
Abstract: This paper focuses on the automatic 

detection of speech pathologies by exploiting the 

estimation of the glottal source. Three methods of 

estimation are compared and time and spectral 

features are extracted. The relevancy of these features 

is assessed by means of information theory-based 

measures. This allows an intuitive interpretation in 

terms of discrimination power and redundancy 

between the features. It is discussed which features 

are informative or complementary for detecting voice 

pathologies and the glottal source estimation methods 

are compared.  
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I. INTRODUCTION 

 
Perceptive evaluation performed by clinicians suffers 
from the dependency on the experience of the listener and 
the inter- and intra-judges variability. There is thus a need 
to develop objective tools. For this, a part of research in 
speech processing has focused on the detection of speech 
pathologies from audio recordings. Indeed it could be 
useful to detect disorders when perturbations are still 
weak, to prevent the degradation of the pathology, or to 
measure the voice quality before and after surgery [1]. As 
video recordings of the vocal folds show that their 
behavior is linked to the perception of different kinds of 
voice qualities, including pathologies, isolating and 
parametrizing the glottal excitation should lead to a better 
discrimination between normal and pathological voices. 
Such parametrizations of the glottal pulse have already 
been proposed both in time and frequency domains ([2], 
[3]).  

This paper pursues the work presented in [4], in 
which it was shown that features respectively extracted 
from the vocal tract and glottal contributions (estimated 
by the IAIF algorithm [5]) are synergic and can lead 
together to an efficient discrimination of voice disorders. 
The present study addresses the comparison between 
IAIF and two other methods for the same problem. As in 
[4], the performance of classification is assessed by 
computing information theory-based measures in order to 
provide an intuitive interpretation in terms of 
discrimination power, redundancy and synergy between 
the features. 

The paper is structured as follows. In Section 2, the 
different methods of glottal source estimation are 
presented. Section 3 defines the features extracted from 
the glottal source. Section 4 reviews the mutual 

information-based measures that are used in this work 
and highlights their interpretation for a classification 
problem. Experiments and results are detailed in Section 
5. It is discussed which features are informative for the 
detection of voice disorders and which ones are 
complementary. Finally Section 6 concludes. 
 

II. GLOTTAL SOURCE ESTIMATION 

 

Three methods of glottal source estimation are considered 

here: the Complex Cepstrum Decomposition (CCD) [6], 

the Iterative Adaptative Inverse Filtering (IAIF) [5] and 

the Closed Phase Inverse Filtering (CPIF) technique [7]. 

The application of these three methods on a fragment of a 

normophonic sustained vowel /a/ is presented in Fig. 1. 
 
A. Complex Cepstrum Decomposition 

 

It has been recently shown that complex cepstrum can be 

efficiently used for glottal source estimation [6].This 

method aims at separating the minimum and maximum-

phase components of the speech signal. Indeed it has 

been shown previously [8] that speech is a mixed-phase 

signal where the maximum-phase (i.e. anti-causal) 

contribution corresponds to the glottal open phase, while 

the minimum-phase component is related to the vocal 
tract transmittance (assuming an abrupt glottal return 

phase). Isolating the maximum-phase component of 

speech then provides a reliable estimation of the glottal 

source, which can be achieved by the complex cepstrum. 

 

B. Iterative Adaptative Inverse Filtering 

 

The IAIF technique [5] (publicly available in the Aparat 

Toolkit [9]) iteratively estimates the vocal tract 

contribution from the speech signal using a Discrete All 

Pole model whose order is different for the successive 
iterations. The glottal source is estimated by filtering the 

speech signal by the inverse of the filter modeling the 

contribution of the vocal tract.  

 

C. Closed Phase Inverse Filtering 
 
The CPIF technique exploits the fact that the glottal cycle 
consists of two phases, during which the vocal folds are 
respectively open and closed [7]. The key idea of this 
technique is to estimate the vocal tract transmittance 
during the closed phase, when it is assumed to be almost 
free of any excitation. Linear prediction is thus applied on 
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the speech signal during the closed phase and the glottal 
source is estimated by inverse filtering of the speech 
signal.  
 

 
Fig. 1. Comparison of the three glottal source estimations (a: CCD;  

b: IAIF; c: CPIF) for a normophonic sustained vowel. 

 

III. FEATURE EXTRACTION 

 

Features are here extracted from glottal pitch-

synchronous frames in voiced parts of speech. These 

frames are two-pitch period long, centered on the glottal 

closure instant (GCI) and weighted by a Blackman 

window. Pitch and voicing decision are computed using 

the Snack library [10] while GCIs are located according 

to the method described in [11]. 

 

A. Spectral Features 

 

The amplitude spectrum of a voiced glottal source 
generally presents a low-frequency response called 

glottal formant produced during the open phase [3]. This 

formant is here characterized both by its frequency Fg and 

bandwidth Bw.  

The spectral content of the glottal source spectrum is 

summarized by computing characteristics describing the 

repartition of its energy. The global repartition of spectral 

energy is captured in the spectral center of gravity CoG. 

A finer distribution of energy is quantified by considering 

an approach similar to [12] but using the perceptive mel 

scale. For this, the power spectral density is weighted by 
a mel-filterbank consisting on 24 triangular filters equally 

spaced along the whole mel scale. Three perceptive 

spectral balances are then computed: 

 

   (1) 

 

where PE(i) denotes the cumulated weighted power 

spectral density for the ith filter. 

 

 

B. Time Features 

 

In many studies, the glottal flow and its derivative (called 

here glottal source) have been used to characterize voice 

quality [2]. Two parameters are computed here for 

characterizing the amplitude and duration of the open 

phase of the glottal cycle. The Normalized Amplitude 

Quotient (NAQ) [2] is defined as the ratio of glottal flow 

amplitude and the minimum peak of glottal flow 

derivative, normalized by the length of the glottal cycle. 

The Quasi-Open Quotient (QOQ) [2] is defined as the 
duration during which the glottal flow is 50% above the 

minimum flow. Unlike the other parameters, NAQ and 

QOQ are computed for one glottal cycle instead of a two-

period long frame centered on the GCI. Furthermore, we 

observed in [4] that the discontinuity at the GCI is 

generally more significant in case of normal voice than in 

case of pathological voice. The minimum value at the 

GCI (minGCI) of energy-normalized glottal source 

frames is thus also considered here. 

 

IV. INFORMATION THEORY-BASED MEASURES 

 

The problem of automatic classification consists in 

finding a set of features Xi such that the uncertainty on 

the determination of classes C is reduced as much as 

possible [13]. For this, Information Theory [14] allows to 
assess the relevance of features for a given classification 

problem, by making use of the following measures 

(where p(.) denotes a probability density function): 

 

 The entropy of classes C is expressed as: 

 

(2) 

 

and can be interpreted as the amount of uncertainty on 

their determination. 

 

 The mutual information between one feature Xi and 

classes C: 

 

(3) 

 

can be viewed as the information the feature Xi conveys 

about the considered classification problem, i.e. the 

discrimination power of one individual feature. 

 

 The joint mutual information between two features 

Xi, Xj, and classes C can be expressed as: 

 

(4) 

 

and corresponds to the information that features Xi and Xj, 

when used together, bring to the classification problem. 

The last term can be written as: 



 

(5) 

 

An important remark has to be underlined about the sign 

of this term. It can be noticed from expression of   

that a positive value of  implies 

some redundancy between the features, while a negative 

value means that features present some synergy 

(depending on whether their association brings 

respectively less or more than the addition of their own 

individual information). 

 
V. EXPERIMENTS 

 

A. Database 

 

A popular database in the domain of speech pathologies 

is the MEEI Disordered Voice Database [15]. This 

database contains sustained vowels and reading text 

samples, from 53 subjects with normal voice and 657 

subjects with a large panel of pathologies. Here, all the 
sustained vowels of the MEEI Database resampled at 16 

kHz are considered. 

 

B. Mutual Information Computation 

 

To evaluate the significance of the proposed features, the 

following measures are computed: 

 

 the relative intrinsic information of one individual 

feature , i.e. the percentage of 

relevant information conveyed by the feature Xi, 

 the relative redundancy between two features 

, i.e. the percentage of their 

common relevant information, 

 the relative joint information of two features 

, i.e. the percentage of relevant 

information they convey together. 

 

For this, equations presented in Section IV are 
calculated. Probability density functions are estimated by 

a histogram approach. The number of bins is set to 50 for 

each feature dimension, which results in a trade-off 

between an adequately high number for an accurate 

estimation, while keeping sufficient samples per bin. 

Since features are extracted at the frame level, a total of 

32000 and 107000 examples is available respectively for 

normal and pathological voices. Mutual information-

based measures can then be considered as being 

accurately estimated. Class labels correspond to the 

presence or not of a voice disorder. 

 
 

C. Results 

 

The values of the measures detailed in the previous 

section for the three methods are presented in Fig. 2. For 

each table, the diagonal indicates the percentage of 

relevant information conveyed by each feature. It can be 

observed that QOQ is the most informative feature for 

CPIF and CCD methods (respectively 31.5% and 32.8%) 

while Fg is slightly more informative (25.9%) than QOQ 

in the case of IAIF method. The top-right part contains 

the values of relative joint information of two features. 
When used together, the combination of QOQ and Fg 

brings, for the three methods, the most important 

information about the classification problem, with a 

maximum value for the CPIF method (63.8%). The 

bottom-left part shows the values of relative redundancy 

between two features. For CCD and CPIF methods, Fg is 

synergic ( ) with all the features, including 

QOQ, while this latter is less synergic and in some cases 

redundant with the other features.  

The results show that applying the CCD technique 

gives generally better results than other methods in terms 

of intrinsic discrimination power. The synergy for the 

CDD technique is also the highest for most of features 

pairs. Moreover, using the combination of QOQ and Fg 

computed by CCD is the most interesting for the 

distinction between normal and pathological voices. 

Indeed, their mutual information is high, each feature 
brings its own information in the combination and is not 

redundant with the information conveyed by the other.  

For the three methods, the highest amount of 

information conveyed by the combination of two features 

is about 60%. This means that there is a need of other 

information to distinguish normal and pathological 

voices. For this, it was shown in [4] that combining only 

one vocal tract-based and one glottal feature allows 

explaining 81% of the difference between normal and 

pathological voices. 

 
VI. CONCLUSION 

 

This paper focused on the problem of automatic detection 

of voice pathologies from the speech signal. The goal was 

to compare the classification performance of the features 

extracted from the glottal source estimated by three 

different methods (CCD, IAIF, and CPIF). These features 

were assessed through mutual information-based 

measures. It turned out that CCD technique generally 

provides features that convey higher intrinsic, mutual 

information and synergy. It was also shown that the 
couple of features (QOQ, Fg) has the highest mutual 

information (63.8%) and is also characterized by a high 

synergy, meaning that their association brings more than 

the addition of their intrinsic information. 
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Fig.2. Mutual information-based measures for the proposed features. On the diagonal: the relative intrinsic information. In the bottom-left part: the 

relative redundancy between two considered features. In the top-right: the relative joint information of the two considered features 
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