BCS annual meeting - Diepenbeek - 15 June 2001

Characterisation of the microstructure of thin films deposited on glass by optical techniques

Eric Dumont Faculté Polytechnique de Mons

Speech contents

- Aim of the research
- Experimental techniques
- Models
- Real microstructures
- Study of the film, application to ZnO layers on glass
- Conclusions

Aim of the research

- Possibility of using optical techniques to determine the microstructure of thin films
- What is the microstructure of a thin film?

 Causes: variation of the compacity (voids), of the crystalline structure, of the roughness and/or of the material composition of the film

Aim of the research

- Why studying the microstructure of thin films?
- Thin films are used in many applications, e.g.:

Their microstructure influences their final properties,
 e.g. roughness in antireflective coatings

Aim of the research

- Why using optical techniques for the determination of the microstructrure of a thin film ?
- Advantages: non-destructive techniques, no sample preparation, measurements in the air
- Drawbacks: use of complex mathematical models to determine this microstructure
- Optical techniques used in this research :
 Spectrophotometry, X-Ray reflectometry, Ellipsometry

Experimental techniques

 Measurement of specular and scattered reflectivity and transmitivity of light: R_S T_S R_D T_D

- \blacksquare R_ST_S: Spectrophotometry: wl = 190 2500 nm
- R_S: X-Ray Reflectometry: wl = 0.15418 nm
- R_D T_D: Spectrophotometry with integration sphere: wl = 190 2500 nm

Experimental techniques

• Measurement of the change of the polarisation state of polarised light by specular reflection : Δ and Ψ

$$R_p = E_{pr}/E_{pi}$$
 $R_s = E_{sr}/E_{si}$
 $R_p/R_s = \tan \Psi e^{j\Delta}$

■ Δ and Ψ : Ellipsometry: wl = 300 - 850 nm

 Optical measurements depend on : experimental parameters and physical parameters of a film

R, T, \triangle and Ψ = f (N_a, N_F (z), d_F, N_s, d_s, WL, AI)

 Relation between the microstructure and the optical index profile of a thin film

 Determination of the microstructure = calculation of the optical index profile N_F (z)

How to model an optical index profile?

- Optical index profile described by a packing of homogeneous sublayers which follows the profile
- Optical properties R, T, ∆ and Ψ then easily computed by Fresnel equations

- How to calculate the optical index profile N_F (z) of a thin film ?
- \blacksquare 1) create a mathematical model with adjustable parameters to describe $N_F(z)$
- 2) compute R, T, \triangle and Ψ for starting values of the parameters of the model
- 3) compare the computed values with experimental values of R, T, Δ and Ψ measured on a sample and adjust the parameters in order to minimize the differences thanks to a χ^2 method

- The optical index profile depends on the wavelength wl
- reation of a « new model » based on a volume fraction of material profile $F_v(z)$ not dependant on wl

```
Visible wavelengths : N_{material} = n - j k
X-Ray wavelengths : N_{material} = 1 - \delta - j \beta
```

determination of the microstructure = calculation of F_v (z)

Real microstructures

 Studies by scanning electron microscopy (SEM) show that in real microstructures, we observe three different features in the optical index profile: inhomogeneity, roughness and interface:

μM

Real microstructures

In the optical index profile, these features are also present:

- Roughness and interface: rapid variation of the optical index at the boundaries
- Inhomogeneity: slight variation of the optical index along the thickness of the film

Real microstructures

How to describe roughness?

- Roughness described by its rms value σ
- Optical index profile modeled by the error function erf (z, σ)

- Determination of the volume fraction profile $F_v(z)$ of ZnO thin films
- Substrate : Corning 7059 glass
- Film: r.f. sputtered ZnO
- Why ZnO ?
 - not well known
 - transparent electric conductor

- Step 1 : use of state of-the-art models in spectrophotometry and ellipsometry
- Spectrophotometry:
 models b-c-e-f-g-h are
 good ↑ not very
 sensitive to the
 microstructure
- Ellipsometry: models
 e and h good ↑ not
 very sensitive to
 « interfaces »

- Step 2 : use of improved models in ellipsometry
- linear index profile replaced by polynomial index profile, with Chebyshev polynomials

 Application to multisample analysis and to the analysis of annealing of ZnO layers

Multisample analysis

Annealing of a ZnO layer

 Step 3: use of state of-the-art models in X-Ray reflectometry

■ Model b is the best ↑ X-Ray reflectometry sensitive to roughness and to the presence of « interfaces »

Model with « standard » interface

Model with porosity

Index profile for the model with porosity

- Use of other techniques to validate the value of the rms roughness σ obtained with X-Ray reflectometry measurements :
- Measurement of the scattered reflectivity R_D and use of the TIS (Total Integrated Scattering) theory
- Measurement by AFM (Atomic Force Microscopy)

Roughness of films measured with different techniques

 Step 4: use of improved models in X-Ray reflectometry

■ Models a and b are good ↑ X-Ray Reflectometry not very sensitive to inhomogeneity

- Each technique has its own field where it works well, different from the two other ones:
- Sensitivity:
 - spectrophotometry not very sensitive to the microstructure of the films \uparrow can only be used to determine the thickness of a film
 - ellipsometry not very sensitive to the presence of interfaces ↑ can only be used to determine the roughness and inhomogeneity of a film
 - X-Ray reflectometry not very sensitive to inhomogeneity ↑ can only be used to determine the roughness or presence of interface in a film

- Each technique has its own field where it works well, different from the two other ones:
- Thickness range :
 - spectrophotometry and ellipsometry : d_F > 50 nm
 - X-Ray reflectometry : d_F < 100 nm, sample not too rough

- Step 5 : « new model » used with ellipsometric, spectrophotometric and X-Ray measurements together
- same model for all kinds of measurements :
 - film with roughness, inhomogeneity and interface
 - use of volume fraction profile F_v(z)
- Possibility of using the 3 techniques out of their usual range of thickness
- Application to a « thin » (75 nm) and a « thick »
 (460 nm) film

Thin film

Thick film

Relation between the index profile and the real structure of the ZnO thin film :

Conclusions

- Creation of a software able to analyse 3 kinds of optical measurements (spectrophotometry, ellipsometry and X-Ray reflectometry) for the determination of the microstructure of thin films
- Study of the sensitivity of the 3 optical techniques to the various features (roughness, inhomogeneity, interface) of a real microstructure: each technique has its own field of application
- Improvement of the State of-the-art models for the 3 optical techniques

Conclusions

- Creation of a « new model » able to analyse all kinds of optical measurements together
- The « new model » has improved possibilities :
- possibility to use the optical measurements out of their usual « thickness range »
- possibility to determine the 3 features of a microstructure simultaneously
- Possibility to use the optical techniques for all kinds of films on all substrates