Planning a Journey in an Uncertain Environment: The Stochastic Shortest Path Problem Revisited

Mickael Randour (LSV - CNRS & ENS Cachan) Jean-François Raskin (ULB) Ocan Sankur (ULB)

11.12.2014

Laboratoire d'Informatique Fondamentale de Marseille

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding **good** controllers for systems interacting with a *stochastic* environment.

Context S	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000 0	00000000000	000000000	0000000	000000	000

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding **good** controllers for systems interacting with a *stochastic* environment.

- Good? Performance evaluated through payoff functions.
- Usual problem is to optimize the *expected performance* or the *probability of achieving a given performance level*.
- Not sufficient for many practical applications.
 - ▷ Several extensions, more expressive but also more complex...

	-1 JJI-VVL		SSP-IVIE	Conclusion
000000 0000000	00000 00000	000000 000000	000000	000

The talk in one slide

Strategy synthesis for Markov Decision Processes (MDPs)

Finding **good** controllers for systems interacting with a *stochastic* environment.

- Good? Performance evaluated through payoff functions.
- Usual problem is to optimize the expected performance or the probability of achieving a given performance level.
- Not sufficient for many practical applications.
 - > Several extensions, more expressive but also more complex...

Aim of this survey talk

Give a flavor of classical questions and extensions, illustrated on the stochastic shortest path (SSP).

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Advertisement

Invited lecture in VMCAI'15 [RRS15] Full paper available on arXiv: abs/1411.0835 Based on recent work [BFRR14b, RS14, RRS14a]

> Variations on the Stochastic Shortest Path Problem.* Micked Randow¹, Iean-François Raskir², and Ocan Sanker ¹ ISV. CSRS & ENS Cadam. France ² Département d'Informatique, Université Likre de Investes (U.L.B), Beijei Abstract. In this invited coartivision we resti at mensaries autorement autorementations to syntaxic entre autorement autorement unassella addression en the dampet minimization set en emploration autorement autorement whole guarantees on the dampet minimization are enough easter autorement university and the syntaxic ender and the like sequence autorement whole guarantees on the dampet minimization are enough easter and whole guarantees on the dampet minimization are enough easter and and the syntaxic ender and the like sequence autorement and the syntaxic ender and the security of the dampet minimization are enough easter and and the syntaxic ender and the security of the dampet minimization are enough easter and and the security of the syntaxic ender and the security of the syntaxic syntaxic ender and the security of the syntaxic ender and the security of the security of the syntaxic syntaxic ender and the security of the security of the security of the security of the syntaxic ender and the security of th

Stochastic Shortest Path Revisited

Randour, Raskin, Sankur

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

1 Context, MDPs, strategies

- 2 Classical Stochastic Shortest Path Problem(s)
- 3 Good expectation under acceptable worst-case
- 4 Percentile queries in multi-dimensional MDPs
- 5 Multiple environments

6 Conclusion

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

1 Context, MDPs, strategies

- 2 Classical Stochastic Shortest Path Problem(s)
- 3 Good expectation under acceptable worst-case
- 4 Percentile queries in multi-dimensional MDPs
- 5 Multiple environments
- 6 Conclusion

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
•00000	00000000000	000000000	00000000	000000	000

Context

PhD from UMONS (Belgium), 2014.

- \triangleright Supervised by V. Bruyère (UMONS) and J.-F. Raskin (ULB).
- ▷ Title: Synthesis in Multi-Criteria Quantitative Games (available on my website).

Talk partly based on research pursued during my thesis.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
•00000	00000000000	000000000	00000000	000000	000

Context

PhD from UMONS (Belgium), 2014.

- \triangleright Supervised by V. Bruyère (UMONS) and J.-F. Raskin (ULB).
- ▷ Title: Synthesis in Multi-Criteria Quantitative Games (available on my website).
- Talk partly based on research pursued during my thesis.

General context important to understand the **motivation** behind the questions we study.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
00000	00000000000	000000000	0000000	000000	000

- Verification and synthesis:
 - > a reactive **system** to *control*,
 - > an *interacting* environment,
 - ▷ a **specification** to *enforce*.

Context SSP-E	E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
00000 0000	00000000	000000000	0000000	000000	000

- Verification and synthesis:
 - ▷ a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Model of the (discrete) interaction?
 - > Antagonistic environment: 2-player game on graph.
 - **Stochastic environment: MDP.**

Context SSP-	-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
00000 000	000000000	000000000	0000000	000000	000

- Verification and synthesis:
 - ▷ a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Model of the (discrete) interaction?
 - > Antagonistic environment: 2-player game on graph.
 - **Stochastic environment: MDP.**
- Quantitative specifications. Examples:
 - \triangleright Reach a state *s* before *x* time units \rightsquigarrow shortest path.
 - $\,\triangleright\,$ Minimize the average response-time \rightsquigarrow mean-payoff.

Context SSP-	-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
00000 000	000000000	000000000	0000000	000000	000

- Verification and synthesis:
 - ▷ a reactive **system** to *control*,
 - ▷ an *interacting* environment,
 - ▷ a **specification** to *enforce*.
- Model of the (discrete) interaction?
 - > Antagonistic environment: 2-player game on graph.
 - **Stochastic environment: MDP.**
- Quantitative specifications. Examples:
 - \triangleright Reach a state *s* before *x* time units \rightsquigarrow shortest path.
 - $\,\triangleright\,$ Minimize the average response-time \rightsquigarrow mean-payoff.

Focus on multi-criteria quantitative models

▷ to reason about *trade-offs* and *interplays*.

000 000 00000000 0000000 0000000 000000 0000	Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
	00000	00000000000	000000000	0000000	000000	000

Strategy (policy) synthesis for MDPs

Stochastic Shortest Path Revisited

Randour, Raskin, Sankur

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	00000000	000000	000

• MDP $D = (S, s_{init}, A, \delta, w)$

- \triangleright finite sets of states *S* and actions *A*
- \triangleright probabilistic transition $\delta \colon S \times A \to \mathcal{D}(S)$
- \triangleright weight function $w \colon A \to \mathbb{Z}$
- **Run** (or play): $\rho = s_1 a_1 \dots a_{n-1} s_n \dots$ such that $\delta(s_i, a_i, s_{i+1}) > 0$ for all $i \ge 1$ \triangleright set of runs $\mathcal{R}(D)$
 - set of runs $\mathcal{K}(D)$ set of histories (finite runs) $\mathcal{H}(D)$
- **Strategy** σ : $\mathcal{H}(D) \rightarrow \mathcal{D}(A)$ $\triangleright \forall h \text{ ending in } s, \operatorname{Supp}(\sigma(h)) \in A(s)$

Context SS	SP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000 00	0000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

0.7 0.3 **s**2 S_1 a1, 2 0.9 $a_2, -1$ $b_3, 3$ 0.1 **S**3 $a_4, 1$ a3,0 S4

Sample run $\rho = s_1 a_1$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

0.7 0.3 **s**2 S_1 a1, 2 0.9 $a_2, -1$ $b_3, 3$ 0.1 **S**3 $a_4, 1$ a3,0 S4

Sample run $\rho = s_1 a_1 s_2 a_2$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

0.7 0.3 **s**2 S_1 a1, 2 0.9 $a_2, -1$ $b_{3}, 3$ 0.1 **S**3 $a_4, 1$ a3,0 S4

Sample run $\rho = s_1 a_1 s_2 a_2 s_1$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

0.7 0.3 **s**2 S_1 a1, 2 0.9 $a_2, -1$ $b_{3}, 3$ 0.1 **S**3 $a_4, 1$ a3,0 S4

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 s_3$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 s_3 a_3$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 s_3 a_3 s_4$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 s_3 a_3 s_4 a_4$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$ Other possible run $\rho' = s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	00000000	000000	000

Sample pure memoryless strategy σ

Sample run $\rho = s_1 a_1 s_2 a_2 s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$ Other possible run $\rho' = s_1 a_1 s_2 a_2 (s_3 a_3 s_4 a_4)^{\omega}$

- Strategies may use
 finite or infinite memory
 - randomness
- Payoff functions map runs to numerical values
 - ▷ truncated sum up to $T = \{s_3\}$: TS^T(ρ) = 2, TS^T(ρ') = 1
 - \triangleright mean-payoff: $\underline{\mathsf{MP}}(\rho) = \underline{\mathsf{MP}}(\rho') = 1/2$
 - ▷ many more

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Markov chains

Once strategy σ fixed, fully stochastic process \sim Markov chain (MC)

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	00000000	000000	000

Markov chains

Once strategy σ fixed, fully stochastic process \sim Markov chain (MC)

State space = product of the MDP and the memory of σ

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	00000000	000000	000

Markov chains

Once strategy σ fixed, fully stochastic process \sim Markov chain (MC)

State space = product of the MDP and the memory of σ

- Event $\mathcal{E} \subseteq \mathcal{R}(M)$
 - \triangleright probability $\mathbb{P}_M(\mathcal{E})$
- Measurable $f: \mathcal{R}(M) \to \mathbb{R} \cup \{\infty\}$,
 - \triangleright expected value $\mathbb{E}_M(f)$
| Context | SSP-E/SSP-P | SSP-WE | SSP-PQ | SSP-ME | Conclusion |
|---------|-------------|-----------|---------|--------|------------|
| 00000 | 00000000000 | 000000000 | 0000000 | 000000 | 000 |
| | | | | | |

Aim of this survey

Review and compare different types of quantitative specifications for MDPs

- ▷ w.r.t. the complexity of the decision problem
- ▷ w.r.t. the complexity of winning strategies

Recent extensions share a common philosophy: framework for the synthesis of strategies with *richer performance guarantees*

 $\,\triangleright\,$ our work deals with many different payoff functions

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
00000	00000000000	000000000	0000000	000000	000

Aim of this survey

Review and compare different types of quantitative specifications for MDPs

- ▷ w.r.t. the complexity of the decision problem
- ▷ w.r.t. the complexity of winning strategies

Recent extensions share a common philosophy: framework for the synthesis of strategies with *richer performance guarantees*

 \triangleright our work deals with many different payoff functions

Focus on the shortest path problem in this talk

- ▷ not the most involved technically
- ▷ natural applications
- ightarrow useful to understand the practical interest of each variant
 - + brief mention of results for other payoffs

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

1 Context, MDPs, strategies

- 2 Classical Stochastic Shortest Path Problem(s)
- 3 Good expectation under acceptable worst-case
- 4 Percentile queries in multi-dimensional MDPs
- 5 Multiple environments
- 6 Conclusion

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	0000000000	0000000000	0000000	000000	000

Stochastic shortest path

Shortest path problem for *weighted graphs*

Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that minimizes the sum of weights along edges.

▷ PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	0000000000	000000000	0000000	000000	000

Stochastic shortest path

Shortest path problem for *weighted graphs*

Given state $s \in S$ and target set $T \subseteq S$, find a path from s to a state $t \in T$ that minimizes the sum of weights along edges.

▷ PTIME algorithms (Dijkstra, Bellman-Ford, etc) [CGR96]

We focus on MDPs with strictly positive weights in this talk

▷ **Truncated sum** payoff function for $\rho = s_1 a_1 s_2 a_2 ...$ and target set T:

$$\mathsf{TS}^{\mathsf{T}}(\rho) = \begin{cases} \sum_{j=1}^{n-1} w(a_j) \text{ if } s_n \text{ first visit of } T\\ \infty \text{ if } T \text{ is never reached} \end{cases}$$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	0000000000	000000000	0000000	000000	000

Planning a journey in an uncertain environment

Each action takes time, target = work.

▷ What kind of strategies are we looking for when the environment is stochastic?

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	0000000000	000000000	0000000	000000	000

SSP-E: minimizing the expected length to target

SSP-E problem

Given MDP $D = (S, s_{init}, A, \delta, w)$, target set T and threshold $\ell \in \mathbb{N}$, decide if there exists σ such that $\mathbb{E}_D^{\sigma}(\mathsf{TS}^T) \leq \ell$.

Theorem [BT91]

The SSP-E problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.

000000 000 00 00000 0000000 0000000 000000 000000 000	Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
	000000	0000000000	000000000	0000000	000000	000

SSP-E: illustration

▷ Pure memoryless strategies suffice.

▷ Taking the **car** is optimal: $\mathbb{E}_D^{\sigma}(\mathsf{TS}^T) = 33$.

000000	00000000000	0000000000	00000000	000000	000
Context	SSP-F/SSP-P	SSP-WE	SSP-PO	SSP-ME	Conclusion

- **1** Graph analysis (linear time)
 - $ightarrow\,$ s not connected to $T\Rightarrow\infty$ and remove
 - $\triangleright s \in T \Rightarrow 0$
- 2 Linear programming (LP, polynomial time)

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000000000000000000000000000000	0000000000	0000000	000000	000

- Graph analysis (linear time)
 - $ightarrow\,$ s not connected to $T\Rightarrow\infty$ and remove
 - $\triangleright s \in T \Rightarrow 0$
- 2 Linear programming (LP, polynomial time)

For each $s \in S \setminus T$, one variable x_s ,

$$\max\sum_{s\in S\setminus T} x_s$$

under the constraints

$$x_s \leq w(a) + \sum_{s' \in S \setminus T} \delta(s, a, s') \cdot x_{s'}$$
 for all $s \in S \setminus T$, for all $a \in A(s)$.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

- 1 Graph analysis (linear time)
 - $ightarrow\,$ s not connected to \mathcal{T} \Rightarrow ∞ and remove
 - $\triangleright s \in T \Rightarrow 0$
- 2 Linear programming (LP, polynomial time)

Optimal solution \mathbf{v}

 $\sim \mathbf{v}_s =$ expectation from s to T under an optimal strategy Optimal pure memoryless strategy $\sigma^{\mathbf{v}}$:

$$\sigma^{\mathbf{v}}(s) = \arg\min_{\mathbf{a}\in A(s)} \left[w(\mathbf{a}) + \sum_{s'\in S\setminus T} \delta(s, \mathbf{a}, s') \cdot \mathbf{v}_{s'} \right]$$

 \rightarrow playing optimally = locally optimizing present + future

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	00000000	000000	000

- 1 Graph analysis (linear time)
 - Dash not connected to \mathcal{T} \Rightarrow ∞ and remove
 - $\triangleright s \in T \Rightarrow 0$
- 2 Linear programming (LP, polynomial time)

In practice, value and strategy iteration algorithms often used

- best performance in most cases but exponential in the worst-case
- fixed point algorithms, successive solution improvements [BT91, dA99, HM14]

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Travelling without taking too many risks

Minimizing the *expected time* to destination makes sense **if** we travel often and it is not a problem to be late.

With car, in 10% of the cases, the journey takes 71 minutes.

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

Travelling without taking too many risks

Most bosses will not be happy if we are late too often... → what if we are risk-averse and want to avoid that?

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

SSP-P: forcing short paths with high probability

SSP-P problem

Given MDP $D = (S, s_{\text{init}}, A, \delta, w)$, target set T, threshold $\ell \in \mathbb{N}$, and probability threshold $\alpha \in [0, 1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_D^{\sigma}[\{\rho \in \mathcal{R}_{s_{\text{init}}}(D) \mid \mathsf{TS}^{\mathsf{T}}(\rho) \leq \ell\}] \geq \alpha$.

Theorem

The SSP-P problem can be decided in pseudo-polynomial time, and it is PSPACE-hard. Optimal pure strategies with pseudo-polynomial memory always exist and can be constructed in pseudo-polynomial time.

See [HK14] for hardness and for example [RRS14a] for algorithm.

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000	000000000	0000000	000000	000

SSP-P: illustration

Specification: reach work within 40 minutes with 0.95 probability

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000	000000000	0000000	000000	000

SSP-P: illustration

Specification: reach work within 40 minutes with 0.95 probability **Sample strategy**: take the **train** $\rightsquigarrow \mathbb{P}_D^{\sigma} [\mathsf{TS}^{\mathsf{work}} \le 40] = 0.99$ **Bad choices**: car (0.9) and bike (0.0)

Stochastic Shortest Path Revisited

000000 00000 00000 00000000 000000 000000 000	Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
	000000	000000000000	000000000	0000000	000000	000

Key idea: pseudo-PTIME reduction to the **stochastic reachability problem** (**SR**)

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000	000000000	0000000	000000	000

Key idea: pseudo-PTIME reduction to the **stochastic reachability problem** (**SR**)

SR problem

Given unweighted MDP $D = (S, s_{init}, A, \delta)$, target set T and probability threshold $\alpha \in [0, 1] \cap \mathbb{Q}$, decide if there exists a strategy σ such that $\mathbb{P}_D^{\sigma}[\Diamond T] \ge \alpha$.

Theorem

The SR problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.

▷ linear programming (similar to SSP-E)

Stochastic Shortest Path Revisited

Sketch of the reduction

1 Start from
$$D$$
, $T = \{s_2\}$, and $\ell = 7$.

Sketch of the reduction

- **1** Start from D, $T = \{s_2\}$, and $\ell = 7$.
- 2 Build D_{ℓ} by unfolding D, tracking the current sum *up to the threshold* ℓ , and integrating it in the states of the expanded MDP.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000000000000000000000000000000	000000000	00000000	000000	000

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000000000000000000000000000000	000000000	00000000	000000	000

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000000000000000000000000000000	0000000000	00000000	000000	000

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000000000	0000000000	0000000	000000	000

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000000000000000000000000000000	0000000000	00000000	000000	000

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000000000000000000000000000000	0000000000	00000000	000000	000

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	000000000000000000000000000000000000000	000000000	00000000	000000	000

Stochastic Shortest Path Revisited

 Context
 SSP-E/SSP-P
 SSP-WE
 SSP-PQ
 SSP-ME
 Conclusion

 000000
 0000000000
 000000000
 00000000
 00000000
 00000000

SSP-P: pseudo-PTIME algorithm (2/2)

3 Bijection between runs of D and D_ℓ

$$\mathsf{TS}^{\mathsf{T}}(
ho) \leq \ell \quad \Leftrightarrow \quad
ho' \models \Diamond T', \ T' = T imes \{0, 1, \dots, \ell\}$$

Stochastic Shortest Path Revisited

 Context
 SSP-E/SSP-P
 SSP-WE
 SSP-PQ
 SSP-ME
 Conclusion

 000000
 0000000000
 000000000
 00000000
 00000000
 00000000

SSP-P: pseudo-PTIME algorithm (2/2)

3 Bijection between runs of D and D_ℓ

$$\mathsf{TS}^{T}(
ho) \leq \ell \quad \Leftrightarrow \quad
ho' \models \diamondsuit T', \ T' = T imes \{0, 1, \dots, \ell\}$$

4 Solve the SR problem on D_ℓ
 ▷ Memoryless strategy in D_ℓ ~→ pseudo-polynomial memory in D in general

Stochastic Shortest Path Revisited

 Context
 SSP-E/SSP-P
 SSP-WE
 SSP-PQ
 SSP-ME
 Conclusion

 000000
 0000000000
 000000000
 000000000
 00000000
 000000000

SSP-P: pseudo-PTIME algorithm (2/2)

- If we just want to minimize the risk of exceeding $\ell=$ 7,
 - \triangleright an obvious possibility is to play *b* directly,
 - ▷ playing *a* only once is also acceptable.
- For the SSP-P problem, **both strategies are equivalent** \rightarrow need richer models to discriminate them!

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	0000000000	000000000	0000000	000000	000

Related work

- SSP-P problem [Oht04, SO13].
- Quantile queries [UB13]: minimizing the value ℓ of an SSP-P problem for some fixed α. Recently extended to cost problems [HK14].
- SSP-E problem in **multi-dimensional** MDPs [FKN⁺11].

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

1 Context, MDPs, strategies

- 2 Classical Stochastic Shortest Path Problem(s)
- **3** Good expectation under acceptable worst-case
- 4 Percentile queries in multi-dimensional MDPs
- 5 Multiple environments

6 Conclusion

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0 000 00000	0000000	000000	000

SP-G: strict worst-case guarantees

Specification: *guarantee* that work is reached within 60 minutes (to avoid missing an important meeting)

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000	0000000	000000	000

SP-G: strict worst-case guarantees

Specification: *guarantee* that work is reached within 60 minutes (to avoid missing an important meeting)

Sample strategy: take the **bike** $\rightsquigarrow \forall \rho \in \text{Out}_D^{\sigma}$: $\text{TS}^{\text{work}}(\rho) \leq 60$ **Bad choices**: train ($wc = \infty$) and car (wc = 71)

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000	0000000	000000	000

SP-G: strict worst-case guarantees

Winning surely (worst-case) \neq almost-surely (proba. 1)

train ensures reaching work with probability one, but does not prevent runs where work is never reached
Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0 000 00000	0000000	000000	000

SP-G: strict worst-case guarantees

Worst-case analysis \rightsquigarrow two-player game against an antagonistic adversary

forget about probabilities and give the choice of transitions to the adversary

Stochastic Shortest Path Revisited

Randour, Raskin, Sankur

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

SP-G: shortest path game problem

SP-G problem

Given MDP $D = (S, s_{init}, A, \delta, w)$, target set T and threshold $\ell \in \mathbb{N}$, decide if there exists a strategy σ such that for all $\rho \in \operatorname{Out}_D^{\sigma}$, we have that $\operatorname{TS}^T(\rho) \leq \ell$.

Theorem [KBB⁺08]

The SP-G problem can be decided in polynomial time. Optimal pure memoryless strategies always exist and can be constructed in polynomial time.

▷ Does not hold for arbitrary weights.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000000	0000000	000000	000

Related work

- Pseudo-PTIME for arbitrary weights [BGHM14, FGR12].
- Arbitrary weights + multiple dimensions ~>> undecidable (by adapting the proof of [CDRR13] for total-payoff).

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

SP-G: PTIME algorithm

1 Cycles are bad \Rightarrow must reach target within n = |S| steps

2
$$\forall s \in S, \forall i, 0 \leq i \leq n$$
, compute $\mathbb{C}(s, i)$

 \triangleright lowest bound on cost to T from s that we can ensure in i steps

dynamic programming (polynomial time)

Initialize

 $\forall s \in T, \mathbb{C}(s,0) = 0 \qquad \forall s \in S \setminus T, \mathbb{C}(s,0) = \infty$

Then, $\forall s \in S$, $\forall i$, $1 \leq i \leq n$,

 $\mathbb{C}(s,i) = \min\left[\mathbb{C}(s,i-1),\min_{a\in A(s)}\max_{s'\in \text{Supp}(\delta(s,a))}w(a) + \mathbb{C}(s',i-1)\right]$

3 Winning strategy iff $\mathbb{C}(s_{\text{init}}, n) \leq \ell$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

$\mathsf{SSP}\text{-}\mathsf{WE}=\mathsf{SP}\text{-}\mathsf{G}\cap\mathsf{SSP}\text{-}\mathsf{E}\text{-}\mathsf{illustration}$

- SSP-E: car $\sim \mathbb{E} = 33$ but wc = 71 > 60
- SP-G: bike $\rightsquigarrow wc = 45 < 60$ but $\mathbb{E} = 45 >>> 33$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

$\mathsf{SSP}\text{-}\mathsf{WE}=\mathsf{SP}\text{-}\mathsf{G}\cap\mathsf{SSP}\text{-}\mathsf{E}\text{-}\mathsf{illustration}$

Can we do better?

Beyond worst-case synthesis [BFRR14b, BFRR14a]: minimize the expected time under the worst-case constraint.

Stochastic Shortest Path Revisited

Randour, Raskin, Sankur

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

$\mathsf{SSP-WE} = \mathsf{SP-G} \cap \mathsf{SSP-E} \text{ - illustration}$

Sample strategy: try train up to 3 delays then switch to bike.

- $\rightsquigarrow~wc=58<60$ and $\mathbb{E}\approx37.34<<45$
- \rightarrow pure *finite-memory* strategy

Stochastic Shortest Path Revisited

Randour, Raskin, Sankur

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

SSP-WE: beyond worst-case synthesis

SSP-WE problem

Given MDP $D = (S, s_{init}, A, \delta, w)$, target set T, and thresholds $\ell_1, \ell_2 \in \mathbb{N}$, decide if there exists a strategy σ such that: 1 $\forall \rho \in \operatorname{Out}_D^{\sigma}$: $\operatorname{TS}^T(\rho) \leq \ell_1$, 2 $\mathbb{E}_D^{\sigma}(\operatorname{TS}^T) \leq \ell_2$.

Theorem [BFRR14b]

The SSP-WE problem can be decided in pseudo-polynomial time and is NP-hard. Pure pseudo-polynomial-memory strategies are always sufficient and in general necessary, and satisfying strategies can be constructed in pseudo-polynomial time.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000000	0000000	000000	000

Consider SSP-WE problem for $\ell_1 = 7$ (*wc*), $\ell_2 = 4.8$ (\mathbb{E}).

- Reduction to the SSP-E problem on a pseudo-polynomial-size expanded MDP.
- **I** Build unfolding as for SSP-P problem w.r.t. worst-case threshold ℓ_1 .

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000000	0000000	000000	000

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000000	0000000	000000	000

- **2** Compute *R*, the attractor of $T' = T \times \{0, 1, \dots, \ell_1\}$.
- **3** Restrict MDP to $D' = D_{\ell_1} \mid R$, the *safe* part w.r.t. SP-G.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000000	0000000	000000	000

- **2** Compute *R*, the attractor of $T' = T \times \{0, 1, \dots, \ell_1\}$.
- **3** Restrict MDP to $D' = D_{\ell_1} \mid R$, the *safe* part w.r.t. SP-G.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000000	0000000	000000	000

- 4 Compute memoryless optimal strategy σ in D' for SSP-E.
- **5** Answer is YES iff $\mathbb{E}_{D'}^{\sigma}(\mathsf{TS}^{T'}) \leq \ell_2$.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000000000	0000000	000000	000

- 4 Compute memoryless optimal strategy σ in D' for SSP-E.
- **5** Answer is YES iff $\mathbb{E}_{D'}^{\sigma}(\mathsf{TS}^{T'}) \leq \ell_2$.

Here, $\mathbb{E}^{\sigma}_{D'}(\mathsf{TS}^{\mathcal{T}'}) = 9/2$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

SSP-WE: wrap-up

SSP	complexity	strategy
SSP-E	PTIME	pure memoryless
SSP-P	pseudo-PTIME / PSPACE-h.	pure pseudo-poly.
SSP-G	PTIME	pure memoryless
SSP-WE	pseudo-PTIME / NP-h.	pure pseudo-poly.

 $\,\triangleright\,$ NP-hardness \Rightarrow inherently harder than SSP-E and SSP-G.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	00000 0000	0000000	000000	000

Beyond worst-case synthesis for mean-payoff

MP	complexity	strategy
MP-E	PTIME	pure memoryless
MP-G	$NP\capcoNP$	pure memoryless
MP-WE	$NP\capcoNP$	pure pseudo-poly.

- Long-run average of weights [EM79], subsumes parity games [Jur98].
- > Additional modeling power for free.
- ▷ Much more involved technically [BFRR14b, BFRR14a].

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	●0000000	000000	000

1 Context, MDPs, strategies

- 2 Classical Stochastic Shortest Path Problem(s)
- 3 Good expectation under acceptable worst-case
- 4 Percentile queries in multi-dimensional MDPs
- 5 Multiple environments

6 Conclusion

Two-dimensional weights on actions: *time* and *cost*.

Often necessary to consider trade-offs: e.g., between the probability to reach work in due time and the risks of an expensive journey.

SSP-P problem considers a single percentile constraint.

- **C1**: 80% of runs reach work in at most 40 minutes.
 - \triangleright Taxi \sim \leq 10 minutes with probability 0.99 > 0.8.

SSP-P problem considers a single percentile constraint.

- **C1**: 80% of runs reach work in at most 40 minutes.
 - \triangleright Taxi $\sim \leq 10$ minutes with probability 0.99 > 0.8.
- **C2**: 50% of them cost at most 10\$ to reach work.
 - \triangleright Bus $\sim \geq 70\%$ of the runs reach work for 3\$.

SSP-P problem considers a single percentile constraint.

- **C1**: 80% of runs reach work in at most 40 minutes.
 - \triangleright Taxi $\rightsquigarrow \leq 10$ minutes with probability 0.99 > 0.8.
- **C2**: 50% of them cost at most 10\$ to reach work.

 \triangleright Bus $\rightsquigarrow \ge 70\%$ of the runs reach work for 3\$.

Taxi $\not\models$ C2, bus $\not\models$ C1. What if we want C1 \land C2?

- **C1**: 80% of runs reach work in at most 40 minutes.
- **C2**: 50% of them cost at most 10\$ to reach work.

Study of multi-constraint percentile queries [RRS14a].

- ▷ Sample strategy: bus once, then taxi. Requires *memory*.
- ▷ Another strategy: bus with probability 3/5, taxi with probability 2/5. Requires *randomness*.

Stochastic Shortest Path Revisited

Randour, Raskin, Sankur

Study of multi-constraint percentile queries [RRS14a].

In general, both memory and randomness are required.

 \neq previous problems

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

SSP-PQ: multi-constraint percentile queries (1/2)

SSP-PQ problem

Given *d*-dimensional MDP $D = (S, s_{init}, A, \delta, w)$, and $q \in \mathbb{N}$ percentile constraints described by target sets $T_i \subseteq S$, dimensions $k_i \in \{1, \ldots, d\}$, value thresholds $\ell_i \in \mathbb{N}$ and probability thresholds $\alpha_i \in [0, 1] \cap \mathbb{Q}$, where $i \in \{1, \ldots, q\}$, decide if there exists a strategy σ such that

$$\forall i \in \{1, \ldots, q\}, \ \mathbb{P}_D^{\sigma} \big[\mathsf{TS}_{k_i}^{T_i} \leq \ell_i \big] \geq \alpha_i,$$

where $TS_{k_i}^{T_i}$ denotes the truncated sum on dimension k_i and w.r.t. target set T_i .

Very general framework allowing for: multiple constraints related to \neq dimensions, and \neq target sets.

 $\rightsquigarrow\,$ Great flexibility in modeling applications.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

SSP-PQ: multi-constraint percentile queries (2/2)

Theorem [RRS14a]

The SSP-PQ problem can be decided in

- exponential time in general,
- pseudo-polynomial time for single-dimension single-target multi-contraint queries.

It is PSPACE-hard even for single-constraint queries. Randomized exponential-memory strategies are always sufficient and in general necessary, and satisfying strategies can be constructed in exponential time.

- ▷ PSPACE-hardness already true for SSP-P [HK14].
- \sim SSP-PQ = wide extension for basically no price in complexity.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

1 Build an unfolded MDP D_{ℓ} similar to SSP-P case:

 \triangleright stop unfolding when *all* dimensions reach sum $\ell = \max_i \ell_i$.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

- **1** Build an unfolded MDP D_{ℓ} similar to SSP-P case:
 - \triangleright stop unfolding when *all* dimensions reach sum $\ell = \max_i \ell_i$.

2 Maintain *single*-exponential size by defining an equivalence relation between states of D_{ℓ} :

$$Dash \ \mathcal{S}_\ell \subseteq \mathcal{S} imes \left(\{0,\ldots,\ell\} \cup \{\bot\}
ight)^d$$
 ,

$$\triangleright$$
 pseudo-poly. if $d = 1$.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

- **1** Build an unfolded MDP D_{ℓ} similar to SSP-P case:
 - \triangleright stop unfolding when *all* dimensions reach sum $\ell = \max_i \ell_i$.
- 2 Maintain *single*-exponential size by defining an equivalence relation between states of D_{ℓ} :

$$\triangleright \ S_{\ell} \subseteq S \times (\{0,\ldots,\ell\} \cup \{\bot\})^d$$
,

 \triangleright pseudo-poly. if d = 1.

3 For each constraint *i*, compute a target set R_i in D_ℓ : $\triangleright \ \rho \models \text{constraint } i \text{ in } D \Leftrightarrow \rho' \models \Diamond R_i \text{ in } D_\ell.$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

- **1** Build an unfolded MDP D_{ℓ} similar to SSP-P case:
 - \triangleright stop unfolding when *all* dimensions reach sum $\ell = \max_i \ell_i$.
- 2 Maintain *single*-exponential size by defining an equivalence relation between states of D_{ℓ} :

$$\triangleright \ S_{\ell} \subseteq S \times (\{0,\ldots,\ell\} \cup \{\bot\})^d$$
,

- \triangleright pseudo-poly. if d = 1.
- **3** For each constraint *i*, compute a target set R_i in D_ℓ : $\triangleright \ \rho \models \text{constraint } i \text{ in } D \Leftrightarrow \rho' \models \Diamond R_i \text{ in } D_\ell.$
- 4 Solve a multiple reachability problem on D_{ℓ} .
 - \triangleright Generalizes the SR problem [EKVY08, RRS14a].
 - \triangleright Time polynomial in $|D_\ell|$ but exponential in q.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	00000€00	000000	000

SSP-PQ: wrap-up

SSP	complexity	strategy
SSP-E	PTIME	pure memoryless
SSP-P	pseudo-PTIME / PSPACE-h.	pure pseudo-poly.
SSP-G	PTIME	pure memoryless
SSP-WE	pseudo-PTIME / NP-h.	pure pseudo-poly.
SSP-PQ	EXPTIME (pPTIME) / PSPACE-h.	randomized exponential

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	00000000	000000	000

Related work and additional results

- Cost problems [HK14]: $\exists ? \sigma, \mathbb{P}_D^{\sigma} [\mathsf{TS}^T \models \varphi] \ge \alpha.$
 - \triangleright Boolean combination of inequalities φ .
 - ▷ Orthogonal to percentiles queries.
 - \triangleright Single-dimensional MDPs and single target T.
 - \rhd Threshold α bounds the probability of the whole event φ whereas SSP-PQ analyze each event independently.
 - ▷ Incomparable in general, SSP-P as a common subclass.
- SSP-PQ is undecidable for arbitrary weights in multi-dimensional MDPs, even with a unique target set [RRS14a].

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	000000●	000000	000

Percentile queries: other payoff functions

In [RRS14a], we study a wide range of payoffs: reachability, inf, sup, lim inf, lim sup, mean-payoff, shortest path (truncated sum), discounted sum.

- ▷ In the most general setting, complexity is at most EXPTIME.
- ▷ Only PTIME for *fixed query size* for all payoffs but the discounted sum.
- Reduced complexity for single-dimension or single-constraint queries.
- Most technically involved cases are infimum mean-payoff and discounted sum.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	00000000	00000	000

1 Context, MDPs, strategies

- 2 Classical Stochastic Shortest Path Problem(s)
- 3 Good expectation under acceptable worst-case
- 4 Percentile queries in multi-dimensional MDPs
- 5 Multiple environments

6 Conclusion

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	0●0000	000

Imperfect a priori knowledge of the environment

Probabilities represent a *model* of the environment.

- \triangleright Probability of a train coming \neq when there is a strike.
- ▷ We may not know about the strike...

How to synthesize strategies with guarantees against several \neq environments (e.g., strike or not)?

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	○●0000	000

Imperfect a priori knowledge of the environment

Four possible environments, no a priori knowledge of which one we face:

- no problem,
- (S) strike (no train) \Rightarrow wait always leads back to station,
- (A) accident (highway blocked) \Rightarrow go from h_2 always stays in h_2 , (AS) both.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	0●0000	000

Imperfect a priori knowledge of the environment

Specification: we want σ such that

■ $\mathbb{P}_{D}^{\sigma}[\mathsf{TS}^{T} \le 40] \ge 0.95,$ ■ $\mathbb{P}_{D^{(S)}}^{\sigma}[\mathsf{TS}^{T} \le 50] \ge 0.95,$ ■ $\mathbb{P}_{D^{(S)}}^{\sigma}[\mathsf{TS}^{T} \le 50] \ge 0.95,$ ■ $\mathbb{P}_{D^{(SA)}}^{\sigma}[\mathsf{TS}^{T} \le 75] \ge 0.95.$
Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	00000	000

Imperfect a priori knowledge of the environment

Specification: we want σ such that $\mathbb{P}_{D}^{\sigma}[\mathsf{TS}^{T} \leq 40] \geq 0.95, \qquad \mathbb{P}_{D^{(A)}}^{\sigma}[\mathsf{TS}^{T} \leq 40] \geq 0.95,$

•
$$\mathbb{P}^{\sigma}_{D^{(S)}}[\mathsf{TS}^{T} \le 50] \ge 0.95,$$
 • $\mathbb{P}^{\sigma}_{D^{(SA)}}[\mathsf{TS}^{T} \le 75] \ge 0.95$

Taking the car right away *does not* ensure to reach work within 40 minutes with probability ≥ 0.95 even when no accident.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	00000	000

Imperfect a priori knowledge of the environment

Specification: we want σ such that $\mathbb{P}_{D}^{\sigma}[\mathsf{TS}^{T} \le 40] \ge 0.95, \qquad \mathbb{P}_{D^{(S)}}^{\sigma}[\mathsf{TS}^{T} \le 40] \ge 0.95, \qquad \mathbb{P}_{D^{(S)}}^{\sigma}[\mathsf{TS}^{T} \le 50] \ge 0.95, \qquad \mathbb{P}_{D^{(SA)}}^{\sigma}[\mathsf{TS}^{T} \le 75] \ge 0.95.$

Taking the car right away *does not* ensure to reach work within 40 minutes with probability ≥ 0.95 even when no accident.

Never switching to car means certain doom if strike.

Stochastic Shortest Path Revisited

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	0●0000	000

Imperfect a priori knowledge of the environment

Specification: we want σ such that

■ $\mathbb{P}_{D}^{\sigma}[\mathsf{TS}^{T} \le 40] \ge 0.95,$ ■ $\mathbb{P}_{D^{(S)}}^{\sigma}[\mathsf{TS}^{T} \le 50] \ge 0.95,$ ■ $\mathbb{P}_{D^{(S)}}^{\sigma}[\mathsf{TS}^{T} \le 50] \ge 0.95,$ ■ $\mathbb{P}_{D^{(SA)}}^{\sigma}[\mathsf{TS}^{T} \le 75] \ge 0.95.$

Sample strategy:

- ▷ go to the station and wait twice,
- ▷ if no train, go back and take car,
- \triangleright take alternative road *if* we failed to progress twice using go.

SSP-ME: multi-environment MDPs (1/2)

SSP-ME problem

Given single-dimensional multi-environment MDP $D = (S, s_{init}, A, (\delta_i)_{1 \le i \le k}, (w_i)_{1 \le i \le k})$, target set T, thresholds $\ell_1, \ldots, \ell_k \in \mathbb{N}$, and probabilities $\alpha_1, \ldots, \alpha_k \in [0, 1] \cap \mathbb{Q}$, decide if there exists a strategy σ satisfying

$$\forall i \in \{1,\ldots,k\}, \mathbb{P}^{\sigma}_{D_i}[\mathsf{TS}^{\mathsf{T}} \leq \ell_i] \geq \alpha_i.$$

Focus on qualitative variants.

- \triangleright Almost-sure: $\alpha_1 = \ldots = \alpha_k = 1$.
- ▷ Limit-sure: answer is YES for all $(\alpha_1, \ldots, \alpha_k) \in]0, 1[^k]$

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

SSP-ME: multi-environment MDPs (2/2)

Theorem [RS14]

The almost-sure and limit-sure SSP-ME problems can be solved in pseudo-polynomial time for a fixed number of environments. Pure finite memory suffices for the almost-sure case, and a family of finite-memory strategies that witnesses the limit-sure problem can be computed.

In the quantitative case, *approximate* version of the problem.

Theorem [RS14]

The SSP-ME problem and the ε -gap SSP-ME are NP-hard. For any $\varepsilon > 0$, there is a procedure for the ε -gap SSP-ME problem.

SSP-ME: learning components

Key idea: identify learning components that can be used to determine almost-surely (resp. limit-surely) the current environment.

 \triangleright By playing long enough, one can guess the environment with arbitrarily high probability (but < 1).

ContextSSP-E/SSP-PSSP-WESSP-PQSSP-MEConclusion00

SSP-ME: learning components

Key idea: identify learning components that can be used to determine almost-surely (resp. limit-surely) the current environment.

One move suffices to determine the environment with certainty.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	00000	000

SSP-ME: wrap-up

SSP	complexity	strategy
SSP-E	PTIME	pure memoryless
SSP-P	pseudo-PTIME / PSPACE-h.	pure pseudo-poly.
SSP-G	PTIME	pure memoryless
SSP-WE	pseudo-PTIME / NP-h.	pure pseudo-poly.
SSP-PQ	EXPTIME (pPTIME) / PSPACE-h.	randomized exponential
SSP-ME		puro psoudo poly
(qual. fixed $\#$)		pure pseudo-pory.

Study of [RS14] limited to reachability, safety and parity objectives with two environments.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	00000000	000000	•00

1 Context, MDPs, strategies

- 2 Classical Stochastic Shortest Path Problem(s)
- 3 Good expectation under acceptable worst-case
- 4 Percentile queries in multi-dimensional MDPs
- 5 Multiple environments

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000
000000	00000000000	0000000000	00000000	000000	000

SSP-E: minimize the expected sum to target.

 \triangleright Actual outcomes may vary greatly.

Context SS	SP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion

- **SSP-E:** minimize the expected sum to target.
 - \triangleright Actual outcomes may vary greatly.
- **SSP-P:** maximize the probability of acceptable performance.
 - ▷ No control over the quality of bad runs, no average-case performance.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

- **SSP-E:** minimize the expected sum to target.
 - ▷ Actual outcomes may vary greatly.
- **SSP-P:** maximize the probability of acceptable performance.
 - ▷ No control over the quality of bad runs, no average-case performance.
- **SP-G:** maximize the worst-case performance, extreme risk-aversion.
 - ▷ Strict worst-case guarantees, no average-case performance.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

- **SSP-E:** minimize the expected sum to target.
 - ▷ Actual outcomes may vary greatly.
- **SSP-P:** maximize the probability of acceptable performance.
 - ▷ No control over the quality of bad runs, no average-case performance.
- **SP-G:** maximize the worst-case performance, extreme risk-aversion.
 - ▷ Strict worst-case guarantees, no average-case performance.
- **SSP-WE:** SSP-E \cap SP-G.
 - ▷ Based on beyond worst-case synthesis [BFRR14b, BFRR14a].

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

- **SSP-E:** minimize the expected sum to target.
 - \triangleright Actual outcomes may vary greatly.
- **SSP-P:** maximize the probability of acceptable performance.
 - No control over the quality of bad runs, no average-case performance.
- **SP-G:** maximize the worst-case performance, extreme risk-aversion.
 - ▷ Strict worst-case guarantees, no average-case performance.
- **SSP-WE:** SSP-E \cap SP-G.

▷ Based on beyond worst-case synthesis [BFRR14b, BFRR14a].

 SSP-PQ: extends SSP-P to multi-constraint percentile queries [RRS14a].

▷ Multi-dimensional, flexible, trade-offs.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	000000000	0000000	000000	000

- **SSP-E:** minimize the expected sum to target.
 - ▷ Actual outcomes may vary greatly.
- **SSP-P:** maximize the probability of acceptable performance.
 - ▷ No control over the quality of bad runs, no average-case performance.
- **SP-G:** maximize the worst-case performance, extreme risk-aversion.
 - ▷ Strict worst-case guarantees, no average-case performance.
- **SSP-WE:** SSP-E \cap SP-G.
 - ▷ Based on beyond worst-case synthesis [BFRR14b, BFRR14a].
- SSP-PQ: extends SSP-P to multi-constraint percentile queries [RRS14a].

▷ Multi-dimensional, flexible, trade-offs.

- **SSP-ME:** multi-environment MDPs [RS14].
 - $\,\triangleright\,$ Overcomes uncertainty about the stochastic model.

Context	SSP-E/SSP-P	SSP-WE	SSP-PQ	SSP-ME	Conclusion
000000	00000000000	0000000000	0000000	000000	000

Thank you! Any question?

References I

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Expectations or guarantees? I want it all! A crossroad between games and MDPs. In Proc. of SR, EPTCS 146, pages 1–8, 2014.

Véronique Bruyère, Emmanuel Filiot, Mickael Randour, and Jean-François Raskin. Meet your expectations with guarantees: Beyond worst-case synthesis in quantitative games. In Proc. of STACS, LIPIcs 25, pages 199–213. Schloss Dagstuhl - LZI, 2014.

Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. To reach or not to reach? Efficient algorithms for total-payoff games.

CoRR, abs/1407.5030, 2014.

An analysis of stochastic shortest path problems. Mathematics of Operations Research, 16(3):580–595, 1991.

Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Looking at mean-payoff and total-payoff through windows. In Proc. of ATVA, LNCS 8172, pages 118–132. Springer, 2013.

Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.

Shortest paths algorithms: Theory and experimental evaluation. Math. programming, 73(2):129–174, 1996.

Luca de Alfaro.

Computing minimum and maximum reachability times in probabilistic systems. In Proc. of CONCUR, LNCS 1664, pages 66–81. Springer, 1999.

References II

	-	
		_

Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.

Multi-objective model checking of Markov decision processes. LMCS, 4(4), 2008.

Andrzej Ehrenfeucht and Jan Mycielski.

Positional strategies for mean payoff games. International Journal of Game Theory, 8:109–113, 1979.

Emmanuel Filiot, Raffaella Gentilini, and Jean-François Raskin. Quantitative languages defined by functional automata. In Proc. of CONCUR, LNCS 7454, pages 132–146. Springer, 2012.

Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang Qu. Quantitative multi-objective verification for probabilistic systems. In Proc. of TACAS, LNCS 6605, pages 112–127. Springer, 2011.

Christoph Haase and Stefan Kiefer.

The odds of staying on budget. CoRR, abs/1409.8228, 2014.

Serge Haddad and Benjamin Monmege.

Reachability in MDPs: Refining convergence of value iteration.

In Joël Ouaknine, Igor Potapov, and James Worrell, editors, <u>Reachability Problems - 8th International</u> Workshop, RP 2014, Oxford, UK, September 22-24, 2014. <u>Proceedings</u>, volume 8762 of <u>Lecture Notes in</u> Computer Science, pages 125–137. Springer, 2014.

References III

Marcin Jurdzinski.

Deciding the winner in parity games is in UP \cap co-UP. Inf. Process. Lett., 68(3):119–124, 1998.

Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled M. Elbassioni, Vladimir Gurvich, Gábor Rudolf, and

Jihui Zhao. On short paths interdiction problems: Total and node-wise limited interdiction. pages 204-233, 2008.

Yoshio Ohtsubo.

Optimal threshold probability in undiscounted Markov decision processes with a target set. Applied Math. and Computation, 149(2):519 – 532, 2004.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.

Percentile queries in multi-dimensional Markov decision processes. CoRR, abs/1410.4801, 2014.

Mickael Randour, Jean-François Raskin, and Ocan Sankur. Variations on the stochastic shortest path problem. CoRR, abs/1411.0835, 2014.

Mickael Randour, Jean-François Raskin, and Ocan Sankur.

Variations on the stochastic shortest path problem. In Proc. of VMCAI, LNCS. Springer, 2015.

References IV

Jean-François Raskin and Ocan Sankur.

Multiple-environment Markov decision processes. In Proc. of FSTTCS, LIPIcs. Schloss Dagstuhl - LZI, 2014.

Markov decision processes associated with two threshold probability criteria. Journal of Control Theory and Applications, 11(4):548–557, 2013.

Michael Ummels and Christel Baier.

Computing quantiles in Markov reward models. In Proc. of FOSSACS, LNCS 7794, pages 353–368. Springer, 2013.