
Université de Mons
Faculté des Sciences

Département d’Informatique

Integrating Immersive Technologies
for Algorithmic Design in Architecture

Adrien Coppens

A dissertation submitted in fulfilment of the requirements of
the degree of Docteur en Sciences

Advisors
Dr. Tom Mens Université de Mons, Belgium
Dr. Mohamed-Anis Gallas Université de Mons, Belgium

Jury
Dr. Bruno Quoitin Université de Mons, Belgium
Dr. Gilles Halin Ecole d’Architecture de Nantes, Université de Lorraine, France
Dr. Annie Guerriero Luxembourg Institute of Science and Technology, Luxembourg

February 2022

ar
X

iv
:2

20
2.

12
72

2v
1

 [
cs

.H
C

]
 2

5
Fe

b
20

22

.

Acknowledgements

As an important chapter of my life is about to end, I would like to express
my gratitude towards those who directly or indirectly have been part of this
four-year journey.

First and foremost, I would like to thank Tom, my advisor and head of the
lab I have been part of this whole time. Thank you for giving me the oppor-
tunity to work with all these technologies I wanted to explore, even though
they are outside of your main research interests, but also for your incredible
availability (how many dozens of days do you have in a week?) as well as the
swiftness, quantity and quality of your invaluable feedback and guidance along
the way; and thank you for letting me borrow your most excellent (immersive?)
research kit during the CAMPaM workshop; so, for all these reasons and many
more, bedankt!1

Anis, my second adviser, thank you for providing a context in which I
could experiment with immersive technologies. Thank you for helping me
benefit from your network of contacts in a field I knew nothing about, but
also for turning your students into “guinea pigs” to test our prototypes and for
accompanying me to these conferences and seminars.

Thank you as well to all jury and “comité d’accompagnement” members, for
accepting to review my work and provide valuable feedback on it. Your com-
ments and suggestions helped make this dissertation better. More specifically,
thank you Annie for inviting me at LIST during these 3 months by combating
the sanitary situation. Thank you Gilles for the discussions we had at various
events, and for showing me that hybrid specimens in between computer scien-
tists and architects do exist. ACK to you Bruno, for providing the external
view on my work and for giving me an excuse to talk about technical details.

“Merci” (in Luxembourgish) to Nico, Elie, Sylvain, Calin and the people at
1Sentence intentionally left long and complex

iii

iv

LIST, for welcoming me in your office in order to collaborate on that prototype.
Thank you to all the colleagues I met during this time, and to the multiple

co-workers I had the pleasure to share an office with. I would likely forget
some of you so I would rather keep it generic but you all helped make our work
environment such a nice and pleasant place.

Thank you to Robin, for choosing to work on my student project proposal,
and for carrying it out nicely so that it contributed to the present dissertation.
Thank you to all the “guinea pigs” that tried various versions of our prototypes
and provided feedback on them, and to all survey respondents for their valuable
time.

Thank you to Ivan Sutherland, for inspiring and pioneering both head-
mounted displays and computer-aided design. As a nod to your research
achievements and how their combination matches the subject of this disser-
tation, each chapter starts with an epigraph with quotes from you that felt
appropriate.

On a more personal level, thank you to all my tennis and padel partners,
hitting the ball with you allowed me to exert myself and helped clear my mind
from all those 0’s and 1’s. Thank you to my friends, for providing all those
relaxing and enjoyable times. Thank you to my family for your unwavering
support during these four years but also since I was born.

Finally, thank you to all the “et al.” that I may have forgotten.

Abstract

Architectural design practice has radically evolved over the course of its history,
due to technological improvements that gave rise to advanced automated tools
for many design tasks. Traditional paper drawings and scale models are now
accompanied by 2D and 3D Computer-Aided Architectural Design (CAAD)
software.

While such tools improved in many ways, including performance and ac-
curacy improvements, the modalities of user interaction have mostly remained
the same, with 2D interfaces displayed on 2D screens. The maturation of Aug-
mented Reality (AR) and Virtual Reality (VR) technology has led to some
level of integration of these immersive technologies into architectural practice,
but mostly limited to visualisation purposes, e.g. to show a finished project to
a potential client.

We posit that there is potential to employ such technologies earlier in the
architectural design process and therefore explore that possibility with a focus
on Algorithmic Design (AD), a CAAD paradigm that relies on (often visual)
algorithms to generate geometries. The main goal of this dissertation is to
demonstrate that AR and VR can be adopted for AD activities.

To verify that claim, we follow an iterative prototype-based methodology
to develop research prototype software tools and evaluate them. The three
developed prototypes provide evidence that integrating immersive technolo-
gies into the AD toolset provides opportunities for architects to improve their
workflow and to better present their creations to clients. Based on our contri-
butions and the feedback we gathered from architectural students and other
researchers that evaluated the developed prototypes, we additionally provide
insights as to future perspectives in the field.

v

vi

Contents

List of Acronyms 1

1 Introduction 3
1.1 Context . 4
1.2 Algorithmic Design in architecture 5

1.2.1 Terminology . 7
1.3 Thesis statement . 8
1.4 Research methodology . 9
1.5 Thesis structure . 10

2 State of the art 11
2.1 Immersive technologies . 12

2.1.1 Terminology . 12
2.1.2 Technological building blocks for immersive experiences 15
2.1.3 Application domains . 22

2.2 3D visual modelling . 25
2.2.1 Immersive authoring of visual models 26

2.3 Computer-Aided Design . 27
2.3.1 Evolution of Computer-Aided Design 27
2.3.2 Computer-Aided Architectural Design 36
2.3.3 Programming architectural models 38

2.4 Three-dimensional Human-Computer Interaction 44
2.4.1 Direct manipulation . 44
2.4.2 Indirect manipulation 47
2.4.3 Hybrid techniques . 49

2.5 New ways of interacting with architectural designs 50

vii

viii Contents

2.5.1 Design Space Exploration and Optimisation of parame-
ter values . 50

2.5.2 Use of immersive technologies 55
2.5.3 Survey on the potential of Virtual Reality for architec-

tural design . 62

3 Immersive parameter adjustment for algorithmic co-design 69
3.1 Requirements for creating immersive Algorithmic Design tooling 70
3.2 Prototype for adjusting models in Virtual Reality 73

3.2.1 Grasshopper custom component for external parameter
value adjustment . 75

3.2.2 Virtual Reality application 77
3.3 Enabling immersive collaboration 81

3.3.1 Virtual co-presence . 82
3.3.2 Towards collaborative parameter value adjustment . . . 84

3.4 Evolving the concept for Augmented Reality and Tangible User
Interfaces . 87
3.4.1 Overview of the system 87
3.4.2 Grasshopper custom component 92
3.4.3 Table application . 94
3.4.4 Circular screen setup and Virtual Reality applications . 96
3.4.5 Augmented Reality application 97

3.5 Validation . 99
3.6 Discussion . 101

4 Immersive visual programming for Algorithmic Design 105
4.1 A graph representation of Algorithmic Design definitions 106
4.2 Interoperability with Grasshopper 110

4.2.1 Defining vertex objects 110
4.2.2 Converting Grasshopper files to a graph-based represen-

tation . 111
4.2.3 Groups and clusters . 113
4.2.4 Immersive visual representation 113

4.3 Exploring interaction techniques for graph manipulation 115
4.3.1 Variant P1: grasping metaphor with 6-DoF controllers . 115
4.3.2 Variant P speech1 : Speech recognition 116
4.3.3 Variant P2: grasping and pointing metaphor with a hand-

tracking system . 119
4.4 Immersive visualisation of resulting structures 120
4.5 Validation . 121

ix

4.6 Discussion . 123
4.6.1 Towards a collaborative variant of GHVRGraph 124
4.6.2 Opportunities for visualisation enhancements 125
4.6.3 Genericity and adaptability 127

5 Conclusion 129
5.1 Research contributions . 130
5.2 Discussion . 131

5.2.1 Overview of the immersive Algorithmic Design landscape 132
5.2.2 Limitations . 136

5.3 Perspectives . 139
5.3.1 Enhancing the aid for Algorithmic Design 140
5.3.2 Technological improvements 141

Appendices 143

A GHXR evaluation protocol 145

B GHXR System Usability Scale questionnaire 147

x Contents

1

2 Contents

CHAPTER 1

Introduction

“It’s not an idea until you write it down.”

Ivan Sutherland

During my computer science studies, I had the opportunity to work with
gestural interaction trackers and immersive technologies on several projects. I
have to say I was hooked to these innovative interaction devices as soon as I got
a hold of them. When the opportunity to pursue a PhD on these technologies
arose, it was obvious to me I should go for it.

After a few meetings with both Prof. Tom Mens and Dr. Mohamed-Anis
Gallas, we converged to an interesting area that combined my interests for
the aforementioned technologies with an actual research problem: integrating
immersive technologies into architectural design and Parametric Modelling in
particular or, as I prefer to call it, Algorithmic Design (AD).

Due to its interdisciplinary nature, the current thesis was co-directed by
Prof. Tom Mens from the Faculty of Sciences and Dr. Mohamed-Anis Gallas
from the Faculty of Architecture and Urban Planning.

The present document presents my work on the subject, that was carried
out during the last four years, and aims to help the reader understand why
and how I proceeded as well as what perspective my work offers.

3

4 Introduction

1.1. Context

Figure 1.1: A brief overview of the evolution of architectural tooling. Created
based on pictures from online sources1.

The Architecture, Engineering and Construction (AEC) industry has rad-
ically evolved due to technological improvements that gave rise to advanced
automated tools for many design tasks. Traditional paper drawings and scale
models are now accompanied by 2D and 3DComputer-Aided Design (CAD)
software.

These tools have consistently improved in terms of performance and accu-
racy, and new features are constantly added to them, such as real-time (light-
ing, structural) simulations and photo-realistic renderings.

In fact, the inclusion of immersive technologies in architectural practice
is currently mostly restricted to enhancing the visualisation of final models
(Blach et al., 1998), built using traditional (non-immersive) desktop software.
At that point, the design process is essentially over, and changes to the model
based on the immersive feedback are unlikely.

1This figure was created using three CC0 pictures from www.pexels.com and one (the
last one) from uploadvr.com/marui-plugins-bring-vr-support-to-3d-tools-maya-and-blender

https://www.pexels.com/
https://uploadvr.com/marui-plugins-bring-vr-support-to-3d-tools-maya-and-blender/

5

We believe that there is potential to employ immersive technologies before
the process is finished, in order to take advantage of the visualisation character-
istics during design activities. These include the sense of scale, the immersion,
the spatial perception as well as the interaction opportunities provided to the
user (Delgado et al., 2020; Jayaram et al., 2001; Louis et al., 2020).

1.2. Algorithmic Design in architecture

Immersive technologies provide opportunities to visualise a geometry in a three-
dimensional (virtual) environment. While this can be beneficial for architecture
in general, this is particularly attractive to design processes that would benefit
from rapid iteration cycles, where the designer would like to quickly transition
from the editing software to an updated view of the rendered model, and vice
versa.

So as to limit the scope of our work to a reasonable area, we chose to
focus on Algorithmic Design (AD) (Woodbury et al., 2010; Monedero,
2000). We made that choice because that design paradigm inherently favours
parametrised adjustment of designed models and therefore is a suitable candi-
date for the rapid iterations we suggest.

Furthermore, we identified a clear lack of support for immersive technolo-
gies with the most popular software tools supporting AD, leading to more
opportunities for us to explore the field. We will consequently mostly discuss
the integration of immersive technologies with AD in particular. But what is
AD exactly?

AD is an architectural design paradigm that involves generating geometries
using algorithms which are often driven by parameters that can be changed,
allowing designers to explore different solutions by tweaking the values of these
parameters. Algorithms can be represented in textual or visual forms, some-
times interchangeably, and may correspond to different programming paradigms
(see section 2.3.3 for more information on the paradigms covered by AD lan-
guages and tools).

This enables the designer to explore different solutions by modifying the
values of parameters from these algorithms, and facilitates the design process
of complex structures, such as the control tower from the Managua Airport,
represented in Figure 1.2.

6 Introduction

Figure 1.2: Example of an architectural project that relies on AD (through
Grasshopper and additional plug-ins) to generate a tower. Reproduced from
an example project by Mario Alberto Espinoza2.

In architectural practice, the most common representation form is flow-
based programming (Morrison, 1994) through a visual interface. Tools such
as Grasshopper3, GenerativeComponents4 and Dynamo Studio5, stand out as
the most popular software solutions (Cichocka et al., 2017).

Figure 1.3 shows an abstract representation of such a visual algorithm that
generates a simple cube, with the corresponding rendered geometry on the
right.

In flow-based programming, the final output is constructed by connecting
processes that have an internal behaviour and return an output value. The
idea is that in order to produce a result, one does not need to know the details
about the inner workings of each process. The processes can be thought of as
“black boxes”, whose output values can simply be reused by other processes.
Here, the output value of each process is often a geometry that is passed from
one component to the next in order to construct the final output.

We chose Grasshopper as our target AD system for the real prototypes
we aim to develop, because it is one of the most popular AD systems used
in both research and industrial contexts (Cichocka et al., 2017; Stals et al.,

2http://www.iaacblog.com/programs/managua-tower/
3http://grasshopper3d.com
4http://bentley.com/products/product-line/modeling-and-visualization-software/

generativecomponents
5http://autodesk.com/products/dynamo-studio

http://www.iaacblog.com/programs/managua-tower/
http://grasshopper3d.com
http://bentley.com/products/product-line/modeling-and-visualization-software/generativecomponents
http://bentley.com/products/product-line/modeling-and-visualization-software/generativecomponents
http://autodesk.com/products/dynamo-studio

7

Figure 1.3: A basic example of an AD visual algorithm with its associated
geometry.

2018b). Additionally, its software development toolkit supports C#, which
is convenient considering my familiarity with Unity, that also supports C#.
Choosing Grasshopper also means we have an easy access to a license and
informal evaluators since the usage of that software is taught at the University
of Mons, as part of one of Dr. Gallas’ courses.

1.2.1 Terminology

On a terminological note, AD is often referred to as computational design or
parametric modelling. Both of these terms appear too generic to us since they
could apply to non-algorithmic design as well: the former simply informs that a
computer was used, while the latter signals that the design is driven by param-
eters; parametric modelling (or parametric design) is in fact regularly confused
with Building Information Modelling (BIM) (see section 2.3.2). A related term
whose definition and relation with AD is sometimes unclear is Generative De-
sign (GD). Some consider it to be a superset of AD, while others define it as a
subtype of AD (Caetano et al., 2020). Most publications mentioning GD are
related to (multi-criteria) optimisation (Villaggi et al., 2018a), machine learn-
ing techniques (Nagy et al., 2017a) and Domain Space Exploration (Calixto &
Celani, 2015), all of which necessarily involve algorithms that generate designs.
Hence, we would be tempted to agree with the latter group and consider GD
as a subset to AD.

Since the most popular software tools for AD offer visual representations
of the algorithms (similar to what is shown in Figure 1.3), more specific terms
could be used to emphasise on that aspect. Based on computer science termi-
nology, we could indeed consider these visual algorithms as graph structures
(and therefore come up with a term such as “graph-based design”) or even high-
light the fact that we rely on flow-based programming (which would lead to a

8 Introduction

term such as “flow-based design” or “dataflow-based design” to disambiguate
with other types of flows such as control flow). However, these terms are not
standard in the architectural field and appear to be too technical to be broadly
used. Another issue that distances us from relying on terms that highlight the
visual nature of these representations is that AD software generally also sup-
port textual programming. We will therefore simply refer to the previously
defined modelling paradigm as AD from now on. This choice of term is consis-
tent with a recent paper that results from a literature review (Caetano et al.,
2020).

Additionally, we note that the “model” term in the context of AD can
be ambiguous: it could be used to designate a visual AD program or the
generated (or even rendered) geometry. For that reason, in the remaining
of this document we will try to avoid mentioning “model” and instead use
“algorithm” and “geometry” (or geometrical representation) to circumvent this
ambiguity whenever possible.

1.3. Thesis statement

Since we consider the integration of immersive technologies to be particularly
lacking in Algorithmic Design editors in architecture, our aim is to create and
evaluate prototypical tools that show the potential of using these technologies
as part of that design paradigm’s toolkit.

The main question that this thesis dissertation tries to answer is: “How
can immersive technologies be adopted for Algorithmic Design activities in
architecture?”. This leads to multiple sub-questions: Which immersive tech-
nologies are the most appropriate? How are these technologies perceived by
practitioners? How can these technologies be integrated with existing tools,
both technically and in terms of user interaction, so that they are adapted to
AD practice ?

Thesis statement

Integrating Augmented Reality (AR) and Virtual Reality (VR) tech-
nologies into the Algorithmic Design toolset provides opportunities
for architects to improve their workflow and to better present their
creations to clients.

9

1.4. Research methodology

To provide evidence for the thesis statement, we demonstrate that both Aug-
mented Reality (AR) and Virtual Reality (VR) can be integrated into
AD practice, through the implementation of several prototypes. They show
that such technologies are useful additions to the toolset at the architects’ dis-
posal for AD activities. We substantiate that usefulness through surveys and
interviews.

To structure our course of action, we generally follow an iterative and
prototype-based process. Figure 1.4 depicts that process, which closely resem-
bles the action research spiral (Kemmis et al., 2014) (plan, act, observe, reflect,
re-plan, etc.).

Figure 1.4: The iterative research process we followed to support the thesis
statement.

First, we identify a gap in existing tooling, that we attempt to fill with
a prototype. This allows us to organise evaluations of that prototype with
students and academics, through workshops and visits in universities. Based
on the feedback we thereby gather, we identify further needs and therefore
start another iterative cycle with a new prototype.

During these four years, we repeat that cycle three times, with three differ-
ent prototypes being developed. The first prototype enables geometry stream-
ing and parameter adjustment in VR, through a bridge between Grasshopper
and a virtual environment. The second one lets users have greater control over

10 Introduction

their design, with actual algorithm editing capabilities. That control necessi-
tates novel interaction mechanisms and we therefore explore a few options via
different techniques and devices. The third and last prototype goes back to
parameter adjustment but operates through more accomplished visualisation
and interaction systems.

1.5. Thesis structure

The thesis is split into 5 chapters. In between the current introduction (chap-
ter 1) and the conclusions (chapter 5), the reader will find a background liter-
ature review followed by two chapters (3 and 4) describing and discussing the
developed prototypes.

Specifically, chapter 2 presents and discusses the state of the art and the
state of the practice in several domains that are heavily tied with our work.
This comprises an introduction to the terminology in use for immersive tech-
nologies, a general overview on computer-aided (architectural) design, and a
section on how to interact within three-dimensional environments. Aggregated
together, these knowledge pieces form the basis on top of which we caved out
an iterative research process.

Chapter 3 and 4 describe the prototypes developed during each iteration
cycle, grouped by interaction level i.e., how much control they offer to the
user over their design. Chapter 3 focuses on the two prototypes that cover
parameter adjustment, while chapter 4 introduces a third prototype that en-
ables control over the visual algorithm itself. In both chapters, we present the
building blocks the prototypes are made of, discuss how they were received by
evaluators, and explain the rationale behind the decisions we made to move on
from each prototype to a new one.

Finally, chapter 5 summarises our contributions towards the thesis state-
ment, reflects on the developed prototypes, their use cases and usage scenarios,
and opens perspectives on how our research could be continued. We addition-
ally provide recommendations and projections of where the field should head
towards.

It should however be noted that this thesis structure does not exactly reflect
the methodology or chronology of our research developments. It is rather
organised based on the relation between the features and use cases that our
iterations aim to cover.

CHAPTER 2
State of the art

“I just need to figure out how things work.”

Ivan Sutherland

Before diving into our work, section 2.1 introduces the display and inter-
action technologies commonly used for creating immersive experiences, as well
as the corresponding terminology.

Section 2.2 presents three-dimensional visual modelling techniques that
have been proposed for various application domains, so that we may draw
inspiration from such techniques and apply them in the Algorithmic Design
context.

Section 2.3 goes through the history of Computer-Aided Design and its
architectural counterpart, before focusing on architectural design through pro-
gramming and Algorithmic Design itself.

Then, Section 2.4 presents an overview of three-dimensional interaction
techniques that are adapted to immersive manipulations, so that we may choose
the techniques that are most appropriate to the Algorithmic Design context.

Finally, Section 2.5 addresses new ways of interacting with architectural de-
signs, including optimisation techniques, exploratory approaches, and the use
of immersive technologies, to help us better picture the landscape of existing
integrations of these technologies and techniques in the architectural design
field.

11

12 State of the art

2.1. Immersive technologies

Terms such as Augmented Reality and Virtual Reality are now familiar to
a lot of people, thanks to well-known applications such as Pokémon Go and
popular devices such as HTC Vive1 and Oculus Rift2. In the last few years,
these immersive technologies have been subject to an increasing attention in
research, business and society in general (Suh & Prophet, 2018). This section
clarifies the terminology and how immersive experiences relate to one another,
then presents the underlying technologies and provides examples of use cases.

2.1.1 Terminology

A very frequently used taxonomy is the Reality Virtuality (RV) continuum
(Milgram & Kishino, 1994) represented on Figure 2.1. Experiences that mix
real and virtual elements can be placed on that continuum, whose reach goes
from the real world to an entirely virtual one.

Figure 2.1: The original RV continuum (Milgram & Kishino, 1994)

This includes AR, that describes the superimposition of virtual elements
onto the real world. It can basically be seen as “adding virtual things on top
of the real world’s perception”. A typical example of an AR device is Google
Glass3. The game Pokémon Go4 helped popularise AR with its integration of
Pokémon creatures on top of the live camera feed as if these creatures were
there in the real world (as shown on Figure 2.2a).

On the other end of that continuum, we find VR, that fully immerses users
into a three-dimensional virtual world. While the paternity of the concept is
unclear, VR as a term is generally attributed to Lanier who worked actively
(Lanier, 1988; Conn et al., 1989) in the domain in the late 1980’s. The usual
equipment used for VR experiences involves a visualisation system, typically

1www.vive.com
2www.oculus.com/rift
3https://google.com/glass/start/
4https://pokemongolive.com/

www.vive.com
www.oculus.com/rift
https://google.com/glass/start/
https://pokemongolive.com/

13

(a) Superimposing a Pokémon on top
of the camera feed (AR feature).

(b) A person wearing a VR headset, oc-
cluding that person’s field of view.

Figure 2.2: Example images5on the two most commonly mentioned immersive
technologies: AR and VR.

either a Head-Mounted Display (HMD) or multiple wall-sized displays, as well
as some interaction device, such as a controller, a glove or a tracking system.

On the RV continuum, two other terms are mentioned: Augmented Virtu-
ality (AV) and Mixed Reality (MR). AV can be seen as the “opposite” of AR,
since it describes experiences that augment the virtual world with real world
elements. We will not talk much about it, not only because it is much less
commonly encountered, but also because its frontier with AR and VR can be
blurry, especially with the ever-improving technologies that will make virtual
elements harder to distinguish from real ones.

The original definition of MR encompasses everything that falls in between
the extrema of the aforementioned RV continuum: a MR environment is “one
in which real world and virtual world objects are presented together within a
single display” (Milgram & Kishino, 1994). However, the term MR is often
used nowadays to describe AR devices and experiences that show an advanced
degree of spatial understanding, generally thanks to an environment scanning
system. Figure 2.3 depicts such an experience, with a virtual building properly
anchored to a real table. This would be described by some as a MR experience.
While that statement is not fundamentally false (since AR is a subset of MR
according to the original definition), it leads to confusion and may prompt
unfamiliar individuals to reject the classification of that experience as AR.

We believe the communication and the media coverage around the Mi-

5The figure was created using images from www.phonandroid.com/pokemon-go-guide-
astuces-progresser-facilement.html and www.pexels.com, respectively.

https://www.phonandroid.com/pokemon-go-guide-astuces-progresser-facilement.html
https://www.phonandroid.com/pokemon-go-guide-astuces-progresser-facilement.html
https://www.pexels.com

14 State of the art

crosoft Hololens (an AR headset capable of scanning its surroundings) played
a big role in that deviation from the original definition, since it is mostly re-
ferred to as a MR device. The misuse of that term, with regards to its original
meaning, became so common that a new term was coined to describe exactly
what MR initially was: eXtended Reality (XR).

Figure 2.3: Commercial visual of an AR experience with proper spatial map-
ping of virtual elements, that would be classified as MR by some6.

However, we admit that the ability to properly understand the surround-
ings as part of an AR experience enables a whole new range of applications.
We therefore suggest to introduce a new term as a subset of AR, to recog-
nise that particularity without borrowing Milgram & Kishino’s original MR
term. Three options we suggested in (Coppens, 2017) were “Spatial-Aware
AR”, “Surroundings-Aware AR” and “Spatial-mapped AR”.

Many other taxonomies have been proposed; there is even another one sug-
gested in the paper that also describes the RV continuum (Milgram & Kishino,
1994): a three-dimensional hyperspace that places MR systems according to
3 axes. These 3 axes are: Extent of World Knowledge (EWK: how much we
know about the - real or virtual - world in which the experience happens), Re-
production Fidelity (RF: how realistic the augmented content is) and Extent of
Presence Metaphor (EPM: how immersed the user is). Other examples of clas-
sifications are based on location and temporality (Fuchs, 2006), on intended
purpose (Dubois et al., 2000), on the type of entity that is being augmented

6Picture from Microsoft’s Mixed Reality documentation portal, found on
https://docs.microsoft.com/en-us/windows/mixed-reality/design/
color-light-and-materials.

https://docs.microsoft.com/en-us/windows/mixed-reality/design/color-light-and-materials
https://docs.microsoft.com/en-us/windows/mixed-reality/design/color-light-and-materials

15

(Hugues et al., 2011; Mackay, 1996), or on who is in control of the experience
(either the system or the user) (Renevier, 2004).

2.1.2 Technological building blocks for immersive experiences

In order to create such experiences, there are a few technological needs, mainly
in terms of display and tracking devices. This section will cover the most
common techniques currently in use.

Displays for VR

Since their purpose is to immerse the user into an entirely synthetic world,
VR-enabling displays have to occlude a large part of the user’s field of view.
For that reason, the typical representation of a VR user as of today is a person
wearing a HMD, as pictured on Figure 2.2b. These HMDs are generally binoc-
ular, meaning that each eye can be presented with a (slightly) different image.
This results in the ability to produce stereoscopic imaging, that creates a three-
dimensional effect, fooling the wearer’s perception into feeling immersed in a
three-dimensional virtual space.

Although more expensive, wall displays can also be used to create VR
experiences. These projection-based systems are usually referred to as CAVE-
like setups, since the first occurrence of such a system was the Cave Automatic
Virtual Environment (CAVE) (Cruz-Neira et al., 1992), which dates back to the
early 1990’s. A more recent example of a CAVE-like arrangement is shown in
Figure 2.4, where we can see the projections on the walls of a cubic room as well
as on the floor. These types of setups provide a better sense of presence (Juan
& Pérez, 2009) but are typically a lot more costly. Furthermore, considering
we work in the context of architectural design, it should be noted that the
spatial understanding and distance perception is not necessarily better than
those experienced with HMDs (Ghinea et al., 2018).

Displays for AR

From the user’s point of view, the simplest form of AR displays are monitor-
based ones, where the augmentation happens on a distant screen such as a
television or a mobile device (a more precise term is then available: hand-held
AR). The display is treated as a window to the augmented world, hence the al-
ternative name “Window-on-the-World” from (Milgram et al., 1995). Examples
of experiences relying on such displays are analysis tools for sport broadcasting
(with virtual elements such as names and arrows being superimposed to the

16 State of the art

Figure 2.4: A CAVE-like setup used to create a virtual grocery store. Repro-
duced from (Borrego et al., 2016).

camera feed), or the previously mentioned AR feature in Pokémon Go (Figure
2.2a).

Another non-intrusive alternative is Spatial AR, that is sometimes referred
to as projective AR since it is about augmenting reality by projecting images
directly onto real objects. It was first introduced in (Raskar et al., 1998) and
has the advantage that it naturally provides multi-user experiences. Combined
with the non-intrusive aspect, this technology becomes a good candidate for
cultural contexts e.g., for museum exhibitions and monumental projections.

While it is possible to create an AR experience by using a VR headset
mounted with a camera (to project the camera’s input to the displays), it
typically creates latency, since there is a delay between the recording of an
image and the moment it is being displayed to the wearer. These displays are
classified as video see-through but the display delay can create cybersickness (a
term used to cover various symptoms generally including nausea that resemble
motion sickness). In fact, cybersickness is believed to be heavily tied (LaViola,
2017, p. 49) with mismatches between visual and vestibular (body balance and
movement) information, and solutions that limit such mismatches are usually
preferred to mitigate the issue.

Another option is to use optical see-through displays, that present the user
with a direct view of the real world, in the sense that the real world is not
occluded, obviating the need to project the world on the display. In that
case, the augmentation happens on a transparent surface placed in front of the
observer, and virtual elements are integrated into the observer’s view of the
real world. There are multiple ways to place the augmentation surface relative
to the observer. Figure 2.5 helps in picturing them, while also serving as a
visual summary of the terms introduced in the present section.

17

Figure 2.5: Main options to produce AR experiences. Reproduced from (Bim-
ber & Raskar, 2006).

An additional term is introduced in Figure 2.5: retinal display. Sometimes
named Retinal Projection Display (RPD) or Virtual Retinal Display, such a
device directly projects AR content on the user’s retina, using low-power laser
beams. The technology has not matured yet but several prototypes are avail-
able (Schowengerdt et al., 2003; Takahashi & Hirooka, 2008). Theoretically,
when the technology develops into a small form-factor, wide field of view, high
fidelity display, it should supersede most other AR technologies and could even
lead to devices capable of switching back and forth between AR and VR modes.

It should also be noted that we only talked here about visual AR as it is
the most common type of AR. Other kinds of augmentations exist, targeting
other senses: smell (olfactory AR), touch (haptic AR), taste (gustatory AR)
and hearing (audio AR). These technologies fall out of scope of the current
dissertation since we did not rely on them for the experiments we conducted.

Tracking needs

Both AR and VR experiences typically require some form of motion and po-
sitional tracking. Common techniques to enable suck tracking are hereby pre-
sented.

18 State of the art

The bare minimum to enable HMD-based experiences is rotational tracking
for the wearer’s head. High quality headsets (such as the HTC Vive or the Ocu-
lus Rift) also include positional tracking capabilities. This allows the wearer’s
head to be fully-tracked in 3D space i.e., we know its location along the three
(x,y,z) positional axes as well as its orientation along the three usual (yaw,
pitch, roll) rotational axes. Since this gives six separate and independent ways
to the head to modify its situation, a device with these tracking capabilities is
usually labelled as a Six Degrees of Freedom (6-DoF) tracking system. Figure
2.6 clarifies the concept, with each color representing one degree of freedom.

Figure 2.6: The six degrees of freedom we have access to in 3D space. Repro-
duced from Wikimedia Commons7.

The ideal tracking system should be accurate, precise (no jitter), fast (low
latency and high refresh rate), robust (immune to environmental factors), and
provide great mobility (lightweight, wireless or even autonomous, small form
factor) in a wide area. This is obviously ambitious, but the next section de-
scribes major tracking technologies that attempt to reach that goal.

Tracking technologies

The simplest tracking method is likely mechanical tracking, where the
tracked object is directly attached to the tracking system so that an object’s
position and rotation can be determined from sensors placed on the joints of
the tracking system. This technique can lead to bulky and cumbersome sys-
tems with mechanical arms made up of articulated pieces, such as the Sword
of Damocles, pictured in Figure 2.7.

7https://commons.wikimedia.org/wiki/File:6DOF.svg

https://commons.wikimedia.org/wiki/File:6DOF.svg

19

Figure 2.7: The sword of Damocles. A mechanical tracking system designed
for an early HMD. Reproduced from (Sutherland, 1968).

Another tracking option that is (one of) the most popular on the mar-
ket is inertial tracking, driven by accelerometers, gyroscopes and, sometimes,
magnetometers.

An accelerometer measures an object’s acceleration along one axis, taking
gravity into account, whereas gyroscopes measure rotation around a single axis.
Combining three sensors of each type therefore theoretically suffices to obtain a
6-DoF tracker that provides relative position and rotation data, reporting how
much the position and rotation has changed since the tracking process started.
Magnetometers can additionally provide a reference heading to stabilise other
sensors’ measurements, since they measure magnetic fields and can indicate
their direction (e.g., the Earth’s magnetic field’s direction for a compass). The
combination of these types of sensors in a tracking system is often referred to
as Intertial Measurement Unit (IMU) since they are based on the principle of
inertia (F = ma = mdv

dt), used to derive a relative position and rotation.
The inertial tracking solution is widely used since the necessary sensors are

relatively cheap and small, and are often already integrated in most smart-
phones. In practice though, an IMU has to be coupled to another tracking
technology to provide positional information, since the drifting of accelerom-
eters very quickly leads to unusable data. This is due to the relative nature
of the measurements that necessarily accumulate errors, coupled with the fact
that an accelerometer measures an acceleration that is then used to calcu-
late a movement, meaning that the accumulated error on the acceleration is
reported quadratically on the relative position output. The inability of smart-

20 State of the art

phone IMUs to provide reliable positional tracking on their own is the reason
smartphone-based VR headsets can only produce limited experience where
real world movement cannot be taken into account (the virtual point of view
therefore is fixed or controlled externally) and it can also cause additional
cybersickness compared to higher-end systems, since a user’s head generally
slightly moves when rotating.

Another popular technique is optical tracking, where some kind of sensor
(e.g., a camera) tracks known patterns, features, or markers in the surrounding
environment. The sensor can be external to the tracked object (outside-in
tracking) or attached to it (inside-out tracking).

Marker-based systems rely on markers placed on the tracked object. These
markers can be active (light-emitting sources) or passive (easily identifiable
items that do not emit light themselves) and are typically not visible to the
human eye (e.g., using infrared lights), except when relying on paper mark-
ers, such as the ones presented on Figure 2.8. The latter option provides a
cost-efficient way to produce AR experiences with printed papers and a sim-
ple camera. A very common marker-based library amongst AR developers is
ARToolKit, that was initially developed as part of an AR-based conferencing
system (Kato & Billinghurst, 1999).

Pattern-based solutions (such as Microsoft’s Kinect sensor8) project a known
pattern on the environment and observe the distortion of that pattern to de-
rive spatial data, while feature-based solutions identify (and track) features to
construct a 3D representation of the surroundings that ultimately allows the
system to build a 3D plan.

Figure 2.8: Some well-known AR marker types, sharing similarities with QR
codes. Reproduced from (Kan et al., 2011).

8https://developer.microsoft.com/windows/kinect

https://developer.microsoft.com/windows/kinect

21

That last option is strongly related to the simultaneous localisation and
mapping (SLAM) problem (Durrant-Whyte & Bailey, 2006), that describes
the mapping of an unknown environment by a mobile robot. Since it has no
previous knowledge of the surroundings, the robot must solve two related and
interdependent problems at once: localising itself and mapping the environ-
ment. The problem is typically solved using feature descriptors and feature-
tracking algorithms to derive the position of landmarks in the environment,
combined with a variety of mapping methods. Recently, neural networks have
been extensively used to solve SLAM instances (Chaplot et al., 2020; Zhang
et al., 2017). Relying on SLAM-based techniques can allow for good tracking
quality while suppressing the need for markers, but is harder to develop than
most tracking solutions and is typically sensitive to environmental changes
(e.g., moving objects). Some VR headsets such as the Oculus Quest9 rely on
SLAM techniques to provide tracking capabilities. A more complete descrip-
tion of the SLAM problem and the associated state of the art is out of scope
of the current thesis, but it remains an important component of spatial-aware
AR HMDs.

Figure 2.9: Valve’s Lighthouse tracking system, using optical (infrared) track-
ing and active markers. Reproduced from a YouTube video10that explains how
the system works.

Every tracking technique has its drawbacks and combining the strengths
of different technologies produces the best results (Welch & Foxlin, 2002). For
that reason, lots of trackers rely on hybrid solutions. A relevant example
would be Lighthouse, Valve’s tracking system for the HTC Vive, that relies
on an IMU for rapid updates while the more accurate position is obtained

9www.oculus.com/quest
10https://www.youtube.com/watch?v=J54dotTt7k0

www.oculus.com/quest
https://www.youtube.com/watch?v=J54dotTt7k0

22 State of the art

from an optical tracking system (using infrared and active markers) to limit
the IMU’s drifting issue to the few IMU updates between the optical system’s
updates. Figure 2.9 pictures a red laser beam about to hit the HMD to provide
a one-dimensional update (the system uses two base stations that each emit
two beams per update).

Note that the technologies described in this section can be used for head
tracking but also for interaction devices e.g., controllers or gloves, and even to
provide hand or body tracking.

2.1.3 Application domains

In general, AR and VR are most useful when they can provide a virtual equiv-
alent to applications where a real implementation would be too difficult (or
even impossible), too costly, or too dangerous to realise. This section covers
such scenarios along with other AR or VR-based application domains, ignoring
architectural design for now since that specific field will be discussed in further
details in Section 2.5.2.

Entertainment

The entertainment sector is a major player in the popularisation of immersive
technologies, with a plethora of movies and games being created. In addition to
the previously mentioned smartphone game Pokémon Go, other popular titles
have been extended to AR, with games such as ARQuake (Thomas et al., 2002)
that lets students shoot virtual monsters in their university campus. Some of
these AR games are based on real sports, like tennis (Henrysson et al., 2005),
where players facing each other control virtual racquets through their phones.
Many VR games have been developed in the last few years, some of them by
researchers themselves, e.g., a geocaching game (Brade et al., 2017) to compare
presence and usability in VR with the real world equivalent, but most studies
rely on commercial games with VR support, such as Team Fortress 2 (Martel
et al., 2015) or Half-Life 2 (Tan et al., 2015).

Outside of video games, AR has been used to enhance book experiences
(Billinghurst et al., 2001) or card and board games (Lam et al., 2006; Lee et al.,
2005; Molla & Lepetit, 2010). Researchers have also investigated VR movies
and the consequences the medium has for movie makers (Serrano et al., 2017),
or how it impacts viewer engagement (Gruenewald & Witteborn, 2020).

The sport industry also makes use of AR, especially for broadcasting, where
overlays are often added on top of camera images to show additional informa-
tion to the viewer. Such augmentations are common to point out specific

23

athletes, what they did or should have done, or to draw virtual lines in or-
der to indicate distances. Figure 2.10 pictures a similar experience but for a
spectator that is actually inside the stadium.

That being said, both AR and VR raise interest in a wide range other
domains, some of which are covered in the remaining of this section.

Figure 2.10: An AR feature to superimpose virtual line marks on a rugby
field, through a Hololens headset. Reproduced from (Zollmann et al., 2019).

Healthcare

Healthcare is a very large field on its own, with many opportunities for immer-
sive technologies to shine. Thanks to the sense of presence induced by VR and
the actual presence inherent to see-through AR, many psychiatric treatments
relying on these technologies have been proposed. A plethora of anxiety and
phobias are covered by such treatments, since they can expose the patient to
their fears in a controlled environment, meaning the practitioner can choose
the degree of exposure and even abort the experience at any time. As for VR-
based treatments, a term has even been coined to encompass such therapies:
Virtual Reality Exposure Therapy (VRET). VRETs have been proposed for
flying phobia (Botella et al., 2004), fear of heights (Krijn et al., 2004), animal
phobias (Carlin et al., 1997) (also in AR (Botella et al., 2005; Juan et al.,
2005)) and Post-Traumatic Stress Disorders (Rizzo et al., 2009).

Other healthcare applications include the assessment and rehabilitation of

24 State of the art

disabilities, following brain injuries (Rose et al., 2005), strokes (with both VR
(Jack et al., 2001) and AR (Mousavi Hondori et al., 2013)), or amputations
(with phantom limbs AR treatment (Carrino et al., 2014))

These technologies can additionally find usages during interventions, with
VR being used for pain distraction (e.g., during heavy interventions), while
AR can help surgeons with augmented overlays (Fuchs et al., 1998; Sato et al.,
1998).

Education and training

Both AR and VR have been used in educative contexts, e.g., for surgical educa-
tion (Basdogan et al., 2007), as part of anatomy courses (with VR (Nicholson
et al., 2006) and AR (Blum et al., 2012)), or to teach astronomy (Fleck &
Simon, 2013). These examples back up our claim that these technologies show
their potential when a physical counterpart to the virtual experience would be
harder or impossible to implement.

Thanks to the ability of immersive environments to replicate the real world,
potentially in a realistic way and including sensible physics simulations, im-
mersive technologies provide opportunities for training applications. Examples
include firefighters (Xu et al., 2014) and astronauts (Aoki et al., 2007) training
in VR, as well as individuals learning assembly tasks (Reiners et al., 1999)
or military operations (Brown et al., 2006). These types of experiences have
proven to be successful in allowing their users to transfer virtually acquired
skills to the real-world counterpart of the target activity. As an example, re-
searchers have demonstrated (Michalski et al., 2019) that real table tennis skills
can be improved through VR training.

Culture and tourism

Many touristic locations offer binoculars to visitors, so that they can better
observe the surroundings in exchange for a bit of money. Sometimes, these
devices are augmented with information on or pointers to specific points of
interest, thereby creating an AR experience (Fritz et al., 2005).

More advanced usages of immersive technologies in a similar context are
also common, with cultural heritage experiences allowing users to visualise
monuments (Gaitatzes et al., 2001) or inhabitants (Noh et al., 2009; Vlahakis
et al., 2001) that have since disappeared. Similar experiences have also been
created for places that still exist but cannot (easily) be visited, while other
are simply made for advertising purposes (Kim & Hall, 2019; Loureiro et al.,
2020).

25

Industrial maintenance and complex tasks

As discussed in section 2.1.3, both AR and VR are used to train workers,
including for maintenance tasks (Gavish et al., 2015), but AR can also act as a
virtual assistant when actually performing these tasks. Specific pieces that the
worker has to manipulate can be superimposed with information and related
3D models can even be displayed (Schwald & De Laval, 2003) to help with the
task at hand. That principle has been followed to support various applications
such as welding (Echtler et al., 2004) and pump maintenance operations (Garza
et al., 2013).

The augmented information does not necessarily have to be set in stone, as
collaborative solutions also have been developed, with remote engineers able
to place indicators when needed (Bottecchia et al., 2010; Benbelkacem et al.,
2011). AR-based solutions could therefore, in some instances, replace lengthy
manuals with dynamic, world-anchored and collaborative digital equivalents.

2.2. 3D visual modelling

Architectural design is not the only field employing visual modelling, as similar
approaches have been applied to many domains, and three-dimensional versions
of some of the corresponding tools were developed.

In fact, numerous 3D programming languages for virtual 3D environments
have been designed, most of which rely on three-dimensional dataflow diagrams
to define programs. Examples from the early 90’s include CUBE/CUBE-II
(Najork & Kaplan, 1991; Najork, 1996), a functional language based on a
dataflow metaphor, and Lingua Graphica (Stiles & Pontecorvo, 1992), that
translates from/to C++ code. Figure 2.11 presents a CUBE definition that
returns the factorial of a given number. The upper plane is only executed
when the input value n is equal to 0, and outputs 1 in that case. The lower
plane is only executed when the input value n is greater than 0 and outputs
the product of the input value with the output of the “!” function for the
value n− 1. This indeed returns n! since n! = n ∗ (n− 1)! for n > 0. We can
additionally note that if a negative value were to be provided as input, nothing
would be returned since none of the planes’ conditions would be satisfied.

The previously mentioned languages target general programming, but the
main motivation to create 3D languages and editors is often to match the
dimensionality of the program with its output, so as to integrate both of them
in a single virtual environment. As an example, SAM (Solid Agents in Motion)
(Geiger et al., 1998) is another early 3D visual language that enables “parallel

26 State of the art

Figure 2.11: The CUBE programming language: a recursive definition named
“!”, that calculates the factorial of a given number, with a planar projection of
the lower plane on the right. Reproduced from (Najork, 1996).

systems specification and animation”, targeting animated 3D presentations.

2.2.1 Immersive authoring of visual models

While the previous examples were indeed designed with virtual environments
in mind since the authors all mention such environments in their respective
papers, they were never adapted to immersive displays (e.g., VR), despite the
alledged benefit of immersing the programmer in the same environment as
the program and its output, an approach sometimes referred to as embodied
spatial programming.

On the other hand, Steed & Slater implemented an immersive system that
allows users to define object behaviours whilst being immersed (Steed & Slater,
1996), once again through dataflow graphs. The system could be used to de-
sign animations or interactive applications, that conveniently also took place
within the virtual environment. With similar goals in mind, (Lee et al., 2004)
presented an AR system to define the behaviour of scene objects for AR appli-
cations. A more recent example of a more accomplished VR authoring system
is FlowMatic (Zhang & Oney, 2020), that not only lets users create, destroy, or
define basic animations for 3D models but also allow them to define an object’s
behaviour depending on discrete events such as timers or collisions.

Another application domain is the Internet of Things (IoT), with proto-
types such as Ivy (Ens et al., 2017), a VR-based programming tool that al-

27

lows its users to define the behaviour of IoT systems that depend on sensor
data, through yet another visual dataflow-based representation. Figure 2.12
shows the tool’s interface, with coloured particles that represent data flowing
through the links. Aiming towards a similar goal but using AR, the Reality
Editor (Heun et al., 2013) allows (re)programming of smart objects and their
relations to others, so as to define a system’s behaviour. A more recent proto-
type is CAPturAR (Wang et al., 2020), that serves a similar purpose but offers
an activity-recording feature using a body-tracking system, to help in defining
scenarios.

Figure 2.12: The Ivy programming tool that helps with designing sensor-
driven systems. The depicted environment places the user in an industrial
fabrication workshop, and the displayed program cuts the workshop’s power if
excessive vibrations are detected on a machine. Reproduced from (Ens et al.,
2017).

2.3. Computer-Aided Design

2.3.1 Evolution of Computer-Aided Design

The starting point for CAD likely dates back to the 1950’s. During the first
half of that decade, computers started to be produced for commercial purposes
and people naturally began to imagine and reflect on how they could be used
for design activities. Those reflections lead to conceptual developments in

28 State of the art

the following years; a good example being the artistic impression of a design
workstation, depicted in Figure 2.13 and published in the Fortune magazine
in 1956.

Figure 2.13: Artistic impression of a design workstation, from the Fortune
magazine in November 1956. Reproduced from (Mitchell, 1989).

Academics also picked up interest in the potential of using computers for
design activities, with a notable milestone in 1959 when a meeting took place
at MIT (Coons, 1963) between the “Computer Applications Group” and the
“Mechanical Engineering Department”. That meeting concluded that comput-
ers had a significant role to play for (engineering) design and notably lead, a
year later, to a report (Ross, 1960) whose author is often credited with coining
the Computer-Aided Design term; a term that was used in the report’s title.

Ever since these early concepts, CAD tools were indeed developed and have
matured over the years: they reached new domains, expanded their functional-
ity and their adoption progressed dramatically. In (Horváth & Vroom, 2015),
the authors identified 5 periods of evolution for CAD; the remaining of this
section is inspired by that paper’s structure, although it should be noted that
such a periodisation (dividing history into periods) always involves some degree
of subjectivity and arbitrariness.

29

Early research developments (1960’s)

A seminal work in the history of CAD is Sutherland’s PhD dissertation (Suther-
land, 1964) in 1964. He developed Sketchpad, a computer program that is gen-
erally considered as the first CAD system. It pioneered the use of a graphical
user interface, controlled by a light pen (an old version of a stylus pen that
works with CRT displays) and allowed users to create lines and curves, as seen
in Figure 2.14. In addition to drawing these simple shapes, the user could
also create and apply constraints to the drawing and define certain drawings
as master objects, that could then be instantiated (any change to the master
drawing automatically updates the clones).

Figure 2.14: Sutherland drawing simple shapes and applying constraints using
Sketchpad. Reproduced from (Fusté Lleixà, 2018).

The system was first presented at the 1963 AFIPS conference (Johnson,
1963) and a video demonstrating its functionality at the time can be found
online11. The conference covered information science in general but the 1963
edition had a track dedicated to CAD, in which other CAD systems were
presented, together with more conceptual contributions (e.g., (Coons, 1963)
outlining the requirements for CAD systems).

The first conference fully dedicated to CAD was created shortly after, in
1964 (Horváth & Vroom, 2015). Contemporaneously to those research-driven
explorations, some large industrial firms also noticed the potential of the tech-
nology and developed in-house applications for their own needs (e.g., the DAC-
1 system at General Motors).

Another important milestone for CAD history during that period was the
11https://www.youtube.com/watch?v=6orsmFndx_o

https://www.youtube.com/watch?v=6orsmFndx_o

30 State of the art

development of Bézier curves (with their mathematical representation) that are
still in use nowadays. That family of curves was invented independently by
two mathematicians working for French car manufacturing companies: Bézier,
employed by Renault, and de Casteljau, working for Citroën (Shah & Mäntylä,
1995). They intended to create a mathematical form for a curve that would
be easy and intuitive to modify (thanks to control points that define the cur-
vature), so as to allow for experimentations by a user on a graphical system.
Because de Casteljau was not allowed to publish his work that was kept secret
by his employer (Farin, 2002), the curves are named after Bézier, who pub-
lished extensively on the matter and even wrote a PhD dissertation (Bezier,
1977) based on his work at Renault.

Those developments mostly focused on two-dimensional sketching, even
though there were some exceptions that also integrated some 3D capabilities
(notably in Sketchpad itself).

Industrial adoption (1970’s)

During the seventies, commercial 3D modellers grew into a more tangible real-
ity, with systems running on workstations. CAD therefore became subject to
a broader industrial adoption, although mostly limited to large companies.

More design applications were also considered in that period, including ar-
chitecture but also Computer-Generated Imagery (CGI) for the entertainment
(film) industry, with programs such as MAGI’s SynthaVision, that allowed
users to make 3D animations. A promotional video of the software’s capabili-
ties from 1974 can be found online12 but the system was notably used, a few
years later, for the original (1982) Tron movie, including most of its action
sequences.

Overall, the CAD field matured in that decade, to a point where an overview
of the state-of-the-art (Eaglesham, 1979) and the impact of the technology in
the industry was published in a 1978 edition of the Computer-Aided Design
journal.

In terms of important research developments during that era, one of the
most prominent was the concept of Boundary Representation (B-rep) (Braid,
1975), a technique that allows for solid objects to be described (and therefore
stored on a computer) using primitive solids that are moved, scaled or rotated,
and then combined with or subtracted from one another, as shown with simple
examples in Figure 2.15.

Similar ideas were developed in the same period, with Voelcker’s paper

12https://www.youtube.com/watch?v=jwOwRH4JpXc

https://www.youtube.com/watch?v=jwOwRH4JpXc

31

Figure 2.15: Braid’s addition (and substraction Q2 is negative) of objects.
Reproduced from (Braid, 1975).

(Voelcker & Requicha, 1977) often cited as the original reference for Construc-
tive Solid Geometry (CSG). Both B-rep and CSG represent complex objects
by combining primitive ones (with what is often referred to as boolean op-
erations) but, whereas B-rep internally stores faces, edges and vertices, CSG
directly stores the primitive solids.

Both systems are used today, sometimes jointly to take advantage of their
respective benefits (Hoffmann, 1989), such as CSG’s insurance that an object
is always closed (and defines an interior volume) and B-rep’s efficiency for
graphical rendering.

Mass adoption and networking (1980-1995)

Based on earlier developments, the first version of AutoCAD was released
in 1982. It was one of the first CAD systems to run as an application on
microcomputers (as opposed to mainframes and minicomputers that had to
be shared and accessed through terminals) and became very popular. The

32 State of the art

availability of such software combined with the advent of (more affordable)
personal computers lead to a much larger adoption of CAD tools during the
eighties and the first half of the nineties.

Another key factor was the development of computer networks, which en-
abled better cooperation and data exchange. Many researchers were there-
fore developing specifications for exchange formats at the time (Wilson, 1987),
with IGES (Initial Graphics Exchange Specification) (Smith, 1983; Smith &
Wellington, 1986) being the most widely used. Those research advances led to
a more concerted effort to develop a single standard specification, named STEP
(Standard for the Exchange of Product Model Data) (Pratt, 2001, 2005). That
specification eventually became an ISO standard, thereby reaching a wider in-
dustrial adoption.

In addition to these technical computer-to-computer communication ad-
vances, the early nineties also pushed CAD forward thanks to the invention of
an alternative technique to draw curves using control points: the Non-uniform
rational B-spline (NURBS). The use of that technique in CAD is hard to
attribute to one particular individual since it results from the work of several
separate researchers iterating over a concept that then lead to a later industrial
adoption, but a PhD thesis in particular (Versprille, 1975) can be considered
as seminal work on the subject.

While Bézier curves start and end at control points (respectively the first
and the last ones) defined by the user, NURBS curves do not reach their
first/last control points (they bend from/towards them). Although both ap-
proaches are rather intuitive to use, this can make Bézier curves slightly easier
to handle, even though NURBS curves are more efficient for complex curves (in
terms of computing power to calculate them). They can also exactly represent
circles, whereas Bézier curves can only approximate them (on 3dbiology.com,
2018).

Even though Sutherland’s Sketchpad could already apply certain constraints
to drawings, the eighties saw constraint-based design arise as a paradigm.
As is often the case with innovations, constraint-based design was further de-
veloped in a research context, with theoretical advances on how to enable vari-
ations of a (constrained) geometry (Hillyard & Braid, 1978; Light & Gossard,
1982).

Another paradigm also appeared in that period: feature-based mod-
elling. It was first proposed by Pratt (Pratt, 1984) and was subsequently in-
tegrated into research prototypes (Cunningham & Dixon, 1988; Shah & Rogers,
1988). The idea of feature-based modelling is that the design is composed of
features (such as a hole) that carry a semantic meaning instead of simply being

33

geometric shapes (e.g., a circle). These features can also impose constraints or
define properties.

Both constraint-based design and feature-based modelling were adopted by
the industry and became part of most commercial CAD systems and suites by
the mid 1990s (Shah, 1998).

Maturation and collaboration (1995-2005)

Even though 3D modelling tools existed before, they truly started to shine
and be used in the industry starting from the mid nineties (Baba & Nobeoka,
1998). The sophistication of these tools, with more features and improved user
interfaces, combined with a larger availability of personal computers and better
compatibility (of both the hardware and the software) led to a rise in usage. In
(Asanowicz, 1999), the author considers that we may only talk about mature
CAD starting from that period, which coincides with the first mass adoption
of CAD tools (Horváth & Vroom, 2015).

Constraint-based design was integrated into commercial CAD tools such as
Pro/Engineer, and enabled automatic solving of geometric constraints. Even
though the tool started as yet another B-rep system, it received an update with
sketch-based constraint definition during the nineties. This allowed designers
to easily add constraints and annotate them to specify dimensional values. The
sketches were then instantiated using a constraint solver (Hoffmann, 2005).
Figure 2.16 shows the Sketcher interface in Pro Engineer Wildfire 2.0.

Together with feature-based modelling, constraint-based design led the way
to a new paradigm: history-based modelling that is sometimes also referred
to as parametric modelling. History-based tools remember the designer’s
actions on the features and allow for later modifications to the parameters
of the modification, before replaying the steps that previously followed that
action, to rebuild and update the geometrical representation accordingly.

Another paradigm was placed in opposition to history-based design: di-
rect modelling. Since creating parametric relations requires specific training,
direct modelling was presented as an easier-to-grasp alternative. The approach
is also called history-free because the designer directly works on the geometry
with no knowledge of previous actions and no relations to define. It is therefore
easier and faster to produce results in early stages of design but is not nec-
essarily the better option in the long-term, especially for “families of designs”
(that differ only by a set of parameter values) or highly configurable models
(Tornincasa et al., 2010).

The research on collaborative design that was carried out during the second
half of the nineties and beyond was also pushed and helped by the tremendous

34 State of the art

Figure 2.16: Sketcher constraints in Pro Engineer Wildfire 2.0 (2004). Repro-
duced from brighthubengineering.com13.

growth of the internet. CAD systems therefore started to include better sup-
port for online collaboration.

CAD sub-specialisation and input/output enhancements (2005-now)

While each of the previous periods saw evolutions and breakthroughs that were
crucial to the evolution of CAD systems, the beginning of the 21st century was
mostly about consolidation and enhancements, in terms of Product Data Man-
agement (allowing better integration between different systems and therefore
facilitating cooperation (Liu & Xu, 2001)), but also with regards to portability
(with the advent of tablets and smartphones).

In the meantime, a plethora of specialised CAD tools were created, there-
fore extending the reach of computer-aided design to new domains. Specialised
CAD tools were already available for fields such as mechanical engineering, ar-
chitecture or electronics design, but CAD started to spread to other areas like
life sciences. Examples include dentistry (Davidowitz & Kotick, 2011) and
medicine in general (Bibb et al., 2014) but also specialisations that need to
work at a miniature scale (often molecular or even atomic-level design), such
as pharmacology (drug design (Macalino et al., 2015)) or chemical biology (e.g.,

13https://www.brighthubengineering.com/cad-autocad-reviews-tips/
22421-why-3d-cad-modeling-software-is-parametric/

https://www.brighthubengineering.com/cad-autocad-reviews-tips/22421-why-3d-cad-modeling-software-is-parametric/
https://www.brighthubengineering.com/cad-autocad-reviews-tips/22421-why-3d-cad-modeling-software-is-parametric/

35

Figure 2.17: A version of the CEREC software, used to design dental restora-
tions and implants. By watching carefully, one can see the overlay of 2 models
on the picture: the blue one is the scan result and the yellow one represents
the model being worked on. Reproduced from (Davidowitz & Kotick, 2011).

protein design (Mandell & Kortemme, 2009)).

Another aspect that greatly evolved in the recent years is the integration
with external data and tooling. As for the input side, 3D scanning and pho-
togrammetry are increasingly employed, either to create a basis to work on
(rough shape of an existing similar structure or even something the designer
wants to replicate or reverse engineer) (Kuş, 2009), or simply in order to pro-
vide context to the design (e.g., surroundings) (Wolf et al., 2014). Figure 2.17
shows an example of a specialised CAD tool for dentistry, that also illustrates
the use of scanned data to help the designer.

The popularisation of 3D printing technology led to an increase in their use
for Computer-Aided Manufacturing (CAM), the next logical step in the pro-
duction process for many CAD-enabled domains. For example, manufacturers
have used the technology to make dental implants (Dawood et al., 2015) or
even bone tissues (Bose et al., 2013). CAD tools have also evolved with re-
gards to visualisation features, with photo-realistic renderings becoming more
commonplace, for instance to better picture violations of requirements in au-
tonomous vehicle safety assessment (O’Kelly et al., 2017) or to simulate coating
appearance depending on lightning (Jhamb et al., 2020).

36 State of the art

2.3.2 Computer-Aided Architectural Design

The evolution of Computer-Aided Architectural Design (CAAD) is
mostly consistent with the history of CAD in general (Mitchell, 1989; Moubile,
2018), as expected since both fields can benefit from the same technological
advances.

The concept of CAAD as a research area started to emerge during the
1970’s, with overviews of the state of the art and the practice in that period,
but is only truly recognised as a separate field in the 1980’s (Koutamanis,
2005).

Generations of CAAD

A common way to structure the evolution of CAAD (as well as CAD in gen-
eral) is to divide its history in generations of tools (Kale & Arditi, 2005) but
many different divisions have been proposed and the suggested timelines often
contradict one another. The three generations presented in this section are
therefore a subjective summary based on our literature review.

The first generation would be computer-aided drafting, where the computer
essentially serves as an alternative and potentially more precise tool to draw
lines and shapes. Drawings are then stored in an electronic format and can
therefore be easily modified and shared. Three-dimensional wireframe versions
of such tools were also developed but the underlying design process did not
fundamentally change.

A second generation of CAAD technology has, in a sense, raised the level
of abstraction, by allowing designers to work with more complex objects and
transformations. Regardless of which technology is used to store these objects,
i.e., B-rep or CSG (see section 2.3.1), or even a combination of both, the
geometrical representation is created using parametrised primitive (3D) shapes
directly, that are then combined to construct a composite object.

A third generation comprises Computational Design methods, that will be
further described in section 2.3.3. The general idea is that these methods al-
low architects to act on rules, constraints, or instructions that will generate
or act on the designed geometry. The level of abstraction of the artefacts ma-
nipulated by the architect for that generation of tools is therefore even further
raised, since the designer no longer has to act on the geometrical representation
directly to produce changes.

It should be noted that each new generation of CAAD technology never
entirely replaces the previous one. This is particularly true for the last two
generations described, that are both prominent in today’s architectural practice

37

and their respective benefits are often combined in the same (suite of) tools.

Building Information Modelling

An important milestone in CAAD history is the release of Autodesk Revit
in 2000. The software helped popularise BIM in the mid-2000s (Moubile,
2018; Azhar et al., 2012), although the conceptual basis dates back to the
1980’s (Aish & Bredella, 2017) with the Building Description System (East-
man, 1975). BIM describes both the software and the process that encourages a
better integration of stakeholders on a project in the AEC sector (Azhar et al.,
2012). These stakeholders include owners, designers, constructors, engineers,
contractors, suppliers and facility managers. The core concept is that a project
consists of 3D models that are interlinked, shared with all stakeholders, and
connected to the information from these stakeholders and the different phases
of the project’s development. That concept is depicted in Figure 2.18.

Figure 2.18: The BIM concept. Reproduced from (Kymmell, 2008).

Using the technology tends to lower the risk of inconsistencies and errors,
but also helps provide semantic meaning to building elements. In a way, the
concept of BIM relates to the Enterprise Resource Planning (ERP) technol-
ogy in use in many businesses, where the company would be the construction
project, and the departments and divisions would correspond to the project’s
stakeholders. They all share a common database where everyone is able to
access and modify his part.

38 State of the art

2.3.3 Programming architectural models

Parametric definition of geometries and mathematical expressions to describe
volumes clearly predate the computer era. The work from Antoni Gaudí at
the turn of the 20th century, in particular the Colònia Güell, is also often
cited as an early occurrence of algorithmic design thinking. This is likely
due to the innovative way the architect realised the form-finding step of this
architectural masterpiece: through chains hung from a ceiling of other chains
and burdened with small weights, depicted in Figure 2.19, so as to let the laws
of physics curve the chains to distribute the load evenly. Once flipped upside-
down, the resulting shapes define a structure of arches superimposed on each
other. If a chain anchor’s point or load changes, the entire structure is changed
by the natural optimisation process. This resembles the way AD parameters
impact the whole geometry and may explain why Gaudí’s work is sometimes
associated with AD, although it would likely be more accurate to talk about
“analog computing” when mentioning that sort of natural optimisation.

Figure 2.19: Gaudí’s hanging model and resulting rendered form. Reproduced
from (Maher & Burry, 2003).

Even way before these constructions were designed, during antiquity, civili-
sations were using mathematical patterns and even rule-based (i.e., algorithmic
even though no computer was involved) methods for architecture and art, with
Islamic patterns (Agirbas, 2020) coming to mind as a primary application of
these concepts.

The CAAD tools we will talk about in this section are more heavily tied
to the concept of programming, with the explicit existence of an algorithm

39

Figure 2.20: A Geometric Description Language (GDL) script to generate a
domino house. Reproduced from (Nicholson-Cole, 1998).

that can be edited. This comes as a profound paradigm change that may not
be natural for conventionally-educated architects, since they have to learn to
“think algorithmically” i.e., to decompose a design idea into a set of instruc-
tions that are simple enough for a computer to execute. These instructions
can be processed with variable parameter values or even ignored depending
on specific conditions declared by the designer-programmer through what is
called flow-control mechanisms. This is one of the main benefits of using such
algorithm-based design tools: a plethora of possible (geometric) solutions can
be generated by these algorithms, allowing the designer to explore a variety of
different outcomes. Depending on the particular project on which it is used,
designing with algorithms can reduce human errors (Burry, 2011) and costs
(Woodbury et al., 2010).

Different representations: textual vs visual

Programming is typically carried out through (advanced) text editors, at least
for professional developers, since it seems to be the appropriate choice for
productivity and scalability (Myers, 1990). That being said, designing with al-
gorithms does not come naturally for traditionally-trained architects. While an
increasing number of university curricula focus on, or at least include, courses
about AD, architects are not usually programmers. An architect starting to
learn AD through a textual language therefore first has to get familiar with
programming concepts such as variables, functions and scopes, in addition to
the language’s syntax.

Figure 2.20 depicts an example in GDL, a script language for ArchiCAD,

40 State of the art

Figure 2.21: An AutoLISP script to generate a spiral staircase. Reproduced
from (Coates & Thum, 1995).

while Figure 2.21 shows a staircase model in AutoLISP (for AutoCAD). Both
languages were released in the 1980’s.

Because of the difficulty to learn textual programming for non-programmers,
Visual Programming Languages (VPLs) have been developed for archi-
tectural design and are more popular than the textual alternatives in that
context (Sammer et al., 2019).

The most popular ones as of today include GenerativeComponents, Dy-
namo Studio and Grasshopper. An example created with the latter is depicted
in Figure 2.22.

All these tools aim to make AD more accessible by providing an intuitive
representation of the algorithm that better satisfies the visual nature of ar-
chitects. This makes the learning curve more gentle, although it comes at
the cost of a reduced scalability. In fact, contrary to the common adage that
“a picture is worth a thousand words”, VPL models tend to become hard to
understand and manipulate (Leitão et al., 2012) when they grow in size and
complexity. This is partly due to the lack of advanced abstraction mechanisms
that tends to induce redundancy in the visual code (copying-and-pasting parts
of an algorithm).

Furthermore, many of these visual languages do not natively support recur-
sivity14. The choice is understandable since they usually target non-programmers
that would need to get familiar with the concept first and could easily end up

14Such functionality is however usually available within AD solutions, using plug-ins or
through a textual programming language supported by the solution.

41

Figure 2.22: Example of a Grasshopper definition for a conical spiral. The spi-
ral (output by the PLine component) is created from a list of "vertices" (input
parameter V) that are effectively points (Pt), whose coordinates are defined
by evaluating (Eval components) two formulas on a list of values, themselves
generated from a Range component. Reproduced from (Leitão et al., 2012).

with infinite loops in the meantime, but may further increase the scalability
issue in certain instances.

In an attempt to benefit from the best of both worlds, some editors (in
fact, most of the popular AD software tools) enable hybrid programming ap-
proaches, that rely on a combination of visual and textual representations. In
most cases, the visual language is used to define the outline of the algorithm
(i.e., the overall logic on how to construct the target geometrical representa-
tion), using some nodes or blocks that themselves may contain code in textual
form.

Programming paradigms

Another way to classify the plethora of AD tools that have been created is by
grouping them by the paradigms of their underlying programming languages.
Such a taxonomy is presented in (Appleby, 1991) and further depicted in (Dave
et al., 2013), where it is annotated with examples of programming languages
and AD tools made for or at least used by architects. Figure 2.23 presents a
reworked and updated diagram of that taxonomy, with a few examples of cur-
rently popular or historically-relevant AD tools and programming languages.

On the left-hand side, the red circle represents the set of imperative lan-
guages i.e., languages that focus on how a program has to operate, through

42 State of the art

Figure 2.23: Algorithmic Design tools and programming languages (adapted
from (Davis, 2013) and based on (Appleby, 1991))15.

ordered statements that alter the state of a program. Within that set, pro-
cedural programming is a subtype of imperative programming that relies on
functions (or procedures) to split a program into separate pieces that can be
called from different parts of the overall program. Examples of AD languages
that fall into this category are the previously mentioned GDL for ArchiCAD
as well as MEL (Maya Embedded Language), that both use control flow state-
ments (e.g., IF/ELSE) to conditionally decide which code blocks to execute
and loops (e.g., FOR) to execute the same code block a specified number of
times (typically until a certain condition is met).

Another subset of imperative languages is the set of object-oriented pro-
gramming languages, that rely on the notion of objects that contain data
and behaviour, typically through object-specific procedures that explain why
object-oriented languages are very often also procedural languages. These ob-
jects help package specific functionalities with the relevant data states, and
isolate parts of the code that are unrelated. An example of an object-oriented
AD language is Maxscript for 3DS Max, but popular general-purpose program-
ming languages (broadly used outside of AD) such as C# and Python can also
be used with many CAAD tools. In fact, these languages are supported by

15The image is an intentionally oversimplified view of the relations between programming
paradigms. Many hybrid languages have been created and integrate features from paradigms
that do not overlap in the figure, including AutoLISP that is in fact mentioned twice, in
both the procedural and the functional sets.

43

major solutions such as Rhino, AutoCAD, Maya, Houdini, Dynamo Studio or
Revit. Some AD software tools, such as Luna Moth (Alfaiate et al., 2017),
Möbius (Janssen et al., 2016) and PIM (Maleki & Woodbury, 2013), also rely
on ad hoc programming languages that support that paradigm.

On the right-hand side of Figure 2.23, the blue circle is for declarative
languages i.e., languages that focus on the logic of the program without con-
trolling the flow of execution. A common simplification of the principal dif-
ference between declarative and imperative languages is that the declarative
paradigm focuses on what to accomplish instead of how to do so, as would be
the case for the imperative paradigm approach. Within the declarative circle,
we find functional languages, where programs are created by composing
functions. That paradigm has its roots in lambda calculus (Church, 2016), a
formal system that only uses functions for computation.

Often linked to functional programming (because it shares some common
characteristics) is dataflow programming (Johnston et al., 2004), where a
program can be modelled as a directed graph that lets data flow along the edges
after being processed by the graph’s nodes. Although there are textual dataflow
programming languages, their inherent capability to be represented as graphs
has lead to the creation of many visual languages based on that paradigm. As
for AD, the main software tools in use today do rely on visual languages that
integrate elements from both functional and dataflow programming. These
include Grasshopper, depicted in Figure 2.22, but also GenerativeComponents
and Dynamo Studio.

Very often, modern programming languages integrate features from multi-
ple paradigms. One such example as far as AD is concerned is AutoLISP and
its enhanced version Vital LISP (later renamed Visual LISP), the AutoCAD
scripting language that is a LISP dialect. Figure 2.21 shows an example of
AutoLISP code that produces a spiral staircase.

It should be noted that most popular software tools integrate multiple pro-
gramming languages. Most of the time, the core skeleton of an AD model is
a visual dataflow-based program, but sometimes specific components of that
program can be written in another programming language supported by the
software. This gives the designer access to multiple paradigms and represen-
tations, and he is free to choose the tool that best fit his design intent and/or
abilities.

44 State of the art

2.4. Three-dimensional Human-Computer Interaction

As made clear by its name, Human-Computer Interaction (HCI) is in-
herently an interdisciplinary domain, that combines knowledge from many dis-
ciplines. Our focus here will be on the technical (computer) side of HCI.
The relevant literature in psychology, human factors and ergonomics there-
fore will be considered out of scope, although the interested reader may find
good references on these subjects in (LaViola, 2017, chap. 3), (Salvendy, 2006),
(MacKenzie, 1992), and (MacKenzie, 2012, chap. 2).

Interaction techniques are the necessary bridge between the user and the
application’s interface, they are how that user communicates intent to the
system. In the world of two-dimensional applications, most interfaces rely on
theWindows, Icons, Menus and Pointers (WIMP) metaphor and users typically
interact with the system through a mouse and a keyboard. Since there is no
such well-established standard for three-dimensional environments, interaction
techniques and user interfaces adapted to that context can take many forms
and rely on various input devices.

This section covers such techniques, focused on the most basic manipulation
tasks we need: selection, positioning and rotation. The section’s structure
is dictated by a common taxonomy (LaViola, 2017) that classify techniques
depending on whether they offer direct interaction with the target entity.

2.4.1 Direct manipulation

Amongst direct manipulation techniques, one way of categorising them is
based on isomorphism: isomorphic approaches preserve a natural one-to-
one mapping between input actions and their resulting effect, whereas non-
isomorphic techniques afford non-realistic interactions and can even be based
on “magical” or “virtual” tools.

That being said, direct manipulation techniques very often either rely
on (A) a touching (grasping) metaphor or (B) a pointing metaphor. The
organisation of this section is therefore rather based on the metaphor being
used.

(A) Grasping metaphor

As for techniques based on touching (or grasping), the user must reach the
target object’s position to interact with it. This is the most natural and in-
tuitive way of interacting within three-dimensional environments since this is
how human naturally interact in the real world.

45

Typically, grasping-based techniques rely on a virtual hand (or assimilated)
that is mapped to a tracked object in the real world, that we will refer to as “the
real hand” in the remaining of this section. A simplistic isomorphic example
of such a setup would be to track a physical controller with six degrees of
freedom and map its position and orientation to the virtual hand. If the
physical controller has actionable buttons, they could be used to trigger the
grasping of objects that collide with the virtual hand, so that they can be
manipulated and then released (e.g., when releasing the button). Figure 2.24a
depicts a similar example, with the user’s real hand (in blue) overlapping the
virtual one (in green) to touch a yellow ball.

When the tracking zone is limited in space compared to the “interactable”
area, non-isomorphic mappings are typically used to mitigate these limitations.
Figure 2.24b presents that idea, with the real hand’s movement being amplified
to change the virtual hand’s position, so that it can reach the yellow ball
even though the distance from the user would not allow such interaction in
the real world (should the yellow ball have a physical counterpart in the same
position). The Go-Go (Poupyrev et al., 1996) technique is an example that only
amplifies the virtual hand’s motion when the real hand’s distance to the user’s
body exceeds a predefined threshold. On the other hand, different techniques
such as PRISM (Frees & Kessler, 2005) also rely on a non-linear mapping
between the virtual hand and the real one’s motion, but rather choose to scale
down the virtual hand’ movement when the real hand’s motion is close to
the user’s body, to allow for more precise manipulations. Note that, in the
case of that technique, an offset recovery is also present when the real hand’s
motion exceeds a given threshold, so as to allow for the virtual hand to catch
up on the real hand. There is additionally a buffer zone in between those two
threshold so that movements whose speed falls in that range can provide a
direct (one-to-one) mapping between real and virtual motions.

(B) Pointing metaphor

The other metaphor commonly encountered is the pointing metaphor, that
naturally mitigates space-related limitations, since aiming at an object becomes
sufficient to start interacting with it. Similarly, the user is able to reposition
that object by pointing towards a target position. Typically, the position and
orientation of a tracked controller, that we will refer to as “the wand” in the
remaining of this section, defines a “laser beam” that selects and manipulates
objects.

Techniques based on that metaphor differ in how the position and orienta-
tion of the wand affect the laser beam, and which object(s) are selected based

46 State of the art

Figure 2.24: Examples of direct interaction techniques, relying on different
metaphors to select a yellow ball.

on that beam. The most common version is often called ray-casting (Poupyrev
et al., 1998), where the wand defines a simple line segment and that segment’s
intersection with the environment defines the target object or position. More
complex techniques allow users to bend the line to mitigate limitations related
to occlusion, as shown on Figure 2.24c, where selecting the yellow ball occluded
by an object becomes possible thanks to the curve. There are many ways of
bending the beam based on the wand’s position and orientation, but most
techniques rely on Bézier curves (e.g., the flexible pointer (Feiner, 2003)).

To select distant objects more easily or in order to enable multi-objects
selection, volumes can be used instead of simple rays. The selection volume
size can be static (e.g., the spotlight technique (Liang & Green, 1994) that relies
on a selection cone, as pictured in Figure 2.24d) or dynamic e.g., the aperture
technique (Forsberg et al., 1996), that expands on spotlight by allowing the
user to control the spread angle of the cone by changing the distance from
the eye to the wand (the angle gets bigger as the wand gets closer, as if the
wand served as an open cylinder that would select everything the user can see
through it).

47

More complex techniques that rely on two rays also exist, such as iSith
(Wyss et al., 2006), depicted in Figure 2.25. That technique uses a “projected
intersection point” that is placed at the middle of the shortest line segment
between both rays, that is then used as the interaction point (“cursor”) to select
and move objects when pressing a button.

Figure 2.25: The idea behind the iSith bimanual interaction technique, with
an example where a yellow ball is moved to a new location by rotating both
wands.

Other comparable techniques that add support for controlling more degrees
of freedom have been proposed, “Spindle + Wheel” (Cho & Wartell, 2015)
that allows users to control with 7 degrees of freedom (3 positional axes, 3
rotational axes, and a global object scaling control) and is based on previous
work (Mapes & Moshell, 1995) that proposed a similar approach that did not
offer pitch control (one of the three rotational axes).

2.4.2 Indirect manipulation

Many other interaction techniques allow users to manipulate objects without
directly interacting with them in the virtual environment. These may not be
as natural as direct manipulation but provide alternative solutions to mitigate
spatial and occlusion constraints so as to enable distant interaction.

One option is to rely on proxies, i.e., miniature representations of remote
objects often located close to the user. Actions on a proxy are mapped to
the proxy’s full scale counterpart. This typically enables direct manipulation
of the proxy, e.g., based on grasping techniques, but can produce an effect
on a distant object. A well-known technique that relies on this principle is
WIM (World In Miniature) (Stoakley et al., 1995), that provides the user with

48 State of the art

a hand-held scale model of the virtual environment, similar to the maps or
radars that are part of many game interfaces, but in three dimensions.

A more advanced proxy-based technique is Voodoo Dolls (Pierce et al.,
1999) that first asks the user to select one or multiple objects to interact with,
through a pointing-based technique. Clones (dolls) of the selected objects
are created and scaled down, then placed into the user’s non-dominant hand.
When the user grabs a doll with its dominant hand, the manipulation of the
doll (and its full scale counterpart) can begin, with motions relative to dolls
in the non-dominant hand. Figure 2.26 shows that technique being used to
interact with a nutcracker and a pin.

Figure 2.26: The Voodoo Dolls proxy-based indirect interaction technique.
The blue pin can be moved relative to the nutcracker, since they were both se-
lected and the pin was then grabbed by the user’s dominant hand. Reproduced
from (Pierce et al., 1999).

Another alternative to enable indirect manipulation is to make use of wid-
gets. Such widgets are extremely common in desktop-based design tools for
many domains (e.g., architectural design software or game engines), where the
user can generally manipulate an object’s position, rotation, or scale, based on
handles placed in the target object’s close environment. One handle typically
only controls one degree of freedom but three-dimensional interfaces can also
allow a widget to control two degrees of freedom at the same time. While
controlling a third degree of freedom would be possible with 3D-tracked con-

49

trollers, the widget is then only limited to a starting or anchoring role, and the
technique therefore becomes more of a grasping-based one (potentially with an
offset).

2.4.3 Hybrid techniques

As with tracking technologies, hybrid interaction approaches have been pro-
posed to combine the advantages of multiple types of techniques and circum-
vent their individual shortcomings. There are two ways to hybridise such
techniques: either the user (or the system itself) can select the appropriate
manipulation technique at any point in time, or specific techniques are as-
signed to specific tasks (or stages in the interaction).

An example of the latter is to perform the selection of an object through
a raycast-based technique that teleports a virtual hand to the target location
when the object is selected, before manipulating the target object using a
grasping-based technique with scaled motion, similar to the previously men-
tioned Go-Go technique. (Bowman & Hodges, 1997) proposed such a combi-
nation of techniques with HOMER (Hand-centered Object Manipulation Ex-
tending Ray-casting). That method has been adapted to handheld mobile AR
with HOMER-S (Mossel et al., 2013), whose concept is depicted in Figure 2.27.

Figure 2.27: The HOMER-s hybrid manipulation technique, that combines
both raycast and grasp-based approaches for handheld-AR interaction. Repro-
duced from (Mossel et al., 2013).

50 State of the art

2.5. New ways of interacting with architectural de-
signs

As discussed in Section 2.3, recent advances in various technologies have pro-
vided CAD software with new opportunities to interact with models. Architec-
tural design is no exception and the advent of innovations such as 3D printing
technologies have led to academic and industrial adoptions. Researchers have
explored different uses of the technology, ranging from small-scale educational
prototyping (Greenhalgh, 2016) to large-scale industrial constructions (Gar-
diner, 2011; Wu et al., 2016).

Another recent technology that is being used extensively in architectural
practice is photogrammetry, which can be used to document specific buildings
for cultural heritage purposes (Hanan et al., 2015) or to provide a basis on
which construction planning activities can be performed (Liu & Xu, 2001).

While the previous examples described potential enhancements to the de-
sign and construction processes that were “external” to the modelling tools
themselves, work has been done to increase interactivity with existing software
tools, as predicted in (Monedero, 2000).

This is the case for various stages of the design process. As for the concep-
tual design phase, where designers typically rely on sketching tools, the integra-
tion of generative design techniques has lead to systems such as DreamSketch
(Kazi et al., 2017) that generates three-dimensional geometries based on free-
from sketches. When sketching with that system, the designer creates objects
that can be labelled as interface, if they are part of the geometry, or obstacle,
if they are not to be included in the generated solution. The user can then
define variables by moving an object along the edges of the polygon that en-
closes that object’s possible positions, and the system uses that information
to generate potential solutions. Similar automated generation techniques have
also been used for more advanced modelling activities, often through add-ons
or plug-ins extending the functionality of popular modelling tools.

Section 2.5.1 discusses how exploratory and optimisation-based methods
have been applied to architectural design, while Section 2.5.2 overviews the
current use of immersive technologies in the field.

2.5.1 Design Space Exploration and Optimisation of parame-
ter values

The general concept of the AD paradigm, consisting of generating geometry
through an algorithm, already leads to a fundamental change in the way ar-

51

chitects interact with their design, since they mentally switch from “modelling
an object” to “modelling the logic that generates an object”. The parametric
nature of AD definitions allows the designer to explore different solutions by
adjusting these parameters. By integrating performance assessment tools into
AD software, the architect becomes able to iterate over parameter values un-
til satisfied by both the generated design itself and its computed performance
(e.g., via thermal or airflow analyses). Figure 2.28 represents a typical instance
of such a performance-based design exploration process, likely for an airflow
analysis on a building, created with Grasshopper.

Figure 2.28: A typical performance-based design exploration process where
parameters (a) drive an AD definition (b), that generates a geometrical rep-
resentation (c) on which performance assessment tools can be run (d), so as
to adjust parameter values (e) and iterate over the design. Reproduced from
(Harding & Shepherd, 2017).

It is even possible to go one step further and rely on artificial intelligence
and optimisation techniques to close the loop, i.e., to let such techniques fix or
improve at least part of the algorithmic (logic) or parametric (values) defini-
tions. The process of using such techniques to explore solutions and find the
best designs is called Design Space Exploration (DSE).

The output of such techniques are typically optimised according to one
or more target metrics, and it would consequently be easy to assume that the
geometries that have been generated that way would be used as the final result.
However, while this may indeed be the case for certain design teams, others
only use these “optimal” models as starting points over which they can then
iterate (Bradner et al., 2014).

It is important to realise that, even when only parameter values are being
adjusted by such techniques, the design space very quickly becomes immense
due to its combinatorial nature, since n parameters withm possible values each
leads to mn possibilities. Even if m is finite, n leads to an exponential growth

52 State of the art

and it therefore rapidly becomes impossible to explore the whole design space
in a reasonable time, when many parameters are involved.

For this reason, DSE and optimisation-based approaches often rely on ap-
proximation algorithms, such as metaheuristics (Talbi, 2009) (general proce-
dures attempting to find a good solution without exploring the whole solution
space). While a large body of work on DSE is linked to microprocessors and
integrated circuits in general (Xie et al., 2006), similar approaches have been
used for architectural design activities, and can help focus on a given criterion
or a combination of criteria, using multi-objective optimisation techniques.

Space layout

A common application of these techniques is in space layout, where they pro-
duce automated facility, office, or housing arrangements. Methods based on
single-parameter optimisation techniques (e.g., to minimise the cost of product
flow between departments (Buffa, 1964)) or graph theory (e.g., constructing a
planar graph with a hexagonal structure to generate a rectangular block plan
(Goetschalckx, 1992), as shown on Figure 2.29) produce satisfying results on
some instances of the space layout problem, but more complex techniques are
necessary when multiple constraints or criteria are involved (Liggett, 2000).

Figure 2.29: Generation of a block layout based on a technique using planar
graph. Reproduced from (Liggett, 2000) as per (Goetschalckx, 1992).

More recently, evolutionary algorithms have gained a lot of popularity for
space layout problems, especially Genetic Algorithms (GAs) (Calixto &
Celani, 2015). This is likely due to two main factors working in their favour:
their ability to handle multiple objectives and their inherent capacity to gen-
erate multiple solutions that the designer can choose from. In fact, an evo-
lutionary algorithm naturally generates a new population of solutions at each
iteration. That population results from crossovers and mutations on the best

53

solutions (according to a fitness function that can accommodate for many pa-
rameters) from the previous generation.

Many examples of uses for GAs solving space layout problems can be found
in the previously cited (Calixto & Celani, 2015) as well as in (Turrin et al.,
2011) or even in commercial solutions such as Spacemaker16. Such tools can
accommodate a plethora of criteria, such as energy efficiency (Wright & Far-
mani, 2001), thermal comfort (Chen et al., 2008), or adjacency preference
(Nagy et al., 2017b). An extension to the latter has incorporated survey re-
sults to the generative process (Villaggi et al., 2018b). In fact, they integrated
user satisfaction based on a questionnaire to that process, in order to enable
certain occupant-level goals, that are usually disregarded, to be used.

Other techniques based on machine learning, and neural networks in partic-
ular, have been used for similar purposes, often based on Generative Adver-
sarial Networks (GANs), a technique first proposed in (Goodfellow et al.,
2014) that involves two competing neural networks: one that generates candi-
date solutions while the other evaluates them. GANs have been used to gener-
ate bedroom configurations (Radford et al., 2015) as well as floor plans, based
on coloured drawings that represent areas with different functions (Huang &
Zheng, 2018), or simply based on a given parcel used as input for a three-
stage pipeline (Chaillou, 2019) (building footprint outlining, room splitting,
furnishing) represented in Figure 2.30.

Figure 2.30: Generation of a floor plan using a three-stage pipeline. Repro-
duced from (Chaillou, 2019).

Morphogenesis

Another modelling application for DSE techniques is morphogenesis, i.e., the
generation of form. For instance, (Caldas & Norford, 2003) proposed to use

16www.spacemakerai.com

www.spacemakerai.com

54 State of the art

GAs to produce building envelopes, based on factors such as ventilation, light-
ing and construction costs. Similar work includes envelope generation that
searches for the optimal shape of a tower, to maximise solar radiation while
satisfying geometric constraints (Besserud & Cotten, 2008), or to provide the
best possible views (Doraiswamy et al., 2015).

Morphogenic approaches based on deep learning have also been proposed,
with (As et al., 2018) exploring the use of different types of neural networks
to generate houses.

Smaller parts of a design are also covered by GA-based approaches, with
(Turrin et al., 2010) addressing the generation of roofs that offer good daylight
and thermal comfort, (Choi et al., 2014) designing louvres based on thermal
performance, or (Ercan & Elias-Ozkan, 2015) exploring shading devices to be
placed on facades to optimise daylight while avoiding excessive solar heat gain.

Although generally rather linked to engineering than architectural design,
many researchers have integrated these techniques to structural design (i.e.,
the creation of stable structures capable of resisting loads and various forces
being applied on their parts). For example, (Kaveh et al., 2008) relied on
an ant colony algorithm (a metaheuristic that is inspired by the behaviour of
ants using pheromones to converge towards better solutions) to generate stiff
structures given a certain quantity of materials.

A more interdisciplinary work was proposed in (Miles et al., 2001), whose
authors created a system to be used by both engineers and architects. That
system uses a GA to produce floor plans and determine the layout of columns
based on criteria such as lighting or ventilation, but also structural perfor-
mance. Similarly, (Mueller & Ochsendorf, 2015) combined structural perfor-
mance with designer preferences using an evolutionary algorithm.

The latter example integrates an interactive aspect, since the designer se-
lects the best solutions for each iteration of the evolutionary algorithm, thereby
“piloting” the exploration of the design space. This is also the case for (Marin
et al., 2012) who have used so-called Interactive GAs, to produce buildings
that both rely on energetic performance optimisation and designer preferences.
A similar approach has also been proposed for urban landscape design (Koma
et al., 2017). Commercial solutions integrating such concepts are also available,
such as One Click LCA17 that can allow Grasshopper designers to minimise
the carbon footprint of a building (Apellániz et al., 2021).

17www.oneclicklca.com/fr/parametric-and-generative-carbon-optimisation

www.oneclicklca.com/fr/parametric-and-generative-carbon-optimisation

55

2.5.2 Use of immersive technologies

In addition to these automated approaches to generate designs, innovative
“input” interaction devices have also increasingly been integrated to CAD soft-
ware tools. This includes hand or body tracking devices that enable gestural
interfaces for conceptual design (Khan & Tunçer, 2019) or even more advanced
modelling activities (Dave et al., 2013), but tangible user interfaces have also
been created to facilitate collaboration as part of architectural design activi-
ties (Gu et al., 2011), for various purposes such as daylight simulation control
(Nasman & Cutler, 2013), or simply to move a geometry (Abdelmohsen & Do,
2007).

This section will rather focus on advanced “output” devices and immersive
displays in particular.

As mentioned in Chapter 1, the current use of AR and VR technology in
the AEC sector is mostly limited to visualisation purposes (Blach et al., 1998),
often with marketing goals in mind, i.e., to help convince and sell a product
to a client (Juan et al., 2018). This ability of immersive displays to facilitate
the understanding of three-dimensional volumes for laymen is indeed one of
the main benefits that has been pointed out.

It has in fact been demonstrated that such technologies improve the un-
derstanding of objects (Louis et al., 2020) and space (Schnabel & Kvan, 2003).
Additionally, several studies (Johnson, 1963; Paes et al., 2017) have shown that
the spatial perception is even enhanced as the immersion deepens. Therefore,
as envisioned and described in (Brooks Jr, 1987), immersive walkthroughs us-
ing these technologies favour the dialogue between stakeholders (Coroado et al.,
2015; Lo et al., 2019) (e.g., involving designers, constructors and clients), lead-
ing to better decision-making and easier detection of issues (Roupé et al., 2016),
and helping to move towards user-centred design, leading to better (accepted)
designs (Mobach, 2008).

Design software usually comes with features to export the geometry being
worked on. Most major CA(A)D tools in fact support exporting to the OBJ
and/or FBX formats, as they are amongst the most common options found
on the market. Both formats can be used as a basis to create an immersive
experience quite easily with popular game engines such as Unity18 and Unreal
Engine19. With the growth of the demand for immersive productions, a number
of tools were developed to facilitate and (semi-)automate the creation of such
experiences, especially for VR. Some of these tools allow users to have control
over environmental factors (sun position, daylight intensity) or even provide

18www.unity.com
19www.unrealengine.com

www.unity.com
www.unrealengine.com

56 State of the art

access to extrinsic properties of the rendered design, such as texturing, scaling,
or positioning options. However, most of the currently available tools do not
enable changes on the form itself and should rather be seen as inspection or
showcasing tools.

Design activities tend to follow a well-known sequence of processes. Based
on a literature review in both engineering design and cognitive psychology,
(Howard et al., 2008) describes the usual design process as a 4-stage endeav-
our: (1) analysis of the task at hand, (2) conceptual design, (3) embodiment
design, and (4) detailed design. That process, illustrated in Figure 2.31, also
allows designers to go back to previous stages until they reach stage (4). The
remaining of this section will discuss existing work on modifications to the
model itself, at different stages of the design process.

Figure 2.31: The stages of the design process, according to (Howard et al.,
2008).

Sketching and sculpting

During the conceptual phase, a designer explores different ideas and tradi-
tionally relies on hand drawings and scale models. Their digital and three-
dimensional equivalents are free-form sketching and what is sometimes called
sculpting, often based on voxels, that allow users to spawn or remove material
at the pointer’s location. The corresponding tools are not sufficient to produce
actual CAD models, but provide the opportunity to explore design options in
3D environments during the early phases of the process.

Early examples include (Kameyama, 1997) that is based on a virtual clay
metaphor allowing the designer to add or remove some of the clay, and the more
advanced (Wesche & Seidel, 2001), based on line drawings but with support for
creating surfaces based on these lines. Both of these systems rely on 3D-tracked
controllers and stereoscopic HMDs used at the time.

Contemporary commercial applications following similar approaches but
20www.gravitysketch.com
21www.tiltbrush.com

www.gravitysketch.com
www.tiltbrush.com

57

involving modern HMD and input devices have been released, including Grav-
ity Sketch20 and Google Tilt Brush21, that was selected in (Arora et al., 2017)
to evaluate sketching in VR with a surface to support the drawing.

As for research contributions more focused on architectural design, (Donath
& Regenbrecht, 1995) presented voxDesign (Donath & Regenbrecht, 1995), a
VR sketching tool for early phases of the design process relying on a 3D-tracked
controller, while (Dorta et al., 2016) more recently proposed Hyve-3D, another
conceptual design system that suggests using a tablet to control a 3D cursor
that moves around and enables sketching, as depicted on Figure 2.32.

Figure 2.32: The Hyve-3D VR sketching system. Reproduced from (Dorta
et al., 2016).

Direct modelling

Slightly more advanced modelling capabilities were added to solutions such as
(Butterworth, 1992), (Billinghurst et al., 1997) and (Chu et al., 1997), that
all enable basic shapes to be created from a VR application. Other systems
were proposed more recently with architectural modelling in mind during de-
velopment, including (Mine et al., 2014) and (Innes et al., 2017), illustrated in
Figure 2.33.

Commercial applications replicating such an approach are Microsoft Ma-
quette22 and Google Blocks23, that both offer the essential functionality to
create low-complexity geometries from a VR-based environment.

However, the aforementioned tools lack support for some usual CAD fea-

22www.maquette.ms
23arvr.google.com/blocks/

www.maquette.ms
arvr.google.com/blocks/

58 State of the art

tures and cannot truly be considered as the VR equivalents or at least the
companions to modern desktop-based tools, and are therefore confined to a
conceptual design role.

Figure 2.33: A VR modelling system that allows the user to create basic shapes
and manipulate them with a selection of tools. Reproduced from (Innes et al.,
2017).

More advanced VR modelling systems that integrate with popular CAD
software have been developed, including the MARUI24 plug-in for Maya25, and
Mindesk26, compatible with Rhinoceros27. Besides enabling interoperability
between a VR interface and a desktop CAD application, these solutions offer
more complex design features than the systems we previously mentioned, e.g.,
to manipulate NURBS curves.

Algorithmic Design

Algorithmic Design is also covered by immersive solutions, to a certain extent.
Generating a VR (or even AR) experience can be done quite easily using a
game engine but, in order to do so, one must typically first export the design
to a specific format to allow the game engine to load the corresponding file
and import it into a virtual world. Some tools facilitate that process, such
as Twinmotion28 and IrisVR Prospect29 by providing “one-click” exports from
well known 3D modellers, such as Rhinoceros and Revit30), to a VR environ-
ment that includes the up-to-date geometrical representation. They therefore
do smooth out the burden of creating such experiences, but still provide lim-
ited control over the design artefact itself (what we called extrinsic properties

24www.marui-plugin.com/marui4
25www.autodesk.com/products/maya
26https://mindeskvr.com/
27www.rhino3d.com
28www.unrealengine.com/twinmotion
29www.irisvr.com/prospect
30www.autodesk.com/products/revit

www.marui-plugin.com/marui4
www.autodesk.com/products/maya
https://mindeskvr.com/
www.rhino3d.com
www.unrealengine.com/twinmotion
www.irisvr.com/prospect
www.autodesk.com/products/revit

59

Figure 2.34: Immersive AD landscape in 2017: collaboration scenarios and
levels of control (defined in details in Section 3.1).

in Section 2.5.2). Such tools can be used with some AD editors, since they
generally rely on — or easily connect to — general modelling systems that
these tools support. But their usage remains limited to visualisation purposes.

These types of tools only provide extrinsic control over the designed model,
but deeper control over AD definitions is possible and will be discussed in the
remaining of the present section, then further described in Section 3.1. Figure
2.34 clarifies what the state of the practice was at the start of our research work
(in 2017), with regards to immersive control over AD models, and immersive
collaboration scenarios.

Some proposals however enable manipulation of key control points em-
ployed by an AD algorithm, e.g., (Kwieciński et al., 2017) that uses tangible
items as part of an AR experience. Other systems allow VR users to re-
move elements from a structural analysis calculation, from a VR environment
that highlights geometry parts that do not meet pre-specified requirements
(Moubile, 2018). These types of interactions can be subsumed as input con-
trol, since they do not interact with the internals of the algorithm but allow
for changes to the entities it uses.

Another set of tools that fall into the same category lets users adjust an AD
algorithm’s parameter values. Such immersive adjustments are made possible

60 State of the art

in a prototype presented in (Hawton et al., 2018), depicted in Figure 2.35,
that relies on the Oculus Rift31 VR HMD. Such a feature is also covered by
(Moubile, 2018) that works with the same headset. In both cases, the user is
presented with a panel, attached to a standard VR controller (tracked in 3D).
The panel contains a list of parameters, coming from a Grasshopper definition,
whose values can be changed. They both support number parameters, tweaked
through the manipulation of sliders. Changes made to the parameter values
are sent back to Grasshopper so as to modify the generated geometry whose
updated version is, in turn, relayed back into the VR environment.

A commercial solution, Fologram32, includes the same functionality but
targets AR displays such as Microsoft’s Hololens33 and can even work with
simple smartphones. The user can therefore visualise a geometrical represen-
tation while manipulating the parameters driving the (re)generation of that
geometry, with no need to leave the augmented experience to do so. Note that
these tools are directly related to the prototype we will describe in Section
3.2; they were developed simultaneously yet result from entirely independent
works.

Figure 2.35: A VR application that allows for parameter adjustments to an
AD definition. Reproduced from (Hawton et al., 2018).

31www.oculus.com/rift
32www.fologram.com
33www.microsoft.com/hololens

www.oculus.com/rift
www.fologram.com
www.microsoft.com/hololens

61

The aforementioned solutions cannot be used to add or remove components,
nor do they allow to interact with the links between these components. To
overcome that limitation, researchers have recently started working on adding
control over the model itself. A VR proposal described in (Castelo-Branco
et al., 2020) relies on desktop mirroring i.e., the VR user has access to a “win-
dow” that mirrors the view of the computer running Grasshopper. In order to
interact with that window, one of the VR controllers “simulates” a standard
desktop mouse, with a “point and click” approach. Figure 2.36 shows that mir-
ror view integrated into the VR environment. Mindesk, a commercial software
that we mentioned previously, was updated to provide the same functionality
following the same approach of mirroring the computer screen.

Providing a mirror view of the desktop interface coupled with simulated
mouse and keyboard input gives the user access to the same feature set as
within the desktop tool itself. Nevertheless, interacting that way does not take
full advantage of the 3D-tracked controllers and leads to difficulties when small
items have to be selected or more generally when precision is required. Despite
predating the aforementioned work, the prototype we describe in Chapter 4 is
an attempt at tackling that interaction problem.

Figure 2.36: A mirror view of the desktop’s display, incorporated into a VR-
based environment. Reproduced from (Castelo-Branco et al., 2020).

62 State of the art

2.5.3 Survey on the potential of Virtual Reality for architec-
tural design

Based on the state of the art we discussed in this chapter, we posit that im-
mersive technologies should be integrated as part of the CAAD process, and
for AD in particular. To verify these claims, we conducted an online survey on
the potential of using VR for architectural design.

The survey was shared in January 2020 to practitioners on the Rhinoceros
fora34, researchers on the official eCAADe LinkedIn and Facebook pages, as
well as architecture students from three French-speaking universities, and was
made available in two languages (French and English) in order to target and
solicit a broader audience.

This section discusses the results we got out of that survey, even though
one should keep in mind that only 36 complete responses were received. This
is probably good enough to provide anecdotal evidence but is not sufficient to
capture statistically significant evidence. A copy of the complete questionnaire
and the results we gathered can be found online35. The code we used to analyse
that data and produce figures is also available36. We also published a paper
that expands on the results we obtained (Coppens et al., 2021).

Population

By targeting diverse venues, we managed to obtain a population of respondents
with different profiles. Figure 2.37a shows the age distribution amongst the
respondents, highlighting that 25 out of 36 participants (69%) were between
20 and 29 years inclusive (median: 25, interquartile range: 9.25). Figure
2.37b presents the distribution of experience amongst respondents through a
population pyramid reporting the number of years of experience in architecture
or related fields (median: 3, interquartile range: 8.5). These two figures seem
to suggest that a significant part of the surveyed population is comprised of
students and recently graduated practitioners.

Based on their reported architectural experience and diplomas, we classified
respondents into four distinct architectural profiles: 2 uninitiated respondents,
11 novices, 11 competent participants, and 12 experts. We observed a balanced
grouping of respondents in the three categories with the most qualified profiles,
as well as a good gender balance across these categories.

34https://discourse.mcneel.com/t/your-opinion-on-vr-for-architectural-design/
95111

35zenodo.org/record/4696074)
36zenodo.org/record/4696071)

https://discourse.mcneel.com/t/your-opinion-on-vr-for-architectural-design/95111
https://discourse.mcneel.com/t/your-opinion-on-vr-for-architectural-design/95111
zenodo.org/record/4696074)
zenodo.org/record/4696071)

63

(a) Respondents’ age pyramid. (b) Distribution of experience amongst
respondents.

Figure 2.37: Profile of survey respondents.

We also wanted to assess the respondents’ familiarity with VR as well as
their experience with the technology, by asking what devices they had used.
This allowed us to separate between three types of respondents: (1) those
without VR experience; (2) those with prior exposure to “low-quality” VR
devices (rotational tracking only); and (3) those that had been able to try
fully tracked (6-DoF) VR experiences. Figure 2.38 depicts the corresponding
distribution, with 11 respondents stating they were not familiar with VR at
all (1), 9 belonging to type (2) since they were familiar with VR but had not
tried a 6-DoF experience, and 16 with 6-DoF VR experience (3).

Figure 2.38: Familiarity of respondents with different quality levels of VR.

64 State of the art

Potential of Virtual Reality for architecture

The core focus of the questionnaire was to assess the current use and the
potential of using VR for architectural design practices. Respondents that
had indicated prior exposure to VR were asked whether they had tried to
use such devices for architecture-related activities. Among respondents that
indicated having tried VR, more than half (11 out of 21) had also done so for
architecture-related activities. For them, we queried which tools they had used
and what limitations they encountered when using them.

Only 6 participants answered the question about the perceived limitations
of architecture-specific VR tools, but they mentioned tooling complexity (R18:
“work-intensive transition from regular CAD model to VR”; R17: “difficult to
set a proper scale for the imagery”), issues with user interfaces or interactions
(R27: “lack of easy-to-use interface”; R56: “limited interactions”), as well as
collaboration needs (R27: “it gets kind of lonely in VR [...] on projects with
multiple stakeholders, it takes a long time to present, because everybody wants
to go in”) and hardware costs. That being said, more than half (6 out of 11)
of these respondents mentioned game engines in the list of tools they used for
architectural activities in VR, which leads us to think they may not reasonably
be aware of more ad-hoc and easy-to-use software solutions.

We also asked all respondents about the potential of VR for architecture-
related activities, regardless of their previous experience with such tools and
devices. Figure 2.39 shows the results we obtained for that question, contrasted
with the respondents’ prior experience with VR. One can observe that as much
as 75% (25 out of 36) respondents indicated that they considered the technology
could be at least very useful to the field, while the remaining 25% still consider
the technology to be moderately useful.

In addition to these general results, we drilled down into specific stages
and actors of the architectural design process that are perceived as the most
suitable targets for embracing VR. We proposed four uses of the technology as
possible answers for a multiple-choice question: (1) after the design process; (2)
during the design process, for informing stakeholders other than the designers;
(3) during the design process, to be used by the designer himself; and (4) right
from the start and all along the design process.

Stage 1 covers what we identified as the most common contemporary use
of VR technology in the architectural context, i.e., to show a finished design
to a client. Stage 2 suggests the potential to show stakeholders a work-in-
progress in order to gather early feedback that can be taken into account for
subsequent iterations. Stage 3 encompasses a workflow where the designer
sporadically checks on a design in VR, e.g., in order to evaluate the design

65

Figure 2.39: Perceived potential of VR for architecture, depending on whether
respondents had prior exposure to 6-DoF VR.

at full scale and from a human point-of-view. Finally, Stage 4 represents the
extreme case where VR is fully integrated into tools that support all steps of
the architectural design process, potentially replacing non-VR solutions.

Figure 2.40 presents the answers received for that question, compared
against prior VR exposure. A large proportion of respondents (29 out of 36)
consider VR technology suitable for presenting a finished project, which sup-
ports the assumptions about the current use of the technology we derived from
our literature review. More surprisingly, there are equally many respondents
that indicate it could be used to involve stakeholders during the design pro-
cess. Slightly more than half of the respondents (19 out of 36) believe designers
themselves could use the technology during their architecture-related activities,
while 9 respondents indicate they believe VR tools could be used right from
the start and all along the design process.

Potential of Virtual Reality for Algorithmic Design

The questionnaire then focused on how VR could be used to support AD.
For this part of the survey, we only considered respondents that were aware
of algorithmic design or parametric modelling tools. The vast majority of
them (34 out of 36) signalled an awareness of such tools. Given the vague
and confusing term “parametric”, and in order to better appreciate the level

66 State of the art

Figure 2.40: Stages of the Architectural Design process suitable for VR inte-
gration.

of understanding of what the paradigm entails, we asked respondents “How
would you define parametric modelling/design?”.

In a similar way to (Stals et al., 2018a), we classified respondents based
on their answer into three distinct categories: “wrong definition”, “correct def-
inition”, and “unclear definition”. While the first two categories are rather
straightforward, the latter contains respondents that did mention the para-
metric aspect but whose proposed definition did not contain any reference to
algorithms, programming or interlinked components, and did not mention that
variations of parameter values produce chain reactions. Since such an incom-
plete definition means the presence of parametric objects (e.g., parametrised
primitive shapes in traditional CAD) is enough to fill the bill, it would also
apply to non-algorithmic software.

Out of 34 respondents that answered this question, only 12 gave a definition
that we considered to be correct, while 18 persons provided a definition that
we classified as being unclear.

By combining the respondents’ answer with their architectural profile, we
classified them into four categories based on their AD profile: uninitiated,
novice, competent and expert. Figure 2.41 shows the distribution of these
categories across respondents, in relation to their age.

Next, we queried respondents on the usefulness and desirability of integrat-
ing AD software and VR hardware. We first showed them an online video of
the prototype we will describe in Chapter 4. This prototype demonstrates the
feasibility of editing a Grasshopper algorithm in VR with an interface adapted

67

Figure 2.41: Algorithmic Design profile of the respondents.

to the three-dimensional immersive context. It should however be noted the
responses are therefore based on the respondents’ subjective perception derived
from a video that demonstrates a prototype that does not intend to provide a
consumer-grade experience. Exacerbated by the fact that the video has to be
watched on a 2D screen that does not generate the same immersion as an actual
VR-based test, some of the responses may have been negatively impacted.

Nevertheless, after viewing the video, each respondent was presented with
a question on the usefulness of similar VR-enabled functionality if it were com-
bined with a 3D visualisation of the geometry being worked on. We identified
an interest in having VR tooling adapted to the AD paradigm, but not nearly
as pronounced as the one for CAAD in general. In fact, as illustrated on Figure
2.42, almost half of the respondents (16 out of 34) consider VR functionality as
moderately or very useful for AD. The two sub-figures compare these answers
with prior exposure of respondents to 6-DoF VR on the one hand (2.42a) and
to VR tools for architecture on the other hand (2.42b). Note that the lat-
ter only takes 20 answers into account, since we did not include respondents
that indicated they were not familiar with VR or had never experienced the
technology. Figure 14 does take those respondents into account.

The proposed prototype was slightly better received amongst respondents
with prior exposure to 6-DoF VR and VR tools for architecture, respectively
with 54.5% (6 out of 11) and 53.3% (8 out of 15) of the answers that consider
it to be at least “moderately useful” within these subgroups of the population.
Although we notice that slight difference, the number of respondents is too low

68 State of the art

(a) Usefulness of VR for AD, broken
down by respondents’ prior exposure to
6-DoF VR devices and experiences.

(b) Usefulness of VR for AD, broken
down by respondents’ prior exposure to
VR tools for architecture (if they were
familiar with VR).

Figure 2.42: Usefulness of VR for Architectural Design.

to draw any statistically significant conclusions.

General outcome

As a whole, the survey results confirm our assumption that the VR technol-
ogy should be used earlier in the design process. A very large number of
respondents see potential for a more user-centric approach that would involve
stakeholders during the design process. Although the demand for VR editing
tools is not as high (for architecture in general and for AD more specifically),
it still is there.

Despite the threats to validity we have to take into account (especially the
population size that prevents us from drawing statistically significant conclu-
sions), we consider the findings we derived from this survey to provide sufficient
anecdotal evidence of the need for better immersive tooling in architectural
practice that goes beyond the current usage. Architects need solutions to be
able to edit and evaluate designs from an immersive context, with adapted
user interfaces and interactions.

CHAPTER 3
Immersive parameter adjustment for

algorithmic co-design

“A display connected to a digital computer
gives us a chance to gain familiarity with
concepts not realizable in the physical
world. It is a looking glass into a
mathematical wonderland.”

Ivan Sutherland

As stated in Chapter 1 and as supported by the survey discussed in Sec-
tion 2.5.3, we posit that immersive technologies should be integrated into the
architectural design process and to AD in particular. To address this need,
we follow a prototype-based process described in Section 1.4 and therefore
develop research prototype tools that show the potential of using immersive
technologies for AD activities.

Based on our literature review and the state of the art of the various do-
mains our research covers, we start working on how to bring immersive tech-
nologies to AD in architecture. In this chapter, we explore different display
options (VR and AR) and interaction modalities (based on desktop-like inter-
faces adapted for Six Degrees of Freedom (6-DoF), but also using Tangible
User Interfaces (TUIs)) and focus on immersive geometry visualisation and
immersive value adjustment of parameters shared with an AD definition.

69

70 Immersive parameter adjustment for algorithmic co-design

3.1. Requirements for creating immersive Algorithmic
Design tooling

The most essential aspect to take advantage of immersive technologies is to
provide a way for an AD project to be visualised in an immersive manner,
preferably with a navigation system so as to be able to examine the rendered
architectural geometry from different angles.

Since we do not aim to replace desktop-based tools such as Grasshopper
entirely, our goal is to interact with existing AD definitions created with such
tools. Two options are available to do so.

The first one is implementing a way to read from and write to a specific
AD format (e.g., Grasshopper’s file format) from an immersive application, to
process a given definition. We can then develop a module that generates the
geometrical representation based on that definition.

Another option is to create a “bridge”, between an immersive application
and the desktop-based tool, through a custom component for that desktop
tool. The component would simply share geometry and parameter data to a
companion immersive application. Generating the geometrical representation
based on the definition remains the desktop tool’s responsibility in that case;
the custom component simply sends the result to the immersive application.

We opted for this latter option, since it does not force us to dive into the
logic of how to generate geometries based on an algorithm. Moreover, it allows
the resulting immersive application to be tool-agnostic, in the sense that any
AD software would be able to work with the immersive application, as long as
a bridge plug-in is created for that specific software.

Ideally, the process of transferring the geometry from a CAAD desktop-tool
to the immersive application should satisfy two main properties: it should be
fast so that the user benefits from near-instant updates on a modified geomet-
rical representation, but also automatic, so that the designer does not have to
go through a cumbersome process of exporting a geometry each time a new
version is to be evaluated. One might also be tempted to aim for the update
process to be incremental (working with modifications to the current state of
the geometry instead of resending the whole geometry). Unfortunately, do-
ing so would require a geometry-adapted diff tool (Doboš & Steed, 2012) that
would inherently be imprecise (because the rendering-adapted representation
of the geometry is itself imprecise) and would likely be computationally expen-
sive. In the specific context of AD, a particular change (e.g., a value change
on a parameter) may impact the whole geometry, rendering such diff tool even
less appropriate.

71

To go further than visualisation only, it is needed to add different kinds
of interactions with the design, that we classify in 4 groups corresponding to
different levels of control, as shown in Table 3.1.

We first differentiate between extrinsic and intrinsic control. Extrinsic
modifications to a project only impact the rendered geometry or its surrounding
environment (e.g., lighting or weather). This correspond to a first level of
control (Level 1) and includes modifications to textures, or changes in zoom
level.

On the other hand, intrinsic control actually allows for modifications to
the AD model itself. We further split intrinsic control into three more levels of
control: input control (Level 2), high-level algorithm (Level 3) and low-level
algorithm (Level 4). These three levels allow designers to have control over
the actual AD definition, impacting the way the geometrical representation is
generated.

Input control is limited to the data used by the algorithm (e.g., parameter
values and key or anchor points for certain components), while both algorithm
control levels allow for modifications to the algorithm itself.

High-level algorithm control provides the designer with the ability to ma-
nipulate the (often visual) algorithm that drives the geometry generation. This
includes adding or removing components in a visual algorithm (as in Grasshop-
per) and making changes to the links between them.

Low-level algorithm control allows designers and potentially software de-
velopers to modify the (often textual) code inside the components used by
the high-level algorithm. This includes implementing custom components to
perform project or company-specific geometric operations, or connecting to an
external service to retrieve or share data.

A designer clearly needs at least Level 3 control to create an architectural
project, but can be confined with Level 2 control when tweaking an existing
project (therefore on a temporary basis). Level 4 is only really needed when
the built-in components in the AD tool do not suffice for specific needs, and
when no custom component was created or shared by a third-party to cover
these needs.

We already discussed in Section 2.5.2 that Level 1 can be achieved with
many existing tools. The current chapter presents our work towards enabling
Level 2 control over an AD project from within an immersive experience.
Chapter 4 will present how we manage Level 3 control.

Level 4 is however outside of the scope of this dissertation. This is due to
two reasons: (1) it typically involves textual code and typing and immersion
do not currently mix very well (Grubert et al., 2018), and (2) custom compo-

72 Immersive parameter adjustment for algorithmic co-design

Type of
control

Target
users

Description Examples

Level
1

extrinsic designer
and others

Making modifications to
the rendered geometry

only

textures, zooming,
geometry positioning,

lighting
Level
2

input designer
only

Making changes to data
used by the algorithm

generating the geometry

adjustment of parameter
values, key point

positioning
Level
3

high-level
algorithm

designer
only

Editing the (generally
visual) algorithm used to
generate the geometry

adding links (edges),
components (nodes),

removing or grouping them
Level
4

low-level
algorithm

designer
and

developer

Developing (generally
textual) code for custom
components to be used for

Level 3 control

performing geometric
operations or connecting

to external services

Table 3.1: Types of control over Algorithmic Designs.

nent development is usually done through specialised development software,
outside of Grasshopper. (2) means that integrating immersive technologies for
Level 4 control would heavily complexify the development of a solution, since
it would have to communicate with these specialised development tools and
have them process changes to produce new versions of the custom component
being modified. Even then, Grasshopper would need to be restarted to reload
all components and thereby take into account changes made to the specific
component that was just modified. (1) further implies that overcoming these
obstacles are not even guaranteed to provide a truly useful interface.

To clarify some usage scenarios where Level 2 control is likely to be benefi-
cial to the design process, we provide the following two hypothetical use cases,
that we will use as an inspiration to develop our research prototypes.

Use Case 1. An architectural firm is in charge of the construction of a modern-
looking clubhouse for a golf club. Based on the club’s demands, the architects
have designed a first version of the building that will welcome the 300 registered
members. The design process in quite advanced and the building is expected
to be close to its final form. The architects would like to get input from the
clients (the club’s board members), so they invite them to a VR session where
both the lead architect and board members visualise the virtual building in
its current state. The VR visualisation helps the clients understand what the
actual clubhouse will look like. The architect guides the clients around the vir-
tual environment and adjusts parameter values along the way to accommodate
the remarks from the clients.

73

Use Case 2. The municipal council of a city wants to create a public space
in a disused area of 1,000 square meters, nestled amid a few apartments and
shopping buildings. They appointed an architectural firm that works with Al-
gorithmic Design to do so and asked them to include a big sculpture to be
placed somewhere in the centre of that space. The project is already well ad-
vanced in Grasshopper and the architects now want the opinion of the council
to adjust parameter values. They therefore invite council members for a meet-
ing at their office, that themselves invite representatives from commercial and
residential buildings in the project’s vicinity with them. Using the immersive
and interactive system at the architects’ office, all these stakeholders are able
to visualise the project from different angles and can take an active part in the
remaining (parameter adjustment) design decisions. The AR and VR visuali-
sations help non-architects to better appreciate the dimensions of the sculpture
and how it integrates with the surroundings.

3.2. Prototype for adjusting models in Virtual Reality

In order to enable Level 2 control over an AD project, we developed a proof-
of-concept research prototype, that serves as a bridge between a Grasshopper
definition and a VR headset. We therefore decided to call it GHVRBridge.
We chose Grasshopper because it is very popular in both industry and re-
search (Cichocka et al., 2017), and supports the creation of custom compo-
nents through a C# Software Development Kit (SDK). As for the VR headset,
we chose the HTC Vive HMD since it was, at the time, one of the very few
options to offer good quality (including 6-DoF tracking) at an affordable price.
To ensure generalisability of the approach, we rely on a cross-headset toolkit
that should work with other devices as well, so as to handle different settings
should the need arise.

A video demonstrating GHVRBridge is available online1 and our codebase
is hosted as open-source software on a GitHub repository2, available under
the MIT3 license. The prototype was also described in a paper we published
(Coppens et al., 2018).

Figure 3.1 presents the overall concept and structure of GHVRBridge, in-
volving three separate software components in addition to Grasshopper itself:
a Grasshopper component that shares geometries and parameters, a VR ap-
plication for the HTC Vive, and a relay server to forward the information that

1http://informatique.umons.ac.be/staff/Coppens.Adrien/?video=eCAADe2018
2https://github.com/qdrien/GHVRBridge
3https://opensource.org/licenses/MIT

http://informatique.umons.ac.be/staff/Coppens.Adrien/?video=eCAADe2018
https://github.com/qdrien/GHVRBridge
https://opensource.org/licenses/MIT

74 Immersive parameter adjustment for algorithmic co-design

Figure 3.1: GHVRBridge: a proof-of-concept research prototype that enables
VR-based visualisation and adjustments of Grasshopper definitions.

75

needs to be exchanged. The next two sections focus on the first two compo-
nents only, since the relay server’s functionality is rather self-explanatory. It
allows for VR users to be in a different location than the computer running
Grasshopper, and will facilitate the later extension to a collaborative setting.

3.2.1 Grasshopper custom component for external parameter
value adjustment

We developed a Grasshopper sharing component, written in C#. It should be
placed as any other Grasshopper component inside the AD definition in order
to interact with other components. The component contains 4 main input
ports: Address, Connect, Meshes and Shared parameters. The corresponding
representation in Grasshopper is outlined in Figure 3.2. An actual concrete
example is shown in the green component in the bottom-left picture of Figure
3.1. When activated via a boolean switch linked to the Connect input port, the
component connects to the relay server indicated by the Address port, via the
WebSocket protocol (Fette & Melnikov, 2011). It then iterates over the input
parameters that the designer has linked to the Shared parameters port, stores
their properties (name, type, range, values and a unique identifier) and sends
this information to the relay server that forwards it to the VR applications.
The geometries linked to the Meshes port are then shared as well.

The component listens to incoming parameter adjustment messages, com-
ing from a VR application and relayed by the WebSocket server. When
one such message is received, the component iterates over the list of value
changes it contains and replicates them on the corresponding input param-
eters in Grasshopper (identifying them thanks to the previously mentioned
unique identifiers).

To ensure that messages are properly sent and received, we require a
transmission protocol that provides reliable transfers; otherwise, geometries
or parameter updates may never reach their destination. WebSocket is a well-
established protocol that enables bidirectional communication over a Trans-
mission Control Protocol (TCP) (Postel, 2011) connection, providing such re-
liable transfers. While removing the complexity of handling plain TCP con-
nections manually thanks to well-supported libraries, WebSocket does not con-
sume more network traffic than plain TCP, except for the initial handshake
(at the start of the connection) (Skvorc et al., 2014). We therefore chose to
rely on that protocol for implementing GHVRBridge.

In order to optimise the content (payload) of the messages exchanged by

4https://google.github.io/flatbuffers/

https://google.github.io/flatbuffers/

76 Immersive parameter adjustment for algorithmic co-design

Figure 3.2: The GHVRBridge Grasshopper custom component for external
geometry sharing and parameter adjustment.

GHVRBridge, the data is structured via Flatbuffers4, a serialisation library
that can easily convert mesh and parameter data to a binary format that
minimises the size of the (binary) payload. Compared to other very popular
exchange formats such as JSON (ISO/IEC-21778:2017, 2017), XML (Yergeau
et al., 2008) and YAML (Ben-Kiki et al., 2009), Flatbuffers (de)serialises faster
and produces smaller transmittable messages5, reducing the traffic to be sent
over the internet in the case of a remote communication.

The Flatbuffers library requires that we define the schema (format) of the
data in a .fbs file, before we can build converters from and to that format.
This schema is presented in Listing 3.1. In it, we define a Components mes-
sage that can contain multiple instances of a Component, which can either be
a BooleanToggle or a NumberSlider. As required by the syntax, both are
encapsulated into a GenericComponent. Depending on the type of component,
different fields are listed. The value field has a different type depending on
the component’s type, but a NumberSlider also requires information about
the range of possible values and it therefore contains additional fields to store
that information.

Based on a given schema, Flatbuffers creates a set of classes to be used in
the project’s codebase. The behaviour of the component we use to transfer
geometries and parameters is defined in a class called GHSharingComponent,
that instantiates GH_Component, so that it can be integrated into a Grasshopper
(visual algorithm) definition.

5https://google.github.io/flatbuffers/flatbuffers_benchmarks.html

https://google.github.io/flatbuffers/flatbuffers_benchmarks.html

77

Figure 3.3 displays the class diagram of the C# project for the Grasshopper
custom component we developed, including part of the GrasshopperVRBridge.IO
package that was automatically generated using Flatbuffers (the dots on the
Figure accounts for the other classes that were automatically generated based
on the schema).

3.2.2 Virtual Reality application

In order to create the VR part of GHVRBridge that will consume the data
provided by the custom Grasshopper component described in the previous sec-
tion, we rely on Unity, a game engine that facilitates the creation of interactive
three-dimensional applications. Additionally, Unity also helps us to create VR
experiences in particular, through an easy access to SteamVR, the platform
that handles the communication with the HTC Vive headset. Since we develop
Grasshopper custom components using C#, we define the behaviour of the VR
application with C# scripts. This facilitates code reuse between different com-
ponents of the GHVRBridge system and lowers the risk of incompatibility
issues.

The VR application supports two types of users. Simple clients can visu-
alise the rendered geometry in VR and receive updates whenever a new one
is generated in Grasshopper. On the other hand, designers additionally see
parameters and can modify their values so as to edit the Grasshopper defini-
tion. Depending on how the application is started (configured for a certain
type of user), it listens to a WebSocket service that only shares the necessary
information for that type of user.

When receiving a geometry update, the VR application reads the Flat-
buffers payload that contains what is called a mesh. This is a simplified rep-
resentation of the surface of an object using polygons (typically triangles),
defined by vertices, edges, and faces. From the mesh data, the VR applica-
tion creates a three-dimensional object (such as the egg-shaped tower in the
bottom right picture of Figure 3.1) that uses the corresponding polygons, with
two peculiarities to take into account.

The first one is that Grasshopper uses a right-handed z-up coordinate sys-
tem, while Unity is based on a left-handed y-up system. To clarify, Grasshop-
per uses a system such as the one depicted on the right (B) side of Figure 3.4,
with the z axis pointing upwards, the y axis pointing forward, and the x axis
pointing to the left. On the other hand, Unity’s coordinate system is based on
the left side (A) of Figure 3.4, with y pointing up, z pointing forward, and x
pointing right. This implies that y and z values need to be switched, and x

78 Immersive parameter adjustment for algorithmic co-design

Figure 3.3: The class diagram for GHVRBridge’s custom Grasshopper
component. Only the “entry classes” (Components and MeshData) of the
GrasshopperVRBridge.IO package are shown so as to keep the diagram read-
able on a single page.

79

Listing 3.1: The Flatbuffers Schema definition for exchanging parameter data.
namespace GrasshopperVRBridge.IO;

enum Accuracy:byte {
Float = 0,
Integer = 1,
Even = 2,
Odd = 3

}

table BooleanToggle {
name:string;
guid:string;
value:bool;

}

table NumberSlider {
name:string;
guid:string;
value:float;
accuracy:Accuracy;
min:float;
max:float;
epsilon:float;
decimal_places:short;

}

union GenericComponent {
BooleanToggle,
NumberSlider

}

table Component {
abstractComponent:GenericComponent;

}

table Components {
componentsVector:[Component];

}

root_type Components;

file_identifier "PARA";

80 Immersive parameter adjustment for algorithmic co-design

values must be modified to -x.
The second need is the computation of normals, i.e., vectors perpendicular

to mesh surfaces and pointing outwards. Normals allow Unity’s lighting system
to properly project light on the generated objects and compute shadows; there
is one normal to be computed for each vertex in the mesh.

Figure 3.4: Left-handed and right-handed coordinate systems.

As for parameter updates, the VR application reads the information ac-
cording to the format presented in Listing 3.1, and generates the appropriate
widgets. Boolean parameters are mapped to switch toggles, while numbers lead
to sliders whose possible values depend on the received settings data. These
widgets are placed on a panel attached to the user’s non-dominant hand (left
hand by default but the user can switch hands by interacting with a button),
that is shown on the bottom-right picture of Figure 3.1.

When the user makes changes to a parameter value, the application sends a
modification update to the relay server that then forwards it to the Grasshop-
per component. That update contains the unique identifier of the parameter
that was modified, as well as the new value, which is then reflected onto the
actual Grasshopper parameter.

To clarify some of the networking and input handling aspects, Figure 3.5
shows a portion of the class diagram for GHVRBridge’s VR application. On the
Figure, the same automatically-generated GrasshopperVRBridge.IO package
can be found, since the data receiving classes of the VR application rely on
them to read from (and create) update messages. The initiated reader will
recognise the Observer and the Singleton design patterns (Gamma et al., 1995).
The former is used to allow subscribing objects to listen to updates efficiently,
while the latter ensures only one instance of a given class exists. Due to Unity’s
usage of “game object” entities, on which “scripts” that communicate through
messages are attached, the Singleton design pattern is also a more efficient way

81

Figure 3.5: Part of the class diagram for GHVRBridge’s VR application,
clarifying some of the networking and input handling aspects.

to enable communication between scripts (e.g., to notify the SocketManager
that a parameter update has to be sent) than the standard messaging system.

3.3. Enabling immersive collaboration

The GHVRBridge proof-of-concept prototype we described thus far allows for
two different modes that can accommodate designers that want to tweak pa-
rameters, and simple clients that only want to visualise the geometrical repre-
sentation inside a VR environment.

But the architectural design process is a collaborative endeavour; it is there-

82 Immersive parameter adjustment for algorithmic co-design

fore desirable to allow that collaboration to continue inside the VR application.
We want to allow multiple designers to work on the same model at the same
time (Dagit, 1993), from the same shared VR experience. Furthermore, in
order to involve clients during the design activities and thereby move to a
VR-based user-centred process that increases quality and performance in ar-
chitectural projects (Bullinger et al., 2010), we need to allow both types of
users (designers and simple clients) to participate in the same (shared) virtual
experience.

The way we designed the GHVRBridge system makes it possible to con-
nect multiple instance of the VR application to the relay server, to facilitate
the sharing of the experience by several VR users that potentially have dif-
ferent roles (viewer only or designer with control over the parameter values),
as illustrated in Figure 3.6. We note that, as seen on the Figure, only one
Grasshopper instance is running; the collaboration we enable is focused at the
VR level. Desktop-level collaboration is indeed out of scope of the present
research since we work with immersive technologies, and would likely need to
be implemented as part of the core code of Grasshopper by the vendor itself
(and not as a custom third-party component).

A video demonstrating the collaborative extension of GHVRBridge is avail-
able online6 and our codebase is hosted as open-source software on a GitHub
repository7, available under the MIT8 license. We also published a paper de-
scribing this collaborative extension and the challenges we encountered (Cop-
pens & Mens, 2018).

3.3.1 Virtual co-presence

Regardless of the exact collaboration scenario (e.g., a designer showing adjust-
ing parameter values with a client), VR users need to see one another and be
able to observe the actions of other users to collaborate efficiently (Nguyen &
Duval, 2014). While VR headsets typically occlude the wearer’s view of the
real world, it is possible to replace a physical co-presence by a virtual one,
using avatars that mimic what the real person is doing.

Depending on the exact immersive devices being used, different tracking
options could be available. With the HTC Vive, it is only possible to know the
position and rotation of the headset and the controllers. This means we can
only portray these items’ motions accurately. Under the reasonable hypothesis
that the user is wearing the headset and holding the controllers in his hands,

6http://informatique.umons.ac.be/staff/Coppens.Adrien/?video=CDVE2018
7https://github.com/qdrien/GHVRBridge
8https://opensource.org/licenses/MIT

http://informatique.umons.ac.be/staff/Coppens.Adrien/?video=CDVE2018
https://github.com/qdrien/GHVRBridge
https://opensource.org/licenses/MIT

83

Figure 3.6: The GHVRBridge prototype adapted for multi-user immersive
adjustment of Grasshopper parameter values, with two possible modes: mesh
streaming (i.e., geometry visualisation only) or parameter sharing (i.e., control
over shared parameters).

we can even depict the user’s head and may approximately picture his hands
(although he may hold the controllers or press buttons in a different way than
the one we expect). We chose to limit ourselves to the simple factual depiction
of the HMD and the controllers, as shown in Figure 3.7. We therefore only
depict objects that are actually tracked, without trying to infer elements (gaze,
fingers, etc) that may then be incorrectly represented (e.g., if the user does not
grasp the controllers the way we expect him to) even if that would have lead
to a stronger level of immersion (Lin et al., 2019).

In order to enable a shared experience, head and controller positions and
orientations have to be sent to all VR application instances sharing the col-
laborative experience. This information does not have to transit through the
relay server nor reach the Grasshopper component, as it is only valuable to
VR instances. Our approach therefore is to let VR instances communicate
“co-presence information” only between them. When initially connecting to
the relay server, a VR instance indicates that it wishes to join the shared ex-
perience, to which the server either replies with the current host’s IP address,
or simply by “you”, thereby informing that particular instance that it will be
the session’s host. In the latter case, the IP address of the machine on which
the VR application is running is stored by the server to be provided to other
VR instances that may join the session later. In case the host is disconnected,
a new one is elected by the server and broadcasted to all VR instances.

The system to decide and advertise the host allows VR instances to com-

84 Immersive parameter adjustment for algorithmic co-design

Figure 3.7: A collaborator waving towards another VR user, as seen from
that user’s point-of-view. Both the collaborator and the user are co-located in
the same virtual environment, with the motions of each individual’s head and
controllers being tracked and shown to others.

municate directly with that host, that will forward (position and orientation)
updates to other instances. Instances will have to exchange messages at a high
rate to provide a somewhat smooth experience. Because of that and since los-
ing a packet (i.e., missing a position update) is not really a problem as newer
information will quickly arrive, we should this time rely on the User Datagram
Protocol (UDP) (Postel, 1980) to transfer the data. In fact, that protocol does
not provide mechanisms similar to TCP to ensure reliable transfer of data,
but offers better speed. To implement the co-presence feature that was just
described, we relied on Unity’s built-in multiplayer High Level Application
Programming Interface (API) (HLAPI9), that is implemented on top of UDP.

3.3.2 Towards collaborative parameter value adjustment

While the previous section explains how we minimised message size and la-
tency for remote collaboration, another challenge not directly related to net-
work aspects arises when several users are allowed to modify parameter values:
handling concurrent and potentially conflicting modifications. Safeguards may
be put in place to avoid a frustrating user experience.

Many researchers have worked on issues related to concurrent editing and
collaboration conflicts. There are in fact even venues (both conferences and

9https://docs.unity3d.com/Manual/UNetUsingHLAPI.html

https://docs.unity3d.com/Manual/UNetUsingHLAPI.html

85

journals) specifically focused on such topics, such as the Computer-Supported
Collaborative Work (CSCW) conference10. An extensive literature can be
found on methods that handle concurrency for database manipulations in par-
ticular (Munson & Dewan, 1996).

Concurrent modification of parameters is not exactly similar to reading
and writing database entries since methods used in that context need to handle
transaction dependencies (modifications of elements that depend on each other
are not allowed). The programming context of AD means it is tempting to
look at solutions used for collaborative software development. But, in that
case, semantic understanding is key and software merging techniques (Mens,
2002) are necessary since changes to the code are typically done without conflict
checking mechanisms, and are only merged together later (with modern version
control systems).

Since AD is a particular paradigm for CAAD, it would be equally tempting
to develop upon general collaborative design tools. But these tools typically
do not rely on algorithms and therefore need to deal with different issues than
the ones we are being faced with. For instance, collaborative direct modelling
tools must make sure that instructions sent by different collaborators do not
create an invalid result (incompatible changes, potentially related to the order
in which instructions are processed) (Hepworth et al., 2014).

It therefore is more appropriate to assess the potential of techniques used in
other contexts, including collaborative database management. Another field
that we can draw inspiration from is multi-processors systems with shared
resources. The problem of avoiding conflicts between tasks that must run in
disjoint time intervals is called mutual exclusion (Baker & Coffman Jr, 1996).

By reading papers from that literature and reasoning about the way to
apply them in the concurrent parameter adjustment context, we ended up
with a few options, listed hereafter:

• Overwriting updates:

Whenever the system receives an update of a parameter value, the previ-
ous one is overwritten. This default behaviour is the most tolerant, but
does not provide any safeguard to concurrent modifications. In addition,
latency has to be minimal for this approach to work, otherwise the sys-
tem will appear to be ignoring certain user changes. This solution can
be acceptable if designers rarely modify parameters simultaneously, and
if the rate of change is not too high.

10https://cscw.acm.org/

https://cscw.acm.org/

86 Immersive parameter adjustment for algorithmic co-design

• Reactive locking:

Whenever a designer starts modifying a parameter value, his collabora-
tors are notified (e.g., through some visual clue) and they can no longer
modify that parameter until the first designer releases it. Conflicts could
still happen due to latency, if another designer tries to modify the same
parameter before receiving the “lock notification”. In that case, the sys-
tem should notify the user that his modification request was rejected.

• Preemptive locking:

Preemptive locking is an even more conservative approach that prevents
the previous problem from happening. By default, parameters cannot
be edited. If a designer wants to modify a parameter value, he first
needs to request access to that parameter. This is similar to the vot-
ing mechanism in place in many systems tackling the mutual exclusion
problem. An example that we could draw inspiration from would be an
algorithm proposed in (Maekawa, 1985), that only requires

√
n messages

to coordinate n nodes in a decentralised system.

• Privilege strategy:

In addition to the locking strategy, a mechanism based on user privileges
could be put into place. Users with higher privileges might be granted the
ability to take control of a parameter that is being modified concurrently
by someone with lower privileges. In that case, the less-privileged user
should be notified that he can no longer control the said parameter.

• Parameter layers:

We could consider grouping parameters so that users could get access to
different groups of parameters. This could reduce the concurrent modi-
fication problem for instances where users mostly get access to different
groups of parameters, or even remove that problem entirely when all
users are assigned to different groups. We should however note that
grouping parameters should in general induce more conflicts, since two
users willing to interact with two different parameters could be stopped
if these two parameters are part of the same group. That solution, if im-
plemented, implies that grouping elements should be made with caution.

Collaborative testing and evaluation sessions using the GHVRBridge pro-
totype will typically involve a limited number of designers with concurrent
access to the same parameters, because of hardware and space constraints, but

87

also because studies suggest that working groups should be rather small to be
effective (e.g., at most four as per (Steiner, 1972)). The limited number of
active participants should result in very few conflicts. Furthermore, immersive
sessions involving multiple designers only really make sense if these designers
are co-designing a project and discussing changes to be made to the geome-
try, based on the immersive visualisation they are experiencing. In that case,
they will probably naturally avoid concurrent modifications since they will be
focusing on one change at a time (the one they are discussing).

For these reasons, we chose to stick with the simple overwriting approach
and simply added an “update rate limiter” to make sure one application cannot
send too many messages to the system. This helps in reducing the risk of con-
flict, but also the burden on Grasshopper, that needs to recompute, regenerate
and resend the geometry after each update.

3.4. Evolving the concept for Augmented Reality and
Tangible User Interfaces

While the GHVRBridge prototype (presented in Section 3.2) and its adaptation
to a collaborative setting (presented in Section 3.3) enable parameter sharing
and geometry visualisation in VR, their simple user interface still resembles the
classical WIMP approach, with a VR controller acting as a three-dimensional
version of a mouse.

To provide a more natural collaboration environment within the same phys-
ical room, we worked with the Luxembourg Institute of Science and Technology
to develop another prototype that combines different kinds of interaction de-
vices. It in fact relies on a VR headset but additionally utilises AR glasses
(Microsoft Hololens) and Tangible User Interfaces (a display table with tangi-
ble items on it) so as to create a multi-modal system. We call that multi-modal
prototype system GHXR, for Grasshopper for XR.

3.4.1 Overview of the system

The general idea, depicted in Figure 3.8, is that a table display is placed in the
middle of a room in which collaborators can work on a joint project. These
collaborators are surrounded by a circular screen setup (covering about 300◦

around them), that displays three different views of the geometrical represen-
tation being worked on and its surroundings: a first-person point-of-view, a
top-down (plan) view that is also reproduced on the table display, and a 3D
perspective view. The designer is therefore free to choose the appropriate rep-

88 Immersive parameter adjustment for algorithmic co-design

resentation depending on the specific aspect or problem being discussed, at any
point in time. The constituents of the system and the data transfers between
such constituents are depicted in Figure 3.10.

A tangible item (that we may simply refer to as “a tangible” hereafter)
that roughly looks like a hockey puck is placed on the table, as shown on
Figure 3.11, for each Grasshopper parameter that is shared. Such a tangible
is tracked via a paper marker (see Section 2.1.2 and Figure 2.8 in particular)
placed on its bottom and a camera watching through the display to recognise
this marker, so that its position and orientation on the surface of the table are
known. When a designer rotates a tangible mapped to a parameter, the value
of that parameter is adjusted and sent to Grasshopper to update the generated
geometry.

In addition to the tangibles representing Grasshopper parameters, two more
tangible items are placed on the table: one to control the top-down view,
allowing to zoom in or out by rotating the item as well as to reposition the
view by sliding the item, and one to move the human (first-person) point-of-
view (to teleport the view to the target location by moving the item and to
change the view angle by rotating the item).

The human point-of-view is also visible through the VR headset, but in
visualisation mode only. Write access to parameters is not allowed since they
are being controlled by the tangibles on the table. In addition to the VR,
table, and circular screen displays, a user wearing an AR headset can see a 3D
hologram of the geometry being worked on, projected at the correct location
on the table, as pictured in Figure 3.12.

Figure 3.9 depicts three users collaborating through GHXR. The system
naturally enhances collaboration compared to GHVRBridge, since users can
see and talk with each other, and interact with the same physical tangible
items. A video demonstrating GHXR is available online11 and our codebase is
hosted as open-source software on a GitHub repository12, available under the
MIT13 license.

The next 4 sections discuss the necessary constituents to produce GHXR:
a Grasshopper custom component, a table display application, an application
for a circular screen setup that surrounds the users collaborating through the
table application, and two immersive applications (for the VR and the AR
headsets, respectively).

11https://youtu.be/L5dqMx7rnmM
12https://github.com/qdrien/GHXR
13https://opensource.org/licenses/MIT

https://youtu.be/L5dqMx7rnmM
https://github.com/qdrien/GHXR
https://opensource.org/licenses/MIT

89

Figure 3.8: Mock-up of the GHXR system, with a table display on which
users interact and collaborate. They are surrounded by about 300◦ circular
screens, displaying different views. The example shows a building project in a
city centre, with two Grasshopper parameters available to the users.

Figure 3.9: The GHXR system, with three users discussing over an AD model,
using the different views offered by GHXR.

90 Immersive parameter adjustment for algorithmic co-design

Figure 3.10: Constituents of the GHXR prototype and data transfer between
these constituents.

91

Figure 3.11: A Grasshopper list component and its assigned tangible item in
GHXR’s table application, with the corresponding software widget around it.

Figure 3.12: The additional 3D hologram of the building that AR users can
see, placed at the correct location on the table’s plan view.

92 Immersive parameter adjustment for algorithmic co-design

3.4.2 Grasshopper custom component

Similar to the Grasshopper custom component for GHVRBridge we described
in Section 3.2.1, we develop another Grasshopper component to exchange ge-
ometry and parameter data with a server, that itself relays that data to the
applications that run on the table display, the computer controlling the circular
screens, as well as on the VR and AR headsets.

The “Shareable” classes on the class diagram of Figure 3.13 are data classes
used to easily convert from and to the transfer format (JSON in this case since
the system is here supposed to exchange data only on a local network). On the
same Figure, one can notice the GHXRSimplifiedComponent, handling most
of the logic behind the Grasshopper custom component (its name contains
“Simplified” because it requires less configuration on the user’s end than a
previous version).

A DelayedMethodCaller class can also be seen on the class diagram ; it
serves to delay parameter and geometry updates, so as to limit the frequency
of such updates that are sent to “consuming” applications. If another change
generates a newer update within that DelayedMethodCaller’s timeframe, only
the newest update will effectively be sent.

Instead of using WebSockets as for GHVRBridge, we here rely on Message
Queuing Telemetry Transport (MQTT) (Light, 2017) as the communication
protocol, since it is already supported by the framework we need to use for the
table display.

Since the geometry shared from Grasshopper is localised for GHXR, we
include the GPS position (manually indicated by the user) and heading in-
formation together with the mesh data (that itself has the same structure as
described in Section 3.2.2). As for parameters, we support number and boolean
values (as for GHVRBridge), but we also add support for lists of textual values,
that are themselves mapped to any values within Grasshopper.

In order to develop the Grasshopper custom component that shares the
geometries and parameters, we had to overcome a few obstacles related to
concurrent access to software objects.

The first one is that modifications to Grasshopper objects (e.g., parameters)
cannot be made from anywhere else than the main application thread and it
is therefore necessary to rely on a message queuing system to save incoming
updates for later processing.

Another difficulty we faced is that the messages queues, that are necessary
to store the exchanged information in this queuing system, needs to be manip-
ulated by both the main and background threads. We therefore have to make
sure to avoid what is called race conditions, i.e., concurrent modification of an

93

Figure 3.13: The class diagram for GHXR’s Grasshopper custom component.

94 Immersive parameter adjustment for algorithmic co-design

object, leading to application bugs or crashes.
Figure 3.14 describes the logic we rely on to handle these issues.
When receiving incoming updates from an application, the GHXRGrasshop-

per component is notified through the MessageReceived()method that runs in
a background thread. After enqueueing the message, the MessageReceived()
method “expires” the Grasshopper solution, forcing it to be recomputed and
leading to a call to SolveInstance(), that itself runs from the main thread.

After making sure that the custom component is properly setup and con-
nected, the SolveInstance() method can dequeue messages since it is running
on the main thread and the corresponding data can be processed on it. Once
changes contained in these messages are reproduced in the Grasshopper defini-
tion, it still is necessary to expire the solution once again (or at least the corre-
sponding components and the ones that depend on them), so that Grasshopper
recomputes the (part of) the visual algorithm to produce the new geometrical
representation.

In order to avoid race conditions, we use the locking mechanism available
in C# to make sure the queues cannot be manipulated at the same time by
different threads. Using that mechanism, when a thread A wants to get access
to a variable that is currently locked by another thread B, A’s execution is
paused until B releases that variable.

Note that a similar logic was applied to solve the same sort of problems for
the component described in Section 3.2.1.

3.4.3 Table application

In order to display a plan view and handle interaction with tangibles placed
on the tangible table, we rely on an existing framework called TULIP (Tobias
et al., 2015). This open-source framework, custom-built at the Luxembourg
Institute of Science and Technology, is fully integrated with the tangible table.
TULIP is a modular framework, in the sense that it allows for modules to be
integrated to a project. For instance, we here use the GIS module to retrieve
data from OpenStreetMap14 to display the plan view, as well as the IOT
module to handle the connection with the MQTT relay server (called a broker
in MQTT terminology).

The TULIP framework works with scenarios described in XML files, that
feed the core software, itself in charge of creating widgets. Widgets are in-
teractable software entities placed on tangible items, as shown in Figure 3.11,
where we see a widget for value control over a parameter simply named “List”,

14www.openstreetmap.org

www.openstreetmap.org

95

Figure 3.14: The underlying logic behind GHXR’s custom component for
Grasshopper, to send geometries and share parameters while handling con-
currency issues. The black “End” circles indicate simple terminations of the
SolveInstance() method, while their grey counterparts represent termina-
tions that are preceded by the expiration of the Grasshopper solution, leading
to a new call to SolveInstance(), hence the inclusion of dashed arrows.

96 Immersive parameter adjustment for algorithmic co-design

that can take three values: small, medium, or big radius
The specific scenario we use for the table application tells TULIP to display

a plan view of a geographical location that therefore appears on the table. The
exact location is specified inside the scenario’s XML file. The table application
then connects to the MQTT broker and awaits a parameter sharing message.
Once received, it uses that data to map each parameter to a tangible item
with an appropriate widget (depending on its type and possible values) so
that changes to the widget value through the tangible item are sent back to
Grasshopper via the broker.

The scenario also creates additional widgets to control the top-down view
and the first-person views, and shares the GPS coordinates of the corners
(bounding box) of the table’s plan view, so that other visualisation applications
know what is being displayed on it.

3.4.4 Circular screen setup and Virtual Reality applications

Since a significant part of the code used for the VR experience is shared with
the application that runs on the circular screen setup (hereafter called the
visualisation application), we describe both of them in this section.

They both parse an OBJ file representing the surroundings (based on Open-
StreetMap data) of the building that designers are working on and generate
3D shapes that replicate that data inside the virtual environment. They then
place the geometry coming from Grasshopper at the correct location inside
that environment, thanks to the geolocation data contained in the message.
The inclusion of these surrounding buildings provides users with the option to
consider the vicinity of the designed project when working on it.

The visualisation application displays three views, presented in Figure 3.15,
that are based on three cameras placed in that environment. First, there is a
top-down view, based on an isometric camera placed above the target location,
that replicates the bounding box of the table display as shown on Figure 3.15a).
The second camera is a standard perspective camera looking at the geometrical
representation, therefore providing a perspective view, as seen on Figure 3.15c.
Finally, a first-person view is provided by another perspective camera placed
at human height, as shown in Figure 3.15b.

When users interact with the tangible item that controls the human view,
the corresponding camera is teleported at the given location and rotates ac-
cording to the given angle.

The VR application only displays the first-person view but also listens
to first-person view position updates so as to teleport the user to the right
location. We do not apply these updates in a continuous manner to avoid

97

(a) Top-down view. (b) First-person view. (c) Perspective view.

Figure 3.15: The three views available to the user of the GHXR system, on
the circular screen setup.

Figure 3.16: The point of view of an AR user interacting with a widget mapped
to a parameter, while visualising a hologram of the geometrical representation
at the target location on the plan view displayed on the table.

cybersickness issues, and instead use an approach where an update is only
applied if no other update quickly follows that one. This introduces a small
delay but ensures that only stable data is processed.

In between position updates coming from the table widget, the VR user
is free to explore the environment by teleporting himself using VR controllers
(pointing metaphor with a curved beam) and looking around (by moving his
head).

3.4.5 Augmented Reality application

We additionally developed a Hololens application that also connects to the
MQTT broker, in order to retrieve geometry data, so as to create a 3D holo-
gram to be placed on the table, as shown in Figure 3.16. Due to the limited
processing power available on the Hololens headset, it was not reasonably pos-
sible to show the surrounding buildings in AR, even though the code would
have easily been adapted.

98 Immersive parameter adjustment for algorithmic co-design

The GPS data included in the geometry messages, is enough to properly
locate the geometrical representation relative to the “virtual” bounding box,
but it is still necessary to somehow recognise the physical table’s position to
map its surface to the bounding box and place the hologram on it at the correct
scale.

To do so, we rely on paper markers, recognised by Vuforia15, and placed
in two opposite corners of the table. These corners are then mapped to the
GPS-based bounding box and the hologram can therefore be placed relative to
them.

An additional particularity that we handled was the conversion of GPS
coordinates between the EPSG:385716 and the EPSG:432617 formats. Both
formats are based on the approximation that the earth is close to a reference
ellipsoid, that serves as the basis for a coordinate system.

In the case of EPSG:4326, coordinates are given in latitude and longitude,
i.e., degrees of deviation from a reference meridian and parallel (respectively).
This is the type of system humans generally refer to when talking about a GPS
position.

EPSG:3857, also called the pseudo-Mercator system, uses a projection of
the previous coordinate system onto a plan, resulting in a rectangular world
map. It is used internally by most computer-based map software, even though
such software often offer a user interface that supports EPSG:4326.

The surrounding buildings we get from OpenStreetMap are enclosed in a
bounding box given in the EPSG:4326 format, while the tangible table sends
its own bounding box in the EPSG:3857 format. As mentioned earlier, since
humans tend to use EPSG:4326, we also expect to receive coordinates in that
format for geometry position data. This means that we need to be able to
convert coordinates from one system to the other.

The following formulas can be used to do so, with EH representing half of
the circumference of the Earth at the Equator, ` a latitude, and L a longitude:

EPSG:4326 → EPSG:3857:

{
`3857 =

log10(tan(90+`4326)∗ π
360

)
π

180
∗ EH180

L3857 = L4326 ∗ EH180

EPSG:3857 → EPSG:4326:

{
`4326 =

arctan(exp(`3857∗ π
EH

))∗360
π−90

L4326 = L3857 ∗ 180
EH

Parts of the code also compute distances between two GPS positions (e.g.,
to place the geometrical representation at the specified location, relative to

15http://vuforia.com
16https://epsg.io/3857
17https://epsg.io/4326

http://vuforia.com
https://epsg.io/3857
https://epsg.io/4326

99

the virtual environment’s boundaries). To do so, we base ourselves on the
haversine formula that is widely used in navigation. It computes the distance
between two points on a sphere, therefore assuming the Earth is spherical but
still manages to keep the error below 0.1%, even for long distances18.

The exact formula we use to calculate the distance d between two points
(`1, L1) and (`2, L2) is as follows:

d
(
(`1, L1), (`2, L2)

)
= ER ∗ 2 ∗ arctan2(

√
α,
√
1− α)

with:

ER, the Earth’s radius (since the formula considers it is a sphere)
arctan2, computing the arctan and returning an angle that can be

in any of the four quadrants of the trigonometric circle

and where:

α = sin(
˜̀
2− ˜̀

1
2)2 + cos(˜̀1) ∗ cos(˜̀2) ∗ sin(L̃2−L̃1

2)2˜̀
2 = `2 ∗ π

180˜̀
1 = `1 ∗ π

180

L̃1 = L1 ∗ π
180

L̃2 = L2 ∗ π
180

3.5. Validation

The GHVRBridge prototype was tested at various events, including several
workshops at the Faculty of Architecture and Urban Planning (UMONS) and
through demonstrations at the National School of Architecture in Nancy. While
the participants were mostly enthusiastic about the prospect of modifying an
AD project in VR, some of them mentioned the need to go further than pa-
rameter adjustment, with a few of them suggesting to move away from the
panel-based interface (seen as mimicking standard desktop software with a
point and click interaction). Both of these types of suggestions led us to de-
velop the other 2 prototypes, with GHXR pushing the interface towards a more
natural interaction and GHVRGraph (described in Chapter 4) enabling control
over the visual algorithm itself.

As for the GHXR prototype, we intended to follow a more rigorous valida-
tion, and planned on inviting potential users to validate the system on site. We
wanted to reach participants with different profiles (both professional practi-
tioners and individuals with a more academic background, including students,
researchers and professors) and varying experience with AD tools.

18https://docs.microsoft.com/en-us/dotnet/api/system.device.location.
geocoordinate.getdistanceto

https://docs.microsoft.com/en-us/dotnet/api/system.device.location.geocoordinate.getdistanceto
https://docs.microsoft.com/en-us/dotnet/api/system.device.location.geocoordinate.getdistanceto

100 Immersive parameter adjustment for algorithmic co-design

Unfortunately, due to the sanitary situation (COVID-19 pandemic), these
evaluations had to be moved to an online setting and were therefore delayed.
For that purpose, we implemented an alternative version of the system, that
runs on a standard desktop computer and relies on a simulator for the tangible
table.

We designed an evaluation protocol that lasts for around 40 minutes and in-
cludes questions on the participant’s background, a presentation of the GHXR
system, a task to perform and post-task interview. The complete protocol can
be found in Appendix A, including the post-task interview that mostly consist
of open-ended questions on different aspects of the system. It also mentions a
questionnaire, available in Appendix B, based on the System Usability Scale
(SUS) (Brooke, 1996) that evaluates the usability of a system based on 10
criteria. The questionnaire we used includes an additional question about the
overall user-friendliness of the system (through a 7-point scale from “worst
imaginable” to “best imaginable”) at the end of the survey, based on (Bangor
et al., 2008).

We were only able to convince 3 architects, with limited experience outside
of the University context, to take part in these evaluations at the time of
writing this dissertation so it is hard to draw conclusions on the otherwise
excellent average SUS score we achieved (86/100) with the limited number of
participants, but it at least matches the way they rated the system’s overall
user-friendliness (2 chose “excellent” and 1 settled for “good”).

The open-ended questions brought their own light to the evaluation process.
For instance, all 3 participants indicated that the surroundings were useful
and that their level of detail (surrounding volumes instead of a photo-realistic
representation) was sufficient for early design stages. They also all mentioned
how the system’s tangible interface was intuitive and how important that was
for an interactive setup; they therefore see potential in the system to help with
discussions between architects and other stakeholder, including clients, urban
planners and construction companies.

There was however no consensus on what immersive technology was the
most appropriate or useful. While 2 participants indicated the AR holograms
appearing on the table were not essential to the system with a VR view be-
ing available, the other participant stated the AR visualisation was the most
interesting of the available views, because it allows for face-to-face discussions
while visualising a project in 3D. This tends to indicate that systems that en-
able both AR and VR visualisations should be preferred, so as to allow users
to choose the most appropriate medium for their specific situation.

101

3.6. Discussion

The two prototypes (GHVRBridge and GHXR) presented in this chapter en-
able VR-based visualisation of geometries, so that designers and other stake-
holders can see full-scale versions of such geometries through an immersive
virtual medium. They can therefore experience what the final project will
look like from different realistic angles before it is built.

Both proof-of-concept research prototypes go further than simple visual-
isation tools and even allow for more than extrinsic modifications to the ge-
ometries since they both address the adjustment of parameter values for AD
definitions within immersive environments. The designer therefore does not
need to remove the immersive headset to change these values, and changes
to the geometry are automatically forwarded to the immersive experience so
that the new version can immediately be evaluated. This is a game changer
compared to simple “VR exporting” tools, resulting in a smoother integra-
tion of the technology into AD practice, making it possible to move towards
a user-centred design approach that involves stakeholders during the design
process.

The two hypothetical use cases introduced at the end of Section 3.1 indeed
are likely to benefit from the developed prototypes. GHVRBridge is particu-
larly suited for Use Case 1, while GHXR better correspond to Use Case 2.

The two developed prototypes differ in many ways, as summarised in Table
3.2. We would be tempted to say GHXR is more advanced in general, since it
offers all the features of GHVRBridge, and adds to it the ability to see the sur-
rounding buildings, the option to change the geometrical representation’s po-
sition, and the possibility to share an additional parameter type (lists). It also
is more accomplished, with more visualisation options (AR and non-immersive
displays) as well as more adapted user interactions (through TUIs) that natu-
rally favour collaboration. This overall superiority is quite logical considering
we developed GHVRBridge in 2017-2018, and GHXR in 2021. GHXR could
therefore benefit from prior developments made for GHVRBridge and was built
upon them.

This does not mean that GHVRBridge has become irrelevant since the
costs linked to the hardware requirements of GHVRBridge are much lower
than those of GHXR. Another consideration is that the collaborative extension
of GHVRBridge was designed with remote collaboration in mind, meaning
it is optimised for that purpose as explained in Section 3.2.1. GHXR was
instead built for a local setup and works with a simple JSON format, leading
to additional delays when system components have to communicate over the

102 Immersive parameter adjustment for algorithmic co-design

Prototype 1: GHVRBridge Prototype 2: GHXR
Control parameter values,

navigation
parameter values,

navigation, geometry
position

Interaction
paradigm

3D-adapted WIMP TUI

Geometry
visualisation

at scale at scale, perspective,
top-down

Surroundings
visualisation

not available OpenStreetMap buildings
data

Visualisation
modalities

VR VR, AR, non-immersive

Hardware cost ∼2,000e, including a
computer

∼30,000e

Transfer
protocol

WebSockets MQTT

Collaboration local or remote mostly local, but VR
remote visualisation is

possible

Table 3.2: Comparison of the GHVRBridge and GHXR proof-of-concept re-
search prototypes, that enable parameter adjustment of AD definitions within
immersive environments.

103

internet. Even though the format could be changed to a more optimised one,
the table display is where the control over the system is located, so remote
collaboration would be limited to visualisation for off-site collaborators.

These characteristics mean that the two developed prototypes target dif-
ferent use cases, projects, and users. Individuals and small companies should
be able to afford a system such as GHVRBridge (considering they can afford
Grasshopper and therefore Rhinoceros in the first place), while only larger
companies and organisations can potentially allow themselves to buy the nec-
essary equipment for GHXR. With the many displays and views as well as the
more natural interaction and collaboration, GHXR is inherently better suited
for discussions that involve more collaborators than GHVRBridge, and for big-
ger projects (e.g., at the urban scale, to discuss with public authorities). The
ability to see the surrounding buildings in GHXR also implies that it can be
used to assess how a designed geometry integrates with its environment, mean-
ing the prototype may be used for projects where the vicinity is of particular
importance.

It is also worth noting that both prototypes can only handle a certain
number of simultaneously modifiable parameters due to their “client” applica-
tions. While both Grasshopper custom components can virtually handle any
number of parameters, GHVRBridge’s VR application uses a panel that is only
large enough for 6 simultaneous parameters and GHXR’s table device can only
track 32 tangible items (about 25 of those being available for parameters, but
even that number would induce significant clutter on the table, leading to an
unpleasant experience).

While GHVRBridge’s panel could be extended (e.g., made larger or scrol-
lable when more parameters are shared), the limit on GHXR’s tangible items
is hardware-related and adding support for additional parameters would only
be possible through a rotating approach (allowing a dynamic mapping of pa-
rameters to tangible items e.g., through a side panel on the table display that
would allow users to select which parameter to assign for a particular tangible
item). At the same time, the need for a larger number of adjustable param-
eters is questionable, since both systems enable rapid VR-based collaborative
iterations and it seems more appropriate to limit the flexibility to a few crucial
parameters.

As reported in Section 2.5.2, since the development of GHVRBridge in
2018, other companies and research teams have commercialised and published
similar tools, such as Fologram19 and the previously mentioned prototype
(Hawton et al., 2018). Our point of view on the integration of immersive tech-

19www.fologram.com

www.fologram.com

104 Immersive parameter adjustment for algorithmic co-design

nologies for AD activities therefore is not an isolated opinion, as confirmed by
the informal feedback we received from architects, students and laymen during
the visits, workshops, and exhibitions we took part in.

While we mostly received positive feedback when presenting GHVRBridge
and GHXR to architects (as stated in the previous Section), some mentioned
the need to go further than mere parameter values and allow users to modify
the AD visual algorithm itself (components and links, what we called Level 3
earlier) since this would provide greater flexibility in terms of possible adjust-
ments to the design. This pushed us to explore that possibility, which will be
presented in Chapter 4.

CHAPTER 4
Immersive visual programming for

Algorithmic Design

“The ultimate display would, of course, be
a room within which the computer can
control the existence of matter.”

Ivan Sutherland

According to the prototype-based iterative research process described in
Section 1.4, the proof-of-concept applications enabling Level 2 control over
AD definitions (as per Table 3.1 in Section 3.1), that we presented in Chapter
3, were subject to evaluations. When presenting our VR-based solutions for
parameter value adjustment to architects, some of them requested to have
more control over the AD visual algorithm. Parameter value adjustment was
indeed often considered to be too restrictive. This lead us to explore VR-
based Level 3 control, i.e., the ability to edit the visual algorithm, by adding
or removing components or links between them.

The present chapter discusses how we achieved that goal, through the im-
plementation of a research prototype called GHVRGraph. We again develop
a VR-based editing tool but explore different interaction modalities, by relying
on different techniques borrowed from Section 2.4 that we implement with 6-
DoF controllers as well as a hand-tracking device, but also with speech-based
interaction. We then reflect on that prototype and provide insights as to how
such features should be implemented in an immersive context, with adapted
interaction mechanisms.

105

106 Immersive visual programming for Algorithmic Design

4.1. A graph representation of Algorithmic Design def-
initions

The GHVRGraph research prototype tool enables VR-based Level 3 control
over AD definitions. Architects using it are therefore able to manipulate com-
ponents and links from the visual algorithm, from an immersive environment.

Before diving into the implementation of the GHVRGraph prototype, we
had to reflect on how to represent AD visual algorithms using an appropri-
ate formalism that leads to a convenient data structure to be used for the
prototype’s implementation.

We use part of the Grasshopper definition shown in Figure 2.22 as a running
example to discuss the representation of visual algorithms with that formalism.
The sub-part of the definition that we keep for this purpose is shown in Figure
4.1 and includes two number components (sliders), one text panel containing
a formula, and two components with different input and output ports.

Figure 4.1: Example of a Grasshopper definition, part of the more complete
definition from Figure 2.22 generating the conical spiral displayed on the right
side of this figure.

As discussed in Section 1.2, AD algorithms, such as those created with
Grasshopper, can be seen as a type of dataflow models. Dataflow models can
be represented with directed graphs, that we formally define in Definition 4.1.1.

Definition 4.1.1. A directed graph (digraph) is an ordered pair (V,E)
such that:{

V is a set of vertices
E ⊆ V × V is a binary relation over V that defines a set of directed edges

Since Grasshopper definitions cannot contain a loop (i.e., it is not possible
to have a link from a component A to a component B if there exists a succession
of links that already connect B to A), the corresponding directed graphs would
be acyclic. We therefore formally define Directed Acyclic Graphs (DAGs)
in Definition 4.1.2.

107

Definition 4.1.2. A (vertex-labelled) Directed Acyclic Graph (DAG)
is a triple (V,E, vlabel) such that:

(V,E) is a digraph
E is an acyclic relation
vlabel : V → Label is a total function that assigns a label to each vertex

where Label represents the set of all possible labels.

We would be tempted to convert AD definitions to DAGs, representing
components as vertices in such graphs, and links between components as edges.
However, Grasshopper algorithms also require to specify input and output
ports on components. Examples of such ports in Figure 4.1 include the ones
from the Range component, that has two input ports, respectively for the
Domain, Steps parameters, as well as one output port returning the resulting
Range).

For that reason and as exhibited on Figure 4.2, a basic (vertex-labelled)
DAG is not enough to convey that information: it is no longer possible to know
which ports are used by the edges based on that representation alone, and that
information would consequently be lost.

A solution to that problem would be to additionally label the edges with
the ports they are connected to, but we discarded that option because of
implementation details. It would in fact be impractical since we would have
to iterate over all the edges going from or to a component, in order to find the
edges that only concern a specific port from that component. Navigating the
graph and converting it to the Grasshopper file format when saving changes
would then become more complex and may lead to clumsy code. We therefore
opted for another solution representing ports as vertices, that we describe
hereafter.

We chose to represent AD definitions using a specific graph-based formalism
that is well-known in graph transformation theory (Ehrig et al., 2004). To be
more specific, we decided to make use of a type graph in order to formally
specify what a valid AD definition is composed of, and typed graphs to
represent such definitions.

This is similar to the representation of software design models (e.g., stat-
echarts and class diagrams) in (Mens, 2005), where typed graphs are used in
order to specify model refactorings using graph transformations.

Definition 4.1.3 formally defines the notion of typed graph, as we used it
in the context of visual AD.

108 Immersive visual programming for Algorithmic Design

Figure 4.2: An oversimplified DAG representation for the example previously
given in Figure 4.1. Ports are not represented and the corresponding informa-
tion is lost.

Figure 4.3: The typegraph for the graph structure. An arrow from one element
A to another element B indicates that it is possible for an edge to connect an
element of type A to an element of type B.

Figure 4.4: The vertex-labelled, typed, acyclic directed graph for the example
given in Figure 4.1, converted to the typed graph representation.

109

Definition 4.1.3. A typed graph G is a 5-tuple (V,E, vlabel, TG, vtype)
such that:

(V,E, vlabel) is a (vertex-labelled) DAG
TG = (TV, TE) is a digraph
vtype : V → TV is a total function that assigns a type to each vertex
∀(vi, vj) ∈ E :

(
vtype(vi), vtype(vj)

)
∈ TE

We call TG the type graph and G the typed graph, and we say that G is
typed over TG.

In the case of AD visual algorithms, the digraph that defines valid defini-
tions is depicted in Figure 4.3, and formally described in Example 4.1.1.

Example 4.1.1. The digraph TG = (TV, TE), that is depicted in Figure 4.3,
describes valid AD graphs, with:

TV = {IOComponent, InputPort,OutputPort,PComponent}
TE = {(InputPort, IOComponent), (IOComponent,OutputPort),

(OutputPort,PComponent), (PComponent, InputPort),
(OutputPort, InputPort), (PComponent,PComponent)}

Figure 4.4 depicts the typed graph that corresponds to the running Grasshop-
per definition example from Figure 4.1.

This representation of Grasshopper definitions resembles the Generalized
Parametric Model (GPM), proposed in (Janssen & Stouffs, 2015), which also
includes a reflection on how to represent AD visual definitions using graphs.
The GPM distinguishes data nodes from operation nodes (geometric or com-
putational processing of incoming data), and considers ports as data nodes.
The model therefore relies on an extended version of a DAG, where these two
types of nodes are allowed. We however need to differentiate predefined ports
from input data and output channels at the interaction level, to prevent invalid
modifications to the AD definition (e.g., removing a link from an input port
to its associated component).

While conceptually interesting, the idea of combining ports and data into
a single notion of “data node” is therefore impractical for implementation pur-
poses. The authors behind GPM indeed state that they only intend to provide
an analytical device, not discuss actual implementation (Janssen & Stouffs,
2015). We therefore rely on the presented typed graph formalism to represent
AD visual definitions.

That formalism also has the advantage that it comes with tools such as
AGG Taentzer (1999), allowing automated checking of graph transformations
and constraints, so we could have relied on such tools to validate manipulations

110 Immersive visual programming for Algorithmic Design

made to the graph representation in our application. Unfortunately, AD visual
algorithms come with specific constraints (e.g., most components have a set of
input and output ports that is predefined and cannot be changed by the user)
and concepts (e.g., number parameters come with specific settings restricting
the range of possible values) that make it hard to fully rely on such a formalism.
We therefore opted to constrain and check the validity of manipulations directly
in our code.

In order to prevent the aforementioned invalid modifications from occur-
ring, GHVRGraph must for instance prevent users from adding or removing an
edge (link) between a port and its component. It should also not allow them
to add or remove a port on a component.

4.2. Interoperability with Grasshopper

In order to replicate the representation discussed in the previous section and
to allow users to manipulate the resulting graph, we rely on the Unity-specific
version1 of the QuickGraph2 library. This allows us to preserve a certain degree
of genericity since other graph-based representations could rapidly be adapted
to work with the VR-based environment and interactions we developed. The
library also enables us to use graph algorithms such as topological sorting and
leaf-finding functions.

4.2.1 Defining vertex objects

The QuickGraph library works with graphs whose vertices can only be of a sin-
gle concrete type i.e., the corresponding class cannot be abstract. We therefore
circumvent this limitation by defining a concrete Vertex class that contains a
chunk field. That field corresponds to an abstract Chunk class, from which we
can define a hierarchy of vertex types to allow us to handle the different types
of vertices required for representing AD definitions.

The hierarchy of classes we use for the GHVRGraph prototype tool is
shown on the GHElements package in the class diagram of Figure 4.5. It is
mostly based on the internal representation of the corresponding elements in
the Grasshopper desktop tool. All vertex types indeed inherit from the afore-
mentioned Chunk abstract class, and a vertex can be of type Port, Component,
or Group.

Except for the Group class that will be discussed in Section 4.2.3, these
1https://github.com/davidgutierrezpalma/quickgraph4unity
2https://github.com/YaccConstructor/QuickGraph

https://github.com/davidgutierrezpalma/quickgraph4unity
https://github.com/YaccConstructor/QuickGraph

111

classes are also abstract, and concrete objects must therefore be of a more
specific type. An IoComponent is a component that has at least one input or
output port, and can have both types of ports, while a PrimitiveComponent
correspond to a vertex that contains input data or is an output channel (a
PanelComponent can be both).

We additionally created a GenericPrimitiveComponent to handle primi-
tive components that do not fall into the previous three categories. This allows
us to successfully read from and write to Grasshopper files that contain such
components.

4.2.2 Converting Grasshopper files to a graph-based represen-
tation

While the exact implementation details are out of scope of this document, we
will briefly discuss the main ideas as well as the Grasshopper file format and
a challenge we encountered when parsing such files. When saving a definition
within the Grasshopper desktop application, the user is offered two format
options: the default binary .gh format, or a XML-based .ghx format.

A Grasshopper definition is essentially stored as a list of XML (Yergeau
et al., 2008) entities called chunks. In addition to “header” chunks that contain
the likes of versioning information, timestamps and some user preferences,
most of the content in such a file is within the DefinitionObjects chunk,
that contains “sub-chunks” that correspond to interactable entities such as
components and input data. The corresponding XML element contains various
information, such as a type identifier, a name, the display boundaries within
the definition, and an instance identifier that uniquely identifies an element in
the definition. Depending on the particular type of element, sub-chunks may
be present, for instance to give information about a component’s ports.

Links are indirectly stored within these sub-chunks, via Source items, that
indicate the instance identifiers of entities that link to the current entity. In
order to obtain the vertex-labelled typed graph, we must process these Source
items and therefore construct the graph backwards (with regards to the direc-
tion of the edges).

Since there is no guarantee that a unique identifier referenced by a Source
item corresponds to an element that has already been processed, we need to be
able to create temporary placeholder components, to construct the graph with
a “placeholder” for the expected component until we reach that component’s
description in the file.

112 Immersive visual programming for Algorithmic Design

Figure 4.5: A section of the class diagram for GHVRGraph, showing the
hierarchy of classes we use to represent Grasshopper “chunks” in the research
prototype, as well as how the graph structure is stored using QuickGraph.

113

4.2.3 Groups and clusters

In Grasshopper, there is a grouping concept that allows designers to divide
and structure their work in sets of components, similarly to how a software
developer would separate some code into multiple classes and files. Examples
of groups can be seen on Figure 1.2, where they are represented by coloured
rectangles that enclose all their components. In the Grasshopper file format,
a group is represented as a chunk that contains a list of one or more ID items
to reference the constituents’ unique identifiers.

There is no operational semantics linked to that group concept, in the
sense that placing components in a group cannot modify the generated output
geometry. Since groups only constitute a visual aid for the designer, we do
not include them into the typed graph representation but still create a Group
class to match the grouping concept and handle such groups in GHVRGraph.
This allows us to display them in the VR-based representation and preserve
the grouping information in the save files generated from GHVRGraph.

A related element in Grasshopper is the concept of a cluster, that also
bundles components together. Unlike groups however, it serves as a black box
that summarises its constituents’ input and output ports. This black box is
reusable, in the sense that multiple copies of a cluster can be included in the
definition.

A user can choose to look into a cluster that was created earlier and modify
its constituents ; doing so will impact all copies of that cluster. The cluster
concept therefore goes beyond simple visual aid, but clusters are unfortunately
stored as an encrypted item in the Grasshopper file format. We consequently
cannot fully support clusters in GHVRGraph, because we have no way of
allowing VR users to “open” a cluster and interact with its constituents.

4.2.4 Immersive visual representation

In order to allow designers to manipulate Grasshopper definitions in VR, we
needed to represent the typed graph, that we construct from the imported
Grasshopper definition, within the immersive environment. To provide VR
users with interaction mechanisms that are appropriate to the 3D context, the
graph representation should be three-dimensional. That representation should
allow VR users to easily manipulate interactable objects such as components
and links, through the corresponding vertices and edges. The 3D represen-
tation should also maintain a mapping with the Grasshopper desktop (2D)
canvas, so that changes to the placement of components are preserved when
switching between the desktop tool and the GHVRGraph application (e.g.,

114 Immersive visual programming for Algorithmic Design

Figure 4.6: A Grasshopper definition and its corresponding immersive visual-
isation in GHVRGraph, showing the table metaphor we use.

moving an input parameter closer to a related input or output component).
We decided to rely on a table metaphor to represent the typed graph in VR

within GHVRGraph. Figure 4.6 shows a side by side comparison of the same
AD definition, represented in the Grasshopper desktop tool on the left, and in
GHVRGraph on the right. In front of the VR user’s starting position, we place
a virtual table on which we add boxes that roughly resemble the corresponding
Grasshopper components, albeit in a three-dimensional form.

Most of the developments for the GHVRGraph prototype happened dur-
ing the one-month long 2019 edition of the eNTERFACE workshop3, where
we gathered early feedback from workshop attendees (about 60 participants).
Based on their reports and on the literature on ergonomics, that suggests the
preferred display zone should be below the horizontal line of sight (Pheasant
& Haslegrave, 2018), we opted for the metaphor of a virtual table instead of a
board-based metaphor.

Another suggestion we received from the aforementioned workshop partic-
ipants was to slightly incline the table, since this would allow the user to place
himself in a position where the table is angled towards him. In fact, a flat and
horizontal surface would require the user to incline his neck further in order to
look down on the table. The suggestion to incline the surface is supported by
the recommendation on viewing angle in (Pheasant & Haslegrave, 2018) and
is corroborated by a study specifically addressing neck pain (Yip et al., 2008),
that concludes that the associated pain decreases as the user gets closer to a
forward head posture (i.e., a 90◦ angle between the neck and the horizontal
line of sight).

3http://web3.bilkent.edu.tr/enterface19/

http://web3.bilkent.edu.tr/enterface19/

115

Actions
Techniques Modality Interaction type

6-DoF controller Hands Speech Direct Indirect Grasping Pointing

Component
Add P1 P2 P speech1 , P ∗

2 P1, P2 P speech1 , P ∗
2 P1, P2 P2

Remove P1 P2 P ∗
2 P1, P2 P ∗

2 P1, P2 P2

Move P1 P2 P ∗
2 P1, P2 P ∗

2 P1, P2 P2

Link Add P1 P2 P ∗
2 P1, P2 P ∗

2 P1, P2 P2

Remove P1 P2 P ∗
2 P1, P2 P ∗

2 P1, P2 P2

Table 4.1: Modalities and interaction types we explored to implement VR-
based graph-editing actions in the variants of GHVRGraph, P1, P

speech
1 and

P2. The asterisk sometimes used for P ∗
2 denotes that the modality or interac-

tion type is used for the corresponding action but needs to be combined with
another modality or interaction type to produce a result.

4.3. Exploring interaction techniques for graph ma-
nipulation

Displaying a 3D rendering of a graph-based AD definition on a virtual table is
only a first step. Designers need ways to manipulate components and links, not
just visualise them. Based on the immersive interaction techniques identified
in Section 2.4 as well as popular and affordable devices, we explored different
options to enable “basic editing” of AD definitions and their underlying typed
graphs in VR. By “basic editing” we understand the ability to add and remove
components and links (not individual ports since we want to preserve a valid
mapping with Grasshopper). We additionally allow users to move components,
i.e., position them differently, without changing their connections.

The set of interaction devices we used to explore VR-based graph edit-
ing included: (1) the HTC Vive HMD together with its associated 6-DoF
controllers; and (2) the Leap Motion hand-tracking system. Using them, we
explored different techniques as different variants of the same GHVRGraph
prototype. Table 4.1 gives an overview of these prototype variants, named P1,
P speech1 and P2, and how they cover various modalities and techniques, based
on the categories we presented in Section 2.4.

4.3.1 Variant P1: grasping metaphor with 6-DoF controllers

Variant P1 of GHVRGraph relies on the default 6-DoF controllers provided
with the HTC Vive headset. We chose for an isomorphic interaction technique
based on the grasping metaphor: the user simply touches the element he wants
to interact with, and presses a button to trigger the corresponding action.
Figure 4.7a shows a user that is about to grasp and start moving a component,

116 Immersive visual programming for Algorithmic Design

(a) Grabbing a component. (b) Adding a link. (c) Removing a link.

Figure 4.7: A user interacting with a 6-DoF controller in variant P1 of GHVR-
Graph.

while Figures 4.7b and 4.7c show a user interacting with links.
The user selects and interacts with an element by pressing a button on the

controller when in reach of the said element. If the selected element is a link,
we simply remove that link from the graph. If it is a component, we attach it
to the controller (that type of interaction is often referred to as the grasping
metaphor). The user can then choose to release it elsewhere on the table
(realising the “move vertex” action) or throw it away (“remove vertex” action).
In order to add a link between two components, the user needs to select two
ports consecutively. After selecting the first port and prior to selecting the
second one, a temporary line between the selected port and the controller is
rendered so as to give feedback to the user on the port that has been interacted
with. Note that adding a link is prevented if that link would create a cycle in
the graph structure (since Grasshopper does not allow that to happen).

A video demonstrating variant P1 of GHVRGraph is available online4 and
our codebase is hosted as open-source software on a GitHub repository5, avail-
able under the MIT6 license. We also published a paper that further describes
the system and how we explored different interaction techniques (Coppens
et al., 2019).

4.3.2 Variant P speech
1 : Speech recognition

In addition to direct interaction techniques, specific actions can be simplified by
relying on indirect approaches such as speech recognition. Since specifying an
arbitrary position or selecting an existing object is easily and rather naturally
done with a direct technique (e.g., relying on a grasping or pointing metaphor),
speech recognisers are often used in a multimodal context when applied to 3D

4http://informatique.umons.ac.be/staff/Coppens.Adrien/?video=eNTERFACE2019
5https://github.com/qdrien/Grasshopper-VR-graph
6https://opensource.org/licenses/MIT

http://informatique.umons.ac.be/staff/Coppens.Adrien/?video=eNTERFACE2019
https://github.com/qdrien/Grasshopper-VR-graph
https://opensource.org/licenses/MIT

117

selection or manipulation tasks (e.g., the “Put-That-There” metaphor (Bolt,
1980)). We decided to explore this modality and integrate it as part of and
extended version of P1: variant P

speech
1 .

An important distinction between speech engines is whether (and how
much) they restrict potential input. Free speech recognisers can output any
text, whereas directed dialogue (Pieraccini & Huerta, 2005) systems are limited
to a set of predefined words or commands. Directed approaches can mostly
be found in two forms: keyword-spotting solutions that extract specific words;
and grammar-based tools that produce phrases defined by specific rules.

GHVRGraph, as a VR-based graph editing application, would benefit from
vocal commands such as “Add component X” to create new components in the
graph. Even though free speech and keyword-based approaches could be used
for that purpose, they would not guarantee that a valid output is returned
by the speech recogniser and would require post-processing of that output to
parse it (which sequences of words or keywords are valid, and what action they
correspond to). Grammar-based engines therefore seem to be the best option
as only valid vocal commands, with regards to the grammar, can be recognised.

Since GHVRGRaph is developed with the Unity game engine, we can ben-
efit from the engine’s built-in support for the Windows Speech Recognition
API7, that includes an XML-based grammar recogniser for Speech Recognition
Grammar Specification (SRGS). SRGS is a W3C standard8 that describes a
grammar format. Similarly to the grammars from compiler theory (Aho et al.,
1986), a SRGS grammar describes a set of rules composed of tokens, using
either an XML or an augmented BNF (Backus-Naur Format) syntax.

SRGS grammars can be augmented with Semantic Interpretation for Speech
Recognition (SISR9) tags that contain ECMAScript (JavaScript) code to be
executed when the corresponding grammar rule is matched. Those tags are
typically used to assign values to variables for a matched rule. For instance, a
boolean variable can see its value set to true when the matched text is “yes”,
“ok” or “yeah”. Similarly, such tags can handle numbered values, so that a
user saying “three” could assign the value 3 to a certain variable (e.g., called
outValue). It is also possible to go further and perform specific operations
on such a variable when specific words are recognised. For example, saying
“thousands” could multiply the previous outValue variable by 1000.

While SRGS alone is enough to define commands such as “Add component

7https://docs.microsoft.com/en-us/windows/apps/design/input/
speech-recognition

8https://www.w3.org/TR/speech-grammar/#S1
9https://www.w3.org/TR/semantic-interpretation/

https://docs.microsoft.com/en-us/windows/apps/design/input/speech-recognition
https://docs.microsoft.com/en-us/windows/apps/design/input/speech-recognition
https://www.w3.org/TR/speech-grammar/#S1
https://www.w3.org/TR/semantic-interpretation/

118 Immersive visual programming for Algorithmic Design

(a) A visual representation subsuming the
grammar rules used to add components.

(b) Part of the corresponding defini-
tion in the XML-based SRGS format.

Figure 4.8: The SRGS/SISR rules used to provide vocal commands allowing
users to add components in P speech1 .

circle” or “Add boolean toggle”, the capabilities of SISR are interesting to
allow GHVRGraph users to add valued components directly (in one go), with
commands such as “Add slider with value 7” or “Add boolean toggle with value
true”. While alphanumeric input in grammars is non-trivial (Wang & Ju, 2004),
we relied on an existing set of rules provided in the Microsoft Speech Platform
SDK10.

Figure 4.8 presents part of the rules we use to provide vocal commands al-
lowing users to add both valued and non-valued components in P speech1 . Figure
4.8b correspond to a small portion of the rules in the textual (SRGS) format,
while Figure 4.8a clarifies the general structure of the “add component” com-
mand.

As users may want to assign an arbitrary text value to a vertex (e.g., a panel
component), we also incorporated a free speech recogniser, that starts listening
to user input only when specific grammar rules have been processed. In the
meantime, the grammar recognition engine is paused, and it only resumes when
the user stops providing free speech input.

A potential lead to further improve the integration of the speech modality in
GHVRGraph would be to rely on machine learning techniques. Such techniques
could be used to process free speech input and directly convert it to valid
commands (with regards to the SRGS grammar). There would be no need to

10https://www.microsoft.com/en-us/download/details.aspx?id=27226

https://www.microsoft.com/en-us/download/details.aspx?id=27226

119

split the recognition of text-valued components from other components. This
could also increase the flexibility of the system, in the sense that alternative
wording for the same command could be learned by the machine learning
algorithm, that would convert that wording to its equivalent in the grammar
specification.

4.3.3 Variant P2: grasping and pointing metaphor with a hand-
tracking system

The goal of variant P2 of GHVRGraph is to explore interaction techniques while
relying on a hand-tracking sensor. We used the Leap Motion11 sensor, that is
composed of two standard colour cameras and infrared LEDs, that give it the
ability to scan the space above its surface, up to ∼60 cm away from the device.
The development of this variant was started during the previously mentioned
eNTERFACE workshop and continued as part of a Computer Science master
student project, under my direct supervision (Willième, 2020).

P2 comes in two modes: grasping and pointing. The former replicates the
grasping metaphor used by P1, replacing VR controllers by the user’s hands
with a grasping gesture acting as a substitute for the controller’s button press
to start a manipulation. Once grabbed, a component can be moved and the
manipulation stops when the user releases his hand. Interacting by grasping
objects is natural to humans, but it only allows users to interact with objects
that are sufficiently close to the user, at hand’s reach.

The pointing-based mode mitigates that limitation by expanding the range
of interaction for VR users to objects they can point to, by using a raycasting
method (see Section 2.4). The tip of the forefinger from the user’s main hand
is used as the starting point of the beam, using the closest phalanx to derive
the beam’s direction (from the phalanx to the tip). To trigger an action, the
user speaks a simple “action” vocal command. Depending on the type of object
that is pointed at and the state of the application, the corresponding action is
performed. For instance, if nothing is selected and the user triggers the vocal
command while pointing at a component, that component will be selected and
become moveable, until it is released by another “action” command.

The grasping mode is illustrated in Figure 4.9, where a user is about to
grasp a component to manipulate it. The component is highlighted in yellow
to indicate that the hand is currently touching it and it could consequently be
interacted with if the user were to perform the grasping gesture. The pointing
mode is depicted in Figure 4.10, split into sub-figures 4.10a and 4.10b, where

11https://www.leapmotion.com/

https://www.leapmotion.com/

120 Immersive visual programming for Algorithmic Design

Figure 4.9: A user about to grab a component in variant P2 of GHVRGraph,
that relies on a hand-tracking device.

a user respectively selects and moves a component based on his forefinger’s
position. Implementing both approaches allows to see how they compare in
the context of graph-based 3D interaction.

To do so, evaluations based on both interaction modes of variant P2 were
conducted in (Willième, 2020). These evaluations were limited to 4 partici-
pants, partly due to the sanitary situation at the time, but showed the main
advantages and drawbacks of each method. The grasping metaphor turned out
to be intuitive and precise for interacting with elements at close range, but not
ideal for objects further away. On the other hand, the pointing mode of P2

was considered easy to use for both short and close range, but suffered from
precision issues, especially for interactions on edges (since they are thin and
therefore hard to point at).

Videos demonstrating this prototype are available online, for the grasping12

and pointing mode13.

4.4. Immersive visualisation of resulting structures

Similarly to the two prototypes presented in Chapter 3 (GHVRBridge and
GHXR), providing VR-based editing capabilities is much more interesting if
the output result (the geometrical representation) can be visualised from within
the same immersive experience. We can unfortunately not directly borrow
the mesh streaming approach from GHVRBridge (of Section 3.2.2). That is
because, unlike GHVRBridge, GHVRGraph does not simply apply user mod-

12https://www.youtube.com/watch?v=Su3y1tnZk1s
13https://www.youtube.com/watch?v=oxgMxh4Fkx4

https://www.youtube.com/watch?v=Su3y1tnZk1s
https://www.youtube.com/watch?v=oxgMxh4Fkx4

121

(a) Pointing to a component. (b) Placing the selected component.

Figure 4.10: The two-step process to move a component in variant P2 of
GHVRGraph, illustrating the pointing mode of that variant.

ifications through a custom Grasshopper component, but instead produces a
new file in the Grasshopper format. In order to generate the new geometrical
representation, we therefore need to reload the file in Grasshopper, and that
would disconnect the custom component from the VR experience.

We consequently approached the issue in a different manner and relied
on Rhino.Inside14, a project that embeds Rhino and Grasshopper into other
applications. Using Rhino.Inside, we can run an instance of a Grasshopper
within our Unity application and communicate with it.

On launch, GHVRGraph starts an instance of Rhino and Grasshopper,
through Rhino.Inside. When modifications made to the visual algorithm via
the VR interface are saved, a new Grasshopper file is produced and sent
to the Grasshopper instance that runs within GHVRGraph. Once received,
Grasshopper generates the geometrical representation and it therefore becomes
available for sharing. To do so, GHVRGraph includes a custom sharing com-
ponent inside the file sent to Grasshopper, that thereby automatically sends
the geometry (in the same mesh-based format as in Section 3.2.2) to the VR
experience.

This rather complex process is pictured in Figure 4.11.

4.5. Validation

Since most of GHVRGraph’s development happened during the aforemen-
tioned eNTERFACE workshop, we were able to ask other workshop partici-
pants (with different backgrounds) to try the prototype along the way and give

14http://rhino3d.com/inside

http://rhino3d.com/inside

122 Immersive visual programming for Algorithmic Design

Figure 4.11: The proposed approach for VR-based editing of AD definitions
with GHVRGraph, enabling geometry visualisation through Rhino.Inside.

their feedback. As previously mentioned, this led us to use a table metaphor
with a slightly inclined table for our graph visualisation.

Additionally, as part of the survey discussed in Section 2.5.3 and as men-
tioned there, we included a video in order to show respondents the GHVR-
Graph prototype. All respondents that indicated being aware of AD tools
were shown the video, that demonstrated the prototype, with a VR user edit-
ing a Grasshopper project. After watching the video, respondents were asked
about the usefulness of such VR-enabled functionality.

The answers we received for that question revealed a mixed reception, with
slightly over half of the respondents (18 out of 34) considering VR functionality
as “probably not useful” or “not useful”, as shown on Figure 2.42a (reproduced
here on Figure 4.12a).

We however noted a difference depending on the respondents’ prior expo-
sure to 6-DoF VR, and therefore further compared the responses with whether
the respondents had tried VR tools for architecture-related activities. The
corresponding results are plotted on Figure 2.42b (reproduced here on Figure
4.12b), that only includes 20 respondents since the question on VR for archi-
tecture was only asked to those who indicated they were familiar with VR and
had tried the technology in the first place.

While GHVRGraph seemed to be slightly better received amongst respon-
dents with prior exposure to VR, the population size did not allow us to reach
statistical significance.

123

(a) Usefulness of VR for AD, broken
down by respondents’ prior exposure to
6-DoF VR devices and experiences.

(b) Usefulness of VR for AD, broken
down by respondents’ prior exposure to
VR tools for architecture (if they were
familiar with VR).

Figure 4.12: Usefulness of VR for Architectural Design, reproduced from Fig-
ure 2.42.

4.6. Discussion

GHVRGraph, the proof-of-concept research prototype presented in this chap-
ter, goes beyond the work presented in Chapter 3, by enabling VR-based
Level 3 control over AD definitions created with Grasshopper. The proto-
type allows control over the graph-based AD representation itself, and not just
parameter values.

This type of control allows AD architects to make deeper modifications
than what Level 2 offers, and could even lead to architectural geometries being
created only through the VR interface. While we do not believe that the latter
is a realistic scenario at the moment, the ability to manipulate components
and links from the immersive environment certainly opens new possibilities for
architects to integrate immersive technologies in their practice.

Such tools however do not truly concern other stakeholders than architects
themselves, since modifying the graph-based representation (corresponding to
the visual algorithm) requires expertise with the AD paradigm. While this
limits the number of potential users for VR-based Level 3 applications, a more
polished version of GHVRGraph that would be delivered as commercial soft-
ware could be affordable for architectural firms of all sizes, since the hardware
requirements are the same as those of GHVRBridge, described in Section 3.2.

The following hypothetical use case help clarify a potential usage scenario

124 Immersive visual programming for Algorithmic Design

for GHVRGraph, where the prototype tool is likely to improve the design
process.

Use Case for GHVRGraph. A small architectural firm is in charge of the
construction of a monument for a big garden (10,000 square meters) at the
entrance of a small castle converted to a modern art gallery. Commissioned by
the gallery’s board, the monument should inspire a sense of prestige. The archi-
tects are still in an early design phase with multiple options being considered.
Based on the current state of the AD definition she created with Grasshopper,
one of these architects wants to get a better idea of what these options look like
from a human perspective. She therefore starts GHVRGraph with the intent
of checking the options in VR, switching between options by editing links in
the graph-based VR representation. Once immersed and after checking the
initial options, the architect has a new idea: she wants to combine two of the
initially proposed options. After rebranching the definition from the VR-based
representation, she visualises the result. She then moves back to Grasshopper
to refine the design idea based on the version she modified from GHVRGraph.

4.6.1 Towards a collaborative variant of GHVRGraph

While GHVRGraph is a single-user application, it would be straightforward to
extend it to enable multi-user co-presence using the solution presented in Sec-
tion 3.3.1. If all collaborators are placed in the same virtual environment and
interact with the same AD definition, solutions similar to the ones discussed in
3.3.2 would be sufficient to enable conflict-free collaboration or at least provide
a clear procedure for conflict resolution.

However, if users collaborate through separate representations of the same
AD definition, there is no guarantee that these representations are in the same
state at any point in time. Changes made to the AD definition by different
collaborators must therefore be integrated to form the main joint definition.
Despite the graph-based nature of the AD definitions that GHVRGraph works
with, it is clear that this problem requires solutions based on software merging
(Mens, 2002), or more generally model-based merging techniques (Brunet et al.,
2006).

Since collaborators are not guaranteed to produce changes that are compat-
ible with each other, model merging is sometimes not sufficient, and conflicts
between incompatible local modifications need to be resolved. This is practi-
cally unavoidable when collaborative development occurs in parallel (McKee
et al., 2017). The tooling at developers’ disposal consequently should integrate
visual code comparisons to allow for conflict resolutions to become as smooth
as possible.

125

As for AD and visual programming, none of the popular commercial tools
include merging capabilities. However, a system called MACE (Multiple Al-
ternatives - Comparison and Editing), proposed in (Zaman et al., 2017), allows
for comparison between DAGs. Using MACE, a designer can choose different
versions of an AD definition and the tool will highlight changes between the
selected base version and its compared alternatives. It will colour vertices and
parameters depending on the type of changes that were made to them (e.g.,
a green vertex means that the vertex was added). This is comparable to code
differencing tools used in software developments to compare different versions
of the same code base (e.g., to solve merge conflicts when they occur).

Pushing the inspiration from software engineering further with capabilities
that are inspired by version control systems, (Cristie & Joyce, 2019) proposed
a system called GHShot, that works with snapshots of Grasshopper definitions.
Using that system, a Grasshopper user can push a version of a definition to a
centralised server. When doing so, the user indicates whether this new version
is a simple progression of the previous one, or an alternative solution that
should be included in a separate new branch. Reusing the ideas of MACE,
GHShot also proposes a “diff view” that highlights changes between different
versions of a definition. To our knowledge, GHShot is the AD system whose
features most resemble the capabilities of the version control systems used in
software development.

A potential approach, that has been ruled out in GHShot but may still
be a viable lead to support merging AD definitions, is to integrate versions of
a definition via the textual representation of these versions (the .ghx files).
Since these contain a textual description of the definition, they allow for text
merging techniques to be used. This should work well for collaborators that
work on separate parts of a definition, since the XML entities they would
create or modify are then different. However, conflicts are unavoidable when
collaborators interact with the same components, and solutions such as MACE
and GHShot’s diff views would still be needed to allow designers to resolve these
conflicts.

4.6.2 Opportunities for visualisation enhancements

The current version of GHVRGraph displays the full graph representation to
the VR user. This means that bigger graphs will lead to smaller components,
since the dimensions of the table are fixed. This effectively makes the current
version of GHVRGraph unable to work with large Grasshopper definitions.
To make the prototype scalable, zooming and panning (moving the view to
another part of the graph) would need to be added to the set of available

126 Immersive visual programming for Algorithmic Design

actions. It would therefore be interesting to explore interaction techniques to
perform these actions in that VR context.

In addition to the exploration of more modalities and interaction techniques
that could lead to a better user experience, we could also explore different types
of visualisations for AD definitions in VR. We could try to better capitalise on
the three-dimensional aspect of immersive environments. A potential approach
would be to “unleash” the graphs and allow users to move vertices anywhere in
the 3D space, instead of constraining graph components to a (table) surface. As
discussed in Section 4.2.4, one of the reasons we imposed that restriction was
to preserve a mapping between the VR-based representation and the desktop
tool’s canvas. If we would let go of that constraint, VR users would get access
to more space, and may organise the graph using the whole environment around
them, placing vertices in different directions and at different heights.

In addition to the lack of mapping with the desktop software, a 3D graph
representation is not necessarily beneficial, at least when the represented data
is non-spatial, i.e., not inherently three-dimensional itself (Elmqvist, 2017), as
is the case for visual algorithms (as opposed to flight data for instance). We
do however note that there does not seem to be a consensus on that, since
contributions such as (Halpin et al., 2008) positively evaluate 3D and VR
general data visualisations.

As stated in (Drogemuller et al., 2018), there is a trade-off between aspects
supporting VR visualisation (increased engagement, added dimension, etc) and
specific issues with them (occlusion of information, navigation, etc).

Another way to capitalise on the third dimension offered by immersive
experiences is to constrain the graph to a cuboid instead of a simple surface.
This allows visualisations to use the upwards axis (that we will call the Z axis)
to relay information about the vertices but preserves the mapping with the
desktop canvas, since the graph can always be projected back to the surface
by ignoring the Z value in vertices’ position.

Example of information that can be conveyed by such a technique includes
the depth of a vertex. This was implemented as part of the student project
(Willième, 2020), previously mentioned in Section 4.3.3. The depth of a vertex
is the number of edges needed to reach that vertex, starting from the root
vertex in a tree (a DAG where each vertex has exactly one parent, except one
vertex, the root vertex, that has no parent). We mapped AD definitions to
DAGs that are not necessarily trees, but we can still define depth in that case
by choosing a convention. In the aforementioned project, we chose to define
the depth of a vertex as the minimum number of edges needed to reach that
vertex from any vertex that does not have incoming connections.

127

We can then compute the depth value for each vertex and map its Z value
accordingly (e.g., the deeper the vertex, the higher it is being placed). This
particular visualisation if for example useful to identify input parameters easily,
since they will be at a depth of 0, even if they might not be positioned on the left
of the definition. In general, such a representation helps designers to visually
identify the extent to which a certain vertex depends on other vertices. This
is in a way similar to automated code formatting, that relies on indentation
(horizontal offset) or specific characters to clarify that code blocks can be
considered as an entity that is to be executed depending on the instruction
generally specified above it.

While the same approach can be replicated with other metrics mapped to
the z axis, it is also possible to convey a different type of information. For
instance, groups of related components could (automatically or based on user
input) be placed at a certain height. This would allow designers to easily
visualise related elements. A VR application implementing that idea could
allow its users to show or hide certain groups.

4.6.3 Genericity and adaptability

As discussed in Section 4.2, the choice to rely on a graph-based structure to
represent Grasshopper definitions in VR means that GHVRGraph could easily
be adapted to other AD modelling tools, or even to other domains that rely on
models that can be represented as graphs (e.g., Unified Modelling Language
diagrams (Object Management Group (OMG), 2017) or Entity Relationship
models (Chen, 1976)). Through a simple converter for the target software, it
would indeed be possible to reuse the interaction mechanisms we developed.

As mentioned in Section 2.2.1, visual programming has been applied to
other domains, such as animation design or for the development of interactive
applications. Such domains may be able to benefit from immersive visuali-
sations. This is typically the case when the output produced by the visual
program can take advantage of the immersive context. Adapting a solution
such as GHVRGraph to these domains therefore allows “visual programmers”
to visualise these resulting outputs alongside the generative program itself.

A potential example would be diagrams such as statecharts (Harel, 1987),
that define the behaviour of software systems and could therefore be em-
ployed to generate applications that execute in a 3D context. In that case,
the immersive visualisation of what the application produces could be cou-
pled with editing features for these statecharts, within the same immersive
environment. Other potential applications for immersive visual programming
are the design of transportation networks, (gaming) scenes, or robotics with

128 Immersive visual programming for Algorithmic Design

three-dimensional path planning activities.

CHAPTER 5
Conclusion

“Without the fun, none of us would go on!”

Ivan Sutherland

The evolution of Computer-Aided Architectural Design was highly influ-
enced by advances in computing technologies, as we have shown in the field’s
history, covered in Chapter 2. As PCs and computer networks improved and
became more affordable, the discipline evolved with them, with new tools and
design paradigms appearing along the way. While immersive technologies have
been around for more than 50 years, they matured and became available to
the masses only recently.

The current use of AR and VR in architecture is mostly limited to visu-
alisation purposes and we have shown that these technologies should not be
confined to such purposes. We therefore explored the integration of immersive
technologies in the architectural design process, with a focus on AD. While it
is too early to reflect on the impact of today’s developments on architectural
practice, the present dissertation supports the following thesis statement:

Thesis statement

Integrating AR and VR technologies into the Algorithmic Design
toolset provides opportunities for architects to improve their work-
flow and to better present their creations to clients.

129

130 Conclusion

This chapter summarises our contributions and shows where they are lo-
cated in the AD landscape. We also present some practical usage scenarios
for the proof-of-concept prototypes we developed and discuss their purpose.
Finally, we discuss perspectives we envision for the field of immersive AD and
how the research presented in this dissertation could be continued.

5.1. Research contributions

To support the aforementioned thesis statement, we conducted a series of ex-
periments, developed a number of tools, and produced results to answer our
research questions.

To verify the claim that immersive technologies should be integrated into
the architectural design process, we conducted a survey (Section 2.5.3) on the
potential of VR in that context. The survey results support our assumption
that the usage of VR early on in the design process is desirable, motivating the
need for conducting research on the topic. This section summarises the main
contributions our research work brings to the CAAD domain.

We followed a prototype-based process, described in Section 1.4, to provide
evidence for our thesis statement. Our principal realisations are three proof-
of-concept software prototypes. They all provide immersive experiences based
on AD definitions. As indicated by their names (respectively GHVRBridge,
GHXR and GHVRGraph), they work with Grasshopper, a popular AD editor
letting architects design models with visual algorithms. We presented these
prototypes in detail in Chapters 3 and 4 but we summarise hereafter their
essence and their purpose.

GHVRBridge, presented in Section 3.2, enables architects to connect their
AD definitions in Grasshopper to a VR experience. After choosing which pa-
rameters to share with the VR application, the corresponding values can be
adjusted from within the immersive environment. The same virtual environ-
ment provides a visualisation at scale of the geometry shared by the architect.
Changes to the parameter values produce automatic updates on the visualised
geometrical representation. GHVRBridge therefore allows architects to simul-
taneously visualise geometries designed with Grasshopper and adjust the pa-
rameters that are used to generate them. This all happens from a single VR
application, with no need to leave the VR experience to interact with the
model. We explored a collaborative extension to GHVRBridge presented in
Section 3.3 to enable a similar experience with multiple stakeholders. It can
therefore be used to show a project to a client, immersed in the same virtual
environment as the architect, who still has control over parameter values used

131

for that project. Another possible usage scenario for such an extension is the
potentially remote collaboration between architects, to allow them to discuss
over a definition in a VR environment, while adjusting parameter values based
on their discussion.

In Section 3.4, we presented another prototype, GHXR. It also proposes
immersive parameter adjustment and geometry visualisation features, but ad-
ditionally explores the use of AR and Tangible User Interfaces to do so. GHXR
is based on a table display on which tangible items are placed and mapped to
Grasshopper parameters. Collaborators placed around the table can therefore
naturally interact with these tangible parameters. The system comes with a
circular screen setup that displays the geometrical representation, generated
using these parameters, from different viewpoints. The visualisation also in-
cludes the surrounding buildings in the geometry’s future location. At any
point in time, users can wear either an AR or a VR headset, to visualise a
three-dimensional rendering of the project.

The third developed prototype, GHVRGraph, was presented in Chapter 4.
GHVRGraph pushes the control over the AD definition further, by allowing its
users to interact with a graph-based representation of a Grasshopper AD defini-
tion. We relied on an internal representation based on typed graphs to convert
Grasshopper definitions to VR-based interactable models. GHVRGraph al-
lows designers to make deeper changes to definitions than simple parameter
adjustments, through a virtual table metaphor that represents Grasshopper
components as boxes placed on such a table. We explored different interaction
techniques to manipulate these boxes and the links between them, via several
variants that have been described in Section 4.3.

5.2. Discussion

This section will first discuss the immersive AD landscape, locating the three
developed prototypes in that landscape. Using it, we will clarify the relations
between these prototypes as well as how they compare with other immersive
AD tools.

On this basis, we will point out some of the limitations of the research we
conducted.

132 Conclusion

Figure 5.1: Relations between the developed prototypes and recent related
work, based on differences in control level and collaboration environment.

5.2.1 Overview of the immersive Algorithmic Design land-
scape

A first point of comparison for the prototypes we developed is the level of
control provided by these systems. This corresponds to how we structured the
presentation of the prototypes in the dissertation, with Chapters 3 and 4. The
horizontal axis of the landscape in Figure 5.1 corresponds to that criterion of
comparison, using the control levels we previously defined (see Table 3.1 on
page 72). On the figure’s vertical axis, we put the collaboration environment,
to differentiate between single-user and collaborative applications, and further
subdivide the latter into remote or co-located collaboration.

The landscape shows that commercial tools such as Mindesk and Twinmo-
tion are limited to extrinsic control and can therefore only modify the rendered
version of a geometry or its environment. The two prototypes from chapter
3, namely GHVRBride and GHXR, allow users to adjust parameter data, and
can therefore have an impact on the input of the algorithm generating the
geometrical representation (intrinsic modifications). They, however, do not
cover the manipulation of the visual algorithm itself; this being the purpose of
GHVRGraph (chapter 4).

133

Figure 5.1 also includes other software tools, from researchers as well as
companies working on similar topics. The next few paragraphs justify their
presence in the landscape and discusses how the developed prototypes compare
to them.

GHVRBridge’s equivalent system described in (Hawton et al., 2018), that
was developed at the same time and has been presented in Section 2.5.2, covers
the same purpose with a very similar approach. Both systems cover remote
collaboration scenarios since multiple users can connect to the same virtual
experience using them.

Fologram1 is the AR equivalent to GHVRBridge, and we thereby put it on
the same location as GHXR in the two-dimensional landscape of Figure 5.1,
since working in AR means it is naturally adapted for co-located collaboration.
We however note that GHXR has additional capabilities (multiple views, VR
support, TUI-based interaction, etc.) as compared to Fologram.

While the interaction modalities are different, GHVRGraph is comparable
to the work described in (Castelo-Branco et al., 2020) (previsouly discussed
in Section 2.5.2) in that they both enable control over the visual algorithm
for a given Grasshopper definition. We additionally note that Castelo-Branco
et al.’s tool technically allows users to modify parameter values but we did not
reflect that fact on Figure 5.1 because it would be particularly hard to achieve
a sufficient level of precision with the mirroring technique they proposed.

The coloured elements of Figure 5.1 contain tools that were all published
or released after the start of our research work, showing that the belief that
immersive technologies need to be integrated into the AD process is shared by
many others.

The three prototypes we developed differ from each other in the potential
usage scenarios they aim to cover, as shown in Figure 5.2. While these systems
all target architects, GHVRBridge and GHXR can also involve clients or other
stakeholders, since these prototypes allow them to join shared experiences with
the architects and visualise the same geometries. This means that both these
prototypes suggest a user-centred approach for AD, where architects preserve
control over the AD definition while immersed with these stakeholders.

While GHVRBridge and GHVRGraph can be used for all types of archi-
tectural projects, they both provide full-scale visualisations (to take advantage
of the immersive aspect of VR) and are likely not adapted for designing at the
urban scale. GHXR fills that void through the various viewpoints (including
non-VR ones) that are part of the system. These viewpoints allow for such
design activities because users can therefore choose the appropriate viewpoint

1www.fologram.com

www.fologram.com

134 Conclusion

Figure 5.2: Comparison between the three developed prototypes, with regards
to target user profiles and types of architectural projects being covered.

135

when needed. However, the hardware and space requirements of GHXR imply
that it only makes sense to rely on such a system for projects that are big
enough to justify investing in its usage. It also follows that GHXR targets
bigger companies than GHVRBridge and GHVRGraph, which are accessible
to any type of company or individual.

To make the previous claims more concrete, we recall here (and assign to
a particular system) the 3 hypothetical use cases we introduced in Chapters
3 and 4, since they help clarify some usage scenarios where the developed
prototypes are likely to make an appreciable difference.

Use Case for GHVRGraph. A small architectural firm is in charge of the
construction of a monument for a big garden (10,000 square meters) at the
entrance of a small castle converted to a modern art gallery. Commissioned by
the gallery’s board, the monument should inspire a sense of prestige. The archi-
tects are still in an early design phase with multiple options being considered.
Based on the current state of the AD definition she created with Grasshopper,
one of these architects wants to get a better idea of what these options look like
from a human perspective. She therefore starts GHVRGraph with the intent
of checking the options in VR, switching between options by editing links in
the graph-based VR representation. Once immersed and after checking the
initial options, the architect has a new idea: she wants to combine two of the
initially proposed options. After rebranching the definition from the VR-based
representation, she visualises the result. She then moves back to Grasshopper
to refine the design idea based on the version she modified from GHVRGraph.

Use Case for GHVRBridge. An architectural firm is in charge of the con-
struction of a modern-looking clubhouse for a golf club. Based on the club’s
demands, the architects have designed a first version of the building that will
welcome the 300 registered members. The design process in quite advanced
and the building is expected to be close to its final form. The architects would
like to get input from the clients (the club’s board members), so they invite
them to a VR session where both the lead architect and board members vi-
sualise the virtual building in its current state. The VR visualisation helps
the clients understand what the actual clubhouse will look like. The architect
guides the clients around the virtual environment and adjusts parameter values
along the way to accommodate the remarks from the clients.

Use Case for GHXR. The municipal council of a city wants to create a public
space in a disused area of 1,000 square meters, nestled amid a few apartments
and shopping buildings. They appointed an architectural firm that works with
Algorithmic Design to do so and asked them to include a big sculpture to

136 Conclusion

be placed somewhere in the centre of that space. The project is already well
advanced in Grasshopper and the architects now want the opinion of the coun-
cil to adjust parameter values. They therefore invite council members for a
meeting at their office, that themselves invite representatives from commercial
and residential buildings in the project’s vicinity with them. Using GHXR, all
these stakeholders are able to visualise the project from different angles and
can take an active part in the remaining (parameter adjustment) design deci-
sions. The AR and VR visualisations help non-architects to better appreciate
the dimensions of the sculpture and how it integrates with the surroundings.

5.2.2 Limitations

The three proof-of-concept prototypes that we developed extend the integra-
tion of immersive technologies beyond their current established usage in the
field of CAAD, but it is always possible to push the boundaries further. This
section will discuss limitations related to the developed prototypes, pointing
out areas where they could improve. We will also cover aspects and chal-
lenges that were considered out of scope of the present dissertation, but that
would need to be tackled for the potential commercialisation of similar software
tools. Finally, we will discuss limitations that pertain to the methodology we
followed.

Limitations related to interfaces and proposed interactions

The first series of limitations are related to the user interface and the interac-
tion modalities we proposed in the three developed prototypes. GHVRBridge
is the first prototype we developed. As presented in Section 3.2, the type of
interface we used is similar to those of most desktop tools, with a 6-DoF con-
troller replacing the usual mouse or trackpad. Due to the three-dimensional
context, it is desirable to go beyond such two-dimensional interfaces. This
partly motivated the development of the next two prototypes: GHXR and
GHVRGraph.

GHVRBridge could also be extended by integrating smarter interactions
for certain parameters. It would for example be possible to provide control over
a point, surface, or volume, directly from within the VR-based environment,
using three-dimensional widgets similar to those used in standard 3D modellers.
The use of such widgets would replace the manipulation of separate sliders (e.g.,
a single handle to control a point would replace three number sliders).

In a similar way, going further with interactions would also have been
feasible for GHXR. We in fact did not enable control over the perspective

137

camera, as explained in Section 3.4. It is difficult to provide control over a
3D element using widgets whose position is only tracked in two dimensions
(along the tangible table’s surface). However, during the last few days of my
research stay at LIST, we started to develop an extended version of a tangible,
that is mounted with an infrared sensor able to evaluate the distance between
the sensor and an object placed above it. Using that sensor, a user would be
able to move his hand up and down to control an additional dimension (e.g.,
the height at which the camera is placed), thereby enabling three-dimensional
control. This is left as a future work that would extend the capabilities of
GHXR.

As for GHVRGraph, the feature set could be expanded by supporting ad-
ditional actions on the graph-based representation. This includes moving and
zooming on the canvas (the table surface where the graph representation is
placed). The user would then be able to choose how much of the represen-
tation needs to be visualised at any given time. More advanced interaction
techniques (such as the ones presented in Section 2.4) could also be employed,
to take advantage of different approaches and mitigate their individual short-
comings.

It would also be interesting to integrate the parameter adjustment feature
from GHVRBridge and GHXR into GHVRGraph, to provide a complete ex-
perience to the architect, who would thereby gain access to multiple control
levels for different design activities.

Additional untackled aspects

The scope of this dissertation focused on specific aspects, inevitably leading to
other aspects that could not be covered. As mentioned in Chapters 3 and 4,
GHVRBridge and GHVRGraph are based on the assumption that the number
of users, collaborating in a concurrent session with these prototypes, is lim-
ited. A commercial product based on our work would likely need to tackle the
concurrent modification issue (and the conflict resolution) in a more advanced
way than the one we implemented. The proposals inspired from different fields
that we discussed in the corresponding chapters could be a good start to reflect
on how to do so.

Other elements that would need to be perfected in order to bring the de-
veloped prototypes to a broader audience include the general look and feel of
the prototypes. Better-looking VR menus and interactable objects would need
to be created. The representation of the surrounding buildings we show in
GHXR could also be improved and a commercial solution may want to rely on
another (paid) provider to obtain more accurate or up-to-date building data

138 Conclusion

than the one we used.
Another important feature that would need to be implemented for a com-

mercial usage of such tools is audio communication between distant collabora-
tors (often referred to as Voice over IP (Davidson et al., 2000)). Many solutions
exist to achieve such communication on game engines such as Unity, including
paid out-of-the-box options that would be easy to integrate with our code.

Another limitation we mention here because it corresponds to some of the
feedback we received is the potential delay between a parameter modification in
GHXR or GHVRBridge, and the update of the corresponding geometrical rep-
resentation rendered in the virtual environment. GHVRBridge was conceived
with particular attention to network aspects, with adapted transfer protocols
and optimised packet sizes. On the other hand, GHXR was designed to be run
from a local setup, and should therefore typically benefit from very high speed
data transfers between components of the system that do not require the same
kind of optimisations as GHVRBridge.

Regardless of the level of attention given to data transfer, the main bot-
tleneck remains the generation of the geometry by the AD software itself, at
least for complex definitions. It is not uncommon to encounter complicated
designs in which modifying a parameter value leads to multiple seconds of
re-generation time. The added delay introduced by our solutions is typically
negligible for such models. There is unfortunately no real solution to that is-
sue, since it pertains to the optimisation of the AD software itself and because
some designs are simply too complex to be computed rapidly. GHVRBridge
and GHXR propose a rapid VR-based evaluation of design variations, and
architects should therefore focus their updates on parameters whose adjust-
ment does not yield a long re-generation of the geometrical representation.
More complex designs that require lengthy computation times are simply not
adapted to a rapid iteration process (VR-based or not).

Methodological limitations

Each of the developed prototypes was subject to evaluations with architectural
students and researchers, through workshops and demo sessions that we organ-
ised during course sessions, seminars and other events. However, most of these
evaluations were rather informal and limited in the number of participants by
the nature of the events. This means that the evaluations we conducted were
subject to threats related to the small population size (less diversity, more
susceptible to outliers, etc).

Furthermore, we did not validate the prototypes with professional practi-
tioners, so the feedback we received was biased towards a student or academic

139

point of view. As pointed out in (Stals & Caldas, 2020), while it is common to
find studies that do not involve professional architects as part of their testing
sessions, doing so would help in making sure that the developed tools answer
their needs.

The lack of a more systematic validation of the developed prototypes with
more professional participants was initially due to a shortage of contacts. Once
we had identified and solicited enough potential participants that indicated be-
ing interested in evaluating these prototypes, we had difficulty to actually per-
form these evaluations, due to the sanitary situation (linked to the COVID-19
crisis) that affected the last two years of our research. We nevertheless created
evaluation protocols for the developed prototypes and it would be possible to
conduct such evaluations rapidly, should we have access to a pool of qualified
participants and the possibility to perform on-site tests. Remote validation is
hardly possible because of both hardware and software requirements.

While it is difficult to transpose the evaluation of immersive systems to an
online setting, since they involve VR or AR components, we did so for GHXR.
As mentioned in Section 3.5, we relied on a simulator for the display table
and its tangible widgets. We in fact conducted three testing sessions where
the participant had to perform a particular task using that simulator before
answering a post-task questionnaire. In addition to the limited number of
participants, it would be difficult to assert the irrefutable nature of such online
evaluations, since the user experience is then transferred to a two-dimensional
environment and the user must interact with software objects that simulate
the actual tangible items of the immersive system.

5.3. Perspectives

The developed prototypes demonstrate the potential of using immersive tech-
nologies for AD activities, and can be used as a stepping stone for discussion
over the topic, so that architects can engage with these technologies. They
can be seen as a precursor for the development of fully-fledged commercial
products that should improve the design process for many architects. That
impact should however not be limited to the architects, since the use of such
technologies should lead to clients and other stakeholders being more involved
during the design process, shifting it to a user-centred process. Independently
from the previous discussion on necessary refinements to the developed proto-
types to prepare them for broader and commercial usage, this section discusses
future opportunities for AD and its use of immersive technologies.

140 Conclusion

5.3.1 Enhancing the aid for Algorithmic Design

As stated in Section 4.6.2, there are opportunities to use the third dimen-
sion offered by immersive technologies to convey additional information to the
designer working on an AD definition. Various representations should be ex-
plored. The usage of height variation to carry additional information appears
to be the most promising since it preserves a natural mapping with the stan-
dard representation of AD models in desktop-based editors such as Grasshop-
per. Experiments should be run with different metrics used as the conveyed
information, including indicators inspired by the software engineering litera-
ture (Fenton & Neil, 2000) (e.g., to evaluate the complexity of a definition,
using metrics such as cyclomatic complexity (Ebert et al., 2016)). Such work
on quality analysis of AD definitions has in fact already begun (Davis, 2013)
but has yet to reach actual tools in use by practitioners.

It would also be interesting to try such alternative visualisations within
desktop-based AD tools as well. The user should in that case be able to switch
from these extended visualisations to the basic representation easily, depending
on that user’s needs. More generally, the aids offered by most textual-based de-
velopment environments (e.g., syntax colouring or code autocompletion) could
be adapted to the visual AD editors. In fact, desktop AD editors typically in-
clude an autocompletion feature that suggests components based on what the
user starts to type. This could be extended to provide suggestions based on
the context (e.g., what component was placed or clicked last) and suggestions
could also appear when one end of a link has been selected (only suggesting
components that contain an input port with an appropriate type for the given
link).

In addition to such aids, software development tools often include auto-
mated refactoring features (Mens & Tourwé, 2004), allowing the developer to
restructure the code, usually to improve on the design, while preserving its
behaviour. Refactorings sometimes occur to introduce software design pat-
terns (Gamma et al., 1995), that are generic solutions to solve regular issues in
the development of software systems. Interestingly, the concept of patterns as
reusable proven solutions to common problems originated from the architec-
tural design field (Alexander, 1977), where they serve as an aid to designers.
We believe it is time for the pattern concept to return to architecture and AD
in particular, as suggested in (Woodbury et al., 2010), a seminal book on AD
where the author defined AD patterns inspired by the software development
equivalents. Based on these patterns, AD tools could propose refactorings to
their users, so as to improve the overall quality (e.g., in terms of readability,
maintainability or reusability) of the designed definitions.

141

Returning to the topic of immersive support for AD activities, the way
we developed the prototypes makes their interoperability with other AD soft-
ware possible, through the development of appropriate converters between such
software and our representations. A combined solution blending the developed
prototypes, and extending them to support other AD software than Grasshop-
per, would have the potential to become a single immersive platform for AD,
providing a uniform experience to practitioners using different software tools.

5.3.2 Technological improvements

Until now, portable standalone headsets for both AR and VR, that do not
need to be connected to a computer to function, lack computing power. This
impacted the development of GHXR, since the AR headset that we used (the
Hololens) was not powerful enough to display the surrounding buildings that
our VR-based component employs (that component uses the HTC Vive, a
headset linked to a computer that performs the computations). While it ap-
pears clear that relying on a bigger computer to perform heavy computations
will lead to better performances for connected headsets, an increase in comput-
ing power for portable headsets would allow for additional compute-intensive
features. This would in our case allow to add holograms of surrounding build-
ings to the AR component of GHXR.

Another possible direction to extend the use of AR for architectural design
would be to rely on other kinds of augmentations than visual ones. Olfactory
AR could be employed to further immerse users through smells and audio AR
would allow for sound simulations to be run, so that users would get an idea
of expected noise disturbances linked to a project.

A potential future (r)evolution for AR and VR displays is the advent of
Retinal Projection Displays (RPDs) (Pryor et al., 1998), that project content
directly onto the wearer’s retina. Once such technology matures, it has the
potential to lead to immersive “glasses” in a small form factor, that would be-
come wearable for significantly longer periods than the current headsets. These
glasses could also potentially turn into devices capable of switching between
AR and VR modes, and would therefore be an ideal multi-purpose immersive
display. Architects would easily get access to the types of visualisations we
developed, with nothing but such glasses.

We also think and hope that immersive technologies will keep on becoming
more affordable, so that they can reach architects from firms of all sizes, and
thereby become integrated into architectural practice.

142 Conclusion

Appendices

143

APPENDIX A
GHXR evaluation protocol

Removed because arxiv does not like pdfs

145

146 GHXR evaluation protocol

APPENDIX B
GHXR System Usability Scale

questionnaire

Removed because arxiv does not like pdfs

147

148 GHXR System Usability Scale questionnaire

Bibliography

Abdelmohsen, S., & Do, E. Y.-L. (2007). Tangicad: Tangible interface for
manipulating architectural 3d models.

Agirbas, A. (2020). Algorithmic decomposition of geometric islamic patterns:
A case study with star polygon design in the tombstones of ahlat. Nexus
Network Journal , 22 (1), 113–137.

Aho, A. V., Sethi, R., & Ullman, J. D. (1986). Compilers, principles, tech-
niques. Addison wesley , 7 (8), 9.

Aish, R., & Bredella, N. (2017). The evolution of architectural computing:
From Building Modelling to Design Computation. Arq: Architectural Re-
search Quarterly , 21 (1), 65–73.

Alexander, C. (1977). A pattern language: towns, buildings, construction.
Oxford university press.

Alfaiate, P., Caetano, I., et al. (2017). Luna moth: supporting creativity in
the cloud. In Proceedings of the 37th Annual Conference of the Association
for Computer Aided Design in Architecture (ACADIA).

Aoki, H., Oman, C. M., & Natapoff, A. (2007). Virtual-reality-based 3d nav-
igation training for emergency egress from spacecraft. Aviation, space, and
environmental medicine, 78 (8), 774–783.

Apellániz, D., Pasanen, P., & Gengnagel, C. (2021). A holistic and parametric
approach for life cycle assessment in the early design stages.

Appleby, D. (1991). Programming languages: paradigm and practice. McGraw-
Hill, Inc.

149

150 Bibliography

Arora, R., Kazi, R. H., Anderson, F., Grossman, T., Singh, K., & Fitzmaurice,
G. (2017). Experimental Evaluation of Sketching on Surfaces in VR. (pp.
5643–5654). ACM Press.

As, I., Pal, S., & Basu, P. (2018). Artificial intelligence in architecture: Gen-
erating conceptual design via deep learning. International Journal of Archi-
tectural Computing , 16 (4), 306–327.

Asanowicz, A. (1999). Evolution of computer aided design: Three generations
of CAD.

Azhar, S., Khalfan, M., & Maqsood, T. (2012). Building information modelling
(BIM): Now and beyond. Construction Economics and Building , 12 (4), 15–
28.

Baba, Y., & Nobeoka, K. (1998). Towards knowledge-based product develop-
ment: The 3-D CAD model of knowledge creation. Research policy , 26 (6),
643–659.

Baker, B. S., & Coffman Jr, E. G. (1996). Mutual exclusion scheduling. The-
oretical Computer Science, 162 (2), 225–243.

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of
the system usability scale. Intl. Journal of Human–Computer Interaction,
24 (6), 574–594.

Basdogan, C., Sedef, M., Harders, M., & Wesarg, S. (2007). Vr-based simu-
lators for training in minimally invasive surgery. IEEE Computer Graphics
and Applications, 27 (2), 54–66.

Ben-Kiki, O., Evans, C., & Ingerson, B. (2009). YAML ain’t markup language
(YAML) (tm) version 1.2. Tech. rep., YAML.org.
URL http://www.yaml.org/spec/1.2/spec.html

Benbelkacem, S., Zenati-Henda, N., Zerarga, F., Bellarbi, A., Belhocine, M.,
Malek, S., & Tadjine, M. (2011). Augmented reality platform for collabora-
tive e-maintenance systems. Augmented Reality-Some Emerging Application
Areas, InTech, (pp. 211–226).

Besserud, K., & Cotten, J. (2008). Architectural genomics.

Bezier, P. (1977). Essai de définition numérique des courbes et des surfaces
expérimentales. Ph.D. thesis, Université Pierre-et-Marie-Curie, Paris.

http://www.yaml.org/spec/1.2/spec.html

151

Bibb, R., Eggbeer, D., & Paterson, A. (2014). Medical modelling: the ap-
plication of advanced design and rapid prototyping techniques in medicine.
Woodhead Publishing.

Billinghurst, M., Baldis, S., Matheson, L., & Philips, M. (1997). 3D Palette:
A Virtual Reality Content Creation Tool .

Billinghurst, M., Kato, H., & Poupyrev, I. (2001). The magicbook-moving
seamlessly between reality and virtuality. IEEE Computer Graphics and
applications, 21 (3), 6–8.

Bimber, O., & Raskar, R. (2006). Modern approaches to augmented reality.
In ACM SIGGRAPH 2006 Courses, (pp. 1–es).

Blach, R., Landauer, J., Rösch, A., & Simon, A. (1998). A flexible prototyping
tool for 3d real-time user-interaction. In Virtual Environments’ 98 , (pp.
195–203). Springer.

Blum, T., Kleeberger, V., Bichlmeier, C., & Navab, N. (2012). mirracle: An
augmented reality magic mirror system for anatomy education. In 2012
IEEE Virtual Reality Workshops (VRW), (pp. 115–116). IEEE.

Bolt, R. A. (1980). “Put-That-There”: Voice and Gesture at the Graphics
Interface, vol. 14. ACM.

Borrego, A., Latorre, J., Llorens, R., Alcañiz, M., & Noé, E. (2016). Feasibility
of a walking virtual reality system for rehabilitation: objective and subjective
parameters. Journal of neuroengineering and rehabilitation, 13 (1), 1–10.

Bose, S., Vahabzadeh, S., & Bandyopadhyay, A. (2013). Bone tissue engineer-
ing using 3d printing. Materials today , 16 (12), 496–504.

Botella, C., Osma, J., Garcia-Palacios, A., Quero, S., & Baños, R. (2004).
Treatment of flying phobia using virtual reality: data from a 1-year follow-
up using a multiple baseline design. Clinical Psychology & Psychotherapy:
An International Journal of Theory & Practice, 11 (5), 311–323.

Botella, C. M., Juan, M. C., Baños, R. M., Alcañiz, M., Guillén, V., & Rey,
B. (2005). Mixing realities? an application of augmented reality for the
treatment of cockroach phobia. Cyberpsychology & behavior , 8 (2), 162–171.

Bottecchia, S., Cieutat, J.-M., & Jessel, J.-P. (2010). Tac: augmented reality
system for collaborative tele-assistance in the field of maintenance through

152 Bibliography

internet. In Proceedings of the 1st Augmented Human International Confer-
ence, (pp. 1–7).

Bowman, D. A., & Hodges, L. F. (1997). An evaluation of techniques for grab-
bing and manipulating remote objects in immersive virtual environments. In
Proceedings of the 1997 symposium on Interactive 3D graphics, (pp. 35–ff).

Brade, J., Lorenz, M., Busch, M., Hammer, N., Tscheligi, M., & Klimant, P.
(2017). Being there again–presence in real and virtual environments and
its relation to usability and user experience using a mobile navigation task.
International Journal of Human-Computer Studies, 101 , 76–87.

Bradner, E., Iorio, F., Davis, M., et al. (2014). Parameters tell the design
story: ideation and abstraction in design optimization. In Proceedings of the
symposium on simulation for architecture & urban design, vol. 26.

Braid, I. C. (1975). The synthesis of solids bounded by many faces. Commu-
nications of the ACM , 18 (4), 209–216.

Brooke, J. (1996). Sus: a “quick and dirty’usability. Usability evaluation in
industry , 189 (3).

Brooks Jr, F. P. (1987). Walkthrough—a dynamic graphics system for simu-
lating virtual buildings. In Proceedings of the 1986 workshop on Interactive
3D graphics, (pp. 9–21).

Brown, D. G., Coyne, J. T., & Stripling, R. (2006). Augmented reality for
urban skills training. In IEEE Virtual Reality Conference (VR 2006), (pp.
249–252). IEEE.

Brunet, G., Chechik, M., Easterbrook, S., Nejati, S., Niu, N., & Sabetzadeh,
M. (2006). A manifesto for model merging. In Proceedings of the 2006
international workshop on Global integrated model management , (pp. 5–12).

Buffa, E. S. (1964). Allocating facilities with craft. Harvard business review ,
42 (2), 136–159.

Bullinger, H.-J., Bauer, W., Wenzel, G., & Blach, R. (2010). Towards user cen-
tred design (UCD) in architecture based on immersive virtual environments.
Computers in Industry , 61 (4), 372–379.

Burry, M. (2011). Scripting cultures: Architectural design and programming .
John Wiley & Sons.

153

Butterworth, J. (1992). 3DM: A three-dimensional modeler using a head-
mounted display.

Caetano, I., Santos, L., & Leitão, A. (2020). Computational design in archi-
tecture: Defining parametric, generative, and algorithmic design. Frontiers
of Architectural Research.

Caldas, L. G., & Norford, L. K. (2003). Genetic algorithms for optimization
of building envelopes and the design and control of hvac systems. J. Sol.
Energy Eng., 125 (3), 343–351.

Calixto, V., & Celani, G. (2015). A literature review for space planning opti-
mization using an evolutionary algorithm approach: 1992-2014.

Carlin, A. S., Hoffman, H. G., &Weghorst, S. (1997). Virtual reality and tactile
augmentation in the treatment of spider phobia: a case report. Behaviour
research and therapy , 35 (2), 153–158.

Carrino, F., Rizzotti, D., Gheorghe, C., Bakajika, P. K., Francescotti-Paquier,
F., & Mugellini, E. (2014). Augmented reality treatment for phantom limb
pain. In International Conference on Virtual, Augmented and Mixed Reality ,
(pp. 248–257). Springer.

Castelo-Branco, R., Brás, C., & Leitão, A. M. (2020). Inside the matrix:
Immersive live coding for architectural design. International Journal of Ar-
chitectural Computing .

Chaillou, S. (2019). AI + architecture - Towards a New Approach. Ph.D.
thesis, Harvard University.

Chaplot, D. S., Gandhi, D., Gupta, S., Gupta, A., & Salakhutdinov, R.
(2020). Learning to explore using active neural slam. arXiv preprint
arXiv:2004.05155 .

Chen, H., Ooka, R., & Kato, S. (2008). Study on optimum design method
for pleasant outdoor thermal environment using genetic algorithms (ga) and
coupled simulation of convection, radiation and conduction. Building and
Environment , 43 (1), 18–30.

Chen, P. P.-S. (1976). The entity-relationship model—toward a unified view
of data. ACM transactions on database systems (TODS), 1 (1), 9–36.

Cho, I., & Wartell, Z. (2015). Evaluation of a bimanual simultaneous 7dof

154 Bibliography

interaction technique in virtual environments. In 2015 IEEE symposium on
3D User Interfaces (3DUI), (pp. 133–136). IEEE.

Choi, J. P., Lee, T. Y., Ahn, E. S., Piao, G. S., & Lim, J. H. (2014). Evaluation
of parameters for louver design algorithm based on direct solar radiation
control performance. In Advanced Materials Research, vol. 838, (pp. 1917–
1922). Trans Tech Publ.

Chu, C.-C. P., Dani, T. H., & Gadh, R. (1997). Multi-sensory user interface
for a virtual-reality-based computeraided design system. Computer-Aided
Design, 29 (10), 709–725.

Church, A. (2016). The Calculi of Lambda Conversion.(AM-6), Volume 6 .
Princeton University Press.

Cichocka, J. M., Browne, W. N., & Rodriguez, E. (2017). Optimization in
the architectural practice. In CAADRIA 2017-22nd International Confer-
ence on Computer-Aided Architectural Design Research in Asia: Protocols,
Flows and Glitches, (pp. 387–396). The Association for Computer-Aided
Architectural Design Research in Asia

Coates, P., & Thum, R. (1995). Generative modelling. London: University of
East London, (p. 2).

Conn, C., Lanier, J., Minsky, M., Fisher, S., & Druin, A. (1989). Virtual en-
vironments and interactivity: Windows to the future. In ACM SIGGRAPH
89 Panel Proceedings, (pp. 7–18).

Coons, S. A. (1963). An outline of the requirements for a computer-aided design
system. In Proceedings of the May 21-23, 1963, Spring Joint Computer
Conference, (pp. 299–304).

Coppens, A. (2017). Merging Real and Virtual Worlds: An Analysis of the
State of the Art and Practical Evaluation of Microsoft Hololens. Master’s
thesis, University of Mons.

Coppens, A., Bicer, B., Yilmaz, N., & Aras, S. (2019). Exploration of inter-
action techniques for graph-based modelling in virtual reality. In eNTER-
FACE’19 . Ankara, Turkey.

Coppens, A., & Mens, T. (2018). Towards Collaborative Immersive Environ-
ments for Parametric Modelling. In International Conference on Cooperative
Design, Visualization and Engineering . Springer.

155

Coppens, A., Mens, T., & Gallas, M.-A. (2018). Parametric Modelling Within
Immersive Environments: Building a Bridge Between Existing Tools and
Virtual Reality Headsets. In 36th eCAADe Conference.

Coppens, A., Mens, T., & Gallas, M.-A. (2021). Integrating virtual reality
during the architectural design process: a survey to identify practitioner
needs. In Proc. of the Conference CIB W78 , vol. 2021, (pp. 11–15).

Coroado, L., Pedro, T., D ’alpuim, J., Eloy, S., & Dias, M. (2015). VIAR-
MODES: Visualization and Interaction in Immersive Virtual Reality for Ar-
chitectural Design Process.

Cristie, V., & Joyce, S. C. (2019). ’ghshot’: a collaborative and distributed vi-
sual version control for grasshopper parametric programming. In Proceedings
of the 37th eCAADe Conference, vol. 3, (pp. 35–44).

Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V., & Hart, J. C.
(1992). The CAVE: Audio Visual Experience Automatic Virtual Environ-
ment. Commun. ACM , 35 (6), 64–72.

Cunningham, J., & Dixon, J. (1988). Designing with features: the origin
of features. In Proceedings of the 1988 ASME International Computers in
Engineering Conference and Exhibition, vol. 1, (pp. 237–243). ASME New
York.

Dagit, C. E. (1993). Establishing virtual design environments in architectural
practice.

Dave, D., Chowriappa, A., & Kesavadas, T. (2013). Gesture interface for 3d
cad modeling using kinect. Computer-Aided Design and Applications, 10 (4),
663–669.

Davidowitz, G., & Kotick, P. G. (2011). The use of cad/cam in dentistry.
Dental Clinics, 55 (3), 559–570.

Davidson, J., Peters, J., Peters, J., & Gracely, B. (2000). Voice over IP fun-
damentals. Cisco press.

Davis, D. (2013). Modelled on Software Engineering: Flexible Parametric Mod-
els in the Practice of Architecture. PhD thesis, RMIT University.

Dawood, A., Marti, B. M., Sauret-Jackson, V., & Darwood, A. (2015). 3d
printing in dentistry. British dental journal , 219 (11), 521–529.

156 Bibliography

Delgado, J. M. D., Oyedele, L., Demian, P., & Beach, T. (2020). A research
agenda for augmented and virtual reality in architecture, engineering and
construction. Advanced Engineering Informatics, 45 , 101122.

Doboš, J., & Steed, A. (2012). 3d diff: an interactive approach to mesh differ-
encing and conflict resolution. In SIGGRAPH Asia 2012 Technical Briefs,
(pp. 1–4).

Donath, D., & Regenbrecht, H. (1995). Vrad (virtual reality aided design) in
the early phases of the architectural design process.

Doraiswamy, H., Ferreira, N., Lage, M., Vo, H., Wilson, L., Werner, H., Park,
M., & Silva, C. (2015). Topology-based catalogue exploration framework for
identifying view-enhanced tower designs. ACM Transactions on Graphics
(TOG), 34 (6), 1–13.

Dorta, T., Kinayoglu, G., & Hoffmann, M. (2016). Hyve-3D and the 3D Cur-
sor: Architectural co-design with freedom in Virtual Reality. International
Journal of Architectural Computing , 14 (2), 87–102.

Drogemuller, A., Cunningham, A., Walsh, J., Cordeil, M., Ross, W., &
Thomas, B. (2018). Evaluating navigation techniques for 3d graph visu-
alizations in virtual reality. In 2018 International Symposium on Big Data
Visual and Immersive Analytics (BDVA), (pp. 1–10). IEEE.

Dubois, E., Nigay, L., & Troccaz, J. (2000). Combinons le monde virtuel et le
monde réel: classification et principes de conception. Actes des Rencontres
Jeunes Chercheurs en Interaction Homme-Machine, (pp. 31–34).

Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and map-
ping: part i. IEEE robotics & automation magazine, 13 (2), 99–110.

Eaglesham, G. (1979). CAD: State of the art: 16 september 1978, london.
Organized by TASS (technical, administrative and supervisory section) of
the amalgamated union of engineering workers. Computer-Aided Design,
11 (2), 85–91.

Eastman, C. M. (1975). The use of computers instead of drawings in building
design. AIA Journal , 63 (3), 46–50.

Ebert, C., Cain, J., Antoniol, G., Counsell, S., & Laplante, P. (2016). Cyclo-
matic complexity. IEEE software, 33 (6), 27–29.

157

Echtler, F., Sturm, F., Kindermann, K., Klinker, G., Stilla, J., Trilk, J., &
Najafi, H. (2004). The intelligent welding gun: Augmented reality for exper-
imental vehicle construction. In Virtual and augmented reality applications
in manufacturing , (pp. 333–360). Springer.

Ehrig, H., Prange, U., & Taentzer, G. (2004). Fundamental theory for typed
attributed graph transformation. In International conference on graph trans-
formation, (pp. 161–177). Springer.

Elmqvist, N. (2017). 3d visualization for nonspatial data: Guidelines and
challenges.
URL https://sites.umiacs.umd.edu/elm/2017/10/03/
3d-visualization-for-nonspatial-data-guidelines-and-challenges/

Ens, B., Anderson, F., Grossman, T., Annett, M., Irani, P., & Fitzmaurice,
G. (2017). Ivy: Exploring spatially situated visual programming for author-
ing and understanding intelligent environments. In Proceedings of the 43rd
Graphics Interface Conference, (pp. 156–162). Canadian Human-Computer
Communications Society.

Ercan, B., & Elias-Ozkan, S. T. (2015). Performance-based parametric design
explorations: A method for generating appropriate building components.
Design Studies, 38 , 33–53.

Farin, G. (2002). A history of curves and surfaces. Handbook of computer aided
geometric design, 1 .

Feiner, A. O. S. (2003). The flexible pointer: An interaction technique for
selection in augmented and virtual reality. In Proc. UIST’03 , (pp. 81–82).

Fenton, N. E., & Neil, M. (2000). Software metrics: roadmap. In Proceedings
of the Conference on the Future of Software Engineering , (pp. 357–370).

Fette, I., & Melnikov, A. (2011). The websocket protocol.

Fleck, S., & Simon, G. (2013). An augmented reality environment for astron-
omy learning in elementary grades: an exploratory study. In Proceedings of
the 25th Conference on l’Interaction Homme-Machine, (pp. 14–22).

Forsberg, A., Herndon, K., & Zeleznik, R. (1996). Aperture based selection
for immersive virtual environments. In ACM Symposium on User Interface
Software and Technology , (pp. 95–96). Citeseer.

https://sites.umiacs.umd.edu/elm/2017/10/03/3d-visualization-for-nonspatial-data-guidelines-and-challenges/
https://sites.umiacs.umd.edu/elm/2017/10/03/3d-visualization-for-nonspatial-data-guidelines-and-challenges/

158 Bibliography

Frees, S., & Kessler, G. D. (2005). Precise and rapid interaction through scaled
manipulation in immersive virtual environments. In IEEE Proceedings. VR
2005. Virtual Reality, 2005., (pp. 99–106). IEEE.

Fritz, F., Susperregui, A., & Linaza, M. T. (2005). Enhancing cultural tourism
experiences with augmented reality technologies. 6th International Sympo-
sium on Virtual Reality, Archaeology and Cultural

Fuchs, H., Livingston, M. A., Raskar, R., Keller, K., Crawford, J. R.,
Rademacher, P., Drake, S. H., Meyer, A. A., et al. (1998). Augmented reality
visualization for laparoscopic surgery. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention, (pp. 934–943).
Springer.

Fuchs, P. (2006). Le traité de la réalité virtuelle, vol. 2. Presses des MINES.

Fusté Lleixà, A. (2018). Hypercubes: Learning Computational Thinking through
Embodied Spatial Programming in Augmented Reality . Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Gaitatzes, A., Christopoulos, D., & Roussou, M. (2001). Reviving the past:
cultural heritage meets virtual reality. In Proceedings of the 2001 conference
on Virtual reality, archeology, and cultural heritage, (pp. 103–110).

Gamma, E., Helm, R., Johnson, R., Vlissides, J., & Patterns, D. (1995). Ele-
ments of reusable object-oriented software, vol. 99. Addison-Wesley Reading,
Massachusetts.

Gardiner, J. (2011). Exploring the emerging design territory of construction 3D
printing-project led architectural research. Ph.D. thesis, RMIT University.

Garza, L. E., Pantoja, G., Ramírez, P., Ramírez, H., Rodríguez, N., González,
E., Quintal, R., & Pérez, J. A. (2013). Augmented reality application for
the maintenance of a flapper valve of a fuller-kynion type m pump. Procedia
Computer Science, 25 , 154–160.

Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt,
U., & Tecchia, F. (2015). Evaluating virtual reality and augmented reality
training for industrial maintenance and assembly tasks. Interactive Learning
Environments, 23 (6), 778–798.

Geiger, C., Mueller, W., & Rosenbach, W. (1998). Sam-an animated 3d pro-
gramming language. In Proceedings. 1998 IEEE Symposium on Visual Lan-
guages (Cat. No. 98TB100254), (pp. 228–235). IEEE.

159

Ghinea, M., Frunză, D., Chardonnet, J.-R., Merienne, F., & Kemeny, A.
(2018). Perception of absolute distances within different visualization sys-
tems: Hmd and cave. In International Conference on Augmented Reality,
Virtual Reality and Computer Graphics, (pp. 148–161). Springer.

Goetschalckx, M. (1992). An interactive layout heuristic based on hexagonal
adjacency graphs. European Journal of Operational Research, 63 (2), 304–
321.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances
in neural information processing systems, 27 .

Greenhalgh, S. (2016). The effects of 3d printing in design thinking and design
education. Journal of Engineering, Design and Technology .

Grubert, J., Witzani, L., Ofek, E., Pahud, M., Kranz, M., & Kristensson, P. O.
(2018). Text entry in immersive head-mounted display-based virtual reality
using standard keyboards. In 2018 IEEE Conference on Virtual Reality and
3D User Interfaces (VR), (pp. 159–166). IEEE.

Gruenewald, T., & Witteborn, S. (2020). Feeling good: Humanitarian virtual
reality film, emotional style and global citizenship. Cultural Studies, (pp.
1–21).

Gu, N., Kim, M. J., & Maher, M. L. (2011). Technological advancements
in synchronous collaboration: The effect of 3d virtual worlds and tangible
user interfaces on architectural design. Automation in Construction, 20 (3),
270–278.

Halpin, H., Zielinski, D. J., Brady, R., & Kelly, G. (2008). Exploring semantic
social networks using virtual reality. In International Semantic Web Con-
ference, (pp. 599–614). Springer.

Hanan, H., Suwardhi, D., Nurhasanah, T., & Santa Bukit, E. (2015). Batak
toba cultural heritage and close-range photogrammetry. Procedia-Social and
Behavioral Sciences, 184 , 187–195.

Harding, J. E., & Shepherd, P. (2017). Meta-parametric design. Design Stud-
ies, 52 , 73–95.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science
of computer programming , 8 (3), 231–274.

160 Bibliography

Hawton, D., Cooper-Wooley, B., Odolphi, J., Doherty, B., Fabbri, A., Gard-
ner, N., & Haeusler, M. H. (2018). Shared Immersive Environments For
Parametric Model Manipulation. In Learning, Adapting and Prototyping ,
vol. 1. Hong Kong.

Henrysson, A., Billinghurst, M., & Ollila, M. (2005). Face to face collaborative
ar on mobile phones. In Fourth ieee and acm international symposium on
mixed and augmented reality (ismar’05), (pp. 80–89). IEEE.

Hepworth, A., Tew, K., Trent, M., Ricks, D., Jensen, C. G., & Red, W. E.
(2014). Model consistency and conflict resolution with data preservation in
multi-user computer aided design. Journal of Computing and Information
Science in Engineering , 14 (2).

Heun, V., Hobin, J., & Maes, P. (2013). Reality editor: programming smarter
objects. In Proceedings of the 2013 ACM conference on Pervasive and ubiq-
uitous computing adjunct publication, (pp. 307–310).

Hillyard, R., & Braid, I. (1978). Analysis of dimensions and tolerances in
computer-aided mechanical design. Computer-Aided Design, 10 (3), 161–
166.

Hoffmann, C. M. (1989). Geometric and solid modeling.

Hoffmann, C. M. (2005). Constraint-based computer-aided design.

Horváth, I., & Vroom, R. W. (2015). Ubiquitous computer aided design: A
broken promise or a Sleeping Beauty? Computer-Aided Design, 59 , 161–175.

Howard, T. J., Culley, S. J., & Dekoninck, E. (2008). Describing the cre-
ative design process by the integration of engineering design and cognitive
psychology literature. Design studies, 29 (2), 160–180.

Huang, W., & Zheng, H. (2018). Architectural drawings recognition and gen-
eration through machine learning.

Hugues, O., Fuchs, P., & Nannipieri, O. (2011). New augmented reality tax-
onomy: Technologies and features of augmented environment. In Handbook
of augmented reality , (pp. 47–63). Springer.

Innes, D., Moleta, T., & Schnabel, M. (2017). ’Virtual inhabitation and cre-
ation: A comparative study of interactive 1: 1 modelling as a design method’.
In Conference: DADA 2017 International Conference on Digital Architec-
ture:“Digital Culture.

161

ISO/IEC-21778:2017 (2017). Information technology – The JSON data inter-
change syntax. Standard, International Organization for Standardization,
Geneva, CH.

Jack, D., Boian, R., Merians, A. S., Tremaine, M., Burdea, G. C., Adamovich,
S. V., Recce, M., & Poizner, H. (2001). Virtual reality-enhanced stroke
rehabilitation. IEEE transactions on neural systems and rehabilitation en-
gineering , 9 (3), 308–318.

Janssen, P., Li, R., & Mohanty, A. (2016). Mobius: a parametric mod-
eller for the web. In Proceedings of the 21st International Conference of
the Association for Computer-Aided Architectural Design Research in Asia
(CAADRIA).

Janssen, P., & Stouffs, R. (2015). Types of parametric modelling.

Jayaram, S., Vance, J., Gadh, R., Jayaram, U., & Srinivasan, H. (2001). As-
sessment of VR technology and its applications to engineering problems.
Journal of Computing and Information Science in Engineering , 1 (1), 72–
83.

Jhamb, S., Enekvist, M., Liang, X., Zhang, X., Dam-Johansen, K., & Kon-
togeorgis, G. M. (2020). A review of computer-aided design of paints and
coatings. Current Opinion in Chemical Engineering , 27 , 107–120.

Johnson, T. E. (1963). Sketchpad III: A computer program for drawing in three
dimensions. In Proceedings of the May 21-23, 1963, Spring Joint Computer
Conference, (pp. 347–353).

Johnston, W. M., Hanna, J. P., & Millar, R. J. (2004). Advances in dataflow
programming languages. ACM computing surveys (CSUR), 36 (1), 1–34.

Juan, M. C., Alcaniz, M., Monserrat, C., Botella, C., Baños, R. M., & Guer-
rero, B. (2005). Using augmented reality to treat phobias. IEEE computer
graphics and applications, 25 (6), 31–37.

Juan, M. C., & Pérez, D. (2009). Comparison of the levels of presence and
anxiety in an acrophobic environment viewed via hmd or cave. Presence:
Teleoperators and virtual environments, 18 (3), 232–248.

Juan, Y.-K., Chen, H.-H., & Chi, H.-Y. (2018). Developing and evaluating a
virtual reality-based navigation system for pre-sale housing sales. Applied
Sciences, 8 (6), 952.

162 Bibliography

Kale, S., & Arditi, D. (2005). Diffusion of computer aided design technology
in architectural design practice. Journal of Construction Engineering and
Management , 131 (10), 1135–1141.

Kameyama, K.-i. (1997). Virtual clay modeling system. In Proceedings of the
ACM symposium on Virtual reality software and technology , (pp. 197–200).

Kan, T.-W., Teng, C.-H., & Chen, M. Y. (2011). Qr code based augmented
reality applications. In Handbook of augmented reality , (pp. 339–354).
Springer.

Kato, H., & Billinghurst, M. (1999). Marker tracking and hmd calibration for
a video-based augmented reality conferencing system. In Proceedings 2nd
IEEE and ACM International Workshop on Augmented Reality (IWAR’99),
(pp. 85–94). IEEE.

Kaveh, A., Hassani, B., Shojaee, S., & Tavakkoli, S. M. (2008). Structural
topology optimization using ant colony methodology. Engineering Struc-
tures, 30 (9), 2559–2565.

Kazi, R. H., Grossman, T., Cheong, H., Hashemi, A., & Fitzmaurice, G. W.
(2017). Dreamsketch: Early stage 3d design explorations with sketching and
generative design. In UIST , vol. 14, (pp. 401–414).

Kemmis, S., McTaggart, R., & Nixon, R. (2014). The action research planner:
Doing critical participatory action research.

Khan, S., & Tunçer, B. (2019). Gesture and speech elicitation for 3d cad
modeling in conceptual design. Automation in Construction, 106 , 102847.

Kim, M. J., & Hall, C. M. (2019). A hedonic motivation model in virtual
reality tourism: Comparing visitors and non-visitors. International Journal
of Information Management , 46 , 236–249.

Koma, S., Yamabe, Y., & Tani, A. (2017). Research on urban landscape
design using the interactive genetic algorithm and 3d images. Visualization
in Engineering , 5 (1), 1–10.

Koutamanis, A. (2005). A biased history of CAAD.

Krijn, M., Emmelkamp, P. M., Biemond, R., de Ligny, C. d. W., Schuemie,
M. J., & van der Mast, C. A. (2004). Treatment of acrophobia in virtual
reality: The role of immersion and presence. Behaviour research and therapy ,
42 (2), 229–239.

163

Kuş, A. (2009). Implementation of 3d optical scanning technology for auto-
motive applications. Sensors, 9 (3), 1967–1979.

Kwieciński, K., Markusiewicz, J., & Pasternak, A. (2017). Participatory design
supported with design system and augmented reality. SharingofComputable-
Knowledge! , (p. 745).

Kymmell, W. (2008). Building Information Modeling: Planning and Man-
aging Construction Projects with 4D CAD and Simulations (McGraw-Hill
Construction Series). McGraw-Hill Education.

Lam, A. H., Chow, K. C., Yau, E. H., & Lyu, M. R. (2006). Art: augmented
reality table for interactive trading card game. In Proceedings of the 2006
ACM international conference on Virtual reality continuum and its applica-
tions, (pp. 357–360).

Lanier, J. (1988). A vintage virtual reality interview.

LaViola, J. J. (2017). 3d User Interfaces: Theory and Practice. Hoboken, NJ:
Pearson Education, Inc, 2nd edition ed.

Lee, G. A., Nelles, C., Billinghurst, M., Billinghurst, M., & Kim, G. J. (2004).
Immersive authoring of tangible augmented reality applications. In Proceed-
ings of the 3rd IEEE/ACM International Symposium on Mixed and Aug-
mented Reality , (pp. 172–181). IEEE Computer Society.

Lee, W., Woo, W., & Lee, J. (2005). Tarboard: Tangible augmented reality
system for table-top game environment. In 2nd International Workshop on
Pervasive Gaming Applications, PerGames, vol. 5.

Leitão, A., Santos, L., & Lopes, J. (2012). Programming languages for gen-
erative design: A comparative study. International Journal of Architectural
Computing , 10 (1), 139–162.

Liang, J., & Green, M. (1994). Jdcad: A highly interactive 3d modeling system.
Computers & graphics, 18 (4), 499–506.

Liggett, R. S. (2000). Automated facilities layout: past, present and future.
Automation in construction, 9 (2), 197–215.

Light, R., & Gossard, D. (1982). Modification of geometric models through
variational geometry. Computer-Aided Design, 14 (4), 209–214.

164 Bibliography

Light, R. A. (2017). Mosquitto: server and client implementation of the mqtt
protocol. Journal of Open Source Software, 2 (13), 265.

Lin, L., Normoyle, A., Adkins, A., Sun, Y., Robb, A., Ye, Y., Di Luca, M.,
& Jörg, S. (2019). The effect of hand size and interaction modality on the
virtual hand illusion. In 2019 IEEE Conference on Virtual Reality and 3D
User Interfaces (VR), (pp. 510–518). IEEE.

Liu, D. T., & Xu, X. W. (2001). A review of web-based product data manage-
ment systems. Computers in industry , 44 (3), 251–262.

Lo, T. T., Xiao, Z., & Yu, H. (2019). Designing ’action trigger’ for architecture
modelling design within immersive virtual reality. In Proceedings of the 24th
CAADRIA Conference.

Louis, T., Troccaz, J., Rochet-Capellan, A., Hoyek, N., & Bérard, F. (2020).
When high fidelity matters: AR and VR improve the learning of a 3D ob-
ject. In Proceedings of the International Conference on Advanced Visual
Interfaces, (pp. 1–9).

Loureiro, S. M. C., Guerreiro, J., & Ali, F. (2020). 20 years of research on
virtual reality and augmented reality in tourism context: A text-mining
approach. Tourism Management , 77 , 104028.

Macalino, S. J. Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-
aided drug design in modern drug discovery. Archives of pharmacal research,
38 (9), 1686–1701.

Mackay, W. E. (1996). Augmenting reality: A new paradigm for interacting
with computers. La recherche, 284 .

MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-
computer interaction. Human-computer interaction, 7 (1), 91–139.

MacKenzie, I. S. (2012). Human-computer interaction: An empirical research
perspective.

Maekawa, M. (1985). A
√
N algorithm for mutual exclusion in decentralized

systems. ACM Transactions on Computer Systems (TOCS), 3 (2), 145–159.

Maher, A., & Burry, M. (2003). The parametric bridge: connecting digital
design techniques in architecture and engineering. In Proceedings of the
ACADIA Conference.

165

Maleki, M. M., & Woodbury, R. F. (2013). Programming in the model—a
new scripting interface for parametric cad systems. In Proceedings of the
33rd Annual Conference of the Association for Computer Aided Design in
Architecture (ACADIA).

Mandell, D. J., & Kortemme, T. (2009). Computer-aided design of functional
protein interactions. Nature chemical biology , 5 (11), 797–807.

Mapes, D. P., & Moshell, J. M. (1995). A two-handed interface for object
manipulation in virtual environments. Presence: Teleoperators & Virtual
Environments, 4 (4), 403–416.

Marin, P., Marsault, X., Saleri, R., & Duchanois, G. (2012). Creativity with
the help of evolutionary design tool.

Martel, E., Su, F., Gerroir, J., Hassan, A., Girouard, A., & Muldner, K. (2015).
Diving head-first into virtual reality: Evaluating hmd control schemes for vr
games. In FDG .

McKee, S., Nelson, N., Sarma, A., & Dig, D. (2017). Software practitioner
perspectives on merge conflicts and resolutions. In 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME), (pp. 467–
478). IEEE.

Mens, T. (2002). A state-of-the-art survey on software merging. IEEE trans-
actions on software engineering , 28 (5), 449–462.

Mens, T. (2005). On the use of graph transformations for model refactor-
ing. In International Summer School on Generative and Transformational
Techniques in Software Engineering , (pp. 219–257). Springer.

Mens, T., & Tourwé, T. (2004). A survey of software refactoring. IEEE
Transactions on software engineering , 30 (2), 126–139.

Michalski, S. C., Szpak, A., Saredakis, D., Ross, T. J., Billinghurst, M., &
Loetscher, T. (2019). Getting your game on: Using virtual reality to improve
real table tennis skills. PloS one, 14 (9), e0222351.

Miles, J. C., Sisk, G., & Moore, C. J. (2001). The conceptual design of commer-
cial buildings using a genetic algorithm. Computers & Structures, 79 (17),
1583–1592.

Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays.
IEICE TRANSACTIONS on Information and Systems, 77 (12), 1321–1329.

166 Bibliography

Milgram, P., Takemura, H., Utsumi, A., & Kishino, F. (1995). Augmented re-
ality: A class of displays on the reality-virtuality continuum. In Telemanip-
ulator and telepresence technologies, vol. 2351, (pp. 282–292). International
Society for Optics and Photonics.

Mine, M., Yoganandan, A., & Coffey, D. (2014). Making vr work: building a
real-world immersive modeling application in the virtual world. In Proceed-
ings of the 2nd ACM symposium on Spatial user interaction, (pp. 80–89).

Mitchell, W. J. (1989). Afterword: The design studio of the future. In The
Electronic Design Studio: Architectural Knowledge and Media in the Com-
puter Era, (pp. 479–494). Cambridge, USA.

Mobach, M. P. (2008). Do virtual worlds create better real worlds? Virtual
Reality , 12 (3), 163–179.

Molla, E., & Lepetit, V. (2010). Augmented reality for board games. In 2010
IEEE International Symposium on Mixed and Augmented Reality , (pp. 253–
254). IEEE.

Monedero, J. (2000). Parametric design: A review and some experiences.
Automation in Construction, 9 (4), 369–377.

Morrison, J. P. (1994). Flow-Based Programming: A New Approach to Appli-
cation Development . Von Nostrand Reinhold.

Mossel, A., Venditti, B., & Kaufmann, H. (2013). 3dtouch and homer-s: intu-
itive manipulation techniques for one-handed handheld augmented reality.
In Proceedings of the virtual reality international conference: laval virtual ,
(pp. 1–10).

Moubile, M. (2018). Towards Real-Time Parametric Structural Modeling in
Virtual Reality Using a Game Engine. Master’s thesis.

Mousavi Hondori, H., Khademi, M., Dodakian, L., Cramer, S. C., & Lopes,
C. V. (2013). A spatial augmented reality rehab system for post-stroke
hand rehabilitation. In Medicine Meets Virtual Reality 20 , (pp. 279–285).
IOS Press.

Mueller, C. T., & Ochsendorf, J. A. (2015). Combining structural performance
and designer preferences in evolutionary design space exploration. Automa-
tion in Construction, 52 , 70–82.

167

Munson, J., & Dewan, P. (1996). A concurrency control framework for collab-
orative systems. In Proceedings of the 1996 ACM conference on Computer
supported cooperative work , (pp. 278–287).

Myers, B. A. (1990). Taxonomies of visual programming and program visual-
ization. Journal of Visual Languages & Computing , 1 (1), 97–123.

Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R., Zhao, D.,
& Benjamin, D. (2017a). Project Discover: An Application of Generative
Design for Architectural Space Planning. In Symposium on Simulation for
Architecture and Urban Design.

Nagy, D., Lau, D., Locke, J., Stoddart, J., Villaggi, L., Wang, R., Zhao, D.,
& Benjamin, D. (2017b). Project discover: An application of generative
design for architectural space planning. In Proceedings of the Symposium on
Simulation for Architecture and Urban Design, (pp. 1–8).

Najork, M. A. (1996). Programming in three dimensions. Journal of Visual
Languages & Computing , 7 (2), 219–242.

Najork, M. A., & Kaplan, S. M. (1991). The CUBE languages. In Proceedings
1991 IEEE Workshop on Visual Languages, (pp. 218–224). IEEE.

Nasman, J., & Cutler, B. (2013). Evaluation of user interaction with daylight-
ing simulation in a tangible user interface. Automation in construction, 36 ,
117–127.

Nguyen, T. T. H., & Duval, T. (2014). A survey of communication and aware-
ness in collaborative virtual environments. In Collaborative Virtual Envi-
ronments (3DCVE), 2014 International Workshop On, (pp. 1–8). IEEE.

Nicholson, D. T., Chalk, C., Funnell, W. R. J., & Daniel, S. J. (2006). Can
virtual reality improve anatomy education? a randomised controlled study
of a computer-generated three-dimensional anatomical ear model. Medical
education, 40 (11), 1081–1087.

Nicholson-Cole, D. (1998). The GDL Cookbook . Marmalade Graphics.

Noh, Z., Sunar, M. S., & Pan, Z. (2009). A review on augmented reality
for virtual heritage system. In International conference on technologies for
E-learning and digital entertainment , (pp. 50–61). Springer.

Object Management Group (OMG) (2017). OMG® Unified Modeling Lan-

168 Bibliography

guage (OMG UML), Version 2.5.1. OMG Document Number formal/2017-
12-05 (https/www.omg.org/spec/UML/).

O’Kelly, M., Abbas, H., & Mangharam, R. (2017). Computer-aided design
for safe autonomous vehicles. In 2017 Resilience Week (RWS), (pp. 90–96).
IEEE.

on 3dbiology.com, D. J. (2018). Nurbs vs. bezier: What’s the difference?
URL https://www.3dbiology.com/nurbs-vs-bezier-whats-the-difference/

Paes, D., Arantes, E., & Irizarry, J. (2017). Immersive environment for improv-
ing the understanding of architectural 3D models: Comparing user spatial
perception between immersive and traditional virtual reality systems. au-
tomation in Construction, 84 , 292–303.

Pheasant, S., & Haslegrave, C. M. (2018). Bodyspace: Anthropometry, Er-
gonomics and the Design of Work . CRC Press.

Pieraccini, R., & Huerta, J. (2005). Where do we go from here? research and
commercial spoken dialog systems. In 6th SIGdial Workshop on Discourse
and Dialogue.

Pierce, J. S., Stearns, B. C., & Pausch, R. (1999). Voodoo dolls: seamless
interaction at multiple scales in virtual environments. In Proceedings of the
1999 symposium on Interactive 3D graphics, (pp. 141–145).

Postel, J. (1980). Rfc0768: User datagram protocol.

Postel, J. (2011). Transmission control protocol.

Poupyrev, I., Billinghurst, M., Weghorst, S., & Ichikawa, T. (1996). The go-go
interaction technique: non-linear mapping for direct manipulation in vr. In
ACM Symposium on User Interface Software and Technology , (pp. 79–80).
Citeseer.

Poupyrev, I., Ichikawa, T., Weghorst, S., & Billinghurst, M. (1998). Egocentric
object manipulation in virtual environments: empirical evaluation of inter-
action techniques. In Computer graphics forum, vol. 17, (pp. 41–52). Wiley
Online Library.

Pratt, M. J. (1984). Solid modeling and the interface between design and
manufacture. IEEE Computer Graphics and Applications, 4 (7), 52–59.

https/www.omg.org/spec/UML/
https://www.3dbiology.com/nurbs-vs-bezier-whats-the-difference/

169

Pratt, M. J. (2001). Introduction to iso 10303—the step standard for product
data exchange. Journal of Computing and Information Science in Engineer-
ing , 1 (1), 102–103.

Pratt, M. J. (2005). Iso 10303, the step standard for product data exchange,
and its plm capabilities. International Journal of Product Lifecycle Manage-
ment , 1 (1), 86–94.

Pryor, H. L., Furness III, T. A., & Viirre III, E. (1998). The virtual retinal
display: A new display technology using scanned laser light. In Proceedings
of the Human Factors and Ergonomics Society Annual Meeting , vol. 42, (pp.
1570–1574). SAGE Publications Sage CA: Los Angeles, CA.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 .

Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., & Fuchs, H. (1998).
The office of the future: A unified approach to image-based modeling and
spatially immersive displays. In Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, (pp. 179–188).

Reiners, D., Stricker, D., Klinker, G., & Müller, S. (1999). Augmented reality
for construction tasks: Doorlock assembly. Proc. Ieee And Acm Iwar , 98 (1),
31–46.

Renevier, P. (2004). Mobile Collaborative Mixed Systems : Design and Devel-
opment . Ph.D. thesis, Université Joseph-Fourier - Grenoble I.

Rizzo, A., Reger, G., Gahm, G., Difede, J., & Rothbaum, B. O. (2009). Virtual
reality exposure therapy for combat-related ptsd. In Post-traumatic stress
disorder , (pp. 375–399). Springer.

Rose, F. D., Brooks, B. M., & Rizzo, A. A. (2005). Virtual reality in brain
damage rehabilitation. Cyberpsychology & behavior , 8 (3), 241–262.

Ross, D. T. (1960). Computer-aided design: A statement of objectives. MIT
Electronic Systems Laboratory.

Roupé, M., Johansson, M., Viklund Tallgren, M., Jörnebrant, F., & Tomsa,
P. A. (2016). Immersive visualization of Building Information Models. In Liv-
ing Systems and Micro-Utopias: Towards Continuous Designing, Proceed-
ings of the 21st International Conference of the Association for Computer-

170 Bibliography

Aided Architectural Design Research in Asia (CAADRIA 2016), (pp. 673–
682).

Salvendy, G. (2006). Handbook of human factors and ergonomics, vol. 144.
Wiley New York.

Sammer, M., Leitão, A., & Caetano, I. (2019). From visual input to visual
output in textual programming.

Sato, Y., Nakamoto, M., Tamaki, Y., Sasama, T., Sakita, I., Nakajima, Y.,
Monden, M., & Tamura, S. (1998). Image guidance of breast cancer surgery
using 3-d ultrasound images and augmented reality visualization. IEEE
Transactions on Medical Imaging , 17 (5), 681–693.

Schnabel, M. A., & Kvan, T. (2003). Spatial understanding in immersive
virtual environments. International Journal of Architectural Computing ,
1 (4), 435–448.

Schowengerdt, B. T., Seibel, E. J., Kelly, J. P., Silverman, N. L., & Furness III,
T. A. (2003). Binocular retinal scanning laser display with integrated focus
cues for ocular accommodation. In Stereoscopic Displays and Virtual Re-
ality Systems X , vol. 5006, (pp. 1–9). International Society for Optics and
Photonics.

Schwald, B., & De Laval, B. (2003). An augmented reality system for training
and assistance to maintenance in the industrial context.

Serrano, A., Sitzmann, V., Ruiz-Borau, J., Wetzstein, G., Gutierrez, D., &
Masia, B. (2017). Movie editing and cognitive event segmentation in virtual
reality video. ACM Transactions on Graphics (TOG), 36 (4), 1–12.

Shah, J. J. (1998). Designing with parametric cad: Classification and compar-
ison of construction techniques. In International Workshop on Geometric
Modelling , (pp. 53–68). Springer.

Shah, J. J., & Mäntylä, M. (1995). Parametric and Feature-Based CAD/CAM:
Concepts, Techniques, and Applications. John Wiley & Sons.

Shah, J. J., & Rogers, M. (1988). Expert form feature modelling shell.
computer-aided design, 20 (9), 515–524.

Skvorc, D., Horvat, M., & Srbljic, S. (2014). Performance evaluation of web-
socket protocol for implementation of full-duplex web streams. In 2014 37th

171

International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), (pp. 1003–1008). IEEE.

Smith, B. (1983). Iges: a key to cad/cam systems integration. IEEE Computer
Graphics and Applications, (8), 78–83.

Smith, B., & Wellington, J. (1986). Initial graphics exchange specification
(iges); version 3.0. Tech. rep., US. Nat. Bureau Stand.

Stals, A., & Caldas, L. (2020). State of XR research in architecture with focus
on professional practice–a systematic literature review. Architectural Science
Review , (pp. 1–9).

Stals, A., Elsen, C., & Jancart, S. (2018a). L’immersion pour l’appréhension
des outils de modélisation paramétrique en conception architecturale. In
SHS Web of Conferences, vol. 47, (p. 01010). EDP Sciences.

Stals, A., Jancart, S., & Elsen, C. (2018b). Influence of parametric tools on the
complexity of architectural design in everyday work os sme’s. Archnet-IJAR,
12 (3), 206–227.

Steed, A., & Slater, M. (1996). A dataflow representation for defining be-
haviours within virtual environments. In Proceedings of the IEEE 1996 Vir-
tual Reality Annual International Symposium, (pp. 163–167). IEEE.

Steiner, I. D. (1972). Group process and productivity . Academic press.

Stiles, R., & Pontecorvo, M. (1992). Lingua graphica: A visual language for
virtual environments. In Proceedings IEEE Workshop on Visual Languages,
(pp. 225–227). IEEE.

Stoakley, R., Conway, M. J., & Pausch, R. (1995). Virtual reality on a wim:
interactive worlds in miniature. In Proceedings of the SIGCHI conference on
Human factors in computing systems, (pp. 265–272).

Suh, A., & Prophet, J. (2018). The state of immersive technology research: A
literature analysis. Computers in Human Behavior , 86 , 77–90.

Sutherland, I. E. (1964). Sketchpad a man-machine graphical communication
system. Simulation, 2 (5), R–3.

Sutherland, I. E. (1968). A head-mounted three dimensional display. In Pro-
ceedings of the December 9-11, 1968, fall joint computer conference, part I ,
(pp. 757–764).

172 Bibliography

Taentzer, G. (1999). Agg: A tool environment for algebraic graph transforma-
tion. In International Workshop on Applications of Graph Transformations
with Industrial Relevance, (pp. 481–488). Springer.

Takahashi, H., & Hirooka, S. (2008). Stereoscopic see-through retinal projec-
tion head-mounted display. In Stereoscopic displays and applications XIX ,
vol. 6803, (p. 68031N). International Society for Optics and Photonics.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation, vol. 74.
John Wiley & Sons.

Tan, C. T., Leong, T. W., Shen, S., Dubravs, C., & Si, C. (2015). Exploring
gameplay experiences on the oculus rift. In Proceedings of the 2015 Annual
Symposium on Computer-Human Interaction in Play , (pp. 253–263).

Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P., & Piekarski,
W. (2002). First person indoor/outdoor augmented reality application: Ar-
quake. Personal and Ubiquitous Computing , 6 (1), 75–86.

Tobias, E., Maquil, V., & Latour, T. (2015). Tulip: a widget-based software
framework for tangible tabletop interfaces. In Proceedings of the 7th acm
sigchi symposium on engineering interactive computing systems, (pp. 216–
221).

Tornincasa, S., Di Monaco, F., et al. (2010). The future and the evolution of
CAD. In Proceedings of the 14th International Research/Expert Conference:
Trends in the Development of Machinery and Associated Technology , vol. 1,
(pp. 11–18).

Turrin, M., Von Buelow, P., & Stouffs, R. (2011). Design explorations of per-
formance driven geometry in architectural design using parametric modeling
and genetic algorithms. Advanced Engineering Informatics, 25 (4), 656–675.

Turrin, M., Von Buelow, P., Stouffs, R., & Kilian, A. (2010). Performance-
oriented design of large passive solar roofs. In A method for the integration
of parametric modeling and genetic algorithms. in: Proceedings of eCAADe
2010, 28th Conference. Future Cities. Zurich, Switzerland, 15–18 September ,
vol. 2010, (pp. 321–330).

Versprille, K. J. (1975). Computer-aided design applications of the rational
b-spline approximation form.. Syracuse University.

Villaggi, L., Stoddart, J., Nagy, D., & Benjamin, D. (2018a). Survey-Based

173

Simulation of User Satisfaction for Generative Design in Architecture. In
K. De Rycke, C. Gengnagel, O. Baverel, J. Burry, C. Mueller, M. M. Nguyen,
P. Rahm, & M. R. Thomsen (Eds.) Humanizing Digital Reality , (pp. 417–
430). Singapore: Springer Singapore.

Villaggi, L., Stoddart, J., Nagy, D., & Benjamin, D. (2018b). Survey-based
simulation of user satisfaction for generative design in architecture. In Hu-
manizing Digital Reality , (pp. 417–430). Springer.

Vlahakis, V., Karigiannis, J., Tsotros, M., Gounaris, M., Almeida, L., Stricker,
D., Gleue, T., Christou, I. T., Carlucci, R., Ioannidis, N., et al. (2001).
Archeoguide: first results of an augmented reality, mobile computing system
in cultural heritage sites. Virtual Reality, Archeology, and Cultural Heritage,
9 (10.1145), 584993–585015.

Voelcker, H. B., & Requicha, A. A. (1977). Geometric modeling of mechanical
parts and processes. Computer , 10 (12), 48–57.

Wang, T., Qian, X., He, F., Hu, X., Huo, K., Cao, Y., & Ramani, K. (2020).
Capturar: An augmented reality tool for authoring human-involved context-
aware applications. In Proceedings of the 33rd Annual ACM Symposium on
User Interface Software and Technology , (pp. 328–341).

Wang, Y.-Y., & Ju, Y.-C. (2004). Creating speech recognition grammars from
regular expressions for alphanumeric concepts. In Eighth International Con-
ference on Spoken Language Processing .

Welch, G., & Foxlin, E. (2002). Motion tracking: No silver bullet, but a
respectable arsenal. IEEE Computer graphics and Applications, 22 (6), 24–
38.

Wesche, G., & Seidel, H.-P. (2001). Freedrawer: a free-form sketching system
on the responsive workbench. In Proceedings of the ACM symposium on
Virtual reality software and technology , (pp. 167–174).

Willième, R. (2020). Interactions gestuelles pour la manipulation de graphes
en réalité virtuelle. Master’s thesis, University of Mons.

Wilson, P. (1987). A short history of cad data transfer standards. IEEE
Computer Graphics and Applications, (6), 64–67.

Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Pho-
togrammetry with Applications in GIS , chap. 1, (pp. 11–13). McGraw-Hill
Education.

174 Bibliography

Woodbury, R., et al. (2010). Elements of parametric design.

Wright, J., & Farmani, R. (2001). The simultaneous optimization of building
fabric construction, hvac system size, and the plant control strategy. In Proc.
of the 7-th IBPSA Conference, vol. 1, (pp. 865–872).

Wu, P., Wang, J., & Wang, X. (2016). A critical review of the use of 3-
d printing in the construction industry. Automation in Construction, 68 ,
21–31.

Wyss, H. P., Blach, R., & Bues, M. (2006). isith-intersection-based spatial
interaction for two hands. In 3D User Interfaces (3DUI’06), (pp. 59–61).
IEEE.

Xie, Y., Loh, G. H., Black, B., & Bernstein, K. (2006). Design space exploration
for 3d architectures. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 2 (2), 65–103.

Xu, Z., Lu, X., Guan, H., Chen, C., & Ren, A. (2014). A virtual reality based
fire training simulator with smoke hazard assessment capacity. Advances in
engineering software, 68 , 1–8.

Yergeau, F., Sperberg-McQueen, M., Paoli, J., Bray, T., & Maler, E. (2008).
Extensible markup language (XML) 1.0 (fifth edition). W3C recommenda-
tion, W3C. Https://www.w3.org/TR/2008/REC-xml-20081126/.

Yip, C. H. T., Chiu, T. T. W., & Poon, A. T. K. (2008). The relationship
between head posture and severity and disability of patients with neck pain.
Manual therapy , 13 (2), 148–154.

Zaman, L., Stuerzlinger, W., & Neugebauer, C. (2017). Mace: A new interface
for comparing and editing of multiple alternative documents for generative
design. In Proceedings of the 2017 ACM Symposium on Document Engineer-
ing , (pp. 67–76).

Zhang, J., Tai, L., Liu, M., Boedecker, J., & Burgard, W. (2017). Neural slam:
Learning to explore with external memory. arXiv preprint arXiv:1706.09520 .

Zhang, L., & Oney, S. (2020). Flowmatic: An immersive authoring tool for cre-
ating interactive scenes in virtual reality. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology , (pp. 342–353).

Zollmann, S., Langlotz, T., Loos, M., Lo, W. H., & Baker, L. (2019). Arspec-
tator: Exploring augmented reality for sport events. In SIGGRAPH Asia
2019 Technical Briefs, (pp. 75–78).

.

.

.

Integrating Immersive Technologies for Algorithmic Design in
Architecture

Architectural design practice has radically evolved over the course of its his-
tory, due to technological improvements that gave rise to advanced automated
tools for many design tasks. Traditional paper drawings and scale models
are now accompanied by 2D and 3D Computer-Aided Architectural Design
(CAAD) software.

While such tools improved in many ways, including performance and ac-
curacy improvements, the modalities of user interaction have mostly remained
the same, with 2D interfaces displayed on 2D screens. The maturation of Aug-
mented Reality (AR) and Virtual Reality (VR) technology has led to some
level of integration of these immersive technologies into architectural practice,
but mostly limited to visualisation purposes, e.g. to show a finished project to
a potential client.

We posit that there is potential to employ such technologies earlier in the
architectural design process and therefore explore that possibility with a focus
on Algorithmic Design (AD), a CAAD paradigm that relies on (often visual)
algorithms to generate geometries. The main goal of this dissertation is to
demonstrate that AR and VR can be adopted for AD activities.

To verify that claim, we follow an iterative prototype-based methodology
to develop research prototype software tools and evaluate them. The three
developed prototypes provide evidence that integrating immersive technolo-
gies into the AD toolset provides opportunities for architects to improve their
workflow and to better present their creations to clients. Based on our contri-
butions and the feedback we gathered from architectural students and other
researchers that evaluated the developed prototypes, we additionally provide
insights as to future perspectives in the field.

	List of Acronyms
	1 Introduction
	1.1 Context
	1.2 Algorithmic Design in architecture
	1.2.1 Terminology

	1.3 Thesis statement
	1.4 Research methodology
	1.5 Thesis structure

	2 State of the art
	2.1 Immersive technologies
	2.1.1 Terminology
	2.1.2 Technological building blocks for immersive experiences
	2.1.3 Application domains

	2.2 3D visual modelling
	2.2.1 Immersive authoring of visual models

	2.3 Computer-Aided Design
	2.3.1 Evolution of Computer-Aided Design
	2.3.2 Computer-Aided Architectural Design
	2.3.3 Programming architectural models

	2.4 Three-dimensional Human-Computer Interaction
	2.4.1 Direct manipulation
	2.4.2 Indirect manipulation
	2.4.3 Hybrid techniques

	2.5 New ways of interacting with architectural designs
	2.5.1 Design Space Exploration and Optimisation of parameter values
	2.5.2 Use of immersive technologies
	2.5.3 Survey on the potential of Virtual Reality for architectural design

	3 Immersive parameter adjustment for algorithmic co-design
	3.1 Requirements for creating immersive Algorithmic Design tooling
	3.2 Prototype for adjusting models in Virtual Reality
	3.2.1 Grasshopper custom component for external parameter value adjustment
	3.2.2 Virtual Reality application

	3.3 Enabling immersive collaboration
	3.3.1 Virtual co-presence
	3.3.2 Towards collaborative parameter value adjustment

	3.4 Evolving the concept for Augmented Reality and Tangible User Interfaces
	3.4.1 Overview of the system
	3.4.2 Grasshopper custom component
	3.4.3 Table application
	3.4.4 Circular screen setup and Virtual Reality applications
	3.4.5 Augmented Reality application

	3.5 Validation
	3.6 Discussion

	4 Immersive visual programming for Algorithmic Design
	4.1 A graph representation of Algorithmic Design definitions
	4.2 Interoperability with Grasshopper
	4.2.1 Defining vertex objects
	4.2.2 Converting Grasshopper files to a graph-based representation
	4.2.3 Groups and clusters
	4.2.4 Immersive visual representation

	4.3 Exploring interaction techniques for graph manipulation
	4.3.1 Variant P1: grasping metaphor with 6-DoF controllers
	4.3.2 Variant P1speech: Speech recognition
	4.3.3 Variant P2: grasping and pointing metaphor with a hand-tracking system

	4.4 Immersive visualisation of resulting structures
	4.5 Validation
	4.6 Discussion
	4.6.1 Towards a collaborative variant of GHVRGraph
	4.6.2 Opportunities for visualisation enhancements
	4.6.3 Genericity and adaptability

	5 Conclusion
	5.1 Research contributions
	5.2 Discussion
	5.2.1 Overview of the immersive Algorithmic Design landscape
	5.2.2 Limitations

	5.3 Perspectives
	5.3.1 Enhancing the aid for Algorithmic Design
	5.3.2 Technological improvements

	Appendices
	A GHXR evaluation protocol
	B GHXR System Usability Scale questionnaire

