

Journée thématique:

Méthode inverse et thermique du bâtiment Réduction et identification de modèle

Modélisation dynamique des ponts thermiques

Méthode mixte de mur équivalent

Julien Quinten

Promoteur: Prof. V. Feldheim

02/02/2017

Plan

- Introduction
- Méthode mixte de mur équivalent
 - Principe
 - Facteurs de structure
 - Fonction objectif (réponses harmoniques)
 - Algorithme
- Application à 2 ponts thermiques 2D
 - Fonction objectif
 - Climat de Moscou
 - 3 zones de température
- Conclusion

Introduction

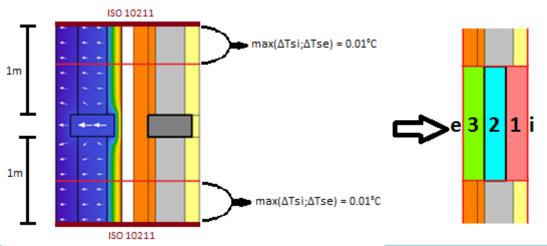
énergie

- Utilisation de logiciels
 - Prédire la consommation des bâtiments MUT: 2076
 - Hypothèse courante : flux de chaleur 1D
- Ventilation : 15%


 Tolture : 10%

 Fenêtres : 15%

 Ponts thermiques : 20%


Aération

- Déperditions d'une maison passive individuelle neuve (Direction de l'Urbanisme, de l'Habitat et de la Construction, France)
- Pont thermique détail 2D/3D
 - Changement de forme, de matériau, d'épaisseur
 - Résistance modifiée
 - Flux de chaleur 2D ou 3D >< 1D (paroi courante)
 - Coefficient de déperdition : Ψ [W/mK] ou χ [W/m]
 - Flux 1D: statique OK, mais pas la dynamique!
 - Pertes de chaleur
 - Quelques % à 40%

- Principe
 - Structure 1D multicouche (3 couches)
 - Comportement thermique identique
 - Détermination des R_j, C_j (6 paramètres)
 - Déduction des e_j , ρ_j , $c_{j,}$ λ_j à introduire dans le logiciel
 - Valables quelque soit le pas de temps, mais pas si propriétés = f(T)
 - →Facteurs de structure
 - →Flux harmoniques

Facteurs de structure

- « Représentent la fraction de la chaleur stockée dans le volume entre 2 états stables et transférée à travers chacune de ses surfaces »
 - ϕ_{ii} : à proximité de S_{int} , ϕ_{ie} : du centre , ϕ_{ee} : de S_{ext}
 - $0 \le \varphi_{ii}$, $\varphi_{ee} \le 1$
 - $0 \le \varphi_{ie} \le \frac{1}{4}$

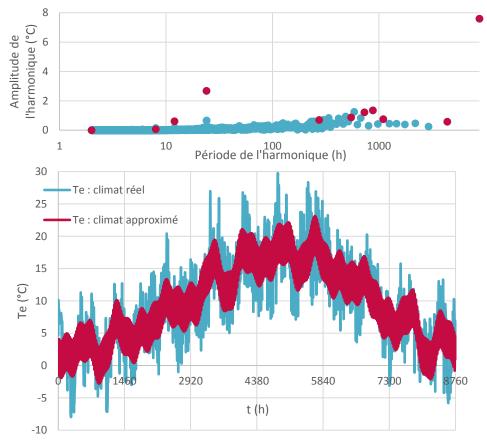
 - Structure 2D/3D : $T_e = 1$, $T_i = 0$

$$\Phi_{ii} = \frac{1}{c} \int_{V} \rho c (1 - T_{x,y,z})^{2} dV \qquad \qquad \Phi_{ee} = \frac{1}{c} \int_{V} \rho c T_{x,y,z}^{2} dV$$

$$\Phi_{ie} = \frac{1}{c} \int_{V} \rho c T_{x,y,z} (1 - T_{x,y,z}) dV$$

Structure 1D : f(R_i, C_i)

- Conditions à respecter
 - Résistance totale R
 - Capacité totale C
 - Facteurs de structure φ


•
$$\begin{bmatrix} q_i(p) \\ q_e(p) \end{bmatrix} = \begin{bmatrix} -G_{Ai}(p) & G_T(p) \\ -G_T(p) & G_{Ae}(p) \end{bmatrix} \times \begin{bmatrix} T_i(p) \\ T_e(p) \end{bmatrix}$$

$$\begin{bmatrix} -G_{Ai}(p) & G_T(p) \\ -G_T(p) & G_{Ae}(p) \end{bmatrix} = \begin{bmatrix} -1/R & 1/R \\ -1/R & 1/R \end{bmatrix} + \begin{bmatrix} -C\varphi_{ii} & -C\varphi_{ie} \\ C\varphi_{ie} & C\varphi_{ee} \end{bmatrix} \times p + \cdots$$

- Comportement dynamique similaire (globalement)
- 6 paramètres, 4 relations → infinité de solutions
- Fonction objectif → la meilleure

- Fonction objectif
 - Réponse à des sollicitations harmoniques
 - T_e : somme d'harmoniques réalistes (Bruxelles), $K_e = 23 \text{ W/m}^2 \text{K}$

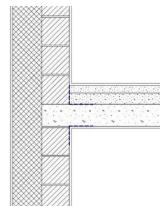
Fonction objectif

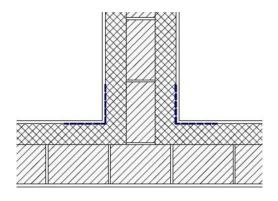
- Réponse à des sollicitations harmoniques
 - T_i : signal sinusoïdal (amplitude unitaire, P = 24h), K_i = 8 W/m²K

•
$$F = \sum_{t=t_0}^{t=t_f} (q_i(t) - q'_i(t))^2$$

- q_i(t): structure 2D/3D; q_i'(t): structure 1D
- $\Delta t = 1h$, $t_0 = 400h$, $t_f = 2000h$
- Pour la structure 1D à 3 couches:

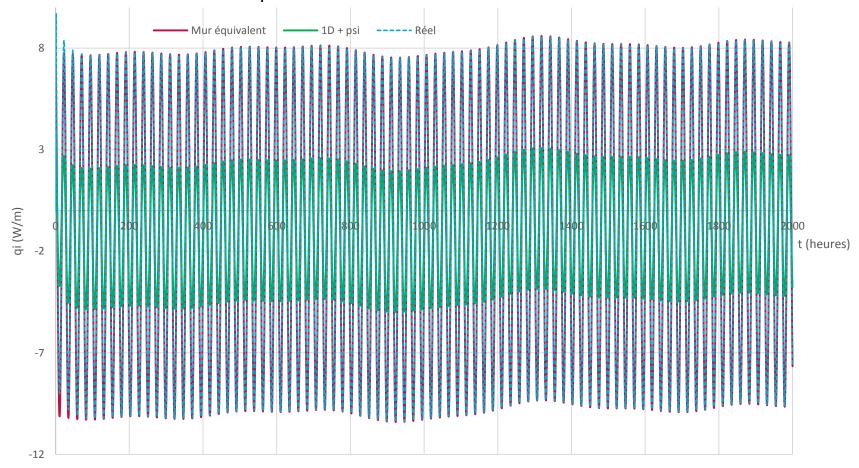
$$\bullet \quad A_m = D_m = cosh \left(\sqrt{\frac{2 \times \pi \times C_m \times R_m \times j}{P}} \right) \qquad B_m = sinh \left(\sqrt{\frac{2 \times \pi \times C_m \times R_m \times j}{P}} \right) / \sqrt{\frac{2 \times \pi \times C_m \times R_m \times j}{R_m \times P}} \right)$$

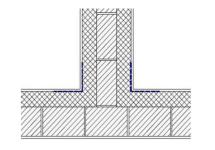

•
$$E_{m} = \sqrt{\frac{2 \times \pi \times C_{m} \times j}{R_{m} \times P}} \times \sinh\left(\sqrt{\frac{2 \times \pi \times C_{m} \times R_{m} \times j}{P}}\right)$$


- Algorithme
 - Simulations numériques \rightarrow R, C, $\phi_{ii-ie-ee}$, $q_i(t)$
 - Combinaisons de R₂, R₃ (discrétisation)
 - Calcul de R_1 , C_1 , C_2 , C_3
 - Calcul de F (fonction objectif)
 - Meilleures combinaisons conservées
 - Discrétisation plus fine des valeurs testées de R₂ et R₃ si nécessaire

Ponts thermiques 2D

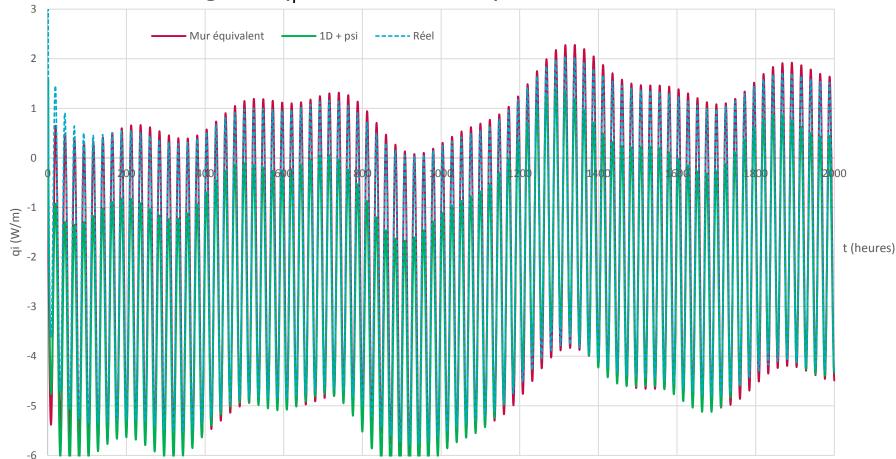
- PT1 : Mur ext. plancher
- EPS (19 cm) + Brique $U_{1D}=0.146W/m^2K$ $\Psi=0.0042W/mK$ $\Phi_{ii}=0.92 - \Phi_{ie}=0.025 - \Phi_{ee}=0.029$

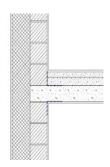



PT4: Mur ext. - mur de refend

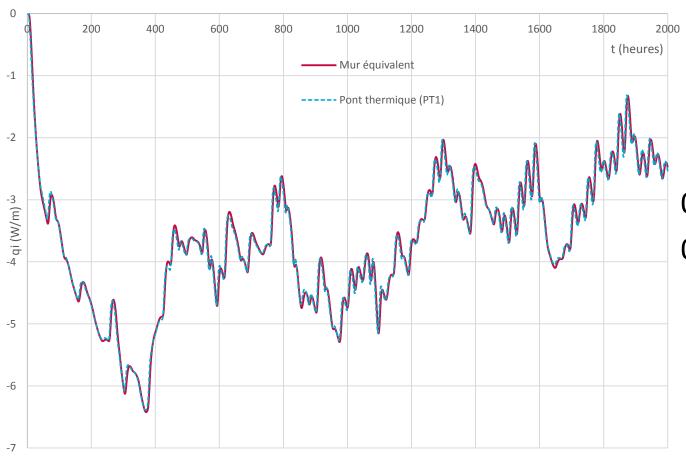
Béton lourd + PUR (10 cm) $U_{1D}=0.212 W/m^2 K \ \Psi=0.013 W/m K$ $\varphi_{ii}=0.16 - \varphi_{ie}=0.097 - \varphi_{ee}=0.65$

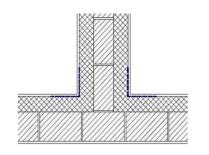
énergie


- Fonction objectif PT1
 - Erreur intégrale q_i : 0,009% mur équivalent 8,4% 1D+Ψ



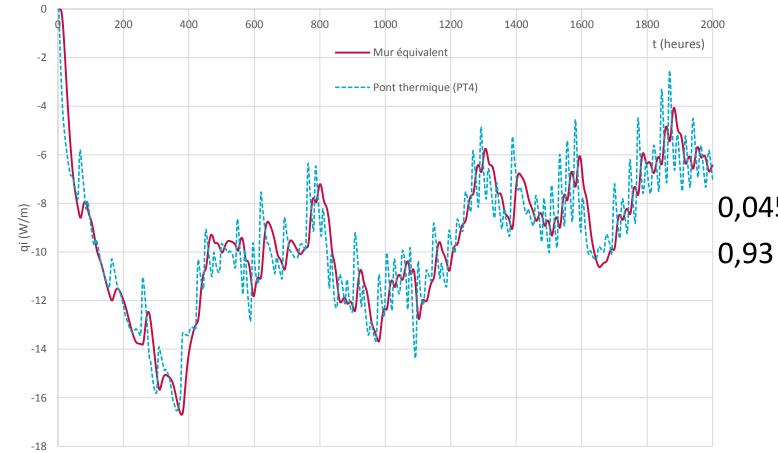
- Fonction objectif PT4
 - Erreur intégrale q_i: 0,19% mur équivalent 33% 1D+Ψ



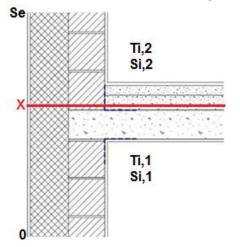


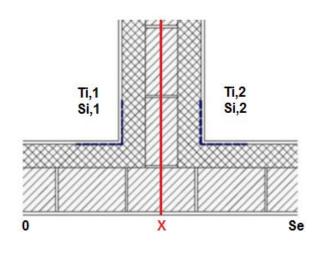
INSTITUT DE RECHERCHE EN ENERG DE L'UMON

Données météo Moscou (T_e, q_{sol}) – T_i = 20°C

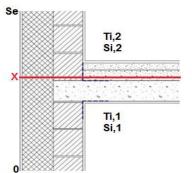


0,019% 0,077 W/m

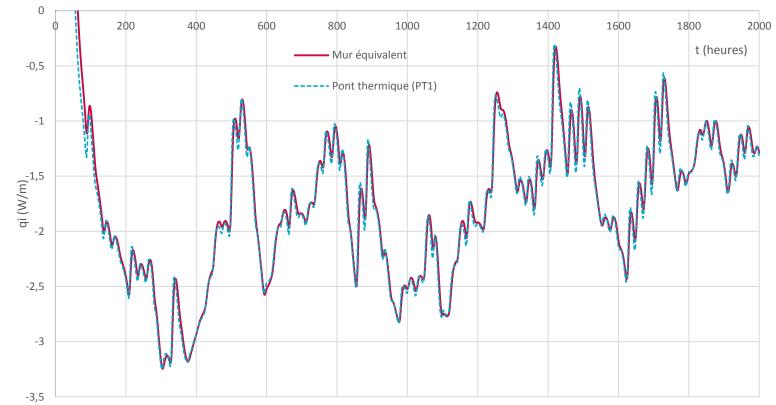

Données météo Moscou (T_e, q_{sol}) – T_i = 20°C



0,045% 0,93 W/m



3 zones de température



- Plan adiabatique fictif X : $\int_0^X q_e = \int_{S_{i,1}} q_i \qquad \int_X^{S_e} q_e = \int_{S_{i,2}} q_i$
 - $T_{i,1} = T_{i,2} = 20^{\circ}C$ $T_e = 0^{\circ}C$
- 2 parties étudiées séparément
 - CL correspondantes
 - Somme les 2 contributions

- 3 zones de température PT1
 - $T_{i,1} = 16^{\circ}C T_{i,2} = 20^{\circ}C T_e \text{ et } q_{sol} : Bruxelles$

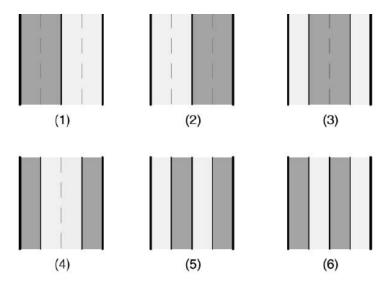
Conclusion

Résultats

- Bonne précision : Intégrale q_i < 1% erreur moyenne < 1 W/m
- Différents climats (Bruxelles, Moscou, Quito, Katmandou)
- Différentes périodes de l'année
- T_i constante ou sinusoïdale
- 3 zones de température

Perspectives

- Autres conditions aux limites (climat, T_i)
- Autres ponts thermiques (3D, contact avec le sol, etc.)
- Impact sur la consommation énergétique



Merci de votre attention!

Facteurs de structure

Exemples

J. Kosny & E. Kossecka

$$\begin{aligned} Q_{\rm ni}(t) &\Rightarrow \frac{t}{R_{\rm T}} [T_{\rm e} - T_{\rm i}] - T_{\rm i} C \varphi_{\rm ii} - T_{\rm e} C \varphi_{\rm ie} \\ \\ Q_{\rm ne}(t) &\Rightarrow \frac{t}{R_{\rm T}} [T_{\rm i} - T_{\rm e})] - T_{\rm i} C \varphi_{\rm ie} - T_{\rm e} C \varphi_{\rm ee} \end{aligned}$$

Wall	$\phi_{ m ie}$	$arphi_{ m ii}$	$arphi_{ m ce}$
1	0.018	0.950	0.014
2	0.018	0.014	0.950
3	0.247	0.253	0.253
4	0.012	0.488	0.488
5	0.130	0.605	0.136
6	0.130	0.136	0.605
Homogeneous	0.167	0.333	0.333

insulation

concrete

Facteurs de structure

- Expression
 - Pour une structure 1D à 3 couches (int-1-2-3-ext) : f(R_i, C_i)

$$\varphi_{ii} = \frac{1}{R^2C} \times \left(C_1 \times \left(\frac{R_1^2}{3} + R_1 \times (R_2 + R_3 + R_e) + (R_2 + R_3 + R_e)^2 \right) + C_2 \times \left(\frac{R_2^2}{3} + R_2 \times (R_3 + R_e) + (R_3 + R_e)^2 \right) + C_3 \times \left(\frac{R_3^2}{3} + R_3 \times R_e + R_e^2 \right) \right)$$

$$\varphi_{ie} = \frac{1}{R^2C} \times \left(C_1 \times \left(-\frac{R_1^2}{3} + \frac{R_1 \times R}{2} + R_i \times (R_2 + R_3 + R_e) \right) + C_2 \times \left(-\frac{R_2^2}{3} + \frac{R_2 \times R}{2} + (R_i + R_1) \times (R_3 + R_e) \right) + C_3 \times \left(-\frac{R_3^2}{3} + \frac{R_3 \times R}{2} + (R_i + R_1 + R_2) \times R_e \right) \right)$$

$$\varphi_{ee} = \frac{1}{R^2C} \times \left(C_1 \times \left(\frac{R_1^2}{3} + R_1 \times R_i + R_i^2 \right) + C_2 \times \left(\frac{R_2^2}{3} + R_2 \times (R_i + R_1) + (R_i + R_1)^2 \right) + C_3 \times \left(\frac{R_3^2}{3} + R_3 \times (R_i + R_1 + R_2) + (R_i + R_1 + R_2)^2 \right) \right)$$