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Abstract

The purpose of this note is to sharpen the results in an earlier paper [Bouyssou, D., Pirlot, M., 2005. A characterization
of concordance relations. European Journal of Operational Research 167 (2), 427–443] giving an axiomatic characteriza-
tion of concordance relations. We show how the conditions used in this earlier paper can be weakened so as to become
independent from the conditions needed to characterize a general conjoint measurement model tolerating intransitive
and/or incomplete relations. This leads to a clearer characterization of concordance relations within this general model.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction and motivation

Although being popular among practitioners of MCDM, outranking methods (see Roy, 1991; Vincke, 1992
for overviews) have often been criticized for their lack of theoretical foundations. Indeed, these methods
mainly rest on an ordinal type of aggregation, through their central use of the notion of ‘‘concordance’’. This
type of aggregation is at much variance with the one at work in the additive value function model (and its
many variants) that underlies a vast majority of MCDM techniques. For the latter, the classical theory of con-
joint measurement (see Krantz et al., 1971, Chapters 6 and 7) offers strong axiomatic foundations.

In Bouyssou and Pirlot (2005) (henceforth BP05) we propose an axiomatic characterization of concordance
relations and discuss the importance of such a result for a thorough understanding of outranking methods in
MCDM. This analysis was following the earlier ones by Greco et al. (2001), Fargier and Perny (2001) and
Dubois et al. (2003). The relation between these papers and the approach taken in BP05 has been analyzed
in Section 5 of BP05. The aim of this text is to sharpen the results obtained in BP05.

The general strategy used in BP05 is the following. Our starting point is a general model of conjoint mea-
surement tolerating intransitive and/or incomplete relations that was introduced in Bouyssou and Pirlot
0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.
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(2002) (henceforth BP02). This model investigates conditions allowing to build a numerical representation of a
binary relation % on a product set X ¼

Qn
i¼1X i such as:
x%y () F ðp1ðx1; y1Þ; p2ðx2; y2Þ; . . . ; pnðxn; ynÞÞP 0; ðMÞ

where pi are real-valued functions on X 2

i that are skew symmetric (i.e., such that pi(xi,yi) = �pi(yi,xi), for all
xi,yi 2 Xi) and F is a real-valued function on

Qn
i¼1piðX 2

i Þ being nondecreasing in all its arguments and such that,
abusing notation, F(0) P 0.

It is useful to interpret pi as a function measuring preference differences between levels on each attribute.
The fact that the functions pi are supposed to be skew symmetric means that the preference difference between
xi and yi is the opposite of the preference difference between yi and xi, which seems a reasonable hypothesis. In
order to compare alternatives x and y, model (M) proceeds as follows. On each attribute i 2 {1,2, . . . ,n}, the
preference difference between xi and yi is measured using pi. The synthesis of these preference differences is
performed applying the function F to the pi(xi,yi)’s. We then conclude that x%y when this synthesis is non-
negative. Given this interpretation, it seems reasonable to suppose that F is nondecreasing in each of its argu-
ments. The fact that F(0) P 0 simply means that the synthesis of null preference differences on each attribute
should be nonnegative; this ensures that % will be reflexive.

In BP02, we show that model (M) is, on top of the reflexivity of %, essentially characterized by two con-
ditions called RC1 and RC2. Condition RC1 expresses that, on each attribute, adequately defined preference
differences can be completely ordered. Condition RC2 imposes that two opposite preference differences, i.e.,
(xi,yi) and (yi,xi), are linked.

The framework offered by model (M) is quite flexible. In particular, it includes all preference relations having
a representation in the additive value function model (see Krantz et al., 1971; Wakker, 1989) or in the additive
difference model (see Fishburn, 1992; Tversky, 1969). The central point in BP05 is to show that this framework
is also sufficiently flexible to contain all concordance relations. The underlying intuition is quite simple.

In order to compare two alternatives x and y, a concordance relation compares, in terms of importance, the
coalition of attributes favoring x with the coalition of attributes favoring y. This mode of comparison has a def-
inite ordinal flavor: it does not take into account any notion of preference difference besides what is necessary to
distinguish between the attributes favoring x and those favoring y, i.e., positive, null and negative differences.
Intuitively, this seems to be quite close to a relation having a representation in model (M) in which each function
pi takes at most three distinct values: the sign of pi(xi,yi) is used to know if attribute i favors x or y.

This intuition is formalized in BP05 and shown to be correct. The characterization of concordance relations
proposed there amounts to adding to the conditions precipitating model (M) two additional conditions, called
UC and LC, ensuring that each function pi can take at most three distinct values. The main result in BP05 (i.e.,
Theorem 18) says that adding to the conditions characterizing model (M) (reflexivity of %, RC1 and RC2)
conditions UC and LC is necessary and sufficient to characterize all concordance relations.

A weak point of this result is that these conditions interact. Indeed, the conjunction of RC2, UC and LC

implies RC1 (see BP05, Lemma 16). If model (M) is to be seen as a building block allowing to understand the
similarities and differences between various aggregation models proposed in the literature, such an interaction
is clearly undesirable. In order to characterize concordance relations, it would be much clearer to have a result
that keeps all conditions needed for model (M) and adds additional independent conditions. The purpose of
this note is to do so. After having introduced our main notation and definitions in Section 2, our improved
characterization of concordance relations is presented in Section 3. Section 4 deals with the case of concor-
dance relations for which alternatives are compared according to a semiorder on each attribute.

2. Notation and definitions

2.1. Notation

This note adheres to the standard terminology concerning binary relations introduced in BP05. The symbol
% will always denote a reflexive binary relation on a set X ¼

Qn
i¼1X i with n P 2. Elements of X will be inter-

preted as alternatives evaluated on a set N = {1,2, . . . ,n} of attributes and % as an ‘‘at least as good as’’ rela-
tion between these alternatives. The relations � and � are defined as usual and a similar convention will hold
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when % is superscripted and/or subscripted. For any i 2 N, we denote the set
Q

j 6¼iX j by X�i. With customary
abuse of notation, (xi,y�i) will denote the element of X that is obtained from y 2 X replacing its ith coordinate
by xi 2 Xi.

We say that attribute i 2 N is influent ðfor %Þ if there are xi,yi,zi,wi 2 Xi and x�i,y�i 2 X�i such that
ðxi; x�iÞ% ðyi; y�iÞ and ðzi; x�iÞ ðwi; y�iÞ and degenerate otherwise. A degenerate attribute has no influence
whatsoever on the comparison of the elements of X and may be suppressed from N. As in BP05, in order
to avoid unnecessary minor complications, we suppose henceforth that all attributes in N are influent.

2.2. Concordance relations

Our definition of concordance relations is identical to the one in BP05, to which we refer for detailed moti-
vation, examples and comments. Let us simply mention here that this definition is similar to the one used in
Fargier and Perny (2001) and Dubois et al. (2003). It is more general than the one used in Greco et al. (2001)
who focus on a more specific type of concordance relations (much similar to what is done in ELECTRE I, see
Roy, 1968). We show in Bouyssou and Pirlot (2005) (see Examples 4, 5 and 6) that this definition includes as
particular cases the way in which concordance relations are built in most outranking methods.

Definition 1 (Concordance relations). Let % be a reflexive binary relation on X ¼
Qn

i¼1X i. We say that % is a
concordance relation (or, more briefly, that % is a CR) if there are:

• a complete binary relation Si on each Xi (i = 1,2, . . . ,n),
• a binary relation D between subsets of N having N for union that is monotonic w.r.t. inclusion, i.e., for all

A,B,C,D � N such that A [ B = N and C [ D = N,
½ADB;C � A;B � D� ) CDD; ð1Þ
such that, for all x,y 2 X,
x%y () Sðx; yÞDSðy; xÞ; ð2Þ
where S(x,y) = {i 2 N :xiSiyi}.
We say that hD,Sii is a representation of %.

Hence, when % is a CR, the preference between x and y only depends on the subsets of attributes favoring x

or y in terms of the complete relation Si. It does not depend on preference differences between the various lev-
els on each attribute besides the distinction between levels indicated by Si. We refer to BP05 for examples illus-
trating the variety of concordance relations and for a study of their main properties.
3. Concordance relations without attribute transitivity

3.1. Background

We briefly recall here the main conditions and results presented in BP05 in order to characterize CR.

Definition 2 (Conditions RC1 and RC2). Let % be a binary relation on a set X ¼
Qn

i¼1X i. This relation is said
to satisfy:
RC1i if

ðxi; a�iÞ% ðyi; b�iÞ
and

ðzi; c�iÞ% ðwi; d�iÞ

9>=
>;
)

ðxi; c�iÞ% ðyi; d�iÞ
or

ðzi; a�iÞ% ðwi; b�iÞ;

8><
>:

RC2i if

ðxi; a�iÞ% ðyi; b�iÞ
and

ðyi; c�iÞ% ðxi; d�iÞ

9>=
>;
)

ðzi; a�iÞ% ðwi; b�iÞ
or

ðwi; c�iÞ% ðzi; d�iÞ;

8><
>:
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for all xi,yi,zi,wi 2 Xi and all a�i,b�i,c�i,d�i 2 X�i. We say that % satisfies RC1 (resp. RC2) if it satisfies RC1i

(resp. RC2i) for all i 2 N.

The interpretation of conditions RC1 and RC2 is made easier considering their consequences on relations
comparing preference differences on each attribute induced by %.

Definition 3 (Relations comparing preference differences). Let % be a binary relation on a set X ¼
Qn

i¼1X i. We
define the binary relations %�i and %��i on X 2

i letting, for all xi,yi,zi,wi 2 Xi,
ðxi; yiÞ% �i ðzi;wiÞ () ½for all a�i; b�i 2 X�i; ðzi; a�iÞ% ðwi; b�iÞ ) ðxi; a�iÞ% ðyi; b�iÞ�;
ðxi; yiÞ% ��i ðzi;wiÞ () ½ðxi; yiÞ% �i ðzi;wiÞ and ðwi; ziÞ% �i ðyi; xiÞ�:
The definition of %�i suggests that ðxi; yiÞ% �i ðzi;wiÞ can be interpreted as saying that the preference difference
between xi and yi is at least as large as the preference difference between zi and wi. The definition of %�i does not
imply that the two ‘‘opposite’’ differences (xi,yi) and (yi,xi) are linked. This is at variance with the intuition
concerning preference differences and motivates the introduction of the relation %��i . By construction, %�i
and %��i are always reflexive and transitive. Condition RC1 is equivalent to requiring that any two preference
differences are comparable in terms of %�i . Condition RC2 imposes a ‘‘mirror effect’’ on the comparison of
preference differences. This is summarized in the following:

Lemma 4 (BP02, Lemma 1).

(1) RC1i () ½%�i is complete�.
(2) RC2i () ½for all xi; yi; zi;wi 2 X i; ðxi; yiÞ ðzi;wiÞ ) ðyi; xiÞ%�i ðwi; ziÞ�.
(3) ½RC1i and RC2i� () ½%��i is complete�.
(4) In the class of reflexive relations, RC1 and RC2 are independent conditions.

Remark 5. If, for all z�i,w�i 2 X�i, [ðxi; z�iÞ% ðxi;w�iÞ, for some xi 2 Xi] implies [ðyi; z�iÞ% ðyi;w�iÞ, for all
yi 2 Xi], we say that % is independent for Nn{i}. We say that % is independent if it is independent for
Nn{i}, for all i 2 N. It is easy to see (see BP02, Lemma 2) that condition RC2i implies that % is independent
for Nn{i}.

For finite or countably infinite sets, conditions RC1 and RC2 together with reflexivity allow to characterize
model (M). We have:

Theorem 6 (BP02, Theorem 1). Let % be a binary relation on X ¼
Qn

i¼1X i. If, for all i 2 N, X 2
i =���i is finite or

countably infinite then % has a representation (M) if and only if (iff) it is reflexive and satisfies RC1 and RC2.

The additional conditions used in BP05 to capture concordance relations are as follows:

Definition 7 (Conditions UC and LC). Let % be a binary relation on a set X ¼
Qn

i¼1X i. This relation is said to
satisfy:
UCi if

ðxi; a�iÞ% ðyi; b�iÞ

and

ðzi; c�iÞ% ðwi; d�iÞ

9>>=
>>;
)

ðyi; a�iÞ% ðxi; b�iÞ

or

ðxi; c�iÞ% ðyi; d�iÞ;

8>><
>>:

LCi if

ðxi; a�iÞ% ðyi; b�iÞ

and

ðyi; c�iÞ% ðxi; d�iÞ

9>>=
>>;
)

ðyi; a�iÞ% ðxi; b�iÞ

or

ðzi; c�iÞ% ðwi; d�iÞ;

8>><
>>:
for all xi,yi,zi,wi 2 Xi and all a�i,b�i,c�i,d�i 2 X�i. We say that % satisfies UC (resp. LC) if it satisfies UCi

(resp. LCi) for all i 2 N.
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As announced earlier, the main rôle of conditions UCi and LCi is to limit the number of distinct equivalence
classes of %�i and, hence, %��i . More precisely, condition UCi says that if a preference difference (xi,yi) is not
smaller than its opposite (yi,xi), then it is the largest possible preference difference. Condition LCi has a dual
interpretation. This is summarized in:

Lemma 8 (BP05, Lemma 16).

(1) UCi () ½ðyi; xiÞ ðxi; yiÞ ) ðxi; yiÞ%
�
i ðzi;wiÞ; for all xi; yi; zi;wi 2 X i�.

(2) LCi () ½ðyi; xiÞ ðxi; yiÞ ) ðzi;wiÞ%�i ðyi; xiÞ; for all xi; yi; zi;wi 2 X i�.
(3) [RC2i, UCi and LCi]) RC1i.
(4) ½RC2i;UCi and LCi� ) ½%��i has at most three equivalence classes�.
(5) In the class of reflexive relations, RC2, UC and LC are independent conditions.

The characterization of concordance relations in BP05 is as follows:

Theorem 9 (BP05, Theorem 18). Let % be a binary relation on X ¼
Qn

i¼1X i. Then % is a CR iff it is reflexive

and satisfies RC2, UC and LC.

As argued above, a weakness of this result is that it does not use condition RC1, whereas this condition is
needed to characterize model (M). It would be much clearer to weaken conditions UC and/or LC in such a
way that they become independent from RC1 and RC2. This is done below.

3.2. Results

Our sharper characterization of concordance relations is based on the following two conditions inspired by
the work of Bouyssou and Marchant (2006) in the area of sorting models in MCDM.

Definition 10 (Conditions M1 and M2). Let % be a binary relation on a set X ¼
Qn

i¼1X i. This relation is said to
satisfy:
M1i if

ðxi; a�iÞ% ðyi; b�iÞ
and

ðzi; c�iÞ% ðwi; d�iÞ

9>=
>;
)

ðyi; a�iÞ% ðxi; b�iÞ
or

ðwi; a�iÞ% ðzi; b�iÞ
or

ðxi; c�iÞ% ðyi; d�iÞ;

8>>>>>><
>>>>>>:

M2i if

ðxi; a�iÞ% ðyi; b�iÞ
and

ðyi; c�iÞ% ðxi; d�iÞ

9>=
>;
)

ðyi; a�iÞ% ðxi; b�iÞ
or

ðzi; a�iÞ% ðwi; b�iÞ
or

ðzi; c�iÞ% ðwi; d�iÞ;

8>>>>>><
>>>>>>:
for all xi,yi,zi,wi 2 Xi and all a�i,b�i,c�i,d�i 2 X�i.
We say that M1 (resp. M2) holds if M1i (resp. M2i) holds for all i 2 N.

Condition M1i weakens condition UCi by adding a possible conclusion to it. Condition M2i is obtained
similarly from LCi. The interpretation of these two new conditions is similar to the one of UCi and LCi: their
aim is to drastically limit the possibility of distinguishing several classes of preference differences on each attri-
bute. We have:

Lemma 11

(1) UCi)M1i.
(2) LCi)M2i.
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(3) [RC2i and M1i]) UCi.
(4) [RC1i and M2i]) LCi.
(5) In the class of reflexive relations, RC1i, RC2i, M1i and M2i are independent conditions.

Proof. Parts 1 and 2 follow from the definitions.
Part 3. Suppose that ðxi; a�iÞ% ðyi; b�iÞ and ðzi; c�iÞ% ðwi; d�iÞ. If ðwi; a�iÞ ðzi; b�iÞ, M1i implies either

ðyi; a�iÞ% ðxi; b�iÞ or ðxi; c�iÞ% ðyi; d�iÞ, as required by UCi. Otherwise if ðwi; a�iÞ% ðzi; b�iÞ, RC2i and
ðzi; c�iÞ% ðwi; d�iÞ imply ðyi; a�iÞ% ðxi; b�iÞ or ðxi; c�iÞ% ðyi; d�iÞ, the desired conclusion.

Part 4. Suppose that ðxi; a�iÞ% ðyi; b�iÞ and ðyi; c�iÞ% ðxi; d�iÞ. If ðzi; a�iÞ ðwi; b�iÞ, M2i implies either
ðyi; a�iÞ% ðxi; b�iÞ or ðzi; c�iÞ% ðwi; d�iÞ, as required by LCi. Otherwise if ðzi; a�iÞ% ðwi; b�iÞ, RC1i and
ðyi; c�iÞ% ðxi; d�iÞ imply either ðyi; a�iÞ% ðxi; b�iÞ or ðzi; c�iÞ% ðwi; d�iÞ, the desired conclusion.

Part 5. Example 32 in BP05 shows that there are reflexive relations on X satisfying RC1, LC, UC, RC2j for
all j 5 i, but violating RC2i. In view of Parts 1 and 2, we know that conditions M1 and M2 hold. Example 33
in BP05 shows that there are reflexive relations on X satisfying RC1, RC2, LC, UCj for all j 5 i, but violating
UCi. In view of Part 2 of Lemma 11, we know that M2 holds. Since UCj holds, for all j 5 i, we know, using
Part 1 of Lemma 11, that M1j holds, for all j 5 i. Because RC2i holds and UCi is violated, Part 3 implies that
M1i is violated. Finally, Example 34 in BP05 shows that there are reflexive relations on X satisfying RC1, RC2,
UC, LCj for all j 5 i, but violating LCi. Since UC holds, Part 1 implies that M1 also holds. Since LCj holds,
for all j 5 i, Part 2 implies that M2j holds, for all j 5 i. Since RC1i holds and LCi is violated, Part 4 implies
that M2i is violated. The following example completes the proof.

Example 12 (RC2, M1, M2, RC1j, for all j 5 1, Not[RC11]).
Let N = {1, 2,3} and X = {x1,y1,z1,w1} · {x2,y2} · {x3,y3}. Let % on X be identical to X2 except that, for

all a1,b1 2 X1, all a2,b2 2 X2 and all a3,b3 2 X3 the following pairs are missing:
ðx1; x2; a3Þ ðy1; y2; b3Þ; ðz1; a2; x3Þ ðw1; b2; y3Þ;
ðx1; a2; x3Þ ðw1; b2; y3Þ; ða1; x2; x3Þ ðb1; y2; y3Þ;
(there is a total of 25 such pairs).
It is not difficult to check that % is complete and, hence, reflexive.
For i 2 {2, 3}, it is easy to check that we have:
½ðyi; xiÞ; ðxi; xiÞ; ðyi; yiÞ���i ðxi; yiÞ;

which shows, using Parts 1 and 2 of Lemma 4, that RC12, RC13, RC22 and RC23 hold. Using Parts 1 and 2 of
Lemma 8, it is easy to check that LC2, LC3, UC2 and UC3 hold. Hence, using Parts 1 and 2 of Lemma 11, we
know that M12, M13, M22 and M23 hold.

On attribute 1, it is easy to check that we have:
ðc1; d1Þ��1ðx1; y1Þ and ðc1; d1Þ��1½ðx1;w1Þ; ðz1;w1Þ�;

for all (c1,d1) 2 C = {(x1,x1), (x1,z1), (y1,x1), (y1,y1), (y1,z1), (y1,w1), (z1,x1), (z1,y1), (z1,z1), (w1,x1), (w1,y1),
(w1,z1), (w1,w1)}. The pairs (x1,w1) and (z1,w1) are linked by ��1. The pairs (x1,y1) and (x1,w1) are not com-
parable in terms of %�1 since ðx1; x2; x3Þ% ðy1; x2; y3Þ and ðx1; x2; x3Þ ðw1; x2; y3Þ, while ðx1; x2; x3Þ% ðw1; y2; x3Þ
and ðx1; x2; x3Þ ðy1; y2; x3Þ. Similarly, the pairs (x1,y1) and (z1,w1) are not comparable in terms of %�1. This
shows, using Part 1 of Lemma 4, that RC11 is violated.

Using Part 2 of Lemma 4, it is easy to see that RC21 holds. Using Part 1 of Lemma 8 shows that UC1 holds.
Hence, using Part 1 of Lemma 11, we know that M11 holds.

It remains to check that M21 holds. The two premises of M21 are that ða1; a�1Þ% ðb1; b�1Þ and
ðb1; c�1Þ% ða1; d�1Þ. The three possible conclusions of M21 are that ðb1; a�1Þ% ða1; b�1Þ or ðc1; a�1Þ% ðd1; b�1Þ
or ðc1; c�1Þ% ðd1; d�1Þ.

Suppose first that (b1,a1) 2 C. In this case, we have ðb1; a1Þ%�1 ða1; b1Þ, so that ða1; a�1Þ% ðb1; b�1Þ implies
ðb1; a�1Þ% ða1; b�1Þ. Hence, the first conclusion of M21 holds.

Suppose now that (b1,a1) = (x1,y1). If (c1,d1) is distinct from (x1,w1) and (z1,w1), we have
ðc1; d1Þ%�1 ðx1; y1Þ, so that ðb1; c�1Þ% ða1; d�1Þ implies ðc1; c�1Þ% ðd1; d�1Þ and the third conclusion of M21
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holds. If (c1,d1) = (x1,w1), it is easy to check that there are no a�1,b�1 2 X�1 such that ðy1; a�1Þ% ðx1; b�1Þ,
ðx1; a�1Þ ðy1; b�1Þ and ðx1; a�1Þ ðw1; b�1Þ, so that no violation of M21 is possible in this case. Since
ðx1;w1Þ��1ðz1;w1Þ, the same is true if (c1,d1) = (z1,w1). This shows that M21 cannot be violated if
(b1,a1) = (x1,y1). A similar reasoning shows that M21 cannot be violated if (b1,a1) = (x1,w1) or if
(b1,a1) = (z1,w1). Hence, M21 holds. h

Combining Lemma 11 with Theorem 9 proves the main result of this section:

Theorem 13. Let % be a binary relation on X ¼
Qn

i¼1X i. Then% is a CR iff it is reflexive and satisfies RC1, RC2,
M1 and M2. In the class of reflexive relations, conditions RC1, RC2, M1 and M2 are independent.

Compared to Theorem 9, the above result keeps all of reflexivity, RC1 and RC2. Hence, it shows exactly what
must be added to the conditions characterizing model (M) in order to obtain the class of all concordance rela-
tions. This gives credit to interpreting model (M) as a building block allowing to understand the similarities
and differences between several aggregation models. The central rôle of model (M) was already stressed in
BP02 in which we analyzed what has to be added to it to obtain the additive value function model; a similar
analysis was done in Bouyssou and Pirlot (2004) (henceforth BP04) for the additive difference model.

There is however a price to pay for this sharper result: condition M1 (resp. M2) is slightly more complex
than condition UC (resp. LC) and may be more difficult to test in practice.

4. Concordance relations with attribute transitivity

4.1. Background

Our definition of CR does not require the relations Si to possess any remarkable property besides complete-
ness. This is at variance with what is done in most ordinal aggregation methods, as discussed in BP05.

In BP05, we show how to characterize CR in which all relations Si are semiorders. Our analysis is based on
BP04 in which we study binary relations that can be represented in the following specialization of model (M):
x%y () F ðu1ðu1ðx1Þ; u1ðy1ÞÞ; . . . ;unðunðxnÞ; unðynÞÞÞP 0; ðM�Þ

where ui are real-valued functions on Xi, ui are real-valued functions on ui(Xi)

2 that are skew symmetric, non-

decreasing in their first argument (and, therefore, nonincreasing in their second argument) and F is a real-val-
ued function on

Qn
i¼1uiðuiðX iÞ2Þ being nondecreasing in all its arguments and such that F(0) P 0.

In order to characterize model (M*), three new conditions are needed.

Definition 14 (Conditions AC1, AC2 and AC3). We say that % satisfies:
AC1i if

x%y

and

z%w

9>=
>;
)

ðzi; x�iÞ%y

or

ðxi; z�iÞ%w;

8><
>:

AC2i if

x%y

and

z%w

9>=
>;
)

x% ðwi; y�iÞ
or

z% ðyi;w�iÞ;

8><
>:

AC3i if

z% ðci; a�iÞ
and

ðci; b�iÞ%y

9>=
>;
)

z% ðdi; a�iÞ
or

ðdi; b�iÞ%y;

8><
>:
for all x,y,z,w 2 X, all a�i,b�i 2 X�i and all ci,di 2 Xi. We say that % satisfies AC1 (resp. AC2, AC3) if it sat-
isfies AC1i (resp. AC2i, AC3i) for all i 2 N.

The rôle of these conditions is to introduce a linear arrangement of the elements of Xi. Following BP04, we
summarize their main consequences below.
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Lemma 15 (BP04, Lemma 4).

(1) AC1i () ½ðyi; ziÞ
�
i ðxi; ziÞ ) ðxi;wiÞ%�i ðyi;wiÞ�,

(2) AC2i () ½ðzi; xiÞ
�
i ðzi; yiÞ ) ðwi; yiÞ%

�
i ðwi; xiÞ�,

(3) AC3i () ½ðxi; ziÞ
�
i ðyi; ziÞ ) ðwi; xiÞ%�i ðwi; yiÞ�,

for all xi,yi,zi,wi 2 Xi.

The conjunction of the above three conditions together with the conditions needed to characterize
model (M) gives necessary and sufficient conditions for model (M*) when X is at most countably infinite.
We have:

Theorem 16 (BP04, Theorem 2 and Table 2). Let % be a binary relation on a finite or countably infinite set

X ¼
Qn

i¼1X i. Then % has a representation (M*) if and only if it is reflexive and satisfies RC1, RC2, AC1, AC2
and AC3. In the class of reflexive relations, conditions RC1, RC2, AC1, AC2 and AC3 are independent.

The main result in BP05 concerning CR in which all relations Si are semiorders is as follows:

Theorem 17 (BP05, Theorem 28 and Lemma 27). Let % be a binary relation on X ¼
Qn

i¼1X i. Then % is a CR

having a representation hD,Sii in which all Si are semiorders iff it is reflexive and satisfies RC2, UC, LC, AC1

and AC3. In the class of reflexive binary relations satisfying RC2, UC and LC, conditions AC1 and AC3 are

independent.

As in Section 3, a weakness of this result is that it does not use condition RC1 which is central in order to
obtain model (M*). An additional weakness is that it does not show that all conditions used are independent
but only that conditions AC1 and AC3 are independent in the class of reflexive relations satisfying RC2, UC

and LC. We show below how this can be improved.

Remark 18. Notice that Theorem 17, contrary to Theorem 16, does not use condition AC2. Indeed, we show
in BP05, Lemma 27, that, for reflexive relations satisfying RC2, UC and LC, conditions AC1i and AC2i

become equivalent. This is due to the strong constraints on the relation %�i introduced by conditions UCi and
LCi. In view of Lemma 11, there is therefore no hope to keep all of AC1, AC2 and AC3 in a result that would
characterize CR in which all relations Si are semiorders if we also want to keep all conditions needed to
characterize CR, i.e., reflexivity, RC1, RC2, M1 and M2. We simply show below that, replacing the
conjunction of RC2, UC and LC by the conjunction of RC1, RC2, M1 and M2 allows to obtain a result
similar to Theorem 17 in which all conditions are independent.
4.2. Results

Lemma 19. In the class of reflexive relations, conditions RC1, RC2, M1, M2, AC1 and AC3 are independent.

Proof. We provide below the six required examples.

Example 20 (RC1, RC2, M1, M2, AC1, AC3j for all j 5 i, Not[AC3i]).
In BP05, Example 35 on two attributes is shown to satisfy RC21, RC22 UC1, UC2, LC1, LC2, AC11, AC12

and AC32 but to violate AC31. Using Lemma 11, we know that M11, M12, M21 and M22 hold.

Example 21 (RC1, RC2, M1, M2, AC3, AC1j for all j 5 i, Not[AC1i]). In BP05, Example 36 on two attributes
is shown to satisfy RC21, RC22 UC1, UC2, LC1, LC2, AC31, AC32 and AC12 but to violate AC11. Using
Lemma 11, we know that M11, M12, M21 and M22 hold.

Example 22 (RC1, RC2, M1, AC1, AC3, M2j for all j 5 i, Not[M2i]). As observed in the proof of Part 5 of
Lemma 11, Example 34 in BP05 on two attributes satisfies RC1, RC2, M1, and M21 but violates M22. It is
easy to check, using Lemma 15, that this example also satisfies AC1 and AC3.
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Example 23 (RC1, RC2, M2, AC1, AC3, M1j for all j 5 i, Not[M1i]). As observed above in the proof of Part
5 of Lemma 11, Example 33 in BP05 on two attributes satisfies RC1, RC2, M2 and M11 but violates M12. It is
easy to check, using Lemma 15, that this example also satisfies AC1 and AC3.

Example 24 (RC2, M1, M2, AC1, AC3, RC1j for all j 5 i, Not[RC1i]). It is easy to check, using Lemma 15,
that in Example 12, conditions AC1 and AC3 are satisfied (condition AC21 is violated but AC22 and AC23

hold).

Example 25 (RC1, M1, M2, AC1, AC3, RC2j for all j 5 i, Not[RC2i]). Let N = {1,2} and
X = {x1,y1} · {x2,y2}. Let % on X be identical to X2 except that, ðy1; x2Þ ðx1; x2Þ and ðy1; y2Þ ðx1; x2Þ. It is
easy to check that we have:

• ðx1; y1Þ; ðx1; x1Þ; ðy1; y1Þ��1ðy1; x1Þ and

• ½ðx2; y2Þ; ðy2; y2Þ���2½ðx2; x2Þ; ðy2; x2Þ�.

Using Lemma 4, it is easy to see that RC1 and RC21 hold but that RC22 is violated. Using Lemma 8 it is
clear that UC and LC hold so that the same is true for M1 and M2. Finally, using Lemma 15, it is routine to
check that AC1 and AC3 hold. h

Combining Theorem 17 with Lemmas 11 and 19 proves the main result of this section:

Theorem 26. Let % be a binary relation on X ¼
Qn

i¼1X i. Then % is a CR having a representation hD,Sii in which

all Si are semiorders iff it is reflexive and satisfies RC1, RC2, M1, M2, AC1 and AC3. In the class of reflexive

relations, conditions RC1, RC2, M1, M2, AC1 and AC3 are independent.

This gives a complete characterization of CR in which all Si are semiorders using independent conditions.
Let us finally notice that, for a reflexive relation % satisfying conditions RC1, RC2, M1, M2, AC1 and AC3,

the relations %�i become highly constrained. Indeed, the reader might have noticed that in Example 25, the
violation of RC2i is, in fact, a violation of the independence of the attributes in Nn{i}. This is not by chance.
Indeed, we have:

Lemma 27. Let % be a binary relation on a set X ¼
Qn

i¼1X i. Suppose that % is reflexive and satisfies RC1i, M2i

and AC3i. Then it satisfies RC2i if and only if the attributes in Nn{i} are independent.

Proof. We already observed that condition RC2i implies that the attributes in Nn{i} are independent. Let us
prove the reverse implication.

Suppose that RC2i is violated, so that, ðxi; a�iÞ% ðyi; b�iÞ, ðyi; c�iÞ% ðxi; d�iÞ, ðzi; a�iÞ ðwi; b�iÞ and
ðwi; c�iÞ ðzi; d�iÞ, for some xi,yi,zi,wi 2 Xi and some a�i,b�i,c�i,d�i 2 X�i. Using RC1i, we know that we
have ðxi; yiÞ��i ðzi;wiÞ and ðyi; xiÞ��i ðwi; ziÞ. Furthermore, since RC1i and M2i holds, we know from Lemma 11
that LCi holds. Using RC1i, we distinguish three exclusive cases.

(1) Suppose that ðxi; yiÞ��i ðxi; xiÞ. Using AC3i and Lemma 15, ðxi; xiÞ ðxi; yiÞ implies ðxi; aiÞ%�i ðyi; aiÞ, for
all ai 2 Xi, so that, in particular, ðxi; xiÞ%�i ðyi; xiÞ. Using the transitivity and completeness of %�i this
implies ðxi; yiÞ��i ðyi; xiÞ��i ðwi; ziÞ, violating LCi.

(2) Suppose that ðxi; xiÞ��i ðxi; yiÞ. Using AC3i and Lemma 15, ðxi; yiÞ ðxi; xiÞ implies ðyi; aiÞ%�i ðxi; aiÞ, for
all ai 2 Xi, so that, in particular, ðyi; xiÞ%�i ðxi; xiÞ. Using the transitivity and completeness of %�i this
implies ðyi; xiÞ��i ðxi; yiÞ��i ðzi;wiÞ, violating LCi.

(3) Suppose that ðxi; yiÞ��i ðxi; xiÞ. It is easy to see that either ðyi; xiÞ��i ðxi; xiÞ or ðxi; xiÞ��i ðyi; xiÞ would lead to
violation of LCi. Hence, we must have ðyi; xiÞ��i ðxi; xiÞ. Since the attributes in Nn{i} are independent, it is
easy to see that we must have ðzi; ziÞ��i ðwi;wiÞ, for all zi,wi 2 Xi. Hence, we know that ðxi; yiÞ��i ðzi; ziÞ.
Using RC1i, this implies ðzi; ziÞ��i ðzi;wiÞ. Using AC3i and Lemma 15, ðzi;wiÞ ðzi; ziÞ implies
ðwi; aiÞ%�i ðzi; aiÞ, for all ai 2 Xi, so that, in particular, ðwi; ziÞ%�i ðzi; ziÞ. Since ðyi; xiÞ��i ðzi; ziÞ, we obtain
ðwi; ziÞ%�i ðyi; xiÞ, a contradiction. h
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The above lemma shows that we can replace RC2 with independence in the statement of Theorem 26 with-
out further changes. It is easy to build examples showing that such a substitution is not possible in the state-
ment of Theorem 13 (e.g., take X = {x1,y1} · {x2,y2} and % on X identical to X2 except that ðx1; x2Þ ðx1; y2Þ
and ðy1; x2Þ ðy1; y2Þ, which leads to ½ðx1; y1Þ��1ðy1; x1Þ���1½ðx1; x1Þ��1ðy1; y1Þ� and ½ðx2; x2Þ��2ðy2; y2Þ��2ðy2; x2Þ���2
ðx2; y2Þ�. It is clear that this relation is independent. Using Lemma 4, it is easy to check that RC1 and RC22

holds. Condition RC21 is violated because ðx1; x2Þ% ðy1; y2Þ and ðy1; x2Þ% ðx1; y2Þ while ðx1; x2Þ ðx1; y2Þ. Using
Lemma 8, it is clear that UC and LC hold, so that the same is true for M1 and M2. Using Lemma 15, one can
check that conditions AC11, AC21 and AC31 are violated).

Errata. We are taking this occasion to correct a number of typos that crept in the published version of
BP05.

(1) Page 429, col. 2, line 10: read ‘‘such that A [ B = N’’.
(2) Page 431, col. 1, line �13: read ‘‘ðxi; yiÞ%

��
i ðzi;wiÞ () ðwi; ziÞ%��i ðyi; xiÞ’’.

(3) Page 433, col. 2, line �20: read ‘‘part 6 of lemma 16’’.
(4) Page 435, col. 1, line 13: read (M*).
(5) Page 435, col. 2, line 1: read ‘‘contrary to theorem 12, theorem 24 is only stated. . .’’.
(6) Page 441, col. 1, line 21: read ‘‘Proof of theorem 18’’.
(7) Page 442, col. 2, line 17: read ‘‘Proof of theorem 28’’.
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Greco, S., Matarazzo, B., Słowiński, R., 2001. Axiomatic basis of noncompensatory preferences, communication to FUR X, 30 May–2

June, Torino, Italy.
Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A., 1971. Foundations of MeasurementAdditive and Polynomial Representations, vol. 1.

Academic Press, New York.
Roy, B., 1968. Classement et choix en présence de points de vue multiples (la méthode ELECTRE). RIRO 2, 57–75.
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