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Abstract—This paper deals with the observer design of nonlin-
ear tubular chemical reactor models. The analysis is performed
on a linearized version of the model around a steady-state profile,
in which some coefficients are a function of the spatial variable.
The study starts from a general model of chemical tubular
reactors that will serve as a benchmark model for the formulation
in the infinite dimensional Hilbert state space. The optimal
output injection operator associated to the proposed observer
is computed via the solution of the infinite-dimensional Riccati
equation in the space variable. The performance of the observer
is illustrated through numerical experiments of an industrial pulp
bleaching tubular reactor model.

Index Terms—distributed parameter systems, boundary obser-
vation, optimal observer, pulp bleaching tubular reactor

I. INTRODUCTION

Distributed chemical reaction systems correspond to pro-
cesses involving reactions with phases that are not well mixed,
thus resulting in spatial dependencies. Chemical tubular reac-
tors (CTR) are a prime example of such systems, see e.g. [10].
The dependent variables of this model are typically concentra-
tions and temperatures. These variables, which depend on time
and spatial coordinates, are described by partial differential
equations (PDEs) consisting of material and heat balances
that couple the effects of advection, reaction, diffusion along
with initial and boundary conditions. The time and space
dependence makes the analysis of distributed reaction systems
more complex. In addition, depending on the type of boundary
conditions, these systems can be more or less difficult to
analyze.

On-line state observation is particularly critical in spatially
distributed reactors due to the high dimensionality associated
with the dynamic representation. In this class of systems,
the mass and energy balances result into a nonlinear set of
partial differential equations [1]. In addition the observer must
be supplied with several (online) state measurements along
the spatial domain which is normally not feasible due to
the limited number of sensors [11]. In this work, we are
interested in boundary observation of a distributed chemical
tubular reactor system described by a set of nonlinear parabolic
PDEs. By linearizing the nonlinear equations in the vicinity of
the system steady state profile, a set of linear parabolic PDEs
with spatially varying coefficients is derived. Then, the state
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estimation problem can be transformed into a well-posed ab-
stract boundary problem. The spectrum of the resulting linear
operator is computed by solving an eigenvalue problem using
the differential transformation technique. Finally, by using
the spectral properties of the system, the infinite-dimensional
Riccati equation is converted into a set of coupled algebraic
equations, which can be solved numerically.

The majority of the previous work on boundary problems
of infinite-dimensional systems concentrated on cases that are
described by a single spatially invariant parabolic PDE [2],
[8]. This work investigates an approach for systems that are
described by a set of PDEs with spatially varying coefficients
which can model the linear approximation of several chemical
engineering processes. A case study involving the industrial
pulp bleaching tubular reactor model is used to illustrate
the proposed method. The reaction scheme facilitates the
triangularization of the state operator, which simplifies the
computation of the spectrum of the system.

The paper is organized as follows. Section II focuses on the
mathematical description of the system of interest. In Section
III, the general formulation of the optimal state observation
problem for infinite dimensional systems is presented. The
solution of the infinite-dimensional Riccati equation provides
the optimal output injection operator. In Section IV, the
industrial pulp bleaching tubular reactor model is presented.
In Section V, the eigenvalue problem of the state operator of
the linearized system is addressed. Section VI deals with the
solution of the infinite-dimensional Riccati equation associated
with the system in question. Throughout this work, the math-
ematical notation is standard for infinite dimensional systems;
see, for instance, [4].

II. MATHEMATICAL MODEL DESCRIPTION AND
FORMULATION

In particular, the dynamics of an axial dispersion tubular
reactor for one isothermal reaction is given by the following
general dynamical model:

θt(z, t) = Γθzz(z, t)−Υθz(z, t) + F (θ(z, t)) (1)

subject to the following boundary and initial conditions

Γθz(0, t) = Υ(θ(0, t)− uin(t))
θz(l, t) = 0
θ(z, 0) = θ0(z)

(2)



where θ(·, t) = [θ1(·, t), ..., θn(·, t)]T ∈ H = Ln2 (0, l) denotes
the vector of state variables that represents the components
concentration of the process, z ∈ [0, l] (where l is the reactor
length) and t ∈ [0,∞) denote the spatial and time variables,
respectively. Γ and Υ are n-dimensional diagonal matrices
of nonzero constant entries that represent the diffusion co-
efficients and the constant advective velocity respectively. F
is assumed to be a locally Lipschitz continuous function
from a specific subset of H into H . The associated state
estimation problem for system (1)-(2) consists in designing
a dynamical observer on the basis of its mathematical model,
the measurement θ(0, t), and the input signal uin(t) ∈ Rn
which produces a convergent state estimate θ̂(z, t) such that
limt→∞ θ(z, t)− θ̂(z, t) = 0. In order to design a linear
observer having local convergence properties, the nonlinear
system (1)-(2) is linearized around the steady state profile
(θss(z), uss) and the resulting linear system is given by:

θ̃t(z, t) = Γθ̃zz(z, t)−Υθ̃z(z, t) +K0(z)θ̃(z, t) (3)

subject to the following boundary and initial conditions

Γθ̃z(0, t) = Υ(θ̃(0, t)− ũin(t))

θ̃z(l, t) = 0

θ̃(z, 0) = θ̃0(z)

(4)

where K0(z) = ∂F
∂θ (θss(z)), and θ̃(z, t) = θ(z, t) − θss(z)

and ũin(t) = uin(t) − uss are the state vector and control
input deviations with respect to their steady state profiles, re-
spectively. The equation in (3) is of type diffusion-convection-
reaction PDE. In view of solving the eigenvalue problem, it
is much easier to convert the equation to a diffusion-reaction
type. To this end, consider the following transformation:

x(z, t) = T θ̃(z, t) = exp

(
−1

2
Γ−1Υz

)
θ̃(z, t). (5)

By using the above transformation, the PDE system (3)-(4)
can be described in terms of a new state vector x(z, t) leading
to the following linear diffusion-reaction coupled parabolic
PDE:

xt(z, t) = Γxzz(z, t) +K(z)x(z, t) (6)

subject to the boundary and initial conditions given by

Γxz(0, t) = 1
2Υx(0, t)−Υũin(t)

Γxz(l, t) = − 1
2Υx(l, t)

x(z, 0) = T−1θ̃0(z),

(7)

where the matrix K(z) is given by

K(z) = K0(z)− 1
4ΥΓ−10 Υ (8)

A. Infinite-dimensional formulation

We can formulate the system as an abstract boundary system
on the infinite-dimensional space H [4] by considering that
u(t) = Υũin(t) yielding the following state space representa-
tion:

ẋ(t) = Ux(t) x(0) = x0

Bx(t) = u(t)

y(t) = Cx(t)

(9)

where x(·, t) ∈ H and the operators U : D(U) → H , B :
D(B)→ Rn, C : D(C)→ Rn are defined as

U = Γ
d2

dz2
+K(z) · I

D(U) =

{
x ∈ H : x,

dx

dz
are a.c. ,

d2x

dz2
∈ H

and Γ
dx

dz
(l) +

1

2
Υx(l) = 0

}
Bx =

[
−Γdx

dz (0) + 1
2Υx(0)

]
(10)

Cx =
[
x(0)

]
.

Problems with boundary control inputs occur frequently in
applications, but unfortunately they do not fit into the stan-
dard formulation with bounded control operators. However,
for sufficiently smooth control inputs u(t) it is possible to
reformulate such problem on an equivalent form with a new
bounded control operator as described in [4]. Firstly, a new
operator A is defined by

Ax = Ux, (11)

D(A) = D(U) ∩ kerB

=

{
x ∈ H : x,

dx

dz
are a.c.,

d2x

dz2
∈ H and

Γ
dx

dz
(0)− Υ

2
x(0) = 0, Γ

dx

dz
(l) +

Υ

2
x(l) = 0

}
.

By using standard results of C0-semigroup theory (see,
e.g., [4] and [5]), it can be shown that, if the entries of
K(z) are bounded, then A is the infinitesimal generator of
a C0-semigroup on H . Assume that there exists an operator
B ∈ L (Rn, H) such that for all u ∈ Rn, Bu ∈ D(U) and
BBu = u.

By introducing the new state ξ(t) = x(t) − Bu(t), the
following resulting system with distributed bounded control
operator is equivalent to system (9) in the sense of [4].

ξ̇(t) = Aξ(t) + UBu(t)−Bu̇(t) ξ(0) = ξ0

y(t) = Cξ(t) + CBu(t). (12)

Therefore, the proposed Luenberger-type observer is for-
mally given by

˙̂
ξ(t) = Aξ̂(t) + UBu(t)−Bu̇(t) + L(ŷ(t)− y(t)) ξ̂(0) = ξ̂0

ŷ(t) = Cξ̂(t) + CBu(t) (13)

in such a way that the dynamics of the observer error e(t) =
ξ̂(t)− ξ(t) = x̂(t)− x(t) satisfies

e(t) = (A+ LC)e(t) e(0) = e0. (14)

The convergence of the observer (13) is achieved by finding
an bounded operator L ∈ L (Rn, H) which ensures the



exponential stability of the corresponding error dynamics (14).
Finally, we can recover the estimation of the original state by
using x̂(t) = ξ̂(t) +Bu(t).

III. OPTIMAL STATE OBSERVATION

This section is devoted to present the optimal state obser-
vation approach for system (12) considering noisy measure-
ments. The fundamental result for infinite-dimensional linear
systems is the well-known Kalman filter [4]. Considering
system (12) with noisy measured output and C ∈ L (H,Rn)
described by

ξ̇(t) = Aξ(t) + UBu(t)−Bu̇(t)

y(t) = Cξ(t) + CBu(t) + v(t) (15)

where it is assumed that v(t) ∈ L2([0,∞],Rn) is uncorrelated
white Gaussian noise with mean zero and covariance V =
V ∗ > 0. The goal is to estimate the states of system (15) in
an optimal sense. Thus, the observer system (13) with L ∈
L (Rn, H) that minimizes the estimation cost

Je = lim
t→∞

E[‖e(t)‖2]

is called Kalman filter, where E[X] is the expectation of X .

Theorem 3.1: ( [4] ) L = −Π̂C∗V −1 is the unique output
injection operator of the Kalman filter (13), where Π̂ is a
self adjoint non-negative operator Π̂ ∈ L (H) and the unique
solution of the infinite-dimensional Ricatti equation

〈Π̂ξ1,A∗ξ2〉+ 〈A∗ξ1, Π̂ξ2〉 − 〈CΠ̂ξ1, V
−1CΠ̂ξ2〉 = 0

(16)
for all ξ1, ξ2 ∈ D(A∗).

IV. THE PULP BLEACHING TUBULAR REACTOR

The bleaching reactor model consists of a set of nonlinear
coupled PDEs. The two reactants in the model are chlorine
dioxide (C) and lignin (L). The reaction term is a bilinear
term. The PDEs describing the reactor dynamics are [6]:

Lt(z, t) = γLzz(z, t)− υLz(z, t)− kLL(z, t)C(z, t)

Ct(z, t) = γCzz(z, t)− υCz(z, t)− kcL(z, t)C(z, t)
(17)

and the boundary conditions are:

γLz(0, t) = υ(L(0, t)− Lin(t)− L0)
γCz(0, t) = υ(C(0, t)− Cin(t)− C0)
Lz(h, t) = 0
Cz(h, t) = 0

(18)

where Cin, Lin, h, C0 and L0 are the inlet chlorine and
lignin concentrations, the bleaching tower height, and constant
adjustment parameters determined from the kinetic studies
carried out by [9]. The model described by (17)-(18) takes
the form of (1) by considering

θ(z, t) =

[
L(z, t)
C(z, t)

]
, uin(t) =

[
Lin(t) + L0

Cin(t) + C0

]
, Γ =

[
γ 0
0 γ

]
,

Υ =

[
υ 0
0 υ

]
, F (θ) =

[
kLL(z, t)C(z, t)
kcL(z, t)C(z, t)

]
.

The adopted numerical values for the process parameters
are taken from Table I (see [6]).

TABLE I
NUMERICAL VALUES OF THE PROCESS PARAMETERS

Parameter Value
h 1 m
kC 0.006
kL 0.0035
Linss 31 Kappa
L0 9 Kappa
Cinss 2.5 g/l
υ 1/30 m/min
γ 0.5/30 m2/min

The steady state profiles of L(z, t) and C(z, t) are shown
in Figure 1. They were obtained by solving numerically
the steady equation related to (17)-(18) and considering the
parameters given in Table I.
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Fig. 1. Steady state profiles.

The linearized model, according to (3)-(4), can be written
as follows:

[
L̃t(z, t)

C̃t(z, t)

]
=

[
γ 0
0 γ

] [
L̃zz(z, t)

C̃zz(z, t)

]
−
[
υ 0
0 υ

] [
L̃z(z, t)

C̃z(z, t)

]
+

[
−kLCss(z) −kLLss(z)
−kCCss(z) −kCLss(z)

] [
L̃(z, t)

C̃(z, t)

]
(19)

subject to the following boundary conditions

[
γ 0
0 γ

] [
L̃z(0, t)

C̃z(0, t)

]
=

[
υ 0
0 υ

]([
L̃(z, t)

C̃(z, t)

]
−
[
L̃in(t)

C̃in(t)

])
[
L̃z(h, t)

C̃z(h, t)

]
= 0.

(20)



A. System triangularization

Due to the coupling of the state variables in both equations,
a first step then consists in introducing a state transformation
(which corresponds to a system triangularization) so that the
first PDE becomes independent of the second one in order to
facilitate the computation of the eigenvalues and eigenvectors
of the state operator. Hence, let us consider the following state
transformation:

η1(z, t) = kCL̃(z, t)− kLC̃(z, t), η2(z, t) = C̃(z, t) (21)

This change of variable yields the following set of PDEs:

[
η1t(z, t)
η2t(z, t)

]
=

[
γ 0
0 γ

] [
η1zz(z, t)
η2zz(z, t)

]
−
[
υ 0
0 υ

] [
η1z(z, t)
η2z(z, t)

]
+

[
0 0

−Css(z) −kCLss(z)− kLCss(z)

] [
η1(z, t)
η2(z, t)

]
(22)

subject to the following boundary conditions

[
γ 0
0 γ

] [
η1z(0, t)
η2z(0, t)

]
=

[
υ 0
0 υ

]([
η1(0, t)
η2(0, t)

]
−
[
η1in(t)
η2in(t)

])
[
η1z(h, t)
η2z(h, t)

]
= 0 (23)

This transformation has eliminated the reaction term from
the first PDE and is related to the notion of reaction invariants.
We also can convert (22)-(23) into a reaction-diffusion type set
of PDEs if we define the vector variable x(z, t) according to
the transformation proposed in (5) leading to

[
x1(z, t)
x2(z, t)

]
= e−

υ
2γ z

[
η1(z, t)
η2(z, t)

]
. (24)

B. Infinite-dimensional formulation

By using the formulation described in Section II-A, we can
initially represent the system, in the new state variables defined
in (24), as an abstract boundary system on the Hilbert space
H = L2(0, 1)⊕ L2(0, 1) according to

ẋ(t) = Ux(t) x(0) = x0

Bx(t) = u(t) (25)
y(t) = Cx(t)

where x(t) =

{[
x1(·, t)
x2(·, t)

]
, 0 ≤ z ≤ l

}
∈ H and the opera-

tors U : D(U) → H , B : D(B) → R2, C : D(C) → R2 are
defined as

U =

[
γ d2

dz2 − k̂1 0

−Css(z) γ d2

dz2 − k̂2(z)

]
=

[
U11 0
U21 U22

]

D(U) =

{
x ∈ H : x,

dx

dz
are a.c. ,

d2x

dz2
∈ H and

γ
dx1
dz

(h) +
υ

2
x1(h) = 0,

γ
dx2
dz

(h) +
υ

2
x2(h) = 0

}
Bx =

[
−γ dx1

dz (0) + υ
2x1(0)

−γ dx2

dz (0) + υ
2x2(0)

]
Cx =

[
x1(0)
x2(0)

]
(26)

with k̂1 = υ2

4γ and k̂2(z) = kCLss(z) + kLCss(z) + υ2

4γ .
Then, the equivalent system with bounded control operators
is defined according to (12) by considering

A =

[
γ d2

dz2 − k̂1 0

−Css(z) γ d2

dz2 − k̂2(z)

]
=

[
A11 0
A21 A22

]

D(A) =

{
x ∈ H : x,

dx

dz
are a.c. ,

d2x

dz2
∈ H and

− γ dx1
dz

(0) +
υ

2
x1(0) = −γ dx2

dz
(0) +

υ

2
x2(0) = 0,

γ
dx1
dz

(h) +
υ

2
x1(h) = γ

dx2
dz

(h) +
υ

2
x2(h) = 0

}
and selecting

B =

[
−2

4γ+υhz + 4γ+2υh
4γυ+υ2h 0

0 −2
4γ+υhz + 4γ+2υh

4γυ+υ2H

]
. (27)

Notice that B is such that Bu ∈ U and BBu = u.

V. EIGENVALUES AND EIGENFUNCTIONS COMPUTATION

The study of the spectrum of A allows the design of an
observer with a certain decay rate of convergence as well as
one in optimal sense. This section summarizes the computation
of the eigenvalues and eigenvectors of operator A.

Notice that −A11 and −A22 are both Sturm-Liouville
operators, which are self-adjoint with respect to an appropriate
inner product. It also implies that A11 and A22 are both Riesz-
spectral operators [5].

A. Eigenvalues and eigenfunctions of A11 and A22

Now, let λn and χn be the eigenvalues and eigenfunctions
of the operator A11, and µn and ψn be the eigenvalues and
eigenfunctions of the operator A22. Then, it follows that:
• A11 is a linear operator with constant coefficients and its

eigenvalues are given by

λn=−γw2
n−k̂1, with tan(wnh)=

4γwnυ

4γ2w2
n−υ2



and the corresponding eigenfunctions are given by

χn = cos(wnz) +
υ

2γwn
sin(wnz).

• A22 is a linear operator with reaction coefficient depend-
ing on z, consequently the calculation of its spectrum is
a challenging issue. This problem can be carried out by
using the differential transformation [3]. The main stages
can be summarized as follows:

Firstly, the eigenvalue µ and its corresponding eigenvec-
tors ψ satisfy

γ d
2ψ
dz2 (z)− k̂2(z)ψ(z) = µψ(z)

− γψz(0) + υ
2ψ(0) = 0

γψz(h) + υ
2ψ(h) = 0.

(28)

The differential transformation ψ(k) and its inverse ψ(z)
are defined as

ψ(k) = 1
k!
dkψ
dz (0), ψ(z) =

∑∞
k=0 z

kψ(k). (29)

Taking the differential transformation to (28), we obtain

ψ(k + 2) =
1

γ(k + 1)(k + 2)
(µψ(k)

+

k∑
l=0

k̂2(z)ψ(k − l)) (30)

γψ(1)− υψ(0) = 0 (31)
∞∑
k=1

khk−1ψ(k) = 0. (32)

Let ψ(0) = c, from the recursive formula (30), we calcu-
late ψ(1), ψ(2), ..., ψ(nT ), where nT is decided by the
convergence of the eigenvalue. Substituting ψ(1)...ψ(nT )
into (32), we have

c[f (nT )(µ)] = 0 (33)

where f (nT )(µ) is a polynomial of µ corresponding to
nT . For nontrivial solutions of eigenfunctions, we have
c 6= 0, and f (nT )(µ) = 0, whose solutions are

µ = µ
(nT )
i , where i = 1, 2, ... (34)

µ
(nT )
i is the ith estimated eigenvalue corresponding to
nT , and nT is decided by the following equation

|µ(nT )
i − µ(nT−1)

i | ≤ ε (35)

where µ
(nT−1)
i is the i-th estimated eigenvalue corre-

sponding to nT − 1 and ε is a small value we set. If
(35), then µ(nT )

i is the ith eigenvalue µi. Substituting µi
into ψ(0), ψ(2), ..., ψ(nT ) and using (32), we obtain

ψi(z) =

∞∑
k=0

zkψµi(k) (36)

where ψµi(k) is ψ(k) whose µ is substituted by µi,
and ψi(z) is the eigenfunction corresponding to the
eigenvalue µi.

The first four eigenvalues of A11 and A22 are as follows

λ = {−0.0451, − 0.2415, − 0.7393, − 1.5628}

µ = {−0.0919, − 0.8845, − 1.2949 − 13.2906}.

B. Eigenvalues and eigenfunctions of the operator A
The linear operator A is a Riesz-spectral operator and

due to be triangular, its eigenvalues consist of the union of
eigenvalues of A11 and A22, i.e., σ(A) = σ(A11) ∪ σ(A22),
where:

σ(A) =

{
σ2n+1 = λn, ∀n ≥ 0

σ2n = µn, ∀n ≥ 1,
(37)

with the corresponding eigenvectors given by

Φ2n+1 =

[
χn

(λnI −A22)−1A21χn

]
, Φ2n =

[
0
ψn

]
. (38)

The corresponding biorthonormal eigenfunctions can be found
by solving the eigenvalue problem for the adjoint operator A∗
and are given by

Ψ2n+1 =

[
χn
0

]
, Ψ2n =

[
(µnI −A11)−1A21ψn

ψn

]
(39)

where

(µnI −A11)−1A21ψn =
∑∞
m=0

1
µn−λm 〈A21ψn, χm〉χm,

(λnI −A22)−1A21χn =
∑∞
m=0

1
λn−µm 〈A21χn, ψm〉ψm.

VI. KALMAM FILTER

Let us consider the optimal state estimation described in
section III for the system given Σ(A, C) and the observer
system (13) with V = I . By arguments similar to those used
in [7], it can be shown that the operator C is A-bounded. More
precisely, it can be shown that

Cx = x(0) = 〈(I −A)x,

∞∑
n=1

1

1− σn
Φn(0)Ψn〉. (40)

Since A is a Riesz-spectral operator where φn is the set of
eigenvectors of A and Ψn is the set of eigenvectors of A∗. The
Riccati Equation (16) with x1 = Ψn and x2 = Ψm becomes

〈Π̂Ψn,A∗Ψm〉+〈A∗Ψn, Π̂Ψm〉−〈Π̂Ψn,C
∗V −1CΠ̂Ψm〉 = 0.

(41)
If we assume that the solution has the self-adjoint form

Π̂x =
∑
n,m Π̂nm〈x,Φm〉Φn, the following holds

Π̂nm = 〈Ψn, Π̂Ψm〉 = Π̂mn = 〈Ψm, Π̂Ψn〉. (42)



Using the fact that σn is an eigenvalue of the operator A∗

and Ψn is the corresponding eigenvector, one has

〈Π̂Ψn, A
∗Ψm〉 + 〈A∗Ψn, Π̂Ψm〉 = 〈Π̂Ψn, σmΨm〉 + 〈σnΨn, Π̂Ψm〉

= (σm + σn)Π̂nm.
(43)

Furthermore regarding the last term of (41)

〈Π̂Ψn,C
∗V −1CΠ̂Ψm〉 = 〈Π̂Ψn,

∑
k 〈C

∗V −1CΠ̂Ψm,Φk〉Ψk〉
=

∑
k 〈C

∗V −1CΠ̂Ψm,Φk〉〈Π̂Ψn,Ψk〉
=

∑
k 〈Π̂Ψm,C

∗V −1CΦk〉Π̂nk

=
∑

k 〈Π̂Ψm,
∑

l 〈C
∗V −1CΦk,Φl〉Ψl〉Π̂nk

=
∑

k,l 〈C
∗V −1CΦk,Φl〉〈Π̂Ψm,Ψl〉Π̂nk

=
∑

k,l CklΠ̂mlΠ̂nk.
(44)

Then Equation (41) becomes a system of infinite number of
coupled scalar equations

(σn + σm)Π̂nm −
∞∑
k=0

∞∑
l=0

ClkΠ̂lmΠ̂kn = 0, (45)

where Clk = 〈C∗V −1CΦk,Φl〉. Once the parameters Πmn of
the operator Π are calculated, the output injection operator can
be computed. Equation (45) gives N(N+1)

2 coupled algebraic
equations that should be solved simultaneously, where N is
the number of modes that are used to formulate the output
injection operator given by

Ly = −Π̂C∗V −1y = −
N∑
n,m

Π̂nm〈C∗V −1y,Ψm〉Ψn. (46)

A. Numerical results

A computation of the parameters of Π̂ was carried by using
N = 15 modes, V = I and the parameters of the system given
in Table I. The observer system has been simulated considering
the parameters given in Table I with the initial profiles for the
observer system as L̂ = Ĉ = 0. Figures 2 and 3 show the
evolution of the actual states L, C (red lines) and the estimated
states L̂, Ĉ (blue lines) related to the proposed observer.
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Fig. 2. Time evolution of the spatial profile of L(z, t) and L̂(z, t) at time
instants t1 = 0, t2 = 0.09 min, t3 = 0.4491 min, t4 = 1.7991 min.
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Fig. 3. Time evolution of the spatial profile of C(z, t) and Ĉ(z, t) at time
instants t1 = 0, t2 = 0.09 min, t3 = 0.4491 min, t4 = 1.7991 min

VII. CONCLUSION

In this paper, an optimal state observer is presented for
a certain class of nonlinear coupled parabolic PDEs con-
sidering only boundary measurements. To this end, a linear
approximate model of the system around the steady-state
profile is considered, which results in a linear DPS with
spatially-varying coefficients. The observer output injection
operator is determined by solving the infinite-dimensional
Riccati equation making use of the properties associated to
Riesz-spectral operators. The proposed observer was applied to
a tubular bleaching reactor and the observer performance was
studied via numerical simulations. It has been observed that
the formulated observer has provided an accurate estimation
of the states of the original plant.
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