations may be summarized in the assertion that the wave
function is a “harmonic" multiform in the sense that, ∀ I , it is “closed"

�

pµ d
I
xµ
�

K = 0 , (60)

and “coclosed" (i.e. transverse)
�

pµ
∂ L

∂ (d
I
xµ)

�

K = 0 . (61)

The operators p · d
I
x act as “exterior differentials" (or “curls"), they are nilpotent and obey

graded commutation relations. As one can easily see, the field equations (60) and (61), con-
sidered together, imply the massless Klein-Gordon equation. Actually, the equations (60) may
even be imposed off-shell, whereas the equations (61) only hold on-shell [23–25].

31

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.30


SciPost Phys. Lect. Notes 30 (2021)

Step 4. In the light-cone frame (see Section 1.1), the components of the momentum may
be taken to be pµ = (p−, 0, 0, . . . , 0) with p− 6= 0 . On the one hand, the transversality con-
dition (61) implies that the wave function does not depend on the variables d

I
x+ . On the

other hand, the closure condition (60) reads (p−d
I
x−)K = 0 , the general solution of which

is K = (
∏

I p−d
I
x−)φ , where φ depends neither on d

I
x− nor on d

I
x+ (due to the transver-

sality condition). In other words, the directions along the light-cone have been removed,
since φ = φ(p, d

I
xm) (m = 1,2, . . . , D − 2). Focusing on this field, one may show that the

irreducibility conditions (58) become, in terms of the function φ,

�

d
I
xm ∂ L

∂ (d
J
xm)

− δ
I J
`

I

�

φ = 0 , (I ¶ J) , (62)

where `
I
= `

I
− 1, and the trace conditions (59) implies

�

δmn ∂ L

∂ (d
I
xm)

∂ L

∂ (d
J
xn)

�

φ = 0 . (63)

Since `
I

is the length of the Ith column of the Young diagram λ , the system of equations (62)-
(63) states that the components of the function φ carry a tensorial irrep of the orthogonal
group O(D−2) . Therefore, the same is true for the physical components of the wave function
K .

This may be reformulated covariantly by saying that the closure (60) of the wave function
implies that

K =
�

λ1
∏

I=1

pµd
I
xµ
�

φ . (64)

In components, this means that the tensor K is equal to λ1 curls of the tensor φ . This moti-
vates the name “field strength" for the wave function K(p, d

I
x) , the components of which are

irreducible under the Lorentz group (when evaluated on zero -mass shell) and labeled by λ ,
and the name “potential" or “gauge field" for the wave function φ(p, d

I
x) , the components of

which may be taken to be irreducible under the general linear group, with symmetries labeled
by the Young diagram λ .

Examples:
• The helicity vectorial representation corresponds to a Young diagram λ = {1} made of a
single box. In four spacetime dimensions, this representation is precisely what is usually called
a “vector gauge field". The Young diagram λ = {1,1} is a single column made of two boxes.
The wave function in momentum space is given by

K = 1
2
Kµν(p) d xµd xν ,

which carries an irrep of GL(D,R): the antisymmetric rank-two representation. As one can see,
the wave function actually is a differential two-form, the components of which transforming
as an antisymmetric tensor of rank two. The field equations (60) and (61), respectively, read
in components

pµKνρ + pνKρµ + pρKµν = 0 (Bianchi identities)

and
pµKµν = 0 (transversality conditions) .

The differential two-form K is indeed harmonic (closed and coclosed). In physical terms,
one says that the field strength Kµν obeys to the Maxwell equations. As usual, the Bianchi
identities imply that the field strength derives from a potential: Kµν = pµφν − pνφµ . In the
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light-cone coordinates, the transversality implies that the components K+ν vanish, thus the
only non-vanishing components are K−n = p−φn . Therefore the only physical components
correspond to a (D− 2)-vector in the hyperplane transverse to the light-cone.
• Helicity symmetric representations with “helicity" (or “spin") equal to s correspond to Young
diagrams λ = {s} made of one row of length equal to the integer s . In four spacetime di-
mensions, this representation is precisely what is usually called a “massless spin-s field". The
Young diagram λ= {s, s} is a rectangle made of two row of length equal to the integer s . The
wave function is thus a polynomial in the auxiliary variables

K = 1
2s

Kµ1ν1 |... |µsνs
d1 xµ1 d1 xν1 . . . ds xµs ds xνs ,

satisfying the irreducibility equations (58)-(59) with `I = 2 , ∀ I ∈ {1, . . . , s} . The tensor K is,
by construction, antisymmetric in each of the s sets of two indices

Kµ1ν1 |... |µsνs
= −Kν1µ1 |... |µsνs

= . . . = −Kµ1ν1 |... |νsµs
. (65)

Moreover, the complete antisymmetrization over any set of three indices gives zero and all its
traces are zero on-shell, so that the on-shell tensor K indeed belongs to the space irreducible
under the Lorentz group O(D−1,1) characterized by a two-row rectangular Young diagram of
length s . In four-dimensional Minkowski spacetime, the irrep of the Lorentz group O(3,1) car-
ried by the on-shell tensor K is usually denoted as (s, 0)⊕ (0, s) . More precisely, the symmetry
properties of the tensor Kµ1ν1 |... |µsνs

are labeled by the Young tableau

µ1 µ2 . . . µs

ν1 ν2 . . . νs
.

The equation (64) means that the components of the tensor Kµ1ν1 |... |µsνs
are essentially the

projection of pµ1
. . . pµs

φν1...νs
on the tensor field irreducible under GL(D,R) with symmetries

labeled by the above Young tableau. The physical components φn1...ns
of the symmetric tensor

gauge potential φν1...νs
are along the D−2 directions transverse to the light-cone. The number

of physical degrees of freedom of a helicity symmetric field of rank s can be computed by
making use of the formula (25).
• The helicity symmetric representation with “spin" equal to 2 corresponds to the graviton. The
field strength has the symmetry properties of the Riemann tensor. Its on-shell tracelessness
indicates that it corresponds to the (linearized) Weyl tensor. The equations (60) are the Bianchi
identities for the linearized Riemann tensor in flat spacetime, whereas the equations (61) hold
as a consequence of the sourceless Einstein equations linearized around flat spacetime.

Remark: One can find some early indications for the existence of the tensor Kµ1ν1 |... |µsνs in
the paper [33] where Weinberg constructs free quantum field operators that have a nonzero
expectation value between the vacuum and one-particule states for massless particles of he-
licity ±s in four spacetime dimensions. In Weinberg’s approach, one cannot find the classical
(or “first-quantized”) field strength tensor Kµ1ν1 |... |µsνs that we have built above, but instead
a quantum operator (in so-called “second-quantization”) that we denote here ÒK±µ1ν1 |... |µsνs

and that transforms like a tensor under Lorentz transformations. This operator is built out
of the product [pµ1 eν1

± (~p ) − pν1 eµ1
± (~p )] . . . [pµs eνs

± (~p ) − pνs eµs
± (~p )] featuring the two polari-

sation “vectors” eµ±(~p ) . On the one hand, solving the Bianchi identities for the field strength
Kµ1ν1 |... |µsνs allows to write the latter as an expression involving s derivatives of a completely
symmetric gauge potential φµ1...µs

. This potential satisfies [23–25] the second-order Fronsdal
field equations [34] and is the building block for the construction of an interacting quantum
field theory with long-range interactions. On the other hand, the canonical quantization of the
free field theory with field strength tensor K gives rise to Weinberg’s quantum field operator
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ÒK± . The same remarks apply to the relation between the generalised field strength (64) and
its second-quantized version in [35].

Gauge-fixed equations
The following equations are somewhat unusual, but they proved to be crucial in the com-

pletion of the Bargmann -Wigner programme for the infinite spin representations [19].
Step 2. Let bλ= {λ1 − 1,λ2 − 1, . . . ,λr − 1} be the Young diagram depicted as

bλ=

λr − 1
λr−1 − 1

. . . ...

λ3 − 1
λ2 − 1

λ1 − 1

, (66)

obtained from the Young diagram λ represented in (56) by removing the first column of λ .
Therefore the sum of the length of the first two columns of the Young diagram bλ does not ex-
ceed D−2 . The covariant wave function is chosen to take values in the Schur module V O(D−1,1)

bλ
realized in the manifestly symmetric convention. Actually, as anticipated in Subsection 4.4, it
turns out to be crucial to regard the wave function Φ(p, ua) as a distribution in the commuting
auxiliary variables uµa , obeying to

��

ua ·
∂

∂ ub

�

− bλa δab

�

Φ = 0 , (a ¶ b) , (67)
�

∂

∂ ua
·
∂

∂ ub

�

Φ = 0 . (68)

Step 3. Proper field equations are the transversality condition (49) combined with the
equation

(p · ua)Φ= 0 . (69)

The equations (69) and (49) are the respective analogues of the closure and coclosure condi-
tions (60)-(61). A drastic difference is that the operators p ·ua are not nilpotent (thus there is
no underlying cohomology). Actually, the equation (69) has no solution if Φ is assumed to be
a polynomial in all the variables.

Step 4. Equation (69) can be solved as

Φ= δ(ua · p)φ , (70)

where the distribution φ(p, ua) may actually be assumed to be a function depending polyno-
mially on the auxiliary variables ua for the present purpose. The Dirac delta is a distribution of
homogeneity degree equal to minus one, hence the irreducibility conditions (67)-(68) imply
that

��

ua ·
∂

∂ ub

�

−λa δab

�

φ = 0 (a ¶ b) , (71)
�

∂

∂ ua
·
∂

∂ ub

�

φ = 0 . (72)

The function φ is defined from (70) modulo the equivalence relation

φ ∼ φ +
r
∑

a=1

(ua · p)εa , (73)
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where εa are arbitrary functions. This means that (70) is equivalent to the alternative road
towards the Bargmann -Wigner programme: the gauge symmetry principle with the irreducible
components of (ua · p)εa being pure gauge fields. As mentioned before, this path will not be
addressed here (see e.g. [23–25] and refs therein for more discussions on the gauge-invariance
issue). Therefore, one may say that the equation (69) is the “remnant" of the gauge symmetries
(73). In the light-cone coordinates, the gauge symmetries (73) imply that one may choose
a representative φ which does not depend on the variables u−a (the gauge is “fixed"). The
transversality condition (49) implies that φ is also transverse, implying no dependence on u+a
(“gauge shoots twice"). Thus φ depends only on the transverse auxiliary variables um

a , so one
concludes by observing that the physical components of φ carry a tensorial irrep of O(D− 2)
labeled by λ .

5.3.2 Infinite spin representations

Infinite spin representations correspond to the case µ 6= 0 and, in practice, the representation
of the massless little group IO(D−2) is induced from a representation of the orthogonal group
O(D−3) . The parameter µ is a real parameter with the dimension of a mass. Wigner proposed
a set of manifestly covariant equations to describe fields carrying these UIR in four spacetime
dimensions [36]. They have been generalized to arbitrary infinite-spin representations in any
dimension [19].10

Step 1. Again, any unitary representation of the orthogonal group O(D − 3) is a sum of
finite-dimensional UIRs. Let us consider the UIR of the helicity short little group O(D − 3)
labeled by the allowed Young diagram λ = {λ1,λ2, . . . ,λr} (that is, the sum of the lengths of
its first two columns does not exceed D− 3).

Step 2. In order to have manifest covariance, it is necessary to lift the eigenvalues ξm

of the generators πm in the massless little group to a D-vector ξµ . In practice, the covariant
wave function is taken to be a distribution Φ(p,ξ, ua) satisfying the conditions (33)-(34). The
tensorial components associated with the commuting variables ua belong to the Schur module
of the Lorentz group O(D− 1,1) labeled by an allowed Young diagram λ .

Step 3. Relativistic equations describing a first-quantized particle with infinite spin are

(p · ξ)Φ = 0 , (74)
�

p ·
∂

∂ ξ
− i
�

Φ = 0 , (75)

(ξ2 −µ2)Φ = 0 , (76)

together with the transversality conditions

(p · ua)Φ = 0 , (77)
�

p ·
∂

∂ ua

�

Φ = 0 , (78)
�

ξ ·
∂

∂ ua

�

Φ = 0 . (79)

This system of equations is far from being independent. For instance, compatibility condition
of the systems (74)-(75) or (77)-(78) is the massless Klein-Gordon equation.

Step 4. The equation (75) reflects the fact that the couples (p ,ξ) and (p ,ξ + αp) are
physically equivalent for arbitrary α ∈ R. Indeed, one gets

Φ(p ,ξ+αp) = eiαΦ(p ,ξ) (80)

10More recent developments (as well as a list of open challenges) have been reviewed in [20].
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from Equation (75). The equation (76) states that the internal vector ξ is a space-like vector
while the mass-shell condition states that the momentum is light-like. From the equation (74),
one obtains that the internal vector is transverse to the momentum. All together, one finds
that ξ may be taken to live on the hypersphere SD−3 of radius µ embedded in the transverse
hyperplane RD−2 . In brief, the “continuous spin" degrees of freedom essentially correspond to
D−3 angular variables, whose Fourier conjugates are discrete variables analogous to the usual
spin degrees of freedom. Finally, proceeding analogously to the “gauge-fixed" field equations
of the helicity representations, one may show [19] that the conditions (77)-(79) concretely
remove three unphysical directions in the components, so that the final result is a tensorial
irrep of the short little group O(D−3) fixing both the momentum p and the internal vector ξ .

From the group theoretical point of view, the UIR of the homogeneous and inhomogeneous
orthogonal groups are related by an Inönü-Wigner contraction O(D − 1) → IO(D− 2) (see
Subsection 4.5). It follows that one can obtain the continuous spin representations from the
massive ones in a suitable massless limit m→ 0 since their little group UIRs are related by a
contraction. The quartic Casimir operator of the Poincaré group for the massive representation
is related to its Young diagram ν labeling the UIR of the little group O(D− 1) via the formula
(54):

C4

�

iso(D− 1,1)
�

= m2
r
∑

a=1

νa(νa + D− 2a− 1) . (81)

In order to keep C4 non-vanishing, the massless limit must be such that the product of the
“spin" ν1 = s and the mass m remains finite. More precisely, one needs sm → µ in order to
reproduce (55), so that the spin goes to infinity while the row lengths νa for a 6= 1 are kept
equal to λa−1 [19, 37]. The Fourier transform (in the internal space spanned by ξ) of the
field equations (74)-(79) may be obtained in this way from the field equations of a massive
representation in “gauge-fixed" form (see [19] for more details). This limit is very similar to
the contraction of Subsection 4.5.

5.4 Tachyonic representations

The tachyonic representations have some similarities with the massive representations. The
simpler one is the analogue of the Klein-Gordon equation, up to a change of sign for the mass
term. The other similarity is that the linear equations should remove the components along the
momentum. Of course, the major difference is that the momentum is space-like. The quartic
Casimir operator of the Poincaré algebra is also evaluated easily in components, giving as a
final result for a tachyonic representation,

C4

�

iso(D− 1, 1)
�

= C2

�

iso(D− 1,1)
�

C2

�

so(D− 2,1)
�

, (82)

where the eigenvalues of the quadratic Casimir operator of the rotation algebra are given by
the formula (27).

Step 1. The first step is more involved for the tachyonic case since it requires the exhaustive
knowledge of the UIR theory for the groups SO(D − 2, 1)↑ . Fortunately, complete results are
available [38–41]. The steps 2-3 further require the completion of the Bargmann -Wigner
programme for the isometry group SO(D − 2,1)↑ of the de Sitter spacetime dSD−2 . This has
been done in [27].11

Let us assume that this programme has been performed through an ambient space formu-
lation, analogous to the one of the spherical harmonics, as discussed in the subsection 4.4.
More explicitly, let us consider that the physical components of the wave function have been

11The Bargmann -Wigner programme in AdSD , with field equations that generalise the ones presented in Section
5.3, were obtained in [42,43]. Similar equations were obtained later in the dSD signature [27].
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realized via a function on the hyperboloid dSD−2 of radius µ > 0 embedded in RD−2,1 with
some set of auxiliary commuting vectors of RD−2,1 (for the spin degrees of freedom) and the
corresponding O(D− 2,1)-covariant field equations of the UIR are known explicitly. The step
1 is therefore assumed to be performed.

Step 2. In order to have manifest Lorentz invariance, all auxiliary variables are lifted
to D-vectors: the coordinates of the internal de Sitter spacetime are denoted by ξµ and the
auxiliary variables by uµA . The wave function is taken to be Φ(p,ξ, uA) , where the internal
vector ξ plays a role similar to the one in the infinite-spin representations. An important
distinction is that in the ambient space formulation, one would evaluate the wave function
on the hypersurface ξ2 = µ2 instead of imposing this relation on the wave function, as in
(76). The O(D−2,1)-covariant field equations for the UIR of the little group O(D−2,1)must
be O(D − 1, 1)-covariantized accordingly. Concretely, this implies that the components of the
covariant wave function carry an (infinite-dimensional) irrep of the Lorentz group.

Step 3. These covariantized field equations and the tachyonic Klein-Gordon equation
(p2 − m2)ψ = 0 must be supplemented by two equations: say the orthogonality condition
(74), similarly to the infinite spin representation, and the transversality condition (49), sim-
ilarly to the massive representation. The orthogonality condition (74) may be replaced by
another transversality equation for the vector ξ .

Step 4. Now, the equation (74) implies that the internal vector belongs to the hyperplane
RD−2,1 orthogonal to the momentum p . Its intersection with the hypersurface ξ2 = µ2 restricts
ξ to the internal de Sitter space dSD−2 ⊂ RD−2,1. Moreover, the condition (49) sets to zero all
components of the wave function along the momentum. Therefore, the remaining components
are physical and carry an UIR of the little group O(D− 2, 1) by construction (see step 2).

Example: The simplest non-trivial example corresponds to a tachyonic representation of the
inhomogeneous Lorentz group IO(D − 1,1) induced by a representation of the little group
O(D−2,1) corresponding to “massive scalar field" on the “internal de Sitter spacetime" dSD−2
with D ¾ 4 . This UIR belongs to the principal continuous series of UIR of the group O(D−2, 1)
and it may be realized as the space of harmonic functions on RD−2,1 of (complex) homogeneity
degree s equal to 3−D

2 + iσ (with σ a positive real parameter) evaluated on the unit one-
sheeted hyperboloid dSD−2 ⊂ RD−2,1 . They can be regarded as a generalization of the spherical
harmonics in the Lorentzian case, where the degree is a complex number. The eigenvalue of
the quadratic Casimir operator (4) of the little group O(D−2,1) on this representation is equal
to

C2

�

so(D− 2, 1)
�

=
�

D− 3
2

�2

+σ2 . (83)

The d’Alembertian on the unit hyperboloid evaluated on such functions is precisely equal to
the former eigenvalue (as is true for the Laplacian on the unit sphere evaluated on spherical
harmonics) so the corresponding fields on the internal spacetime dSD−2 are indeed “massive".
Inserting the above result in (82), one sees that the quartic Casimir operator is negative for
the corresponding tachyonic representation. In four-dimensional Minkowski spacetime, this
implies that the Pauli-Lubanski vector is time-like. The Lorentz-covariant wave function is
taken to be Φ(p,ξ) evaluated on ξ2 = 1 and the corresponding relativistic equations for the
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induced tachyonic representation may be chosen as
�

p2 −m2
�

Φ = 0 , (84)
�

p ·
∂

∂ ξ

�

Φ = 0 , (85)
�

∂

∂ ξ
·
∂

∂ ξ

�

Φ = 0 , (86)
�

ξ ·
∂

∂ ξ
− s
�

Φ = 0 , (87)

where one should remember that s = 3−D
2 + iσ . Notice the formal analogy with the system of

equations (48), (52)) and (50) for a massive symmetric tensor field.

Remark: There might be sometimes confusion in the folklore surrounding the tachyons. We
would like to insist on the fact that the tachyonic representations are indeed unitary (by defini-
tion). Still, their physical interpretation is problematic because they are not causal in the sense
that one may show that the support of their propagator requires superluminal propagation.
Roughly speaking, the acausality is obvious because the momentum is space-like, p2 = +m2 .
The confusing point is that one may try to circumvent this problem in the following way:
solving p2 − m2 = 0 by pµ = (im,

−→
0 ) enforces causality, but the price to pay is the loss of

unitarity. Indeed, the energy is pure imaginary, hence a naive plane-wave e±i p
0

x0
is actually a

non-integrable exponential e±mx0
. These remarks are summarized in the following table:

E = p0 |−→p | Unitarity Causality
0 m OK KO
±im 0 KO OK

Nevertheless, the tachyonic representations should not be discarded too quickly on such
physical grounds. Actually, if tachyonic representations appear in the spectrum of a theory,
then it merely signals a local instability of the field theory in the sense that the perturbation
theory is performed around an unstable vacuum, and the tachyon might roll to a stable vacuum
(if any). For instance, the Higgs particle is described by nothing but a tachyonic scalar field
(induced by the trivial representation of the little group). By analogy, one may wonder if
some infinite-component tachyonic field (induced by a non-trivial representation of the little
group) could not play a role in some huge Brout–Englert–Higgs mechanism providing mass to
an infinite tower of gauge fields in various massless irreps.
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A Siegel -Zwiebach equations

The Bargmann -Wigner programme for finite-component representations in Minkowski space-
time of any dimension D > 3 was completed for massless helicity representations by Siegel
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and Zwiebach in [28] and generalised to massive representations in Siegel’s lecture notes [22].
Only the massless representations will be reviewed here since the case of massive representa-
tions follows by dimensional reduction, as mentioned in the subsection 5.2.

Siegel -Zwiebach equations

The main idea behind these equations is the covariantisation of the condition that the
“translation” generators πn of the massless little group IO(D−2)must act trivially on physical
states of the helicity representations (cf. Subsections 3.2-3.3). Let us rewind the procedure
initiated in Subsection 5.3.1:

Steps 1 and 2. These first steps are identical to the case of Bargmann -Wigner equations,
i.e. the wave function is a field strength K(p, d

I
x) taking values in an irrep of the Lorentz

group O(D− 1,1) labeled by the Young diagram λ.
Step 3. The generators of the Lorentz algebra so(D−1, 1) can be decomposed as the sum

Mµν = Lµν+ Sµν of the “orbital” part (transforming the positions or momenta) and the “spin”

part (transforming the irrep labeled by the Young diagram λ),

Lµν = −i
�

pµ
∂

∂ pν
− pν

∂

∂ pµ

�

, Sµν = −i
�

d
I
xµ

∂

∂ (d xν
I
)
− d

I
xν

∂

∂ (d xµ
I
)

�

. (88)

The Siegel -Zwiebach equations for s 6= 0 take the simple form

( pµSµν − i s pν )K = 0 . (89)

They imply the massless Klein-Gordon equation p2K = 0 (since s 6= 0). In fact, one can
check that the quadratic and quartic Casimir operators both vanish as a consequence of (89).12

Notice that a similar “spin-enslaving” relation, leading to (89), was recently given in [44].
Step 4. In the light-cone frame (see Section 1.1) where the components of the momentum

are pµ = (p−, 0, 0, . . . , 0) with p− 6= 0 , the system (89) of equations splits as

πn K = 0 , (S+− − i s)K = 0 , (90)

where πn := p−S+n = pµSµn (with n = 1, 2, . . . , D − 2) are generators corresponding the
“translation” subgroup RD−2 ⊂ IO(D− 2) of the massless little group.13 On the one hand, the
fact that these generators πn act trivially ensures that the massless representation is a helicity
representation, i.e. only the generators Smn of the rotations in the transverse plane act non-
trivially. Moreover, the condition πn K = 0 implies that the field strength K in the light-cone
frame has a maximal (respectively, minimal) number of factors d

I
x− (respectively, d

I
x+).14

Therefore, the physical components of the field strength read K = (
∏

I p−d
I
x−)φ , where φ

depends neither on d
I
x− nor on d

I
x+. On the other hand, the eigenvalue S+− = is of the

Lorentz generator

S+− = −i
�

d
I
x+

∂

∂ (d
I
x+)
− d

I
x−

∂

∂ (d
I
x−)

�

(91)

implies that the Young diagram λ must have s columns. This is because the operator S+− is a
number operator (up to a coefficient i) for the total number of covariant indices − minus the
number of covariant indices + , and in every column of the field strength there is no index +
and one index − . The conclusion that is reached is the same as in Subsection 5.3.1.

12In order to check that the quartic Casmir operator acts trivially, it useful to notice that Mµν can be replaced
everywhere by Sµν inside the definition (6). In D = 4, this property is obvious in terms of the Pauli-Lubanski vector.

13See Subsection 3.2. Note that M+n = S+n and Mmn = Smn in this light-cone frame, since the corresponding
orbital parts of the generators of the little group act trivially on the momentum.

14See [22] for an elegant derivation of these facts from (90).
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Equivalence with Bargmann -Wigner equations

In fact, the Siegel -Zwiebach equations are equivalent to the Bargmann -Wigner equations
reviewed in Subsection 5.3.1. For instance, the closure and coclosure conditions (60) and (61)
imply (89). This follows from the identity

pµSµν = − i pµ
�

d
I
xµ

∂

∂ (d xν
I
)
− d

I
xν

∂

∂ (d xµ
I
)

�

= − i
�

pµd
I
xµ
� ∂

∂ (d xν
I
)
− d

I
xν
�

pµ
∂

∂ (d xµ
I
)

�

. (92)

In the last term, one recognises between the parentheses the divergence operator acting on
the column I , which gives zero because of the coclosure condition (61). As for the first term
on the right-hand side of the above equation, one can rewrite it as

−i
�

pµd
I
xµ
� ∂

∂ (d xν
I
)
= −i

∂

∂ (d xν
I
)

�

pµ d
I
xµ
�

− i pµ
�

d xµ
I

,
∂

∂ (d xν
I
)

�

. (93)

The first term on the right-hand side gives zero on the field strength because of the clo-
sure relation (60), while the last term gives +i s pν because of the commutation relations
�

d xµ
I
, ∂
∂ (d xν

I
)

�

= −sδµν .

The covariant proof that the Siegel -Zwiebach equations imply Bargmann -Wigner equa-
tions is more cumbersome and will not be presented here. Anyway, this equivalence is guar-
anteed from the light-cone frame analysis.

B Bargmann -Wigner programme in three dimensions

In this appendix we review results obtained in the literature concerning the Wigner and Barg-
mann -Wigner programmes in Minkowski spacetime of dimension D = 2 + 1 . The former
programme was achieved in [10] along the lines of the seminal paper [6] by Wigner.

There are four classes of UIRs of the Poincaré group ISO(2,1)↑ :

1) Zero-momentum representations, labeled by the eigenvalue c ∈ R of the quadratic
Casimir operator C2[so(2,1)] of the Lorentz algebra ;15

2) Massive representations, labeled by mass m> 0 and spin s ∈ R ;

3) Massless representations:

1. helicity representations, either single-valued (bosonic) or double-valued (fermionic);

2. infinite-spin representations, labeled by a dimensionful parameter µ > 0 ;

4) Tachyonic representations, labeled by a dimensionful parameter m> 0 and by a dimen-
sionless parameter s ∈ R (the analogue of spin).

In what follows, we briefly summarize exhaustive results on the completion of the Bargmann -
Wigner programme in D = 2+ 1 dimensions for the four classes of UIRs listed above.

15Strictly speaking, the principal and complementary series are labeled by two real parameters, not only by the
value of the Casimir operator.

40

https://scipost.org
https://scipost.org/SciPostPhysLectNotes.30


SciPost Phys. Lect. Notes 30 (2021)

B.1 Zero momentum representations

Effectively, the zero momentum representation of the Poincaré group ISO(2,1)↑ are UIRs of
the Lorentz subgroup SO(2,1)↑ . The latter were classified in [38]. We also refer the reader
to [45] for a physicist-friendly classification of the irreps of the Lorentz group SO(2,1)↑ .

We will not repeat these well-known results here. For the purpose of the Bargmann -Wigner
programme, it is enough to know that the UIRs of SO(2, 1)↑ are labeled by the real eigenvalue
of the quadratic Casimir operator C2[so(2, 1)] of the Lorentz algebra (and another real param-
eter for the principal and complementary series, cf. Footnote 15). Since the momentum is
vanishing, the states span a constant field ψ on Minkowski spacetime taking values in these
UIRs of the Lorentz group SO(2, 1)↑ . A relativistic equation is then

�

C2[so(2, 1)]− c
�

ψ = 0 ,
which asserts that the statesψ are eigenvectors of the Casimir operator with eigenvalue c ∈ R .

B.2 Massive representations

Consider a massive representation labeled by mass m> 0 and spin s ∈ R .

B.2.1 (Half-)integer spins

For integer spin s ∈ N, the Klein-Gordon equation (48) together with the tracelessness condi-
tion (51) and the transversality condition (53) for a totally symmetric tensor ϕµ1...µs

provide
relativistic field equations whose positive-energy solutions represent the corresponding UIR.
Equivalently, for non-vanishing integer spin s ∈ N0 , they can be summarized by the following
set of equations:

ηµ1µ2 ϕµ1...µs
= 0 , mϕµ1...µs

± iεµ1νρ
pνϕρµ2...µs

= 0 , (94)

where we take ε012 = −1 . For early references, see [29,30,46,47]. These equations are explic-
itly written in [48] and can be found in spinor notation in [49]. Notice that the transversality
condition (53) directly follows from the second equation in (94). Moreover, note that there
is no need to explicitly symmetrize the last equation in its free indices when the tracelessness
and transversality conditions hold true. In turn, the Klein-Gordon equation follows from re-
peated application of the second equation in (94). The two possible signs in the last equation
stand for the two possible values ±s of the “helicity” of the massive particle. This system of
equations can be generalized to AdS3 ; see [50] for a classification.

B.2.2 Fractional spins

In the case of the massive UIRs where the real number s is neither integer nor half-integer
(“fractional spin”, see e.g. [51] for a review), one should stress that although the number of
physical components is one (the UIRs of the massive little group SO(2) are one-dimensional
since this group is Abelian) nevertheless their corresponding covariant description necessarily
involve relativistic field equations with an infinite number of components (since there are no
finite-dimensional irreps of the Lorentz group SO(2,1)↑ with such values of the spin).

The positive-energy solutions to the system of the four equations (48), (50), (51), (52)
formally describe a massive UIR of mass m and spin s ∈ R (as can be checked by computing
the value of the quartic Casimir operator). Note that the field Φ(p, u) is not polynomial in
the auxilliary vector uµ when s /∈ N. Finding a suitable functional space is a subtle issue that
we will not attempt to address. In fact, the construction of manifestly IO(2, 1)-covariant field
equations proved to be a rather difficult task.

Several approaches have been followed in the literature. We refer to reader to [51] and the
introduction of the paper [52] for reviews; see also [29,30,46,47,49]. In the following, we will
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review the results obtained in [53] for the linear relativistic equations whose positive-energy
solutions span the massives UIRs where the spin s is neither integer nor half-integer.

The Cortes-Plyushchay equations proposed in [53] read16

Vµψ= 0 , Vµ := s Pµ − i εµνλPν eMλ +m eMµ , (95)

where the three operators eMµ := 1
2 εµνρ Mνρ generate the so(2,1) Lorentz algebra in D = 2+1

dimensions ( i [ eMµ, eMν] = εµνρ eMρ ), so that the quadratic Casimir (4) is equal to C2[so(2,1)] =
− eMµ

eMµ. In the above equations (95), the real number s is assumed to be nonzero. Contract-
ing the above equations with eMµ , Pµ and εµνλPµ eMλ produces the following three equations

�

(s− 1)W +m eM2
�

ψ= 0 , (s P2 +mW )ψ= 0 ,
�

P2
eM2 +W (m−W )

�

ψ= 0 , (96)

where the scalar W := Pµ eMµ is, in three spacetime dimension, the analogue of the Pauli-
Lubanski vector. Since by assumption both s and m are non-zero, these three equations are
equivalent to

�

m2
eM2 − s(s− 1)P2

�

ψ= 0 , (s P2 +mW )ψ= 0 , P2(P2 +m2)ψ= 0 . (97)

If one discards the trivial representation of the Poincaré group where Pµ = 0 = eMµ , one gets
the following three equations:

�

eM2 + s(s− 1)
�

ψ= 0 , (W − s m)ψ= 0 , (P2 +m2)ψ= 0 , (98)

the last two being the Pauli-Lubanski condition and the Klein-Gordon equation, whereas the
first sets the quadratic Casimir of the Lorentz group to C2[so(2,1)] = s(s−1), which indicates
that the field ψ takes value in an irrep of the Lorentz group labeled by s . The positive-energy
solutions of the above field equations (98) transform in the UIR of mass m and spin s. More
directly, in the Lorentz frame where pµ = (m, 0, 0) , the Cortes-Plyushchay equations (95) yield

( eM0 − s)ψ= 0 , ( eM1 − i eM2)ψ= 0 . (99)

If one takes L± := eM1 ± i eM2 as raising/lowering operators of the Lorentz algebra so(2,1),
then these equations assert that the state of momentum pµ = (m, 0, 0) is a lowest-weight
state of so(2,1). This implies that the positive-energy solutions are fields taking values in a
representation of the Lorentz algebra bounded from below. For s /∈ 1

2N , one concludes that the
field ψ takes values in an infinite-dimensional UIR of the Lorentz algebra so(2,1) belonging
to the discrete series.

The cases with s = − j < 0, where j ∈ 1
2N is a non-vanishing (half)integer, correspond to the

non-unitary spin- j irreducible representations of the Lorentz algebra so(2,1) with quadratic
Casimir C2[so(2, 1)] = j( j + 1) , in which case the Cortes-Plyushchay equation propagates the
massive fields with (half)integer spins discussed around (94).

Manifest covariance groups the three components of the equations as the components of a
vector, but let us mention that only two of the three equations (95) are enough to produce the
third one. These equations are integrable in the sense that the commutator [Vµ, Vν]ψ vanishes
on a field ψ solution of (95). We refer to [52] for an extended discussion of these equations.

B.3 Massless representations

The massless little group in D = 2 + 1 spacetime dimensions is ISO(1) ∼= R that is abelian,
hence massless UIRs are one-dimensional and labeled by a single real parameter µ ∈ R . There-
fore, all massless UIRs of the Poincaré group ISO(2, 1)↑ have a single physical component.
Nevertheless, we will stick to the distinction “helicity” vs “infinite-spin” representations.

16One can show that the operator Vµ can be obtained by the dimensional reduction of the Siegel -Zwiebach
massless operator in (89).
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B.3.1 Helicity representations

The helicity representations correspond to the particular case µ= 0 . Two case arises whether
the representation of the Lorentz group SO(2, 1)↑ is either single or double valued: the “helic-
ity” is effectively zero or one-half, which corresponds to the fact that a massless field in three
spacetime dimensions can always be dualized to a massless scalar or a Dirac spinor, as will
be reviewed now. The manifestly covariant field equations are similar to those for the mass-
less helicity cases in D > 3 studied above, except that only symmetric (spinor-)tensor gauge
fields ϕµ1...µs

= ϕ(µ1...µs) are allowed (the spinor index is not written). Equivalently, only field
strengths Kµ1ν1 |... |µsνs

labeled by rectangular two-row Young diagrams are allowed. Moreover,
higher (gamma-)traces of those field strengths must be set to zero. Indeed, if in three dimen-
sions one were to set to zero the single (gamma-)trace of the field strength K , one would
obtain that the field strength itself should vanish on-shell, resulting in the absence of propa-
gating degrees of freedom. More precisely, upon Hodge-dualizing the s pairs of antisymmetric
indices of the spin-s field strength one obtains a totally symmetric (spinor-)tensor

eKµ1...µs
:=

1
2s
εµ1ν1ρ1

· · ·εµsνsρs
Kν1ρ1 |... |νsρs ,

where the latter (spinor-)tensor is completely symmetric in its spacetime indices.
The closure and coclosure conditions on the field strength K are equivalent to coclosure

and closure condition on its dual:

∂ µ1 eKµ1µ2...µs
= 0 , ∂µ eKνρ1...ρs−1

− ∂ν eKµρ1...ρs−1
= 0 . (100)

The field strength eK begin closed, it is exact:

eKµ1...µs
= pµ1

. . . pµs
φ , (101)

where φ is a (spinor) scalar.
The higher-trace equations on the field strength K for a propagating, massless helicity

representation in three dimensions, are then for bosons

ηµ1µ2 eKµ1µ2µ3...µs
= 0 , s > 1 , (102)

with the usual massless Klein-Gordon and Maxwell equations for s = 0 and 1, respectively, and
for fermions

γµ eKµν2...νs
= 0 (103)

for the spin s+ 1
2 >

1
2 cases; the spin-1

2 case being of course given by γµ∂µφ = 0 , where again,
the spinor indices are not written and the three γµ matrices are three Dirac (in fact Pauli)
matrices in D = 2+ 1 dimensions.

The conclusion is that all these descriptions of bosonic (respectively, fermionic) massless
fields are dual to each others, for all (half-)integer values of the “spin” s, in accordance with
fact that the positive-energy solutions of the above Bargmann -Wigner equations (102) (re-
spectively, (103), for fermions) carry a single (respectively, double) valued helicity represen-
tations of the Poincaré group ISO(2, 1)↑. Concretely, these fields are dual a scalar (or spinor)
field. More explicitly, the on-shell duality relation between the gauge fields ϕµ1...µs

, the field
strengths Kµ1ν1 |... |µsνs

and the massless scalar (or spinor) field φ is (101).

B.3.2 Infinite spin representations

The positive-energy solutions of the Wigner equations (74)-(76), reviewed in Subsection 5.3.2,
transform in the massless infinite-spin representation of the Poincaré group ISO(2, 1)↑ , labeled
by µ > 0. The paper [54] provided an extensive discussion of massless infinite-spin particles
in D = 2+ 1 dimensions.
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B.4 Tachyonic representations

Finally, in order to be exhaustive, we end this section by mentioning that the relativistic equa-
tions (84)-(87) provide an exhaustive solution of the Bargmann -Wigner programme in the
tachyonic case. Indeed, the little group SO(1,1) of a spacelike momenta in D = 2+ 1 dimen-
sions is Abelian, thus its UIRS of are labeled by a single parameter s ∈ R .
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