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Abstract

Attention Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that has

heavy consequences on a child’s wellbeing, especially in the academic, psychological and

relational planes. The current evaluation of the disorder is supported by clinical assessment

and written tests. A definitive diagnosis is usually made based on the DSM-V criteria. There

is a lot of ongoing research on ADHD, in order to determine the neurophysiological basis of

the disorder and to reach a more objective diagnosis. The advent of Machine Learning (ML)

opens up promising prospects for the development of systems able to predict a diagnosis

from phenotypic and neuroimaging data. This was the reason why the ADHD-200 contest

was launched a few years ago. Based on the publicly available ADHD-200 collection, partici-

pants were challenged to predict ADHD with the best possible predictive accuracy. In the

present work, we propose instead a ML methodology which primarily places importance on

the explanatory power of a model. Such an approach is intended to achieve a fair trade-off

between the needs of performance and interpretability expected from medical diagnosis aid

systems. We applied our methodology on a data sample extracted from the ADHD-200 col-

lection, through the development of decision trees which are valued for their readability. Our

analysis indicates the relevance of the limbic system for the diagnosis of the disorder. More-

over, while providing explanations that make sense, the resulting decision tree performs

favorably given the recent results reported in the literature.

Introduction

Attention Deficit/Hyperactivity Disorder (ADHD) is a neuropsychiatric disorder which has

an estimated overall prevalence of five to seven percent of youngsters [1]. Despite the neuro-

cognitive origins of the syndrome, the clinical diagnosis of ADHD mainly relies on behav-

ioral symptoms of inattention, hyperactivity and/or impulsivity, persisting for at least 6
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months; such symptoms occuring before the age 12 and leading to the impairment of famil-

ial, social, or academic functioning [2]. More than ten years ago, it was claimed that the crite-

ria established by the Diagnostic and Statistical Manual of Mental Disorders (DSM) are

necessary but not sufficient for ADHD diagnosis [3]; there is still a need for more objective

criteria on that regard. Yet, neuroimaging studies showed consistent structural and func-

tional neural alterations related to ADHD [4, 5]. In order to provide objective observations,

such alterations may be considered to complete the current assessment of the disorder and

accordingly, to increase the agreement between clinicians, which is currently estimated at

61.0% [6].

In early Magnetic Resonance Imaging (MRI) studies [7], the comparison of neuroana-

tomical data on control subjects and ADHD subjects showed that there were decreased vol-

umes around the prefrontal-striatal system of the ADHD subjects’ brains. Later studies

extended this observation to other brain regions, including the anterior cingulate cortex, the

frontal cortex [8, 9]; and the ventral striatum included in the reward circuit [10]. Decreased

cortical thickness was also found in the right hemisphere [11]; in localized areas such as pari-

etal and motor zones [10]; in areas located in the attentional circuit [12]; and more generally

in the brain [13, 14]. Functional Magnetic Resonance Imaging (fMRI) has also been widely

involved in the characterization of brain activity in ADHD. The current trend calls for the

assessment of the brain connectivity, rather than focusing on isolated area dysfunctions [15].

Resting-state and task-based studies showed dysfunctions in several networks such as the

default mode, affective and attention ones [16, 17]. Depending on the predominant patterns

in ADHD subjects (e.g. attention deficit, impulsivity), some can exhibit hypo-activity in

frontoparietal networks or hyper-activity in frontal-striatal-cerebellar connections [15].

Other studies showed isolated dysfunctions, e.g. in the amygdala during emotion processing

[18].

Despite the considerable number of studies related to ADHD, the disorder remains subject

to the absence of a common etiology. In this regard, the advent of Machine Learning (ML) is

expected to provide new insights. As suggested by [19], ML methods differ from standard sta-

tistical ones in some respects. On the one hand, ML is perceived as a promising alternative way

of conducting exploratory data analyses which are inductive and assumption-free [20–22].

Indeed, ML methods are implemented to extract general patterns and relations from observa-

tional data [19]. On the other hand, statistical analyses are hypothetico-deductive in nature,

which means that experimental data should be collected to test initial assumptions [22]. Such

an approach may impede the compilation of large datasets and simultaneously, the acquisition

of results with a high level of confidence. Moreover, while it would be interesting to obtain a

more comprehensive description of neuropathologies, statistical analyses allow to test assump-

tions on isolated functional and/or structural characteristics of these neuropathologies. Finally,

as analysis tools, statistical approaches are less adapted to build assessment models with a diag-

nosis perspective. Through a dual potential of knowledge inference and prediction, ML has

thus attracted growing interest in the sphere of translational neuroscience over the last years,

in the hopes of solving questions which currently remain pending—including the etiological

basis of ADHD.

Attention deficit/hyperactivity disorder has been significantly targeted by ML studies. To

this day, Support Vector Machines (SVM) have been the most considered predictive models

[23–31]. More recently, deep learning has also been given consideration [32, 33]. Admittedly,

such models provide satisfaction on prediction accuracy, but the related predictions may be

hardly interpreted. Yet, for the purpose of diagnosis aid, the interpretability of a model is a

quality that is imperative to reach, since it ensures that (1) the model is able to infer a patient’s

state with comprehensive justifications; (2) the model may lead to a better understanding of
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the disorder [20, 21, 34, 35]. Actually, such a goal is in line with the recent paradigm of The-

ory-Guided Data Science (TGDS) [36]. Based on the extensive use of both data and the existing

scientific knowledge, TGDS is intended to achieve the development of data science models

having a better practicality in different scientific fields.

Considering the foregoing, interpretability is the key to effective decision aid. Powerful

tools are found in the literature for the purpose of interpretable modeling. In this respect,

observations derived from measuring inputs (e.g. fMRI voxels) are processed to raise explain-

able factors [37]. Forward models such as Independent Component Analysis (ICA) and Gen-

eral Linear Model (GLM) aim to recover sources generating the observations. The Spatial

Filtering Method (SFM) [38] is another example of analysis tool which was specifically devel-

oped to perform the linear transform of fMRI timeseries into discriminative signals [38, 39].

Though all these methods perform data transform, it remains possible to raise the influence of

the original data through the analysis of the transform matrix which maps the observations

and the factors [37]. However, it was shown that discriminative features may be found without

the need of transforming data, which makes interpretability simpler. For instance, it is possible

to extract some basic explanatory features from neuroimaging data, such as the variance of

fMRI timeseries, to perform the effective classification of neurotypical and ADHD subjects

[40]. In this case, it remains important that such features are presented as input variables of

interpretable classifiers in order to understand the underlying decision mechanisms. Decision

trees are amongst the most well-known interpretable classifiers, and are recognized as particu-

larly attractive for diagnosis aid processes [41]. Indeed, any prediction made by a decision tree

can be justified through a decision chain (with causal relations), including only the most dis-

criminative and interpretable (since they are not transformed) features that resulted in the

final decision.

In the present work, we propose a TGDS approach in the context of medical diagnosis, with

the overall objective of developing predictive models which heed the knowledge of their final

user. Such a purpose is achieved through the interaction with the user, i.e. the medical expert,

throughout the process. The method starts with the automatic development of a first predictive

model. In a second stage, an expert assesses the need of revising the model, and suggests some

avenues for improving it, if required. We use decision trees to illustrate this stepwise approach.

The contributions of our work are exposed below.

• We advocate for a ML methodology which focuses on the explanatory power of a model

instead of its lonely predictive accuracy. For such a purpose, we adopted an expert-aware

approach [20] with the aim of increasing the final users’ (i.e. the clinicians) trust on ML

models. We show that readable models such as decision trees are well-suited to conduct such

an approach. Indeed, the readability of a model allows us to understand how a decision is

made, and to assess the extent to which the related explanations are consistent.

• We propose new and interesting results regarding the data used in this study: the ADHD-

200 collection. A significant part of the ML research on ADHD was derived from this data-

set, which was released at the occasion of a contest in 2012 [40, 42, 43]. Since then, research

has been ongoing to better understand and predict ADHD: our study is also working

towards this objective. In comparison to the recent literature on predictive accuracy, our

results were favorable.

• Our work shows that it is possible, through ML, to confirm previous findings of the neuro-

science literature, based on larger datasets. In particular, our results suggest that ADHD has

some relation with the limbic system, which gives prospect for thorough consideration in

the sphere of neuroscientific research.
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Materials and methods

In our work, we considered a data sample extracted from the open and freely available

ADHD-200 collection [42]. We present the data in the first part of the section. Then, we

explain the use of decision trees as predictive models. Finally, we reveal the analysis methodol-

ogy of our study.

Data

Overview on the ADHD-200 competition. The data used in our study were released in

the context of the ADHD-200 competition (2012) [42–45]. The international contest chal-

lenged research teams to propose a model that would be able to predict ADHD with the best

possible accuracy. The ADHD-200 collection, a large compilation of clinical and imaging data,

was proposed for such a purpose. This open dataset results from a collaborative work of eight

imaging sites based in China, the Netherlands and the United States. Though the contest

ended, research has been ongoing in the objective of better understanding ADHD and improv-

ing the prediction accuracy of 61.5%—an accuracy that was achieved at the end of the competi-

tion [46, 47].

Upon the creation of a free NITRC—NeuroImaging Tools and Resources Collaboratory—

account (www.nitrc.org), the ADHD-200 consortium gives full, unrestricted access to the

ADHD-200 collection. For each site, the ADHD-200 collection provides training and test sets

including Typically Developing (TD) and ADHD subjects. The training set is used to develop

predictive models and the test set is kept separately for validation. Different strategies were

considered to deal with such a multi-site dataset [40]. One possibility is to merge all the train-

ing sets into the same dataset and to train a single predictive model. Given the heterogeneity of

the multi-site dataset, another strategy consists of training several models, based on homoge-

neous subsets extracted from the collection. Finally, outside the context of the ADHD-200

competition, one could be interested in studying a given population, thus selecting the data of

a single site.

The segmentation into training and test sets was imposed by the ADHD-200 collection

itself. During the competition, only the training sets were made available to the competitors.

The predictive models that were proposed in the competition were later assessed against test

sets which were made available by the ADHD-200 consortium sometime after the competition.

Since then, most of the research works based on the ADHD-200 collection use the training

and test sets as they are proposed by the ADHD-200 collection. This segmentation, kept as it

is, allows the comparison with the existing literature to be easier and fairer.

Subjects. Our study is based on the data subset collected by the New-York University

Child Study Center; we denote it as the NYU sample.

Phenotypic features include age, gender, Intellectual Quotient (IQ), as well as handedness.

The IQ was assessed using the Wechsler Abbreviated Scale of Intelligence (WASI) and the

handedness using the Edinburgh scale [44, 48]. A diagnosis label is also available for each

patient. Parents were asked to assess their child’s behavior with the Conners Parent Rating

Scale-Revised, Long version (CPRS-R: LV) instrument. Parents and children were also submit-

ted to the Schedule of Affective Disorders and Schizophrenia for Children—Present and Life-

time Version (KSADS-PL). The inclusion criteria for Typically Developing (TD) and ADHD

subjects are based on both KSADS-PL and CPRS-R: LV:

• ADHD—diagnosis based on KSADS-PL and T-score�65 with CPRS-R: LV;

• Controls—absence of any axis I diagnosis under KSADS-PL in parents and child and T-

score<60 according to CPRS-R: LV.
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General inclusion criteria involved that right-handed children with a full-scale IQ superior

to 80, and not showing other persistent medical issues were recruited. For further details, the

reader is referred to the website of the ADHD-200 consortium [44].

Tables 1 and 2 present the demographics of the control and ADHD groups in both the

training and test sets. It should be noted that twelve subjects were excluded from the original

training set (n = 222) because of missing phenotypic features and/or brain images.

While the NYU training set is quite well-balanced with 55% of TD and 45% of ADHD sub-

jects, the test set presents a different distribution (i.e. respectively 30% vs 70%). This explains

why it is challenging to tackle with the NYU dataset. The development of predictive models is

based on a segmentation of the training set where the TD and ADHD populations are quite

well represented. An assessment of the models against a very different distribution can lead

to pessimistic results. Incidentally, the results of the ADHD-200 collection were the worst on

the NYU subset [47]. This is why we wanted to address this challenging subset in particular,

besides our concern of studying a large and homogeneous dataset.

Scanning procedure & preprocessing. The ADHD-200 collection includes resting-state

functional Magnetic Resonance Images (rs-fMRI) for each subject. Patients under medication

were asked to drop their treatment at least twenty-four hours before image acquisition. During

the fMRI run, the subjects were asked to close their eyes whilst staying awake and relawed.

The functional images were acquired using SIEMENS MAGNETOM ALLEGRA SYNGO MR 2004A. The

parameters of acquisition are: echo time (TE) = 15 ms; repetition time (TR) = 2000 ms; flip

angle (FA): 90˚; voxel size = 3 × 3 × 4 mm3; number of slices = 33; slice thickness = 4 mm [44].

The fMRI images were preprocessed by the NeuroBureau according to the Athena Pipeline
[45]. We detail here the main steps of this procedure, which ends with the extraction of Blood

Oxygen Level-Dependent (BOLD) timeseries per voxel [43, 45]:

• first four volumes removal;

• time and motion correction;

• co-registration of the mean functional image onto the related structural image;

• writing the fMRI data into the MNI space (resolution: 4 × 4 × 4 mm3);

• removing the effects of physiological noise, head motion and scanner drifts;

• band-pass filtering (]0.009, 0.08[Hz) of the timeseries.

A further stage of processing consists of averaging the timeseries for defined brain areas

[43]. In our study, we considered the fMRI timecourses extracted for the 116 Regions of

Table 1. Demographics of the control group.

Age IQ Gender n
F M

Training set 12.1 ± 3.1 110.8 ± 13.8 50 43 93

Test set 11.8 ± 3.0 114.0 ± 13.4 4 8 12

https://doi.org/10.1371/journal.pone.0215720.t001

Table 2. Demographics of the ADHD group.

Age IQ Gender n
F M

Training set 11.3 ± 2.7 107.0 ± 13.3 25 92 117

Test set 10.3 ± 2.5 103.3 ± 13.2 9 20 29

https://doi.org/10.1371/journal.pone.0215720.t002
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Interest (ROI) defined by the Automated Anatomical Atlas (AAL) [49] (see Fig 1). The match-

ing between the labels of the cerebral zones and their localization in the brain is found in the

Online Brain Atlas Reconciliation Tool [50]. Brain zones are numbered from 1 to 116: an even

(resp. odd) number indicates a region included in the right (resp. left) hemisphere.

Classification features. We developed our predictive models based on both phenotypic

and imaging features. Among phenotypic information, we considered the age, gender, IQ, and

handedness. In addition to phenotypic information, we used the fMRI timecourses extracted

per ROI according to the AAL brain parcellation. Rather than focusing on functional connec-

tivity [51] and interactions between brain zones, we were interested in assessing the variance

of each BOLD fMRI signal. Actually, our interest in such a basic information is in line with

our objective of proposing interpretable models. Indeed, the variance of each signal represents

a measure of energy, so each ROI is assessed individually by the dynamism of its neuronal

activity. Therefore, for each patient, a set of 120 features is available for classification: 4 pheno-

typic attributes and 116 signal variances related to the 116 ROIs.

Decision trees

Under an intuitive tree-based representation, decision trees are read in a top-bottom

approach, in answering different questions about an instance, before making a final

Fig 1. ROI centers as defined by the AAL parcellation. The brain illustration is a template provided, handled and visualized with BRAINNET

VIEWER TOOL [52, 53].

https://doi.org/10.1371/journal.pone.0215720.g001
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classification. Therefore, decision trees are transparent and intelligible models, as each predic-

tion is justified by a decision chain, and each part of this decision chain consists of a question

that may be translated literally [54]. Several variants of algorithms exist to develop decision

trees [55–57]. In this work, the classifiers were computed using WEKA software [58], through

its J48 component. The latter achieves an implementation of algorithm C4.5 [59], on which we

give a brief overview in the following paragraph.

According to the recursive and greedy C4.5 algorithm, the learning process unfolds in

accordance with the logic of dividing and conquering. At the top of the tree, the root contains

all the training instances which are separated on the base of a selected attribute to establish the

purest child nodes, i.e. nodes including instances belonging for the most part even entirely, to

the same class (in this case, either TD or ADHD). The transition from a level to another occurs

when splitting the parent nodes based on an attribute whose pertinence for division is assessed

according to the information gain criterion, measured by the entropy. If t designates a node,

N(t), the number of instances included in that node (regardless the class to which they belong),

Nc(t), the number of instances belonging to class c in the same node, the entropy of the parent

node is computed as [60]:

iðtÞ ¼ �
X

c

NcðtÞ
NðtÞ

log 2

NcðtÞ
NðtÞ

� �

it measures the impurity of the current node, i.e. its degree of heterogeneity regarding the

number of classes that are represented in this node. The information gain caused by splitting

the parent node t into two child nodes tL and tR is computed as:

DiðtÞ ¼ iðtÞ �
NðtLÞ
NðtÞ

iðtLÞ �
NðtRÞ
NðtÞ

iðtRÞ:

With respect to this process, an important question should be solved about the stopping cri-

terion. Nodes are split until the minimal number of training instances required by leaf (i.e.

ending node) m is encountered; the parameter is defined prior to the learning process execu-

tion. Thus, the learning process is run on a set of training features which is not necessarily

needed in its entirety; only the most discriminative features are used by the final model.

The parameter m clearly states the granularity of the models, i.e. their size. We admitted

this parameter varies between 5 and 20, the latter which corresponds approximately to 10% of

the size of the training set. In the range of possible values [5, 20] for parameter m, the one asso-

ciated with the highest accuracy of the resulting model, in the sense of Leave-One-Out Cross

Validation (LOOCV), was held as relevant. LOOCV does not require any partitioning into

folds and is based on the assessment of models which are close to the model trained on the

whole training set [57, 61]. In our opinion, these advantages make LOOCV suitable for param-

eter selection. Moreover, the parameter m expresses, in absolute value, the minimal number of

instances that each leaf of the decision tree must cover. Since m is not a relative measure, but

an absolute one, it has to be selected in a procedure involving a dataset with a similar size to

the one of the whole training set. Thus, LOOCV appears here as particularly convenient to

select the value of the absolute parameter m, while k-fold CV procedures would better address

the tuning of relative parameters.

Let us note that the development of decision trees is a process that is highly sensitive to the

content of the input training set [55]. Therefore, it is interesting to reduce the input training

set, including 120 features for each patient in this case, to select the most relevant ones, i.e. fea-

tures which are meaningful in the sense of a given criterion. Then, from this reduced set of
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classification features, decision trees are built based on the most discriminative ones, i.e. the

features which contribute to make a clear distinction between the ADHD and TD subjects.

Expert-based methodology

The study was carried out in accordance with our expert-based methodology depicted in Fig 2.

The principle of the approach is summarized as follows. First, a blind ML process (i.e. not

guided by the expert) is launched: it consists of the automatic development of a predictive

model. Then, an expert reads the resulting model, and assesses whether or not it makes sense.

If revision is required, a knowledge-guided ML process is initiated with the help of the expert

who provides some indications, e.g. adding, removing or extracting a subset of features, to

introduce a coherent knowledge for the development of a second model. The overall method-

ology is thus conducted in a stepwise way to improve the quality of the prediction mechanism.

Fig 3 depicts the execution of a ML process (with decision trees as classifiers). It includes fea-

ture selection and training. Note that the difference between the blind and knowledge-guided

ML process lies in the selection of relevant training features. We describe these processes in

more detail below.

• Blind ML process: this process relies on an algorithmic approach for the selection of relevant

training features. In this case, we considered the Correlation-based Feature Selection (CFS,

implemented by WEKA) [62] which removes redundant information when extracting a subset

of features that present a low inter-correlation, but that are highly correlated with the out-

come variable (i.e. diagnosis in this case). This automatic method is based on the computa-

tion of Pearson’s correlations and it does not require a set correlation threshold (see [62]

for further details). To ensure robust feature selection, we considered the use of an ensemble

feature selection strategy [63, 64]. The procedure is presented in Fig 4 and is executed as

follows.

1. Extracting some bootstrap training samples, i.e. achieving random subsampling with

replacement.

2. Applying the selection of features on each bootstrap sample.

3. Aggregating the results of the feature selections, given a specific rule. In this case, we

selected the features which most often showed up (at least in 25% of the feature selec-

tions).

We applied this strategy in running CFS on 20 bootstrap samples; each sample corre-

sponds to a subset including 75% of instances extracted from the initial training set.

The relevant features selected for each instance constitute the reduced training set
(Figs 3 and 4).

• Knowledge-guided ML process: this process is driven by features suggested by the expert

following the analysis of the predictive model developed previously. In this case, our expert

tried to identify brain areas that are part of a reference brain system. A second decision tree

was trained on the regions included in this reference system.

Assessment

The final predictive model was assessed based on its ability to reproduce the diagnosis pro-

vided by clinicians. As shown in Fig 2, this validation was exclusively achieved on the test set

which was kept separately for this purpose. We compared clinical and predicted diagnoses to

measure the following parameters:
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Fig 3. ML process.

https://doi.org/10.1371/journal.pone.0215720.g003

Fig 2. Our expert-based methodology.

https://doi.org/10.1371/journal.pone.0215720.g002

Fig 4. Feature selection with CFS.

https://doi.org/10.1371/journal.pone.0215720.g004
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• TP (TN)—the number of true positives (negatives), i.e. pathological (healthy) patients whose

diagnosis was rightly predicted;

• FP (FN)—the number of false positives (negatives), i.e. healthy (pathological) patients who

were wrongly predicted as pathological (healthy).

Based on these indicators, the models proposed in this study were assessed through perfor-

mance measures used in the current medical practice to evaluate clinical tests, and also consid-

ered in ML: accuracy, specificity and sensitivity rates [57, 65, 66].

• Accuracy measures the rate of right predictions.

A ¼
TP þ TN

TP þ FPþ TN þ FN
¼

TP þ TN
Nb: of subjects

• Specificity (true negative rate) measures the ability to detect healthy patients.

tn ¼
TN

TN þ FP
¼

TN
Nb: of healthy subjects

• Sensitivity (true positive rate) measures the ability to detect pathological patients.

tp ¼
TP

TP þ FN
¼

TP
Nb: of pathological subjects

We also reported the 4-fold CV accuracy (with standard deviation) of the final predictive

model. This allows to assess the overall stability of the prediction rate achieved on the basis of a

rough partitioning of the training data into four folds.

Results and discussion

In this section, we give the results of our expert-based framework for the development of deci-

sion trees. As mentioned beforehand, we assess the predictive models against their explanatory

power, i.e. the credibility of the decision chains. We give a summary of the results in the last

part of the section.

Blind ML process

The training features remaining after the CFS reduction of dimensionality are exposed in

Table 3. Let us note the regions included in the Left (resp. Right) hemisphere are denoted as L

(resp. R). The decision tree that was trained based on these features is shown in Fig 5.

First, we notice that the dimensionality reduction process selected only the gender among

the phenotypic features, and a set of seven cerebral zones among the initial set of 116 ROI. Fur-

thermore, the variance thresholds on which the tree subdivisions are based on are close to zero

(see Fig 5) and represent approximately one to three percent of the maximal variance observed

on the signals. In other terms, the questions raised on each cerebral zone fall under the assess-

ment of its activation or non-activation while the patient is at resting-state. However, the ques-

tion raised on the activity of the middle temporal gyrus remains difficult to interpret. Indeed,

based on a ternary split, the question is not related to the (non-)activation of the zone in abso-

lute terms: it rather brings a nuance on the intensity of such an activation.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0215720 April 25, 2019 10 / 20

https://doi.org/10.1371/journal.pone.0215720


A previous study [67] raised irregularities in ADHD children in several areas, more specifi-

cally in the temporal cortices and the right middle temporal gyrus. Interestingly, the model

presented by Fig 5 confirms the involvement of the right middle temporal gyrus to make the

dissociation between TD and ADHD children, but only in girls. Yet, this same structure was

raised for its ability to manage cognitive processes, including interpretation and recognition

tasks [68, 69]. Moreover, our model suggests that two other structures are involved in girls

with ADHD: the right anterior cingulate and the left inferior frontal gyrus. Yet the right ante-

rior cingulate was shown as involved in attention [70], by processing the selection of both the

stimulus and the response; dysfunctions in ADHD subjects were reported regarding this area

[71]. The left inferior frontal gyrus (IFG) was raised as critical for response inhibition: as sug-

gested in [72], patients with damage in the left IFG perform less well a Go/NoGo task than

controls, and most importantly as a higher level of inhibitory control is required.

For boys’ assessment, the decision tree suggests that the left IFG and the right parahippo-

campal gyrus are sufficient for diagnosis. Yet, it was demonstrated that boys with ADHD pres-

ent irregularities in frontolimbic areas, which are comparable to impairments that characterize

Table 3. Extracted features through automatic correlation-based selection.

Type Attributes

Phenotype Gender

Brain regions 15: Inferior frontal gyrus, orbital part (L)

27: Gyrus rectus (L)

32: Anterior cingulate and paracingulate gyri (R)

40: Parahippocampal gyrus (R)

70: Paracentral lobule (R)

87: Temporal pole, middle temporal gyrus (L)

88: Temporal pole, middle temporal gyrus (R)

https://doi.org/10.1371/journal.pone.0215720.t003

Fig 5. Decision tree developed without prior knowledge.

https://doi.org/10.1371/journal.pone.0215720.g005
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antisocial behaviors [73]. Moreover, it was shown the right parahippocampal gyrus allows

the detection of infrequent events, which requires selective attention [74]. Thus, the involve-

ment of this area in our model may indicate that ADHD-affected boys exhibit difficulty in

detecting events that are relevant to them. This observation appears consistent with the find-

ings reported in [75], suggesting impaired executive control and sustained attention amongst

children with ADHD.

To check the relevancy of the gender among the other phenotypic features, another decision

tree was trained on the whole set of phenotypic features (age, handedness, intellectual quotient

and gender), as well as the same set of brain zones selected by the feature extraction process

applied previously (see Table 3). The associated model is presented by Fig 6. This result con-

firms somehow that the phenotypic features, except gender, are less significant since they are

used in the last branches of the tree. The related subdivisions replace some based on brain

zones in the previous model (see Fig 5). Therefore, these phenotypic features seem to have a

slightly better separative power in the context of a recursive and greedy division, taking the best

decision at a local level, at each iteration. Even if the accuracy of this second model is higher

than the first one, it might be possible that the age, IQ and handedness act as overfitting factors
in the model. But it remains clear that, in keeping its position at the tree root, the gender seems

to be highly discriminative. In fact, the decision tree may be seen as the association of two gen-

der-specific classifiers, which makes sense to a certain extent. Indeed, gender-specific differ-

ences in ADHD have been widely reported in the literature related to functional and structural

neuroimaging studies [76–81]. Moreover, it has long been recognized that ADHD is less preva-

lent in girls [1]. It appears therefore important to integrate gender to the set of training features.

Knowledge-based ML process

Except for the right middle temporal gyrus, the regions involved in our first proposed model

(see Fig 5) belong to the Papez circuit [82]. The right middle temporal gyrus may act as a proxy

Fig 6. Decision tree developed without prior knowledge: Influence of the phenotypic features.

https://doi.org/10.1371/journal.pone.0215720.g006
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for another region in this circuit. As a matter of fact, from a computational point of view, it is

possible that, in the moment of the division of the node including girls, the algorithm found

more than one valid splitting attribute and thus, selected the right middle temporal gyrus arbi-

trarily. In view of this, it may be argued that the activation of the latter zone is a reflection of

the activation of one or several other brain zones. This is in consistent relationship with the

reality of the neuronal functioning, e.g. it was reported that the temporal gyrus is stimulated

by the projections of the hippocampus [83, 84]. Therefore, in this stage of the study, we forced

the algorithm to develop a decision tree based on regions located in the limbic system, which

includes the Papez circuit. As suggested in [70], the limbic system can be thought of as a set

of functional subsystems. Given the nature of the disorder studied in this work, we selected

regions associated with affective and executive processes (see Table 4).

The training set of features was thus constituted of the gender and 26 ROI. The resulting

decision tree (see Fig 7) presents a 4-fold CV accuracy of 66.6±2.4%, a prediction accuracy of

73.2% on the test set (tn = 58.3%, tp = 79.3%), and is interestingly shorter. This decision tree is

based on the assessment of three cerebral regions: the left amygdala in girls, the right parahip-

pocampal gyrus and the left superior frontal gyrus, medial orbital in boys. The model supports

previous findings suggesting that the amygdala plays an important role in the systemic brain

pathophysiology of ADHD. For instance, [85] evidences bilaterally smaller amygdala volumes

in patients with ADHD as compared to healthy controls notably.

Table 4. List of the selected brain zones selected based on prior experiment and expert knowledge.

Affective functions Executive functions

03-04: Superior frontal gyrus, dorsolateral 31-32: Anterior cingulate and paracingulate gyri

05-06: Superior frontal gyrus, orbital part 33-34: Median cingulate and paracingulate gyri

07-08: Middle frontal gyrus 35-36: Posterior cingulate gyrus

09-10: Superior frontal gyrus, medial orbital 37-38: Hyppocampus

13-14: Inferior frontal gyrus, triangular part 39-40: Parahippocampal gyrus

15-16: Inferior frontal gyrus, orbital part 41-42: Amygdala

77-78: Thalamus

https://doi.org/10.1371/journal.pone.0215720.t004

Fig 7. Decision tree developed based on prior knowledge.

https://doi.org/10.1371/journal.pone.0215720.g007
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The model keeps a discussion based on the parahippocampal gyrus for boys, the latter

which was already identified in our first proposition of model (see Fig 5). Finally, boys are

assessed against the left superior frontal gyrus, medial orbital. Yet it was reported that extensive

damage of the orbitofrontal regions involving parts of the anterior cingulate cortex leads

to impulse control problems and antisocial behaviors [86]. Thus, we can emit the hypothesis

that ADHD in boys may be characterized by difficulties in the control of impulses and social

conventions.

Summary

The analysis of the first decision tree (see Fig 5) showed the involvement of brain areas previ-

ously investigated in the literature as associated with functional and/or structural irregularities

with respect to ADHD. The majority of these areas are located in the limbic system. Given

this first result, we constituted a training set including the gender information and the areas

located in the affective and executive limbic sub-systems, as suggested by the domain expert.

The implementation of decision trees is sensitive to the training set content. While it may

appear to be an inconvenient predictive model [55], this sensitivity is important when infer-

ring a first level of knowledge, used in a second step to adjust the training set and potentially

to implement a more consistent predictive model. In this case, the adjustment resulted in a

decision tree which makes more sense since it does not include ternary splits which may be

hardly interpreted. Admittedly, objections could be raised regarding the simplicity of the

resulting decision tree. Our final proposition involves discussions on three brain regions (see

Fig 7), with a prediction rate of 73.2% on the test set; Table 5 presents the related confusion

matrix. This result suggests that we can not exclude the hypothesis that the neural correlates of

ADHD may be explained simply. Incidentally, a model such as SVM, which is assumed to

model complex conditions provides similar, and sometimes lower predictive performances

if referring to previous results [26, 87, 88]. Table 6 provides a comparison with the literature

on the NYU test set. The comparison reinforces our belief that our approach is interesting.

Despite the unbalance in the representation of ADHD and TD subjects between both the train-

ing and the test sets, the model predicts relatively well ADHD subjects. That being said, this

same unbalance has an influence in the way in which the errors are distributed between false

positives and false negatives. In this regard, one interesting perspective is to find a way of

adjusting the distribution of such errors. Such an approach may depend on the sensitivities of

the clinician and on the pathology to be diagnosed.

Table 5. Confusion matrix of our predictive model on the test set.

PREDICTED AS ⊳ TD ADHD

TD 7 5

ADHD 6 23

https://doi.org/10.1371/journal.pone.0215720.t005

Table 6. Comparison with previous works.

A(%) tn(%) tp(%)

Our work 73.2 58.3 79.3

Eslami and Saed (2018) [89] 53.0 83.0 55.0

Riaz et al. (2016) [87] 61.0 41.6 68.9

Guo et al. (2014) [88] 63.8 - -

Colby et al. (2012) [26] 37.0 58.0 34.0

https://doi.org/10.1371/journal.pone.0215720.t006
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Conclusion

In the sphere of translational neuroscience, studies based on machine learning approaches

have been increasing over the last years. However, few of these studies have had a clinical

impact as they have still not resulted in models that aid the diagnosis of disorders such as

ADHD, whose physiological bases remain unknown.

This study is on a machine learning methodology that can lead towards more interpretable

models. Indeed, interpretability is an important requirement that diagnosis aid models should

comply with. Decision trees are models suitable for such a purpose. Though decision trees are

readable, the related decision chains do not necessarily make sense for their final user. In that

regard, we showed the significance of an expert-based framework for the development of inter-

pretable predictive models. We applied this framework on a data sample extracted from the

open ADHD-200 collection. This approach is applied in two stages. An initial predictive

model is developed and then analyzed by a domain expert. This allows to raise some ideas that

could be explored, and to adjust, as a second stage, the training set content. Another predictive

model is thus developed: it is expected to be more interpretable. Through the interaction of a

domain expert, this two-stage approach likely enables to get better confidence and meaningful-

ness regarding the credibility of the predictive models. Let us note that we used decision trees

to illustrate this approach, but the latter could be based on any classifier, as long as this classi-

fier may be interpreted and provides enough flexibility to allow stepwise improvements of its

predictive mechanism.

The first part of our study revealed a possible involvement of the Papez circuit as an element

of ADHD diagnosis. Then, we investigated the credibility of this finding, based on the develop-

ment of predictive models only on the areas of the limbic system, which includes the Papez

circuit. The resulting decision tree presents a test accuracy of 73.2%, which constitutes a

pertinent evolution with respect to the recent figures reported in the literature. Of course, the

clinical significance of our results has yet to be investigated in the sphere of neuroscientific

research.
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frontal cortical thickness in children, adolescents and adults with ADHD and its correlation to clinical var-

iables: a cross-sectional study. Journal of psychiatric research. 2010; 44(16):1214–1223. https://doi.

org/10.1016/j.jpsychires.2010.04.026 PMID: 20510424

12. Makris N, Biederman J, Valera EM, Bush G, Kaiser J, Kennedy DN, et al. Cortical thinning of the atten-

tion and executive function networks in adults with attention-deficit/hyperactivity disorder. Cerebral Cor-

tex. 2006; 17(6):1364–1375. https://doi.org/10.1093/cercor/bhl047 PMID: 16920883

13. Castellanos FX, Proal E. Location, Location, and Thickness: Volumetric Neuroimaging of Attention-Def-

icit/Hyperactivity Disorder Comes of Age. Journal of the American Academy of Child & Adolescent Psy-

chiatry. 2009; 48(10):979–981. https://doi.org/10.1097/CHI.0b013e3181b45084

14. Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch J, Greenstein D, et al. Attention-deficit/hyperactiv-

ity disorder is characterized by a delay in cortical maturation. vol. 104. National Acad Sciences; 2007.

p. 19649–19654.

15. Mostert JC, Shumskaya E, Mennes M, Onnink AMH, Hoogman M, Kan CC, et al. Characterising rest-

ing-state functional connectivity in a large sample of adults with ADHD. Progress in Neuro-Psychophar-

macology and Biological Psychiatry. 2016; 67:82–91. https://doi.org/10.1016/j.pnpbp.2016.01.011

PMID: 26825495

Interpretable machine learning models for diagnosis aid: A case study on ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0215720 April 25, 2019 16 / 20

http://adhd-institute.com/burden-of-adhd/epidemiology/
http://adhd-institute.com/burden-of-adhd/epidemiology/
https://doi.org/10.1016/j.cortex.2011.04.007
http://www.ncbi.nlm.nih.gov/pubmed/21575934
https://doi.org/10.1002/hbm.21058
https://doi.org/10.1002/hbm.21058
http://www.ncbi.nlm.nih.gov/pubmed/20496381
https://doi.org/10.1176/appi.ajp.2012.12091189
https://doi.org/10.1176/appi.ajp.2012.12091189
http://www.ncbi.nlm.nih.gov/pubmed/23288382
https://doi.org/10.1001/archpsyc.1996.01830070053009
http://www.ncbi.nlm.nih.gov/pubmed/8660127
https://doi.org/10.1016/j.encep.2008.01.005
http://www.ncbi.nlm.nih.gov/pubmed/19393378
https://doi.org/10.1016/j.biopsych.2006.04.031
https://doi.org/10.1016/j.biopsych.2006.04.031
http://www.ncbi.nlm.nih.gov/pubmed/16876137
https://doi.org/10.1016/j.jpsychires.2010.04.026
https://doi.org/10.1016/j.jpsychires.2010.04.026
http://www.ncbi.nlm.nih.gov/pubmed/20510424
https://doi.org/10.1093/cercor/bhl047
http://www.ncbi.nlm.nih.gov/pubmed/16920883
https://doi.org/10.1097/CHI.0b013e3181b45084
https://doi.org/10.1016/j.pnpbp.2016.01.011
http://www.ncbi.nlm.nih.gov/pubmed/26825495
https://doi.org/10.1371/journal.pone.0215720


16. McCarthy H, Skokauskas N, Mulligan A, Donohoe G, Mullins D, Kelly J, et al. Attention network hypo-

connectivity with default and affective network hyperconnectivity in adults diagnosed with attention-defi-

cit/hyperactivity disorder in childhood. JAMA psychiatry. 2013; 70(12):1329–1337. https://doi.org/10.

1001/jamapsychiatry.2013.2174 PMID: 24132732

17. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of

brain function. National Academy of Sciences. 2001; 98(2):676–682. https://doi.org/10.1073/pnas.98.2.

676

18. Brotman MA, Rich BA, Guyer AE, Lunsford JR, Horsey SE, Reising MM, et al. Amygdala activation dur-

ing emotion processing of neutral faces in children with severe mood dysregulation versus ADHD or

bipolar disorder. American Journal of Psychiatry. 2009; 167(1):61–69. https://doi.org/10.1176/appi.ajp.

2009.09010043 PMID: 19917597

19. Giudici P. Applied data mining: statistical methods for business and industry. John Wiley & Sons; 2005.

20. Itani S, Lecron F, Fortemps P. Specifics of Medical Data Mining for Diagnosis Aid: A Survey. Expert

Systems with Applications. 2019; 118:300–314. https://doi.org/10.1016/j.eswa.2018.09.056

21. Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational

neuroimaging. Nature neuroscience. 2017; 20(3):365–377. https://doi.org/10.1038/nn.4478 PMID:

28230847

22. Yoo I, Alafaireet P, Marinov M, Pena-Hernandez K, Gopidi R, Chang JF, et al. Data mining in healthcare

and biomedicine: a survey of the literature. Journal of medical systems. 2012; 36(4):2431–2448. https://

doi.org/10.1007/s10916-011-9710-5 PMID: 21537851

23. Anuradha J, Ramachandran V, Arulalan K, Tripathy B, et al. Diagnosis of ADHD using SVM algorithm.

In: 3rd Annual ACM Bangalore Conference. ACM; 2010. p. 29.

24. Mueller A, Candrian G, Grane VA, Kropotov JD, Ponomarev VA, Baschera GM. Discriminating between

ADHD adults and controls using independent ERP components and a support vector machine: a valida-

tion study. Nonlinear biomedical physics. 2011; 5(1):5. https://doi.org/10.1186/1753-4631-5-5 PMID:

21771289

25. Chang CW, Ho CC, Chen JH. ADHD classification by a texture analysis of anatomical brain MRI data.

Frontiers in systems neuroscience. 2012; 6:66. https://doi.org/10.3389/fnsys.2012.00066 PMID:

23024630

26. Colby JB, Rudie JD, Brown JA, Douglas PK, Cohen MS, Shehzad Z. Insights into multimodal imaging

classification of ADHD. Frontiers in systems neuroscience. 2012; 6:59. https://doi.org/10.3389/fnsys.

2012.00059 PMID: 22912605

27. Dai D, Wang J, Hua J, He H. Classification of ADHD children through multimodal magnetic resonance

imaging. Frontiers in systems neuroscience. 2012; 6:63. https://doi.org/10.3389/fnsys.2012.00063

PMID: 22969710

28. Fair D, Nigg J, Iyer S, Bathula D, Mills K, Dosenbach N, et al. Distinct neural signatures detected for

ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data.

Frontiers in Systems Neuroscience. 2013; 6:80. https://doi.org/10.3389/fnsys.2012.00080 PMID:

23382713

29. Sidhu GS, Asgarian N, Greiner R, Brown MR. Kernel Principal Component Analysis for dimensionality

reduction in fMRI-based diagnosis of ADHD. Frontiers in systems neuroscience. 2012; 6:74. https://doi.

org/10.3389/fnsys.2012.00074 PMID: 23162439

30. Strigo I, Matthews S, Simmons A. Decreased frontal regulation during pain anticipation in unmedicated

subjects with major depressive disorder. Translational psychiatry. 2013; 3(3):e239. https://doi.org/10.

1038/tp.2013.15 PMID: 23481626

31. Wee CY, Yap PT, Zhang D, Denny K, Browndyke JN, Potter GG, et al. Identification of MCI individuals

using structural and functional connectivity networks. Neuroimage. 2012; 59(3):2045–2056. https://doi.

org/10.1016/j.neuroimage.2011.10.015 PMID: 22019883

32. Deshpande G, Wang P, Rangaprakash D, Wilamowski B. Fully connected cascade artificial neural net-

work architecture for attention deficit hyperactivity disorder classification from functional magnetic reso-

nance imaging data. IEEE transactions on cybernetics. 2015; 45(12):2668–2679. https://doi.org/10.

1109/TCYB.2014.2379621 PMID: 25576588

33. Han X, Zhong Y, He L, Philip SY, Zhang L. The unsupervised hierarchical convolutional sparse auto-

encoder for neuroimaging data classification. In: International Conference on Brain Informatics and

Health. Springer; 2015. p. 156–166.

34. LavračN. Selected techniques for data mining in medicine. Artificial intelligence in medicine. 1999; 16

(1):3–23. https://doi.org/10.1016/S0933-3657(98)00062-1 PMID: 10225344

35. Doshi-Velez F, Kim B. A Roadmap for a Rigorous Science of Interpretability. In: arXiv preprint

arXiv:1702.08608; 2017.

Interpretable machine learning models for diagnosis aid: A case study on ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0215720 April 25, 2019 17 / 20

https://doi.org/10.1001/jamapsychiatry.2013.2174
https://doi.org/10.1001/jamapsychiatry.2013.2174
http://www.ncbi.nlm.nih.gov/pubmed/24132732
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1176/appi.ajp.2009.09010043
https://doi.org/10.1176/appi.ajp.2009.09010043
http://www.ncbi.nlm.nih.gov/pubmed/19917597
https://doi.org/10.1016/j.eswa.2018.09.056
https://doi.org/10.1038/nn.4478
http://www.ncbi.nlm.nih.gov/pubmed/28230847
https://doi.org/10.1007/s10916-011-9710-5
https://doi.org/10.1007/s10916-011-9710-5
http://www.ncbi.nlm.nih.gov/pubmed/21537851
https://doi.org/10.1186/1753-4631-5-5
http://www.ncbi.nlm.nih.gov/pubmed/21771289
https://doi.org/10.3389/fnsys.2012.00066
http://www.ncbi.nlm.nih.gov/pubmed/23024630
https://doi.org/10.3389/fnsys.2012.00059
https://doi.org/10.3389/fnsys.2012.00059
http://www.ncbi.nlm.nih.gov/pubmed/22912605
https://doi.org/10.3389/fnsys.2012.00063
http://www.ncbi.nlm.nih.gov/pubmed/22969710
https://doi.org/10.3389/fnsys.2012.00080
http://www.ncbi.nlm.nih.gov/pubmed/23382713
https://doi.org/10.3389/fnsys.2012.00074
https://doi.org/10.3389/fnsys.2012.00074
http://www.ncbi.nlm.nih.gov/pubmed/23162439
https://doi.org/10.1038/tp.2013.15
https://doi.org/10.1038/tp.2013.15
http://www.ncbi.nlm.nih.gov/pubmed/23481626
https://doi.org/10.1016/j.neuroimage.2011.10.015
https://doi.org/10.1016/j.neuroimage.2011.10.015
http://www.ncbi.nlm.nih.gov/pubmed/22019883
https://doi.org/10.1109/TCYB.2014.2379621
https://doi.org/10.1109/TCYB.2014.2379621
http://www.ncbi.nlm.nih.gov/pubmed/25576588
https://doi.org/10.1016/S0933-3657(98)00062-1
http://www.ncbi.nlm.nih.gov/pubmed/10225344
https://doi.org/10.1371/journal.pone.0215720


36. Karpatne A, Atluri G, Faghmous JH, Steinbach M, Banerjee A, Ganguly A, et al. Theory-guided data sci-

ence: A new paradigm for scientific discovery from data. IEEE Transactions on Knowledge and Data

Engineering. 2017; 29(10):2318–2331. https://doi.org/10.1109/TKDE.2017.2720168

37. Haufe S, Meinecke F, Görgen K, Dähne S, Haynes JD, Blankertz B, et al. On the interpretation of weight

vectors of linear models in multivariate neuroimaging. Neuroimage. 2014; 87:96–110. https://doi.org/

10.1016/j.neuroimage.2013.10.067 PMID: 24239590

38. Subbaraju V, Suresh MB, Sundaram S, Narasimhan S. Identifying differences in brain activities and an

accurate detection of autism spectrum disorder using resting state functional-magnetic resonance

imaging: A spatial filtering approach. Medical image analysis. 2017; 35:375–389. https://doi.org/10.

1016/j.media.2016.08.003 PMID: 27585835

39. Aradhya AM, Subbaraju V, Sundaram S, Sundararajan N. Regularized Spatial Filtering Method (R-

SFM) for detection of Attention Deficit Hyperactivity Disorder (ADHD) from resting-state functional Mag-

netic Resonance Imaging (rs-fMRI). In: 2018 40th Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC). IEEE; 2018. p. 5541–5544.

40. Itani S, Lecron F, Fortemps P. A multi-level classification framework for multi-site medical data: Applica-

tion to the ADHD-200 collection. Expert Systems with Applications. 2018; 91:36–45. https://doi.org/10.

1016/j.eswa.2017.08.044

41. Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. Jour-

nal of medical systems. 2002; 26(5):445–463. https://doi.org/10.1023/A:1016409317640 PMID:

12182209

42. Milham MP, Fair D, Mennes M, Mostofsky SH, et al. The ADHD-200 consortium: a model to advance

the translational potential of neuroimaging in clinical neuroscience. Frontiers in systems neuroscience.

2012; 6:62.

43. Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies DS, Craddock RC. The Neuro Bureau

ADHD-200 Preprocessed Repository. Neuroimage. 2017; 144:275–286. https://doi.org/10.1016/j.

neuroimage.2016.06.034 PMID: 27423255

44. The ADHD-200 consortium. The ADHD-200 Sample; 2012. Available from http://fcon_1000.projects.

nitrc.org/indi/adhd200/.

45. The Neuro Bureau. NITRC: neurobureau:AthenaPipeline—NITRC Wiki; 2011. Available from http://

www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline.

46. Eloyan A, Muschelli J, Nebel MB, Liu H, Han F, Zhao T, et al. Automated diagnoses of attention deficit

hyperactive disorder using magnetic resonance imaging. Frontiers in Systems Neuroscience. 2012;

6:61. https://doi.org/10.3389/fnsys.2012.00061 PMID: 22969709

47. The ADHD-200 consortium. Results of the ADHD-200 competition; 2012. Available from http://fcon_

1000.projects.nitrc.org/indi/adhd200/results.html.

48. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia.

1971; 9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4 PMID: 5146491

49. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated

anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI

single-subject brain. Neuroimage. 2002; 15(1):273–289. https://doi.org/10.1006/nimg.2001.0978

PMID: 11771995

50. Quantitative Neuroscience Laboratory. The Online Brain Atlas Reconciliation Tool; 2011. Available

from http://qnl.bu.edu/obart/explore/AAL/.

51. Bastos AM, Schoffelen JM. A tutorial review of functional connectivity analysis methods and their inter-

pretational pitfalls. Frontiers in systems neuroscience. 2016; 9:175. https://doi.org/10.3389/fnsys.2015.

00175 PMID: 26778976

52. Xia M, Wang J, He Y. BrainNet Viewer: a network visualization tool for human brain connectomics. PloS

one. 2013; 8(7):e68910. https://doi.org/10.1371/journal.pone.0068910 PMID: 23861951

53. BrainNet Viewer 1 6. NITRC: BrainNet Viewer: Tool/Resource Info; 2017. Available from http://www.

nitrc.org/projects/bnv/.

54. Lipton ZC. The mythos of model interpretability. arXiv preprint arXiv:160603490. 2016;.

55. Bishop CM. Pattern recognition and machine learning. Springer; 2006.

56. Loh WY. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowl-

edge Discovery. 2011; 1(1):14–23.

57. Witten IH, Frank E, Hall MA, Pal CJ. Data Mining: Practical machine learning tools and techniques.

Morgan Kaufmann; 2016.

58. Smith TC, Frank E. Introducing machine learning concepts with WEKA. Statistical genomics: Methods

and protocols. 2016; p. 353–378. https://doi.org/10.1007/978-1-4939-3578-9_17

Interpretable machine learning models for diagnosis aid: A case study on ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0215720 April 25, 2019 18 / 20

https://doi.org/10.1109/TKDE.2017.2720168
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuroimage.2013.10.067
http://www.ncbi.nlm.nih.gov/pubmed/24239590
https://doi.org/10.1016/j.media.2016.08.003
https://doi.org/10.1016/j.media.2016.08.003
http://www.ncbi.nlm.nih.gov/pubmed/27585835
https://doi.org/10.1016/j.eswa.2017.08.044
https://doi.org/10.1016/j.eswa.2017.08.044
https://doi.org/10.1023/A:1016409317640
http://www.ncbi.nlm.nih.gov/pubmed/12182209
https://doi.org/10.1016/j.neuroimage.2016.06.034
https://doi.org/10.1016/j.neuroimage.2016.06.034
http://www.ncbi.nlm.nih.gov/pubmed/27423255
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://fcon_1000.projects.nitrc.org/indi/adhd200/
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
https://doi.org/10.3389/fnsys.2012.00061
http://www.ncbi.nlm.nih.gov/pubmed/22969709
http://fcon_1000.projects.nitrc.org/indi/adhd200/results.html
http://fcon_1000.projects.nitrc.org/indi/adhd200/results.html
https://doi.org/10.1016/0028-3932(71)90067-4
http://www.ncbi.nlm.nih.gov/pubmed/5146491
https://doi.org/10.1006/nimg.2001.0978
http://www.ncbi.nlm.nih.gov/pubmed/11771995
http://qnl.bu.edu/obart/explore/AAL/
https://doi.org/10.3389/fnsys.2015.00175
https://doi.org/10.3389/fnsys.2015.00175
http://www.ncbi.nlm.nih.gov/pubmed/26778976
https://doi.org/10.1371/journal.pone.0068910
http://www.ncbi.nlm.nih.gov/pubmed/23861951
http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
https://doi.org/10.1007/978-1-4939-3578-9_17
https://doi.org/10.1371/journal.pone.0215720


59. Quinlan JR. C4.5: programs for machine learning. San Mateo: Morgan Kaufmann; 1993.

60. Reif M, Goldstein M, Stahl A, Breuel TM. Anomaly detection by combining decision trees and paramet-

ric densities. In: 19th International Conference on Pattern Recognition (ICPR). IEEE; 2008. p. 1–4.

61. Arlot S, Celisse A, et al. A survey of cross-validation procedures for model selection. Statistics surveys.

2010; 4:40–79. https://doi.org/10.1214/09-SS054

62. Hall MA. Correlation-based feature selection for machine learning [PhD in Computer Science]. The Uni-

versity of Waikato. Hamilton, NewZealand; 1999.

63. Saeys Y, Abeel T, Van de Peer Y. Robust feature selection using ensemble feature selection tech-

niques. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases.

Springer; 2008. p. 313–325.

64. Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y. Robust biomarker identification for cancer

diagnosis with ensemble feature selection methods. Bioinformatics. 2009; 26(3):392–398. https://doi.

org/10.1093/bioinformatics/btp630 PMID: 19942583

65. Akobeng AK. Understanding diagnostic tests 1: sensitivity, specificity and predictive values. Acta pae-

diatrica. 2007; 96(3):338–341. https://doi.org/10.1111/j.1651-2227.2006.00180.x PMID: 17407452

66. Gordis L. Epidemiology (Fifth edition.). Elsevier Saunders; 2014.

67. Carmona S, Vilarroya O, Bielsa A, Tremols V, Soliva J, Rovira M, et al. Global and regional gray matter

reductions in ADHD: a voxel-based morphometric study. Neuroscience letters. 2005; 389(2):88–93.

https://doi.org/10.1016/j.neulet.2005.07.020 PMID: 16129560

68. Onitsuka T, Shenton ME, Salisbury DF, Dickey CC, Kasai K, Toner SK, et al. Middle and inferior

temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. American

Journal of Psychiatry. 2004; 161(9):1603–1611. https://doi.org/10.1176/appi.ajp.161.9.1603 PMID:

15337650

69. Tranel D, Damasio H, Damasio AR. A neural basis for the retrieval of conceptual knowledge. Neuropsy-

chologia. 1997; 35(10):1319–1327. https://doi.org/10.1016/S0028-3932(97)00085-7 PMID: 9347478

70. Kropotov JD. Quantitative EEG, event-related potentials and neurotherapy. Academic Press; 2010.

71. Bush G, Frazier JA, Rauch SL, Seidman LJ, Whalen PJ, Jenike MA, et al. Anterior cingulate cortex dys-

function in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biological

psychiatry. 1999; 45(12):1542–1552. https://doi.org/10.1016/S0006-3223(99)00083-9 PMID:

10376114

72. Swick D, Ashley V, Turken U. Left inferior frontal gyrus is critical for response inhibition. BMC neurosci-

ence. 2008; 9(1):102. https://doi.org/10.1186/1471-2202-9-102 PMID: 18939997

73. Huebner T, Vloet TD, Marx I, Konrad K, Fink GR, Herpertz SC, et al. Morphometric brain abnormalities

in boys with conduct disorder. Journal of the American Academy of Child & Adolescent Psychiatry.

2008; 47(5):540–547. https://doi.org/10.1097/CHI.0b013e3181676545

74. Banich MT, Burgess GC, Depue BE, Ruzic L, Bidwell LC, Hitt-Laustsen S, et al. The neural basis of sus-

tained and transient attentional control in young adults with ADHD. Neuropsychologia. 2009; 47

(14):3095–3104. https://doi.org/10.1016/j.neuropsychologia.2009.07.005 PMID: 19619566

75. Wang S, Yang Y, Xing W, Chen J, Liu C, Luo X. Altered neural circuits related to sustained attention

and executive control in children with ADHD: an event-related fMRI study. Clinical Neurophysiology.

2013; 124(11):2181–2190. https://doi.org/10.1016/j.clinph.2013.05.008 PMID: 23800705

76. Lazzaro I, Gordon E, Whitmont S, Plahn M, Li W, Clarke S, et al. Quantified EEG activity in adolescent

attention deficit hyperactivity disorder. Clinical Electroencephalography. 1998; 29(1):37–42. https://doi.

org/10.1177/155005949802900111 PMID: 9472424

77. Mahone EM, Wodka EL. The neurobiological profile of girls with ADHD. Developmental disabilities

research reviews. 2008; 14(4):276–284. https://doi.org/10.1002/ddrr.41 PMID: 19072756

78. Boes AD, Tranel D, Anderson SW, Nopoulos P. Right anterior cingulate: A neuroanatomical correlate of

aggression and defiance in boys. Behavioral neuroscience. 2008; 122(3):677. https://doi.org/10.1037/

0735-7044.122.3.677 PMID: 18513137

79. Valera EM, Brown A, Biederman J, Faraone SV, Makris N, Monuteaux MC, et al. Sex differences in the

functional neuroanatomy of working memory in adults with ADHD. American Journal of Psychiatry.

2009; 167(1):86–94. https://doi.org/10.1176/appi.ajp.2009.09020249 PMID: 19884224

80. Nussbaum NL. ADHD and female specific concerns: a review of the literature and clinical implications.

Journal of attention disorders. 2012; 16(2):87–100. https://doi.org/10.1177/1087054711416909 PMID:

21976033

81. Park By, Park H. Connectivity differences between adult male and female patients with attention deficit

hyperactivity disorder according to resting-state functional MRI. Neural regeneration research. 2016; 11

(1):119. https://doi.org/10.4103/1673-5374.175056 PMID: 26981099

Interpretable machine learning models for diagnosis aid: A case study on ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0215720 April 25, 2019 19 / 20

https://doi.org/10.1214/09-SS054
https://doi.org/10.1093/bioinformatics/btp630
https://doi.org/10.1093/bioinformatics/btp630
http://www.ncbi.nlm.nih.gov/pubmed/19942583
https://doi.org/10.1111/j.1651-2227.2006.00180.x
http://www.ncbi.nlm.nih.gov/pubmed/17407452
https://doi.org/10.1016/j.neulet.2005.07.020
http://www.ncbi.nlm.nih.gov/pubmed/16129560
https://doi.org/10.1176/appi.ajp.161.9.1603
http://www.ncbi.nlm.nih.gov/pubmed/15337650
https://doi.org/10.1016/S0028-3932(97)00085-7
http://www.ncbi.nlm.nih.gov/pubmed/9347478
https://doi.org/10.1016/S0006-3223(99)00083-9
http://www.ncbi.nlm.nih.gov/pubmed/10376114
https://doi.org/10.1186/1471-2202-9-102
http://www.ncbi.nlm.nih.gov/pubmed/18939997
https://doi.org/10.1097/CHI.0b013e3181676545
https://doi.org/10.1016/j.neuropsychologia.2009.07.005
http://www.ncbi.nlm.nih.gov/pubmed/19619566
https://doi.org/10.1016/j.clinph.2013.05.008
http://www.ncbi.nlm.nih.gov/pubmed/23800705
https://doi.org/10.1177/155005949802900111
https://doi.org/10.1177/155005949802900111
http://www.ncbi.nlm.nih.gov/pubmed/9472424
https://doi.org/10.1002/ddrr.41
http://www.ncbi.nlm.nih.gov/pubmed/19072756
https://doi.org/10.1037/0735-7044.122.3.677
https://doi.org/10.1037/0735-7044.122.3.677
http://www.ncbi.nlm.nih.gov/pubmed/18513137
https://doi.org/10.1176/appi.ajp.2009.09020249
http://www.ncbi.nlm.nih.gov/pubmed/19884224
https://doi.org/10.1177/1087054711416909
http://www.ncbi.nlm.nih.gov/pubmed/21976033
https://doi.org/10.4103/1673-5374.175056
http://www.ncbi.nlm.nih.gov/pubmed/26981099
https://doi.org/10.1371/journal.pone.0215720


82. Dalgleish T. The emotional brain. Nature Reviews Neuroscience. 2004; 5(7):583–589. https://doi.org/

10.1038/nrn1432 PMID: 15208700

83. Catenoix H, Magnin M, Mauguiere F, Ryvlin P. Evoked potential study of hippocampal efferent projec-

tions in the human brain. Clinical Neurophysiology. 2011; 122(12):2488–2497. https://doi.org/10.1016/j.

clinph.2011.05.007 PMID: 21669549

84. Rutecki PA, Grossman RG, Armstrong D, Irish-Loewen S. Electrophysiological connections between

the hippocampus and entorhinal cortex in patients with complex partial seizures. Journal of neurosur-

gery. 1989; 70(5):667–675. https://doi.org/10.3171/jns.1989.70.5.0667 PMID: 2709106

85. Frodl T, Stauber J, Schaaff N, Koutsouleris N, Scheuerecker J, Ewers M, et al. Amygdala reduction in

patients with ADHD compared with major depression and healthy volunteers. Acta Psychiatrica Scandi-

navica. 2010; 121(2):111–118. https://doi.org/10.1111/j.1600-0447.2009.01489.x PMID: 19878138

86. Bechara A. Disturbances of emotion regulation after focal brain lesions. International review of neurobi-

ology. 2004; 62:159–193. https://doi.org/10.1016/S0074-7742(04)62006-X PMID: 15530572

87. Riaz A, Alonso E, Slabaugh G. Phenotypic integrated framework for classification of ADHD using fMRI.

In: 13th International Conference on Image Analysis and Recognition (ICIAR). Springer; 2016. p. 217–

225.

88. Guo X, An X, Kuang D, Zhao Y, He L. ADHD-200 classification based on social network method. In:

10th International Conference on Intelligent Computing in Bioinformatics. Springer; 2014. p. 233–240.

89. Eslami T, Saeed F. Similarity based classification of ADHD using singular value decomposition. In: Pro-

ceedings of the 15th ACM International Conference on Computing Frontiers. ACM; 2018. p. 19–25.

Interpretable machine learning models for diagnosis aid: A case study on ADHD

PLOS ONE | https://doi.org/10.1371/journal.pone.0215720 April 25, 2019 20 / 20

https://doi.org/10.1038/nrn1432
https://doi.org/10.1038/nrn1432
http://www.ncbi.nlm.nih.gov/pubmed/15208700
https://doi.org/10.1016/j.clinph.2011.05.007
https://doi.org/10.1016/j.clinph.2011.05.007
http://www.ncbi.nlm.nih.gov/pubmed/21669549
https://doi.org/10.3171/jns.1989.70.5.0667
http://www.ncbi.nlm.nih.gov/pubmed/2709106
https://doi.org/10.1111/j.1600-0447.2009.01489.x
http://www.ncbi.nlm.nih.gov/pubmed/19878138
https://doi.org/10.1016/S0074-7742(04)62006-X
http://www.ncbi.nlm.nih.gov/pubmed/15530572
https://doi.org/10.1371/journal.pone.0215720

