Planning a Journey in an Uncertain Environment:
 The Stochastic Shortest Path Problem Revisited

Mickael Randour (LSV - CNRS \& ENS Cachan) Jean-François Raskin (ULB) Ocan Sankur (ULB)

11.12.2014

Laboratoire d'Informatique Fondamentale de Marseille

ULB
UNIVERSITÉ
LIBRE
DE BRUXELLES

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

■ Good? Performance evaluated through payoff functions.
■ Usual problem is to optimize the expected performance or the probability of achieving a given performance level.
■ Not sufficient for many practical applications.
\triangleright Several extensions, more expressive but also more complex...

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding good controllers for systems interacting with a stochastic environment.

■ Good? Performance evaluated through payoff functions.
■ Usual problem is to optimize the expected performance or the probability of achieving a given performance level.
■ Not sufficient for many practical applications.
\triangleright Several extensions, more expressive but also more complex...

Aim of this survey talk

Give a flavor of classical questions and extensions, illustrated on the stochastic shortest path (SSP).

Advertisement

Invited lecture in VMCAl'15 [RRS15]
Full paper available on arXiv: abs/1411.0835
Based on recent work [BFRR14b, RS14, RRS14a]

Stochastic Shortest Path Problem ${ }^{*}$
Vickael Randour ${ }^{2}$, Jean-François Raskin ${ }^{2}$, and Ocan Sankur ${ }^{2}$
LSV, CNRS Raskin ${ }^{2}$, and Ocan Cachan, France
D.partement d'Informatique. Université Libre de Bruxelles Abstract. In this and show how recent resuls to synthesize sth proms reachi
path problem, classical solutions: we on the distribution mimizing its expectications of m

1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion

1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion

Context

■ PhD from UMONS (Belgium), 2014.
\triangleright Supervised by V. Bruyère (UMONS) and J.-F. Raskin (ULB).
\triangleright Title: Synthesis in Multi-Criteria Quantitative Games (available on my website).
■ Talk partly based on research pursued during my thesis.

Context

- PhD from UMONS (Belgium), 2014.
\triangleright Supervised by V. Bruyère (UMONS) and J.-F. Raskin (ULB).
\triangleright Title: Synthesis in Multi-Criteria Quantitative Games (available on my website).
■ Talk partly based on research pursued during my thesis.

General context important to understand the motivation behind the questions we study.

Multi-criteria quantitative synthesis

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.

Multi-criteria quantitative synthesis

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.
■ Model of the (discrete) interaction?
\triangleright Antagonistic environment: 2-player game on graph.
\triangleright Stochastic environment: MDP.

Multi-criteria quantitative synthesis

- Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.
■ Model of the (discrete) interaction?
\triangleright Antagonistic environment: 2-player game on graph.
\triangleright Stochastic environment: MDP.
■ Quantitative specifications. Examples:
\triangleright Reach a state s before x time units \sim shortest path.
\triangleright Minimize the average response-time \leadsto mean-payoff.

Multi-criteria quantitative synthesis

■ Verification and synthesis:
\triangleright a reactive system to control,
\triangleright an interacting environment,
\triangleright a specification to enforce.
■ Model of the (discrete) interaction?
\triangleright Antagonistic environment: 2-player game on graph.
\triangleright Stochastic environment: MDP.

■ Quantitative specifications. Examples:
\triangleright Reach a state s before x time units \sim shortest path.
\triangleright Minimize the average response-time \leadsto mean-payoff.
■ Focus on multi-criteria quantitative models
\triangleright to reason about trade-offs and interplays.

Strategy (policy) synthesis for MDPs

1 How complex is it to decide if a winning strategy exists?
2 How complex such a strategy needs to be? Simpler is better.

3 Can we synthesize one efficiently?

Markov decision processes

■ MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$

\triangleright finite sets of states S and actions A
\triangleright probabilistic transition $\delta: S \times A \rightarrow \mathcal{D}(S)$
\triangleright weight function $w: A \rightarrow \mathbb{Z}$
■ Run (or play): $\rho=s_{1} a_{1} \ldots a_{n-1} s_{n} \ldots$ such that $\delta\left(s_{i}, a_{i}, s_{i+1}\right)>0$ for all $i \geq 1$
\triangleright set of runs $\mathcal{R}(D)$
\triangleright set of histories (finite runs) $\mathcal{H}(D)$
■ Strategy $\sigma: \mathcal{H}(D) \rightarrow \mathcal{D}(A)$
$\triangleright \forall h$ ending in $s, \operatorname{Supp}(\sigma(h)) \in A(s)$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2} s_{3}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2} s_{3} a_{3}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2} s_{3} a_{3} s_{4}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2} s_{3} a_{3} s_{4} a_{4}$

Markov decision processes

Sample pure memoryless strategy σ
Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$
Other possible run $\rho^{\prime}=s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$

Markov decision processes

Sample pure memoryless strategy σ

Sample run $\rho=s_{1} a_{1} s_{2} a_{2} s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$
Other possible run $\rho^{\prime}=s_{1} a_{1} s_{2} a_{2}\left(s_{3} a_{3} s_{4} a_{4}\right)^{\omega}$

- Strategies may use
\triangleright finite or infinite memory
\triangleright randomness
■ Payoff functions map runs to numerical values
\triangleright truncated sum up to $T=\left\{s_{3}\right\}$: $\operatorname{TS}^{T}(\rho)=2, \operatorname{TS}^{T}\left(\rho^{\prime}\right)=1$
\triangleright mean-payoff: $\underline{\mathrm{MP}}(\rho)=\underline{\mathrm{MP}}\left(\rho^{\prime}\right)=1 / 2$
\triangleright many more

Markov chains

Once strategy σ fixed, fully stochastic process \sim Markov chain (MC)

Markov chains

Once strategy σ fixed, fully stochastic process \sim Markov chain (MC)
State space $=$ product of the MDP and the
memory of σ

Markov chains

Once strategy σ fixed, fully stochastic process \sim Markov chain (MC)

State space $=$ product of the MDP and the memory of σ

- Event $\mathcal{E} \subseteq \mathcal{R}(M)$
\triangleright probability $\mathbb{P}_{M}(\mathcal{E})$
■ Measurable $f: \mathcal{R}(M) \rightarrow \mathbb{R} \cup\{\infty\}$,
\triangleright expected value $\mathbb{E}_{M}(f)$

Aim of this survey

Review and compare different types of quantitative specifications for MDPs
\triangleright w.r.t. the complexity of the decision problem
\triangleright w.r.t. the complexity of winning strategies
Recent extensions share a common philosophy: framework for the synthesis of strategies with richer performance guarantees
\triangleright our work deals with many different payoff functions

Aim of this survey

Review and compare different types of quantitative specifications for MDPs
\triangleright w.r.t. the complexity of the decision problem
\triangleright w.r.t. the complexity of winning strategies
Recent extensions share a common philosophy: framework for the synthesis of strategies with richer performance guarantees
\triangleright our work deals with many different payoff functions
Focus on the shortest path problem in this talk
\triangleright not the most involved technically
\triangleright natural applications
\sim useful to understand the practical interest of each variant

+ brief mention of results for other payoffs

1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion

Stochastic shortest path

Shortest path problem for weighted graphs

Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that minimizes the sum of weights along edges.
\triangleright PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

Stochastic shortest path

Shortest path problem for weighted graphs
Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that minimizes the sum of weights along edges.
\triangleright PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]
We focus on MDPs with strictly positive weights in this talk
\triangleright Truncated sum payoff function for $\rho=s_{1} a_{1} s_{2} a_{2} \ldots$ and target set T :

$$
\operatorname{TS}^{T}(\rho)=\left\{\begin{array}{l}
\sum_{j=1}^{n-1} w\left(a_{j}\right) \text { if } s_{n} \text { first visit of } T \\
\infty \text { if } T \text { is never reached }
\end{array}\right.
$$

Planning a journey in an uncertain environment

Each action takes time, target $=$ work.
\triangleright What kind of strategies are we looking for when the environment is stochastic?

SSP-E: minimizing the expected length to target

SSP-E problem

Given MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, target set T and threshold $\ell \in \mathbb{N}$, decide if there exists σ such that $\mathbb{E}_{D}^{\sigma}\left(\mathrm{TS}^{T}\right) \leq \ell$.

Theorem [BT91]

The SSP-E problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.

SSP-E: illustration

\triangleright Pure memoryless strategies suffice.
\triangleright Taking the car is optimal: $\mathbb{E}_{D}^{\sigma}\left(\mathrm{TS}^{T}\right)=33$.

SSP-E: PTIME algorithm

1 Graph analysis (linear time)
$\triangleright s$ not connected to $T \Rightarrow \infty$ and remove
$\triangleright s \in T \Rightarrow 0$
2 Linear programming (LP, polynomial time)

SSP-E: PTIME algorithm

1 Graph analysis (linear time)
$\triangleright s$ not connected to $T \Rightarrow \infty$ and remove
$\triangleright s \in T \Rightarrow 0$
2 Linear programming (LP, polynomial time)
For each $s \in S \backslash T$, one variable x_{s},

$$
\max \sum_{s \in S \backslash T} x_{s}
$$

under the constraints

$$
x_{s} \leq w(a)+\sum_{s^{\prime} \in S \backslash T} \delta\left(s, a, s^{\prime}\right) \cdot x_{s^{\prime}} \quad \text { for all } s \in S \backslash T, \text { for all } a \in A(s)
$$

SSP-E: PTIME algorithm

1 Graph analysis (linear time)
$\triangleright s$ not connected to $T \Rightarrow \infty$ and remove
$\triangleright s \in T \Rightarrow 0$
2 Linear programming (LP, polynomial time)
Optimal solution v
$\sim \mathbf{v}_{s}=$ expectation from s to T under an optimal strategy Optimal pure memoryless strategy $\sigma^{\mathbf{v}}$:

$$
\sigma^{\mathfrak{v}}(s)=\arg \min _{a \in A(s)}\left[w(a)+\sum_{s^{\prime} \in S \backslash T} \delta\left(s, a, s^{\prime}\right) \cdot \mathbf{v}_{s^{\prime}}\right] .
$$

\sim playing optimally $=$ locally optimizing present + future

SSP-E: PTIME algorithm

1 Graph analysis (linear time)
$\triangleright s$ not connected to $T \Rightarrow \infty$ and remove
$\triangleright s \in T \Rightarrow 0$
2 Linear programming (LP, polynomial time)
In practice, value and strategy iteration algorithms often used
\triangleright best performance in most cases but exponential in the worst-case
\triangleright fixed point algorithms, successive solution improvements [BT91, dA99, HM14]

Travelling without taking too many risks

Minimizing the expected time to destination makes sense if we travel often and it is not a problem to be late.
With car, in 10% of the cases, the journey takes 71 minutes.

Travelling without taking too many risks

Most bosses will not be happy if we are late too often. . .
\sim what if we are risk-averse and want to avoid that?

SSP-P: forcing short paths with high probability

SSP-P problem

Given MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, target set T, threshold $\ell \in \mathbb{N}$, and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_{D}^{\sigma}\left[\left\{\rho \in \mathcal{R}_{s_{\text {init }}}(D) \mid \operatorname{TS}^{T}(\rho) \leq \ell\right\}\right] \geq \alpha$.

> Theorem
> The SSP-P problem can be decided in pseudo-polynomial time, and it is PSPACE-hard. Optimal pure strategies with pseudo-polynomial memory always exist and can be constructed in pseudo-polynomial time.

See [HK14] for hardness and for example [RRS14a] for algorithm.

SSP-P: illustration

Specification: reach work within 40 minutes with 0.95 probability

SSP-P: illustration

Specification: reach work within 40 minutes with 0.95 probability Sample strategy: take the train $\sim \mathbb{P}_{D}^{\sigma}\left[\mathrm{TS}^{\text {work }} \leq 40\right]=0.99$ Bad choices: car (0.9) and bike (0.0)

SSP-P: pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the stochastic reachability problem (SR)

SSP-P: pseudo-PTIME algorithm (1/2)

Key idea: pseudo-PTIME reduction to the stochastic reachability problem (SR)

SR problem

Given unweighted MDP $D=\left(S, s_{\text {init }}, A, \delta\right)$, target set T and probability threshold $\alpha \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_{D}^{\sigma}[\diamond T] \geq \alpha$.

Theorem

The SR problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.

$$
\triangleright \text { linear programming (similar to SSP-E) }
$$

SSP-P: pseudo-PTIME algorithm (2/2)

Sketch of the reduction
1 Start from $D, T=\left\{s_{2}\right\}$, and $\ell=7$.

SSP-P: pseudo-PTIME algorithm (2/2)

Sketch of the reduction
1 Start from $D, T=\left\{s_{2}\right\}$, and $\ell=7$.
2 Build D_{ℓ} by unfolding D, tracking the current sum up to the threshold ℓ, and integrating it in the states of the expanded MDP.

SSP-P: pseudo-PTIME algorithm (2/2)

SSP-P: pseudo-PTIME algorithm (2/2)

3 Bijection between runs of D and D_{ℓ}

$$
\operatorname{TS}^{T}(\rho) \leq \ell \quad \Leftrightarrow \quad \rho^{\prime} \models \diamond T^{\prime}, T^{\prime}=T \times\{0,1, \ldots, \ell\}
$$

SSP-P: pseudo-PTIME algorithm (2/2)

3 Bijection between runs of D and D_{ℓ}

$$
\operatorname{TS}^{T}(\rho) \leq \ell \quad \Leftrightarrow \quad \rho^{\prime} \mid \diamond T^{\prime}, T^{\prime}=T \times\{0,1, \ldots, \ell\}
$$

4 Solve the SR problem on D_{ℓ}
\triangleright Memoryless strategy in $D_{\ell} \leadsto$ pseudo-polynomial memory in D in general

SSP-P: pseudo-PTIME algorithm (2/2)

If we just want to minimize the risk of exceeding $\ell=7$,
\triangleright an obvious possibility is to play b directly,
\triangleright playing a only once is also acceptable.
For the SSP-P problem, both strategies are equivalent
\sim need richer models to discriminate them!

Related work

■ SSP-P problem [Oht04, SO13].

- Quantile queries [UB13]: minimizing the value ℓ of an SSP-P problem for some fixed α. Recently extended to cost problems [HK14].

■ SSP-E problem in multi-dimensional MDPs $\left[\mathrm{FKN}^{+} 11\right]$.

1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion

SP-G: strict worst-case guarantees

Specification: guarantee that work is reached within 60 minutes (to avoid missing an important meeting)

SP-G: strict worst-case guarantees

Specification: guarantee that work is reached within 60 minutes (to avoid missing an important meeting)
Sample strategy: take the bike $\leadsto \forall \rho \in \operatorname{Out}_{D}^{\sigma}$: $\operatorname{TS}^{\text {work }}(\rho) \leq 60$
Bad choices: train $(w c=\infty)$ and car $(w c=71)$

SP-G: strict worst-case guarantees

Winning surely (worst-case) \neq almost-surely (proba. 1)
\triangleright train ensures reaching work with probability one, but does not prevent runs where work is never reached

SP-G: strict worst-case guarantees

Worst-case analysis \sim two-player game against an antagonistic adversary
\triangleright forget about probabilities and give the choice of transitions to the adversary

SP-G: shortest path game problem

SP-G problem

Given MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, target set T and threshold $\ell \in \mathbb{N}$, decide if there exists a strategy σ such that for all $\rho \in \mathrm{Out}_{D}^{\sigma}$, we have that $\operatorname{TS}^{T}(\rho) \leq \ell$.

Theorem $\left[\mathrm{KBB}^{+} 08\right]$

The SP-G problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.
\triangleright Does not hold for arbitrary weights.

Related work

- Pseudo-PTIME for arbitrary weights [BGHM14, FGR12].
- Arbitrary weights + multiple dimensions \sim undecidable (by adapting the proof of [CDRR13] for total-payoff).

SP-G: PTIME algorithm

1 Cycles are bad \Rightarrow must reach target within $n=|S|$ steps
$2 \forall s \in S, \forall i, 0 \leq i \leq n$, compute $\mathbb{C}(s, i)$
\triangleright lowest bound on cost to T from s that we can ensure in i steps
\triangleright dynamic programming (polynomial time)
Initialize

$$
\forall s \in T, \mathbb{C}(s, 0)=0 \quad \forall s \in S \backslash T, \mathbb{C}(s, 0)=\infty
$$

Then, $\forall s \in S, \forall i, 1 \leq i \leq n$,
$\mathbb{C}(s, i)=\min \left[\mathbb{C}(s, i-1), \min _{a \in A(s)} \max _{s^{\prime} \in \operatorname{Supp}(\delta(s, a))} w(a)+\mathbb{C}\left(s^{\prime}, i-1\right)\right]$
3 Winning strategy iff $\mathbb{C}\left(s_{\text {init }}, n\right) \leq \ell$

SSP-WE = SP-G \cap SSP-E - illustration

- SSP-E: car $\sim \mathbb{E}=33$ but $w c=71>60$

■ SP-G: bike $\sim w c=45<60$ but $\mathbb{E}=45 \ggg 33$

SSP-WE = SP-G \cap SSP-E - illustration

Can we do better?
\triangleright Beyond worst-case synthesis [BFRR14b, BFRR14a]: minimize the expected time under the worst-case constraint.

SSP-WE = SP-G \cap SSP-E - illustration

Sample strategy: try train up to 3 delays then switch to bike.
$\sim w c=58<60$ and $\mathbb{E} \approx 37.34 \ll 45$
\sim pure finite-memory strategy

SSP-WE: beyond worst-case synthesis

SSP-WE problem

Given MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, target set T, and thresholds $\ell_{1}, \ell_{2} \in \mathbb{N}$, decide if there exists a strategy σ such that:
$1 \forall \rho \in \operatorname{Out}_{D}^{\sigma}: \operatorname{TS}^{T}(\rho) \leq \ell_{1}$,
$2 \mathbb{E}_{D}^{\sigma}\left(\mathrm{TS}^{T}\right) \leq \ell_{2}$.

Theorem [BFRR14b]

The SSP-WE problem can be decided in pseudo-polynomial time and is NP-hard. Pure pseudo-polynomial-memory strategies are always sufficient and in general necessary, and satisfying strategies can be constructed in pseudo-polynomial time.

SSP-WE: pseudo-PTIME algorithm

Consider SSP-WE problem for $\ell_{1}=7(w c), \ell_{2}=4.8(\mathbb{E})$.
\triangleright Reduction to the SSP-E problem on a pseudo-polynomial-size expanded MDP.

1 Build unfolding as for SSP-P problem w.r.t. worst-case threshold ℓ_{1}.

SSP-WE: pseudo-PTIME algorithm

SSP-WE: pseudo-PTIME algorithm

2 Compute R, the attractor of $T^{\prime}=T \times\left\{0,1, \ldots, \ell_{1}\right\}$.
3 Restrict MDP to $D^{\prime}=D_{\ell_{1}} \downharpoonright R$, the safe part w.r.t. SP-G.

SSP-WE: pseudo-PTIME algorithm

2 Compute R, the attractor of $T^{\prime}=T \times\left\{0,1, \ldots, \ell_{1}\right\}$.
3 Restrict MDP to $D^{\prime}=D_{\ell_{1}} \downharpoonright R$, the safe part w.r.t. SP-G.

SSP-WE: pseudo-PTIME algorithm

4 Compute memoryless optimal strategy σ in D^{\prime} for SSP-E.
5 Answer is YES iff $\mathbb{E}_{D^{\prime}}^{\sigma}\left(\mathrm{TS}^{T^{\prime}}\right) \leq \ell_{2}$.

SSP-WE: pseudo-PTIME algorithm

4 Compute memoryless optimal strategy σ in D^{\prime} for SSP-E.
5 Answer is YES iff $\mathbb{E}_{D^{\prime}}^{\sigma}\left(\mathrm{TS}^{T^{\prime}}\right) \leq \ell_{2}$.

$$
\begin{gathered}
\text { Here, } \\
\mathbb{E}_{D^{\prime}}^{\sigma}\left(\mathrm{TS}^{T^{\prime}}\right)=9 / 2
\end{gathered}
$$

SSP-WE: wrap-up

SSP	complexity	strategy
SSP-E	PTIME	pure memoryless
SSP-P	pseudo-PTIME / PSPACE-h.	pure pseudo-poly.
SSP-G	PTIME	pure memoryless
SSP-WE	pseudo-PTIME / NP-h.	pure pseudo-poly.

\triangleright NP-hardness \Rightarrow inherently harder than SSP-E and SSP-G.

Beyond worst-case synthesis for mean-payoff

MP	complexity	strategy
MP-E	PTIME	pure memoryless
MP-G	NP \cap coNP	pure memoryless
MP-WE	NP \cap coNP	pure pseudo-poly.

\triangleright Long-run average of weights [EM79], subsumes parity games [Jur98].
\triangleright Additional modeling power for free.
\triangleright Much more involved technically [BFRR14b, BFRR14a].

1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion

Multiple objectives \Rightarrow trade-offs

Two-dimensional weights on actions: time and cost.
Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.

Multiple objectives \Rightarrow trade-offs

SSP-P problem considers a single percentile constraint.
■ C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.

Multiple objectives \Rightarrow trade-offs

SSP-P problem considers a single percentile constraint.
■ C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.

Multiple objectives \Rightarrow trade-offs

SSP-P problem considers a single percentile constraint.

- C1: 80% of runs reach work in at most 40 minutes.
\triangleright Taxi $\leadsto \leq 10$ minutes with probability $0.99>0.8$.
■ C2: 50% of them cost at most $10 \$$ to reach work.
\triangleright Bus $\sim \geq 70 \%$ of the runs reach work for $3 \$$.
Taxi $\not \models \mathrm{C} 2$, bus $\not \vDash \mathrm{C} 1$. What if we want $\mathrm{C} 1 \wedge \mathrm{C} 2$?

Multiple objectives \Rightarrow trade-offs

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS14a].
\triangleright Sample strategy: bus once, then taxi. Requires memory.
\triangleright Another strategy: bus with probability $3 / 5$, taxi with probability $2 / 5$. Requires randomness.

Multiple objectives \Rightarrow trade-offs

- C1: 80% of runs reach work in at most 40 minutes.

■ C2: 50% of them cost at most $10 \$$ to reach work.
Study of multi-constraint percentile queries [RRS14a].
In general, both memory and randomness are required.
\neq previous problems

SSP-PQ: multi-constraint percentile queries (1/2)

SSP-PQ problem

Given d-dimensional MDP $D=\left(S, s_{\text {init }}, A, \delta, w\right)$, and $q \in \mathbb{N}$ percentile constraints described by target sets $T_{i} \subseteq S$, dimensions $k_{i} \in\{1, \ldots, d\}$, value thresholds $\ell_{i} \in \mathbb{N}$ and probability thresholds $\alpha_{i} \in[0,1] \cap \mathbb{Q}$, where $i \in\{1, \ldots, q\}$, decide if there exists a strategy σ such that

$$
\forall i \in\{1, \ldots, q\}, \mathbb{P}_{D}^{\sigma}\left[\mathrm{TS}_{k_{i}}^{T_{i}} \leq \ell_{i}\right] \geq \alpha_{i},
$$

where $\mathrm{TS}_{k_{i}}^{T_{i}}$ denotes the truncated sum on dimension k_{i} and w.r.t. target set T_{i}.

Very general framework allowing for: multiple constraints related to \neq dimensions, and \neq target sets.
\sim Great flexibility in modeling applications.

SSP-PQ: multi-constraint percentile queries (2/2)

Theorem [RRS14a]

The SSP-PQ problem can be decided in

- exponential time in general,
- pseudo-polynomial time for single-dimension single-target multi-contraint queries.
It is PSPACE-hard even for single-constraint queries. Randomized exponential-memory strategies are always sufficient and in general necessary, and satisfying strategies can be constructed in exponential time.
\triangleright PSPACE-hardness already true for SSP-P [HK14].
\sim SSP-PQ $=$ wide extension for basically no price in complexity.

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP D_{ℓ} similar to SSP-P case:
\triangleright stop unfolding when all dimensions reach sum $\ell=\max _{i} \ell_{i}$.

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP D_{ℓ} similar to SSP-P case:
\triangleright stop unfolding when all dimensions reach sum $\ell=\max _{i} \ell_{i}$.
2 Maintain single-exponential size by defining an equivalence relation between states of D_{ℓ} :
$\triangleright S_{\ell} \subseteq S \times(\{0, \ldots, \ell\} \cup\{\perp\})^{d}$,
\triangleright pseudo-poly. if $d=1$.

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP D_{ℓ} similar to SSP-P case:
\triangleright stop unfolding when all dimensions reach sum $\ell=\max _{i} \ell_{i}$.
2 Maintain single-exponential size by defining an equivalence relation between states of D_{ℓ} :
$\triangleright S_{\ell} \subseteq S \times(\{0, \ldots, \ell\} \cup\{\perp\})^{d}$,
\triangleright pseudo-poly. if $d=1$.
3 For each constraint i, compute a target set R_{i} in D_{ℓ} :
$\triangleright \rho \models$ constraint i in $D \Leftrightarrow \rho^{\prime} \models \diamond R_{i}$ in D_{ℓ}.

SSP-PQ: EXPTIME / pseudo-PTIME algorithm

1 Build an unfolded MDP D_{ℓ} similar to SSP-P case:
\triangleright stop unfolding when all dimensions reach sum $\ell=\max _{i} \ell_{i}$.
2 Maintain single-exponential size by defining an equivalence relation between states of D_{ℓ} :
$\triangleright S_{\ell} \subseteq S \times(\{0, \ldots, \ell\} \cup\{\perp\})^{d}$,
\triangleright pseudo-poly. if $d=1$.
3 For each constraint i, compute a target set R_{i} in D_{ℓ} :
$\triangleright \rho \models$ constraint i in $D \Leftrightarrow \rho^{\prime} \models \diamond R_{i}$ in D_{ℓ}.
4 Solve a multiple reachability problem on D_{ℓ}.
\triangleright Generalizes the SR problem [EKVY08, RRS14a].
\triangleright Time polynomial in $\left|D_{\ell}\right|$ but exponential in q.
\triangleright Single-dim. single target queries \Rightarrow absorbing targets \Rightarrow polynomial-time algorithm.

SSP-PQ: wrap-up

SSP	complexity	strategy
SSP-E	PTIME	pure memoryless
SSP-P	pseudo-PTIME / PSPACE-h.	pure pseudo-poly.
SSP-G	PTIME	pure memoryless
SSP-WE	pseudo-PTIME / NP-h.	pure pseudo-poly.
SSP-PQ	EXPTIME (p.-PTIME) / PSPACE-h.	randomized exponential

Related work and additional results

- Cost problems [HK14]: \exists ? $\sigma, \mathbb{P}_{D}^{\sigma}\left[\mathrm{TS}^{\top} \models \varphi\right] \geq \alpha$.
\triangleright Boolean combination of inequalities φ.
\triangleright Orthogonal to percentiles queries.
\triangleright Single-dimensional MDPs and single target T.
\triangleright Threshold α bounds the probability of the whole event φ whereas SSP-PQ analyze each event independently.
\triangleright Incomparable in general, SSP-P as a common subclass.
- SSP-PQ is undecidable for arbitrary weights in multi-dimensional MDPs, even with a unique target set [RRS14a].

Percentile queries: other payoff functions

In [RRS14a], we study a wide range of payoffs: reachability, inf, sup, liminf, lim sup, mean-payoff, shortest path (truncated sum), discounted sum.
\triangleright In the most general setting, complexity is at most EXPTIME.
\triangleright Only PTIME for fixed query size for all payoffs but the discounted sum.
\triangleright Reduced complexity for single-dimension or single-constraint queries.
\triangleright Most technically involved cases are infimum mean-payoff and discounted sum.

1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion

Imperfect a priori knowledge of the environment

Probabilities represent a model of the environment.
\triangleright Probability of a train coming \neq when there is a strike.
\triangleright We may not know about the strike...
How to synthesize strategies with guarantees against several \neq environments (e.g., strike or not)?

Imperfect a priori knowledge of the environment

Four possible environments, no a priori knowledge of which one we face:
() no problem,
(S) strike (no train) \Rightarrow wait always leads back to station,
(A) accident (highway blocked) \Rightarrow go from h_{2} always stays in h_{2},
(AS) both.

Imperfect a priori knowledge of the environment

Specification: we want σ such that

- $\mathbb{P}_{D}^{\sigma}\left[\right.$ TS $\left.^{\top} \leq 40\right] \geq 0.95$,
- $\mathbb{P}_{D^{(A)}}^{\sigma}\left[\mathrm{TS}^{T} \leq 40\right] \geq 0.95$,

■ $\mathbb{P}_{D^{(S)}}^{\sigma}\left[T S^{T} \leq 50\right] \geq 0.95, \quad ■ \mathbb{P}_{D^{(S A)}}^{\sigma}\left[\mathrm{TS}^{T} \leq 75\right] \geq 0.95$.

Imperfect a priori knowledge of the environment

Specification: we want σ such that

- $\mathbb{P}_{D}^{\sigma}\left[\right.$ TS $\left.^{\top} \leq 40\right] \geq 0.95$,
- $\mathbb{P}_{D^{(A)}}^{\sigma}\left[T S^{T} \leq 40\right] \geq 0.95$,
- $\mathbb{P}_{D^{(s)}}^{\sigma}\left[T S^{T} \leq 50\right] \geq 0.95$,
- $\mathbb{P}_{D^{\sigma}(S A)}^{\sigma}\left[\mathrm{TS}^{\top} \leq 75\right] \geq 0.95$.

Taking the car right away does not ensure to reach work within 40 minutes with probability ≥ 0.95 even when no accident.

Imperfect a priori knowledge of the environment

Specification: we want σ such that

- $\mathbb{P}_{D}^{\sigma}\left[\right.$ TS $\left.^{\top} \leq 40\right] \geq 0.95$,
- $\mathbb{P}_{D^{(A)}}^{\sigma}\left[T S^{T} \leq 40\right] \geq 0.95$,
- $\mathbb{P}_{D^{(s)}}^{\sigma}\left[T S^{T} \leq 50\right] \geq 0.95$,
- $\mathbb{P}_{D^{\sigma}(S A)}^{\sigma}\left[\mathrm{TS}^{\top} \leq 75\right] \geq 0.95$.

Taking the car right away does not ensure to reach work within 40 minutes with probability ≥ 0.95 even when no accident.

Never switching to car means certain doom if strike.

Imperfect a priori knowledge of the environment

Specification: we want σ such that

- $\mathbb{P}_{D}^{\sigma}\left[\mathrm{TS}^{T} \leq 40\right] \geq 0.95$,
- $\mathbb{P}_{D^{(A)}}^{\sigma}\left[\mathrm{TS}^{T} \leq 40\right] \geq 0.95$,
- $\mathbb{P}_{D^{(S)}}^{\sigma}\left[\mathrm{TS}^{T} \leq 50\right] \geq 0.95$,
- $\mathbb{P}_{D^{(S A)}}^{\sigma}\left[\mathrm{TS}^{T} \leq 75\right] \geq 0.95$.

Sample strategy:

\triangleright go to the station and wait twice,
\triangleright if no train, go back and take car,
\triangleright take alternative road if we failed to progress twice using go.

SSP-ME: multi-environment MDPs $(1 / 2)$

SSP-ME problem

Given single-dimensional multi-environment MDP $D=\left(S, s_{\text {init }}, A,\left(\delta_{i}\right)_{1 \leq i \leq k},\left(w_{i}\right)_{1 \leq i \leq k}\right)$, target set T, thresholds $\ell_{1}, \ldots, \ell_{k} \in \mathbb{N}$, and probabilities $\alpha_{1}, \ldots, \alpha_{k} \in[0,1] \cap \mathbb{Q}$, decide if there exists a strategy σ satisfying

$$
\forall i \in\{1, \ldots, k\}, \mathbb{P}_{D_{i}}^{\sigma}\left[\text { TS }^{T} \leq \ell_{i}\right] \geq \alpha_{i}
$$

Focus on qualitative variants.
\triangleright Almost-sure: $\alpha_{1}=\ldots=\alpha_{k}=1$.
\triangleright Limit-sure: answer is YES for all $\left.\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in\right] 0,1\left[{ }^{k}\right.$

SSP-ME: multi-environment MDPs (2/2)

Theorem [RS14]

The almost-sure and limit-sure SSP-ME problems can be solved in pseudo-polynomial time for a fixed number of environments. Pure finite memory suffices for the almost-sure case, and a family of finite-memory strategies that witnesses the limit-sure problem can be computed.

In the quantitative case, approximate version of the problem.

Theorem [RS14]

The SSP-ME problem and the ε-gap SSP-ME are NP-hard. For any $\varepsilon>0$, there is a procedure for the ε-gap SSP-ME problem.

SSP-ME: learning components

Key idea: identify learning components that can be used to determine almost-surely (resp. limit-surely) the current environment.

\triangleright By playing long enough, one can guess the environment with arbitrarily high probability (but <1).

SSP-ME: learning components

Key idea: identify learning components that can be used to determine almost-surely (resp. limit-surely) the current environment.

\triangleright One move suffices to determine the environment with certainty.

SSP-ME: wrap-up

SSP	complexity	strategy
SSP-E	PTIME	pure memoryless
SSP-P	pseudo-PTIME / PSPACE-h.	pure pseudo-poly.
SSP-G	PTIME	pure memoryless
SSP-WE	pseudo-PTIME / NP-h.	pure pseudo-poly.
SSP-PQ	EXPTIME (p.-PTIME) / PSPACE-h.	randomized exponential
SSP-ME (qual. fixed \#)	pseudo-PTIME	pure pseudo-poly.

\triangleright Study of [RS14] limited to reachability, safety and parity objectives with two environments.

1 Context, MDPs, strategies

2 Classical Stochastic Shortest Path Problem(s)

3 Good expectation under acceptable worst-case

4 Percentile queries in multi-dimensional MDPs

5 Multiple environments

6 Conclusion

Summary: stochastic shortest path problem

- SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

■ SP-G: maximize the worst-case performance, extreme risk-aversion.
\triangleright Strict worst-case guarantees, no average-case performance.

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

■ SP-G: maximize the worst-case performance, extreme risk-aversion.
\triangleright Strict worst-case guarantees, no average-case performance.
■ SSP-WE: SSP-E \cap SP-G.
\triangleright Based on beyond worst-case synthesis [BFRR14b, BFRR14a].

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

■ SP-G: maximize the worst-case performance, extreme risk-aversion.
\triangleright Strict worst-case guarantees, no average-case performance.
■ SSP-WE: SSP-E \cap SP-G.
\triangleright Based on beyond worst-case synthesis [BFRR14b, BFRR14a].
■ SSP-PQ: extends SSP-P to multi-constraint percentile queries [RRS14a].
\triangleright Multi-dimensional, flexible, trade-offs.

Summary: stochastic shortest path problem

■ SSP-E: minimize the expected sum to target.
\triangleright Actual outcomes may vary greatly.
■ SSP-P: maximize the probability of acceptable performance.
\triangleright No control over the quality of bad runs, no average-case performance.

- SP-G: maximize the worst-case performance, extreme risk-aversion.
\triangleright Strict worst-case guarantees, no average-case performance.
■ SSP-WE: SSP-E \cap SP-G.
\triangleright Based on beyond worst-case synthesis [BFRR14b, BFRR14a].
■ SSP-PQ: extends SSP-P to multi-constraint percentile queries [RRS14a].
\triangleright Multi-dimensional, flexible, trade-offs.
- SSP-ME: multi-environment MDPs [RS14].
\triangleright Overcomes uncertainty about the stochastic model.

Thank you! Any question?

References I

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin.
Expectations or guarantees? I want it all! A crossroad between games and MDPs.
In Proc. of SR, EPTCS 146, pages 1-8, 2014.
Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In Proc. of STACS, LIPIcs 25, pages 199-213. Schloss Dagstuhl - LZI, 2014.

Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege.
To reach or not to reach? Efficient algorithms for total-payoff games.
CoRR, abs/1407.5030, 2014.
Dimitri P. Bertsekas and John N. Tsitsiklis.
An analysis of stochastic shortest path problems.
Mathematics of Operations Research, 16(3):580-595, 1991.
Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin.
Looking at mean-payoff and total-payoff through windows.
In Proc. of ATVA, LNCS 8172, pages 118-132. Springer, 2013.
Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.
Shortest paths algorithms: Theory and experimental evaluation.
Math. programming, 73(2):129-174, 1996.
Luca de Alfaro.
Computing minimum and maximum reachability times in probabilistic systems.
In Proc. of CONCUR, LNCS 1664, pages 66-81. Springer, 1999.

References II

Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.
Multi-objective model checking of Markov decision processes.
LMCS, 4(4), 2008.
Andrzej Ehrenfeucht and Jan Mycielski.
Positional strategies for mean payoff games.
International Journal of Game Theory, 8:109-113, 1979.
Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin.
Quantitative languages defined by functional automata.
In Proc. of CONCUR, LNCS 7454, pages 132-146. Springer, 2012.
Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu.
Quantitative multi-objective verification for probabilistic systems.
In Proc. of TACAS, LNCS 6605, pages 112-127. Springer, 2011.
Christoph Haase and Stefan Kiefer.
The odds of staying on budget.
CoRR, abs/1409.8228, 2014.
Serge Haddad and Benjamin Monmege.
Reachability in MDPs: Refining convergence of value iteration.
In Joël Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems - 8th International
Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings, volume 8762 of Lecture Notes in Computer Science, pages 125-137. Springer, 2014.

References III

Marcin Jurdzinski.
Deciding the winner in parity games is in UP \cap co-UP.
Inf. Process. Lett., 68(3):119-124, 1998.
Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gurvich, Gábor Rudolf, and Jihui Zhao.
On short paths interdiction problems: Total and node-wise limited interdiction.
pages 204-233, 2008.
Yoshio Ohtsubo.
Optimal threshold probability in undiscounted Markov decision processes with a target set. Applied Math. and Computation, 149(2):519-532, 2004.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Percentile queries in multi-dimensional Markov decision processes.
CoRR, abs/1410.4801, 2014.
Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Variations on the stochastic shortest path problem.
CoRR, abs/1411.0835, 2014.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.
Variations on the stochastic shortest path problem.
In Proc. of VMCAI, LNCS. Springer, 2015.

References IV

Jean-François Raskin and Ocan Sankur.
Multiple-environment Markov decision processes.
In Proc. of FSTTCS, LIPIcs. Schloss Dagstuhl - LZI, 2014.
Masahiko Sakaguchi and Yoshio Ohtsubo.
Markov decision processes associated with two threshold probability criteria.
Journal of Control Theory and Applications, 11(4):548-557, 2013.
Michael Ummels and Christel Baier.
Computing quantiles in Markov reward models.
In Proc. of FOSSACS, LNCS 7794, pages 353-368. Springer, 2013.

