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The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic
environment.

Good? Performance evaluated through payoff functions.

Usual problem is to optimize the expected performance or the
probability of achieving a given performance level .

Not sufficient for many practical applications.

� Several extensions, more expressive but also more complex. . .

Aim of this survey talk

Give a flavor of classical questions and extensions, illustrated on
the stochastic shortest path (SSP).
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Advertisement

Invited lecture in VMCAI’15 [RRS15]
Full paper available on arXiv: abs/1411.0835
Based on recent work [BFRR14b, RS14, RRS14a]
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1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion
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Context

PhD from UMONS (Belgium), 2014.

� Supervised by V. Bruyère (UMONS) and J.-F. Raskin (ULB).
� Title: Synthesis in Multi-Criteria Quantitative Games

(available on my website).

Talk partly based on research pursued during my thesis.

General context important to understand the motivation behind
the questions we study.
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Multi-criteria quantitative synthesis

Verification and synthesis:

� a reactive system to control,
� an interacting environment,
� a specification to enforce.

Model of the (discrete) interaction?

� Antagonistic environment: 2-player game on graph.
� Stochastic environment: MDP.

Quantitative specifications. Examples:

� Reach a state s before x time units ; shortest path.
� Minimize the average response-time ; mean-payoff.

Focus on multi-criteria quantitative models
� to reason about trade-offs and interplays.
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Strategy (policy) synthesis for MDPs

system
description

environment
description

informal
specification

model as
an MDP

model as
a winning
objective

synthesis

is there a
winning

strategy ?

empower system
capabilities
or weaken

specification
requirements

strategy =
controller

no yes

1 How complex is it to decide if
a winning strategy exists?

2 How complex such a strategy
needs to be? Simpler is
better.

3 Can we synthesize one
efficiently?
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Markov decision processes

s1 s2

s3

s4

a1, 2

a2,−1

a3, 0

b3, 3

a4, 1

0.3

0.1

0.7

0.9

MDP D = (S , sinit,A, δ,w)

� finite sets of states S and actions A
� probabilistic transition δ : S × A→ D(S)
� weight function w : A→ Z

Run (or play): ρ = s1a1 . . . an−1sn . . .
such that δ(si , ai , si+1) > 0 for all i ≥ 1

� set of runs R(D)
� set of histories (finite runs) H(D)

Strategy σ : H(D)→ D(A)

� ∀ h ending in s, Supp(σ(h)) ∈ A(s)
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Sample run ρ = s1a1s2a2s1a1s2a2(s3a3s4a4)ω

Other possible run ρ′ = s1a1s2a2(s3a3s4a4)ω

Strategies may use

� finite or infinite memory

� randomness

Payoff functions map runs to numerical
values

� truncated sum up to T = {s3}:
TST (ρ) = 2, TST (ρ′) = 1

� mean-payoff: MP(ρ) = MP(ρ′) = 1/2

� many more

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 8 / 49



Context SSP-E/SSP-P SSP-WE SSP-PQ SSP-ME Conclusion

Markov chains
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Once strategy σ fixed, fully stochastic process

; Markov chain (MC)

State space = product of the MDP and the
memory of σ

Event E ⊆ R(M)

� probability PM(E)

Measurable f : R(M)→ R ∪ {∞},
� expected value EM(f )
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Aim of this survey

Review and compare different types of quantitative specifications
for MDPs

� w.r.t. the complexity of the decision problem

� w.r.t. the complexity of winning strategies

Recent extensions share a common philosophy: framework for the
synthesis of strategies with richer performance guarantees

� our work deals with many different payoff functions

Focus on the shortest path problem in this talk

� not the most involved technically

� natural applications

; useful to understand the practical interest of each variant

+ brief mention of results for other payoffs
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Stochastic shortest path

Shortest path problem for weighted graphs

Given state s ∈ S and target set T ⊆ S , find a path from s to a
state t ∈ T that minimizes the sum of weights along edges.

� PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

We focus on MDPs with strictly positive weights in this talk

� Truncated sum payoff function for ρ = s1a1s2a2 . . . and
target set T :

TST (ρ) =

{∑n−1
j=1 w(aj) if sn first visit of T

∞ if T is never reached
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Planning a journey in an uncertain environment

home

waiting
room

train
light

traffic
medium
traffic

heavy
traffic

work

railway, 2 car, 1

wait, 3

relax, 35

go back, 2

bike, 45

drive, 20 drive, 30 drive, 70

0.1 0.9 0.2
0.7

0.1

0.1 0.9

Each action takes time, target = work.

� What kind of strategies are we looking for when the
environment is stochastic?
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SSP-E: minimizing the expected length to target

SSP-E problem

Given MDP D = (S , sinit,A, δ,w), target set T and threshold
` ∈ N, decide if there exists σ such that EσD(TST ) ≤ `.

Theorem [BT91]

The SSP-E problem can be decided in polynomial time. Optimal
pure memoryless strategies always exist and can be constructed in
polynomial time.
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SSP-E: illustration

home

waiting
room

train
light

traffic
medium
traffic

heavy
traffic

work

railway, 2 car, 1

wait, 3

relax, 35

go back, 2

bike, 45

drive, 20 drive, 30 drive, 70

0.1 0.9 0.2
0.7

0.1

0.1 0.9

� Pure memoryless strategies suffice.

� Taking the car is optimal: EσD(TST ) = 33.
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SSP-E: PTIME algorithm

1 Graph analysis (linear time)

� s not connected to T ⇒ ∞ and remove
� s ∈ T ⇒ 0

2 Linear programming (LP, polynomial time)

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 16 / 49



Context SSP-E/SSP-P SSP-WE SSP-PQ SSP-ME Conclusion

SSP-E: PTIME algorithm

1 Graph analysis (linear time)

� s not connected to T ⇒ ∞ and remove
� s ∈ T ⇒ 0

2 Linear programming (LP, polynomial time)

For each s ∈ S \ T , one variable xs ,

max
∑

s∈S\T

xs

under the constraints

xs ≤ w(a)+
∑

s′∈S\T

δ(s, a, s ′)·xs′ for all s ∈ S \ T , for all a ∈ A(s).
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SSP-E: PTIME algorithm

1 Graph analysis (linear time)

� s not connected to T ⇒ ∞ and remove
� s ∈ T ⇒ 0

2 Linear programming (LP, polynomial time)

Optimal solution v

; vs = expectation from s to T under an optimal strategy

Optimal pure memoryless strategy σv:

σv(s) = arg min
a∈A(s)

w(a) +
∑

s′∈S\T

δ(s, a, s ′) · vs′

 .
; playing optimally = locally optimizing present + future
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SSP-E: PTIME algorithm

1 Graph analysis (linear time)

� s not connected to T ⇒ ∞ and remove
� s ∈ T ⇒ 0

2 Linear programming (LP, polynomial time)

In practice, value and strategy iteration algorithms often used

� best performance in most cases but exponential in the
worst-case

� fixed point algorithms, successive solution
improvements [BT91, dA99, HM14]
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Travelling without taking too many risks
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Minimizing the expected time to destination makes sense if we travel
often and it is not a problem to be late.

With car, in 10% of the cases, the journey takes 71 minutes.
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Most bosses will not be happy if we are late too often. . .

; what if we are risk-averse and want to avoid that?
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SSP-P: forcing short paths with high probability

SSP-P problem

Given MDP D = (S , sinit,A, δ,w), target set T , threshold ` ∈ N,
and probability threshold α ∈ [0, 1] ∩Q, decide if there exists a
strategy σ such that PσD

[
{ρ ∈ Rsinit(D) | TST (ρ) ≤ `}

]
≥ α.

Theorem

The SSP-P problem can be decided in pseudo-polynomial time,
and it is PSPACE-hard. Optimal pure strategies with
pseudo-polynomial memory always exist and can be constructed in
pseudo-polynomial time.

See [HK14] for hardness and for example [RRS14a] for algorithm.
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SSP-P: illustration
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Specification: reach work within 40 minutes with 0.95 probability

Sample strategy: take the train ; PσD
[
TSwork ≤ 40

]
= 0.99

Bad choices: car (0.9) and bike (0.0)
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SSP-P: pseudo-PTIME algorithm (1/2)
Key idea: pseudo-PTIME reduction to the stochastic reachability
problem (SR)

SR problem

Given unweighted MDP D = (S , sinit,A, δ), target set T and
probability threshold α ∈ [0, 1]∩Q, decide if there exists a strategy
σ such that PσD

[
♦T

]
≥ α.

Theorem

The SR problem can be decided in polynomial time. Optimal pure
memoryless strategies always exist and can be constructed in
polynomial time.

� linear programming (similar to SSP-E)
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SSP-P: pseudo-PTIME algorithm (2/2)

s1

s2

a, 2

b, 5
0.5

0.5

Sketch of the reduction

1 Start from D, T = {s2}, and ` = 7.
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SSP-P: pseudo-PTIME algorithm (2/2)

s1

s2

a, 2

b, 5
0.5

0.5

Sketch of the reduction

1 Start from D, T = {s2}, and ` = 7.

2 Build D` by unfolding D, tracking the current sum up to the
threshold `, and integrating it in the states of the expanded
MDP.
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SSP-P: pseudo-PTIME algorithm (2/2)
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SSP-P: pseudo-PTIME algorithm (2/2)

3 Bijection between runs of D and D`

TST (ρ) ≤ ` ⇔ ρ′ |= ♦T ′, T ′ = T × {0, 1, . . . , `}
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3 Bijection between runs of D and D`

TST (ρ) ≤ ` ⇔ ρ′ |= ♦T ′, T ′ = T × {0, 1, . . . , `}

4 Solve the SR problem on D`

� Memoryless strategy in D` ; pseudo-polynomial memory in D
in general
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SSP-P: pseudo-PTIME algorithm (2/2)

If we just want to minimize the risk of exceeding ` = 7,

� an obvious possibility is to play b directly,

� playing a only once is also acceptable.

For the SSP-P problem, both strategies are equivalent

; need richer models to discriminate them!

s1, 0
a, 2

s1, 2
a, 2

s1, 4
a, 2

s1, 6
a, 2

b, 5

s1,⊥

s2, 2

s2, 5

s2, 4

s2, 7

b, 5 s2, 6

s2,⊥

b, 5 b, 5

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 21 / 49



Context SSP-E/SSP-P SSP-WE SSP-PQ SSP-ME Conclusion

Related work

SSP-P problem [Oht04, SO13].

Quantile queries [UB13]: minimizing the value ` of an SSP-P
problem for some fixed α. Recently extended to cost
problems [HK14].

SSP-E problem in multi-dimensional MDPs [FKN+11].
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1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion
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SP-G: strict worst-case guarantees
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Specification: guarantee that work is reached within 60 minutes
(to avoid missing an important meeting)
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Specification: guarantee that work is reached within 60 minutes
(to avoid missing an important meeting)

Sample strategy: take the bike ; ∀ ρ ∈ OutσD : TSwork(ρ) ≤ 60

Bad choices: train (wc = ∞) and car (wc = 71)
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Winning surely (worst-case) 6= almost-surely (proba. 1)

� train ensures reaching work with probability one, but does not
prevent runs where work is never reached
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Worst-case analysis ; two-player game against an antagonistic
adversary

� forget about probabilities and give the choice of transitions to
the adversary
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SP-G: shortest path game problem

SP-G problem

Given MDP D = (S , sinit,A, δ,w), target set T and threshold
` ∈ N, decide if there exists a strategy σ such that for all
ρ ∈ OutσD , we have that TST (ρ) ≤ `.

Theorem [KBB+08]

The SP-G problem can be decided in polynomial time. Optimal
pure memoryless strategies always exist and can be constructed in
polynomial time.

� Does not hold for arbitrary weights.
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Related work

Pseudo-PTIME for arbitrary weights [BGHM14, FGR12].

Arbitrary weights + multiple dimensions ; undecidable (by
adapting the proof of [CDRR13] for total-payoff).
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SP-G: PTIME algorithm

1 Cycles are bad ⇒ must reach target within n = |S | steps

2 ∀ s ∈ S , ∀ i , 0 ≤ i ≤ n, compute C(s, i)

� lowest bound on cost to T from s that we can ensure in i steps
� dynamic programming (polynomial time)

Initialize

∀ s ∈ T , C(s, 0) = 0 ∀ s ∈ S \ T , C(s, 0) =∞

Then, ∀ s ∈ S , ∀ i , 1 ≤ i ≤ n,

C(s, i) = min
[
C(s, i−1), min

a∈A(s)
max

s′∈Supp(δ(s,a))
w(a)+C(s ′, i−1)

]
3 Winning strategy iff C(sinit, n) ≤ `
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SSP-WE = SP-G ∩ SSP-E - illustration
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SSP-E: car ; E = 33 but wc = 71 > 60

SP-G: bike ; wc = 45 < 60 but E = 45 >>> 33
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Can we do better?

� Beyond worst-case synthesis [BFRR14b, BFRR14a]:
minimize the expected time under the worst-case constraint.
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SSP-WE = SP-G ∩ SSP-E - illustration
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Sample strategy: try train up to 3 delays then switch to bike.

; wc = 58 < 60 and E ≈ 37.34 << 45

; pure finite-memory strategy
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SSP-WE: beyond worst-case synthesis

SSP-WE problem

Given MDP D = (S , sinit,A, δ,w), target set T , and thresholds
`1, `2 ∈ N, decide if there exists a strategy σ such that:

1 ∀ ρ ∈ OutσD : TST (ρ) ≤ `1,

2 EσD(TST ) ≤ `2.

Theorem [BFRR14b]

The SSP-WE problem can be decided in pseudo-polynomial time
and is NP-hard. Pure pseudo-polynomial-memory strategies are
always sufficient and in general necessary, and satisfying strategies
can be constructed in pseudo-polynomial time.
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SSP-WE: pseudo-PTIME algorithm

s1

s2

a, 2

b, 5
0.5

0.5

Consider SSP-WE problem for `1 = 7 (wc), `2 = 4.8 (E).

� Reduction to the SSP-E problem on a pseudo-polynomial-size
expanded MDP.

1 Build unfolding as for SSP-P problem w.r.t. worst-case
threshold `1.
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SSP-WE: pseudo-PTIME algorithm
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SSP-WE: pseudo-PTIME algorithm

2 Compute R, the attractor of T ′ = T × {0, 1, . . . , `1}.
3 Restrict MDP to D ′ = D`1 � R, the safe part w.r.t. SP-G.
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SSP-WE: pseudo-PTIME algorithm

4 Compute memoryless optimal strategy σ in D ′ for SSP-E.

5 Answer is Yes iff EσD′(TST ′
) ≤ `2.
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SSP-WE: wrap-up

SSP complexity strategy

SSP-E PTIME pure memoryless

SSP-P pseudo-PTIME / PSPACE-h. pure pseudo-poly.

SSP-G PTIME pure memoryless

SSP-WE pseudo-PTIME / NP-h. pure pseudo-poly.

� NP-hardness ⇒ inherently harder than SSP-E and SSP-G.
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Beyond worst-case synthesis for mean-payoff

MP complexity strategy

MP-E PTIME pure memoryless

MP-G NP ∩ coNP pure memoryless

MP-WE NP ∩ coNP pure pseudo-poly.

� Long-run average of weights [EM79], subsumes parity
games [Jur98].

� Additional modeling power for free.

� Much more involved technically [BFRR14b, BFRR14a].
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Multiple objectives ⇒ trade-offs

home

work
car

wreck

bus, 30, 3 taxi, 10, 20

0.7 0.99 0.01

0.3

Two-dimensional weights on actions: time and cost.

Often necessary to consider trade-offs: e.g., between the probability
to reach work in due time and the risks of an expensive journey.
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SSP-P problem considers a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.
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C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.

C2: 50% of them cost at most 10$ to reach work.

� Bus ; ≥ 70% of the runs reach work for 3$.
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SSP-P problem considers a single percentile constraint.

C1: 80% of runs reach work in at most 40 minutes.

� Taxi ; ≤ 10 minutes with probability 0.99 > 0.8.

C2: 50% of them cost at most 10$ to reach work.

� Bus ; ≥ 70% of the runs reach work for 3$.

Taxi 6|= C2, bus 6|= C1. What if we want C1 ∧ C2?
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Multiple objectives ⇒ trade-offs
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C1: 80% of runs reach work in at most 40 minutes.

C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries [RRS14a].

� Sample strategy: bus once, then taxi. Requires memory .

� Another strategy: bus with probability 3/5, taxi with
probability 2/5. Requires randomness.
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Multiple objectives ⇒ trade-offs
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C1: 80% of runs reach work in at most 40 minutes.

C2: 50% of them cost at most 10$ to reach work.

Study of multi-constraint percentile queries [RRS14a].

In general, both memory and randomness are required.

6= previous problems

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 34 / 49



Context SSP-E/SSP-P SSP-WE SSP-PQ SSP-ME Conclusion

SSP-PQ: multi-constraint percentile queries (1/2)

SSP-PQ problem

Given d-dimensional MDP D = (S , sinit,A, δ,w), and q ∈ N
percentile constraints described by target sets Ti ⊆ S , dimensions
ki ∈ {1, . . . , d}, value thresholds `i ∈ N and probability thresholds
αi ∈ [0, 1] ∩Q, where i ∈ {1, . . . , q}, decide if there exists a
strategy σ such that

∀ i ∈ {1, . . . , q}, PσD
[
TSTi

ki
≤ `i

]
≥ αi ,

where TSTi
ki

denotes the truncated sum on dimension ki and
w.r.t. target set Ti .

Very general framework allowing for: multiple constraints related
to 6= dimensions, and 6= target sets.

; Great flexibility in modeling applications.
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SSP-PQ: multi-constraint percentile queries (2/2)

Theorem [RRS14a]

The SSP-PQ problem can be decided in

exponential time in general,

pseudo-polynomial time for single-dimension single-target
multi-contraint queries.

It is PSPACE-hard even for single-constraint queries. Randomized
exponential-memory strategies are always sufficient and in general
necessary, and satisfying strategies can be constructed in
exponential time.

� PSPACE-hardness already true for SSP-P [HK14].

; SSP-PQ = wide extension for basically no price in complexity.
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SSP-PQ: EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP D` similar to SSP-P case:

� stop unfolding when all dimensions reach sum ` = maxi `i .

2 Maintain single-exponential size by defining an equivalence
relation between states of D`:

� S` ⊆ S × ({0, . . . , `} ∪ {⊥})d ,
� pseudo-poly. if d = 1.

3 For each constraint i , compute a target set Ri in D`:

� ρ |= constraint i in D ⇔ ρ′ |= ♦Ri in D`.

4 Solve a multiple reachability problem on D`.

� Generalizes the SR problem [EKVY08, RRS14a].
� Time polynomial in |D`| but exponential in q.
� Single-dim. single target queries ⇒ absorbing targets
⇒ polynomial-time algorithm.
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SSP-PQ: wrap-up

SSP complexity strategy

SSP-E PTIME pure memoryless

SSP-P pseudo-PTIME / PSPACE-h. pure pseudo-poly.

SSP-G PTIME pure memoryless

SSP-WE pseudo-PTIME / NP-h. pure pseudo-poly.

SSP-PQ EXPTIME (p.-PTIME) / PSPACE-h. randomized exponential
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Related work and additional results

Cost problems [HK14]: ∃?σ, PσD
[
TST |= ϕ

]
≥ α.

� Boolean combination of inequalities ϕ.
� Orthogonal to percentiles queries.
� Single-dimensional MDPs and single target T .
� Threshold α bounds the probability of the whole event ϕ

whereas SSP-PQ analyze each event independently.
� Incomparable in general, SSP-P as a common subclass.

SSP-PQ is undecidable for arbitrary weights in
multi-dimensional MDPs, even with a unique target
set [RRS14a].
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Percentile queries: other payoff functions

In [RRS14a], we study a wide range of payoffs: reachability, inf,
sup, lim inf, lim sup, mean-payoff, shortest path (truncated sum),
discounted sum.

� In the most general setting, complexity is at most EXPTIME.

� Only PTIME for fixed query size for all payoffs but the
discounted sum.

� Reduced complexity for single-dimension or single-constraint
queries.

� Most technically involved cases are infimum mean-payoff and
discounted sum.
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Imperfect a priori knowledge of the environment

home

walk, 2

car, 5

station

run, 1

wait, 1
train

go, 35
work

h1
go, 10

h2

go, 15
alternative, 25

0.1
0.9

0.1
0.9

0.1

0.9

Probabilities represent a model of the environment.

� Probability of a train coming 6= when there is a strike.

� We may not know about the strike. . .

How to synthesize strategies with guarantees against several 6= en-
vironments (e.g., strike or not)?
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Imperfect a priori knowledge of the environment

home

walk, 2

car, 5
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Four possible environments, no a priori knowledge of which one we
face:

() no problem,

(S) strike (no train) ⇒ wait always leads back to station,

(A) accident (highway blocked) ⇒ go from h2 always stays in h2,

(AS) both.

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 42 / 49



Context SSP-E/SSP-P SSP-WE SSP-PQ SSP-ME Conclusion

Imperfect a priori knowledge of the environment
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Specification: we want σ such that

PσD [TST ≤ 40] ≥ 0.95,

Pσ
D(S) [TST ≤ 50] ≥ 0.95,

Pσ
D(A) [TST ≤ 40] ≥ 0.95,

Pσ
D(SA) [TST ≤ 75] ≥ 0.95.
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Imperfect a priori knowledge of the environment
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Specification: we want σ such that

PσD [TST ≤ 40] ≥ 0.95,

Pσ
D(S) [TST ≤ 50] ≥ 0.95,

Pσ
D(A) [TST ≤ 40] ≥ 0.95,

Pσ
D(SA) [TST ≤ 75] ≥ 0.95.

Taking the car right away does not ensure to reach work within 40
minutes with probability ≥ 0.95 even when no accident.
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Imperfect a priori knowledge of the environment

home

walk, 2
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Specification: we want σ such that

PσD [TST ≤ 40] ≥ 0.95,

Pσ
D(S) [TST ≤ 50] ≥ 0.95,

Pσ
D(A) [TST ≤ 40] ≥ 0.95,

Pσ
D(SA) [TST ≤ 75] ≥ 0.95.

Taking the car right away does not ensure to reach work within 40
minutes with probability ≥ 0.95 even when no accident.

Never switching to car means certain doom if strike.
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Imperfect a priori knowledge of the environment

home

walk, 2

car, 5
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run, 1

wait, 1
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go, 35
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h2
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alternative, 25

0.1
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0.1
0.9

0.1

0.9

Specification: we want σ such that

PσD [TST ≤ 40] ≥ 0.95,

Pσ
D(S) [TST ≤ 50] ≥ 0.95,

Pσ
D(A) [TST ≤ 40] ≥ 0.95,

Pσ
D(SA) [TST ≤ 75] ≥ 0.95.

Sample strategy:

� go to the station and wait twice,

� if no train, go back and take car,

� take alternative road if we failed to progress twice using go.
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SSP-ME: multi-environment MDPs (1/2)

SSP-ME problem

Given single-dimensional multi-environment
MDP D = (S , sinit,A, (δi )1≤i≤k , (wi )1≤i≤k

)
, target set T ,

thresholds `1, . . . , `k ∈ N, and probabilities α1, . . . , αk ∈ [0, 1] ∩Q,
decide if there exists a strategy σ satisfying

∀i ∈ {1, . . . , k}, PσDi
[TST ≤ `i ] ≥ αi .

Focus on qualitative variants.

� Almost-sure: α1 = . . . = αk = 1.

� Limit-sure: answer is Yes for all (α1, . . . , αk) ∈]0, 1[k
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SSP-ME: multi-environment MDPs (2/2)

Theorem [RS14]

The almost-sure and limit-sure SSP-ME problems can be solved in
pseudo-polynomial time for a fixed number of environments. Pure
finite memory suffices for the almost-sure case, and a family of
finite-memory strategies that witnesses the limit-sure problem can
be computed.

In the quantitative case, approximate version of the problem.

Theorem [RS14]

The SSP-ME problem and the ε-gap SSP-ME are NP-hard. For
any ε > 0, there is a procedure for the ε-gap SSP-ME problem.
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SSP-ME: learning components

Key idea: identify learning components that can be used to
determine almost-surely (resp. limit-surely) the current
environment.

s1 s2

a

a

??? s1 s2

a

a

0.9 0.1

0.1 0.9

� By playing long enough, one can guess the environment with
arbitrarily high probability (but < 1).

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 45 / 49



Context SSP-E/SSP-P SSP-WE SSP-PQ SSP-ME Conclusion

SSP-ME: learning components

Key idea: identify learning components that can be used to
determine almost-surely (resp. limit-surely) the current
environment.

s1 s2

a

a

??? s1 s2

a

a

� One move suffices to determine the environment with
certainty.
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SSP-ME: wrap-up

SSP complexity strategy

SSP-E PTIME pure memoryless

SSP-P pseudo-PTIME / PSPACE-h. pure pseudo-poly.

SSP-G PTIME pure memoryless

SSP-WE pseudo-PTIME / NP-h. pure pseudo-poly.

SSP-PQ EXPTIME (p.-PTIME) / PSPACE-h. randomized exponential

SSP-ME
pseudo-PTIME pure pseudo-poly.

(qual. fixed #)

� Study of [RS14] limited to reachability, safety and parity
objectives with two environments.
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Summary: stochastic shortest path problem
SSP-E: minimize the expected sum to target.
� Actual outcomes may vary greatly.

SSP-P: maximize the probability of acceptable performance.
� No control over the quality of bad runs, no average-case

performance.

SP-G: maximize the worst-case performance, extreme
risk-aversion.
� Strict worst-case guarantees, no average-case performance.

SSP-WE: SSP-E ∩ SP-G.
� Based on beyond worst-case synthesis [BFRR14b, BFRR14a].

SSP-PQ: extends SSP-P to multi-constraint percentile
queries [RRS14a].
� Multi-dimensional, flexible, trade-offs.

SSP-ME: multi-environment MDPs [RS14].
� Overcomes uncertainty about the stochastic model.
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Thank you! Any question?
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Jihui Zhao.
On short paths interdiction problems: Total and node-wise limited interdiction.
pages 204–233, 2008.

Yoshio Ohtsubo.

Optimal threshold probability in undiscounted Markov decision processes with a target set.
Applied Math. and Computation, 149(2):519 – 532, 2004.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.

Percentile queries in multi-dimensional Markov decision processes.
CoRR, abs/1410.4801, 2014.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.

Variations on the stochastic shortest path problem.
CoRR, abs/1411.0835, 2014.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.

Variations on the stochastic shortest path problem.
In Proc. of VMCAI, LNCS. Springer, 2015.

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 52 / 49



References IV

Jean-François Raskin and Ocan Sankur.

Multiple-environment Markov decision processes.
In Proc. of FSTTCS, LIPIcs. Schloss Dagstuhl - LZI, 2014.

Masahiko Sakaguchi and Yoshio Ohtsubo.

Markov decision processes associated with two threshold probability criteria.
Journal of Control Theory and Applications, 11(4):548–557, 2013.

Michael Ummels and Christel Baier.

Computing quantiles in Markov reward models.
In Proc. of FOSSACS, LNCS 7794, pages 353–368. Springer, 2013.

Stochastic Shortest Path Revisited Randour, Raskin, Sankur 53 / 49


	Context, MDPs, strategies
	Classical Stochastic Shortest Path Problem(s)
	Good expectation under acceptable worst-case
	Percentile queries in multi-dimensional MDPs
	Multiple environments
	Conclusion
	Appendix

